1 | /* |
---|
2 | * lib_cone.cpp |
---|
3 | * |
---|
4 | * Created on: Sep 29, 2010 |
---|
5 | * Author: anders |
---|
6 | */ |
---|
7 | |
---|
8 | #include "gfanlib_zcone.h" |
---|
9 | |
---|
10 | #include <vector> |
---|
11 | #include <set> |
---|
12 | #include <sstream> |
---|
13 | |
---|
14 | #include <config.h> |
---|
15 | extern "C" |
---|
16 | { |
---|
17 | #ifdef HAVE_CDD_SETOPER_H |
---|
18 | #include <cdd/setoper.h> |
---|
19 | #include <cdd/cdd.h> |
---|
20 | #else |
---|
21 | #ifdef HAVE_CDDLIB_SETOPER_H |
---|
22 | #include <cddlib/setoper.h> |
---|
23 | #include <cddlib/cdd.h> |
---|
24 | #else |
---|
25 | #include <setoper.h> |
---|
26 | #include <cdd.h> |
---|
27 | #endif //HAVE_CDDLIB_SETOPER_H |
---|
28 | #endif //HAVE_CDD_SETOPER_H |
---|
29 | } |
---|
30 | extern "C" time_t dd_statStartTime; /*cddlib*/ |
---|
31 | |
---|
32 | namespace gfan{ |
---|
33 | bool isCddlibRequired() |
---|
34 | { |
---|
35 | return true; |
---|
36 | } |
---|
37 | void initializeCddlibIfRequired() // calling this frequently will cause memory leaks because deinitialisation is not possible with old versions of cddlib. |
---|
38 | { |
---|
39 | if (dd_statStartTime==0) |
---|
40 | { |
---|
41 | dd_set_global_constants(); |
---|
42 | } |
---|
43 | } |
---|
44 | void deinitializeCddlibIfRequired() |
---|
45 | { |
---|
46 | #ifdef HAVE_DD_FREE_GLOBAL_CONSTANTS |
---|
47 | // dd_free_global_constants(); |
---|
48 | #endif |
---|
49 | } |
---|
50 | static void ensureCddInitialisation() |
---|
51 | { |
---|
52 | // A more complicated initialisation than the following (meaning attempts to count the number of times |
---|
53 | // cddlib was requested to be initialised) would require cddlib to be thread aware. |
---|
54 | // The error below is implemented with an assert(0) because throwing an exception may leave the impression that |
---|
55 | // it is possible to recover from this error. While that may be true, it would not work in full generality, |
---|
56 | // as the following if statement cannot test whether dd_free_global_constants() has also been called. |
---|
57 | // Moverover, in multithreaded environments it would be quite difficult to decide if cddlib was initialised. |
---|
58 | if(!dd_one[0]._mp_num._mp_d) |
---|
59 | { |
---|
60 | std::cerr<<"CDDLIB HAS NOT BEEN INITIALISED!\n" |
---|
61 | "\n" |
---|
62 | "Fix this problem by calling the following function in your initialisation code:\n" |
---|
63 | "dd_set_global_constants();\n" |
---|
64 | "(after possibly setting the gmp allocators) and\n" |
---|
65 | "dd_free_global_constants()\n" |
---|
66 | "in your deinitialisation code (only available for cddlib version>=094d).\n" |
---|
67 | "This requires the header includes:\n" |
---|
68 | "#include \"cdd/setoper.h\"\n" |
---|
69 | "#include \"cdd/cdd.h\"\n" |
---|
70 | "\n" |
---|
71 | "Alternatively, you may call gfan:initializeCddlibIfRequired() and deinitializeCddlibIfRequired()\n" |
---|
72 | "if gfanlib is the only code using cddlib. If at some point cddlib is no longer required by gfanlib\n" |
---|
73 | "these functions may do nothing.\n" |
---|
74 | "Because deinitialisation is not possible in cddlib <094d, the functions may leak memory and should not be called often.\n" |
---|
75 | "\n" |
---|
76 | "This error message will never appear if the initialisation was done properly, and therefore never appear in a shipping version of your software.\n"; |
---|
77 | assert(0); |
---|
78 | } |
---|
79 | /* |
---|
80 | static bool initialized; |
---|
81 | if(!initialized) |
---|
82 | { |
---|
83 | dd_set_global_constants(); |
---|
84 | initialized=true; |
---|
85 | }*/ |
---|
86 | } |
---|
87 | |
---|
88 | |
---|
89 | class LpSolver |
---|
90 | { |
---|
91 | static dd_MatrixPtr ZMatrix2MatrixGmp(ZMatrix const &g, dd_ErrorType *Error) |
---|
92 | { |
---|
93 | int n=g.getWidth(); |
---|
94 | dd_MatrixPtr M=NULL; |
---|
95 | dd_rowrange m_input,i; |
---|
96 | dd_colrange d_input,j; |
---|
97 | dd_RepresentationType rep=dd_Inequality; |
---|
98 | // dd_boolean found=dd_FALSE, newformat=dd_FALSE, successful=dd_FALSE; |
---|
99 | char command[dd_linelenmax], comsave[dd_linelenmax]; |
---|
100 | dd_NumberType NT; |
---|
101 | |
---|
102 | (*Error)=dd_NoError; |
---|
103 | |
---|
104 | rep=dd_Inequality; // newformat=dd_TRUE; |
---|
105 | |
---|
106 | m_input=g.getHeight(); |
---|
107 | d_input=n+1; |
---|
108 | |
---|
109 | NT=dd_Rational; |
---|
110 | |
---|
111 | M=dd_CreateMatrix(m_input, d_input); |
---|
112 | M->representation=rep; |
---|
113 | M->numbtype=NT; |
---|
114 | |
---|
115 | for (i = 0; i < m_input; i++) { |
---|
116 | dd_set_si(M->matrix[i][0],0); |
---|
117 | for (j = 1; j < d_input; j++) { |
---|
118 | g[i][j-1].setGmp(mpq_numref(M->matrix[i][j])); |
---|
119 | mpz_set_ui(mpq_denref(M->matrix[i][j]), 1); |
---|
120 | mpq_canonicalize(M->matrix[i][j]); |
---|
121 | } |
---|
122 | } |
---|
123 | |
---|
124 | // successful=dd_TRUE; |
---|
125 | |
---|
126 | return M; |
---|
127 | } |
---|
128 | static dd_MatrixPtr ZMatrix2MatrixGmp(ZMatrix const &inequalities, ZMatrix const &equations, dd_ErrorType *err) |
---|
129 | { |
---|
130 | ZMatrix g=inequalities; |
---|
131 | g.append(equations); |
---|
132 | int numberOfInequalities=inequalities.getHeight(); |
---|
133 | int numberOfRows=g.getHeight(); |
---|
134 | dd_MatrixPtr A=NULL; |
---|
135 | ensureCddInitialisation(); |
---|
136 | A=ZMatrix2MatrixGmp(g, err); |
---|
137 | for(int i=numberOfInequalities;i<numberOfRows;i++) |
---|
138 | set_addelem(A->linset,i+1); |
---|
139 | return A; |
---|
140 | } |
---|
141 | static ZMatrix getConstraints(dd_MatrixPtr A, bool returnEquations) |
---|
142 | { |
---|
143 | int rowsize=A->rowsize; |
---|
144 | int n=A->colsize-1; |
---|
145 | |
---|
146 | ZMatrix ret(0,n); |
---|
147 | for(int i=0;i<rowsize;i++) |
---|
148 | { |
---|
149 | bool isEquation=set_member(i+1,A->linset); |
---|
150 | if(isEquation==returnEquations) |
---|
151 | { |
---|
152 | QVector v(n); |
---|
153 | for(int j=0;j<n;j++)v[j]=Rational(A->matrix[i][j+1]); |
---|
154 | ret.appendRow(QToZVectorPrimitive(v)); |
---|
155 | } |
---|
156 | } |
---|
157 | return ret; |
---|
158 | } |
---|
159 | static bool isFacet(ZMatrix const &g, int index) |
---|
160 | { |
---|
161 | bool ret; |
---|
162 | // dd_MatrixPtr M=NULL,M2=NULL,M3=NULL; |
---|
163 | dd_MatrixPtr M=NULL; |
---|
164 | // dd_colrange d; |
---|
165 | dd_ErrorType err=dd_NoError; |
---|
166 | // dd_rowset redrows,linrows,ignoredrows, basisrows; |
---|
167 | // dd_colset ignoredcols, basiscols; |
---|
168 | // dd_DataFileType inputfile; |
---|
169 | FILE *reading=NULL; |
---|
170 | |
---|
171 | ensureCddInitialisation(); |
---|
172 | |
---|
173 | M=ZMatrix2MatrixGmp(g, &err); |
---|
174 | if (err!=dd_NoError) goto _L99; |
---|
175 | |
---|
176 | // d=M->colsize; |
---|
177 | |
---|
178 | //static dd_Arow temp; |
---|
179 | dd_Arow temp; |
---|
180 | dd_InitializeArow(g.getWidth()+1,&temp); |
---|
181 | |
---|
182 | ret= !dd_Redundant(M,index+1,temp,&err); |
---|
183 | |
---|
184 | dd_FreeMatrix(M); |
---|
185 | dd_FreeArow(g.getWidth()+1,temp); |
---|
186 | |
---|
187 | if (err!=dd_NoError) goto _L99; |
---|
188 | return ret; |
---|
189 | _L99: |
---|
190 | assert(0); |
---|
191 | return false; |
---|
192 | } |
---|
193 | |
---|
194 | /* |
---|
195 | Heuristic for checking if inequality of full dimensional cone is a |
---|
196 | facet. If the routine returns true then the inequality is a |
---|
197 | facet. If it returns false it is unknown. |
---|
198 | */ |
---|
199 | static bool fastIsFacetCriterion(ZMatrix const &normals, int i) |
---|
200 | { |
---|
201 | int n=normals.getWidth(); |
---|
202 | for(int j=0;j<n;j++) |
---|
203 | if(normals[i][j].sign()!=0) |
---|
204 | { |
---|
205 | int sign=normals[i][j].sign(); |
---|
206 | bool isTheOnly=true; |
---|
207 | for(int k=0;k<normals.getHeight();k++) |
---|
208 | if(k!=i) |
---|
209 | { |
---|
210 | if(normals[i][j].sign()==sign) |
---|
211 | { |
---|
212 | isTheOnly=false; |
---|
213 | break; |
---|
214 | } |
---|
215 | } |
---|
216 | if(isTheOnly)return true; |
---|
217 | } |
---|
218 | return false; |
---|
219 | } |
---|
220 | |
---|
221 | static bool fastIsFacet(ZMatrix const &normals, int i) |
---|
222 | { |
---|
223 | if(fastIsFacetCriterion(normals,i))return true; |
---|
224 | return isFacet(normals,i); |
---|
225 | } |
---|
226 | |
---|
227 | class MyHashMap |
---|
228 | { |
---|
229 | typedef std::vector<std::set<ZVector> > Container; |
---|
230 | Container container; |
---|
231 | int tableSize; |
---|
232 | public: |
---|
233 | class iterator |
---|
234 | { |
---|
235 | class MyHashMap &hashMap; |
---|
236 | int index; // having index==-1 means that we are before/after the elements. |
---|
237 | std::set<ZVector>::iterator i; |
---|
238 | public: |
---|
239 | bool operator++() |
---|
240 | { |
---|
241 | if(index==-1)goto search; |
---|
242 | i++; |
---|
243 | while(i==hashMap.container[index].end()) |
---|
244 | { |
---|
245 | search: |
---|
246 | index++; |
---|
247 | if(index>=hashMap.tableSize){ |
---|
248 | index=-1; |
---|
249 | return false; |
---|
250 | } |
---|
251 | i=hashMap.container[index].begin(); |
---|
252 | } |
---|
253 | return true; |
---|
254 | } |
---|
255 | ZVector const & operator*()const |
---|
256 | { |
---|
257 | return *i; |
---|
258 | } |
---|
259 | ZVector operator*() |
---|
260 | { |
---|
261 | return *i; |
---|
262 | } |
---|
263 | iterator(MyHashMap &hashMap_): |
---|
264 | hashMap(hashMap_) |
---|
265 | { |
---|
266 | index=-1; |
---|
267 | } |
---|
268 | }; |
---|
269 | unsigned int function(const ZVector &v) |
---|
270 | { |
---|
271 | unsigned int ret=0; |
---|
272 | int n=v.size(); |
---|
273 | for(int i=0;i<n;i++) |
---|
274 | ret=(ret<<3)+(ret>>29)+v.UNCHECKEDACCESS(i).hashValue(); |
---|
275 | return ret%tableSize; |
---|
276 | } |
---|
277 | MyHashMap(int tableSize_): |
---|
278 | container(tableSize_), |
---|
279 | tableSize(tableSize_) |
---|
280 | { |
---|
281 | assert(tableSize_>0); |
---|
282 | } |
---|
283 | void insert(const ZVector &v) |
---|
284 | { |
---|
285 | container[function(v)].insert(v); |
---|
286 | } |
---|
287 | void erase(ZVector const &v) |
---|
288 | { |
---|
289 | container[function(v)].erase(v); |
---|
290 | } |
---|
291 | iterator begin() |
---|
292 | { |
---|
293 | iterator ret(*this); |
---|
294 | ++ ret; |
---|
295 | return ret; |
---|
296 | } |
---|
297 | int size() |
---|
298 | { |
---|
299 | iterator i=begin(); |
---|
300 | int ret=0; |
---|
301 | do{ret++;}while(++i); |
---|
302 | return ret; |
---|
303 | } |
---|
304 | }; |
---|
305 | |
---|
306 | |
---|
307 | static ZMatrix normalizedWithSumsAndDuplicatesRemoved(ZMatrix const &a) |
---|
308 | { |
---|
309 | // TODO: write a version of this function which will work faster if the entries fit in 32bit |
---|
310 | if(a.getHeight()==0)return a; |
---|
311 | int n=a.getWidth(); |
---|
312 | ZVector temp1(n); |
---|
313 | // ZVector temp2(n); |
---|
314 | ZMatrix ret(0,n); |
---|
315 | MyHashMap b(a.getHeight()); |
---|
316 | |
---|
317 | for(int i=0;i<a.getHeight();i++) |
---|
318 | { |
---|
319 | assert(!(a[i].toVector().isZero())); |
---|
320 | b.insert(a[i].toVector().normalized()); |
---|
321 | } |
---|
322 | |
---|
323 | { |
---|
324 | MyHashMap::iterator i=b.begin(); |
---|
325 | |
---|
326 | do |
---|
327 | { |
---|
328 | MyHashMap::iterator j=i; |
---|
329 | while(++j) |
---|
330 | { |
---|
331 | ZVector const &I=*i; |
---|
332 | ZVector const &J=*j; |
---|
333 | for(int k=0;k<n;k++)temp1[k]=I.UNCHECKEDACCESS(k)+J.UNCHECKEDACCESS(k); |
---|
334 | // normalizedLowLevel(temp1,temp2); |
---|
335 | // b.erase(temp2);//this can never remove *i or *j |
---|
336 | b.erase(temp1.normalized());//this can never remove *i or *j |
---|
337 | } |
---|
338 | } |
---|
339 | while(++i); |
---|
340 | } |
---|
341 | ZMatrix original(0,n); |
---|
342 | { |
---|
343 | MyHashMap::iterator i=b.begin(); |
---|
344 | do |
---|
345 | { |
---|
346 | original.appendRow(*i); |
---|
347 | } |
---|
348 | while(++i); |
---|
349 | } |
---|
350 | |
---|
351 | for(int i=0;i!=original.getHeight();i++) |
---|
352 | for(int j=0;j!=a.getHeight();j++) |
---|
353 | if(!dependent(original[i].toVector(),a[j].toVector())) |
---|
354 | { |
---|
355 | ZVector const &I=original[i]; |
---|
356 | ZVector const &J=a[j]; |
---|
357 | for(int k=0;k<n;k++)temp1[k]=I.UNCHECKEDACCESS(k)+J.UNCHECKEDACCESS(k); |
---|
358 | // normalizedLowLevel(temp1,temp2); |
---|
359 | // b.erase(temp2);//this can never remove *i or *j |
---|
360 | b.erase(temp1.normalized());//this can never remove *i or *j |
---|
361 | } |
---|
362 | { |
---|
363 | MyHashMap::iterator i=b.begin(); |
---|
364 | do |
---|
365 | { |
---|
366 | ZVector temp=*i; |
---|
367 | ret.appendRow(temp); |
---|
368 | } |
---|
369 | while(++i); |
---|
370 | } |
---|
371 | return ret; |
---|
372 | } |
---|
373 | public: |
---|
374 | static ZMatrix fastNormals(ZMatrix const &inequalities) |
---|
375 | { |
---|
376 | ZMatrix normals=normalizedWithSumsAndDuplicatesRemoved(inequalities); |
---|
377 | for(int i=0;i!=normals.getHeight();i++) |
---|
378 | if(!fastIsFacet(normals,i)) |
---|
379 | { |
---|
380 | normals[i]=normals[normals.getHeight()-1]; |
---|
381 | normals.eraseLastRow(); |
---|
382 | i--; |
---|
383 | } |
---|
384 | return normals; |
---|
385 | } |
---|
386 | void removeRedundantRows(ZMatrix &inequalities, ZMatrix &equations, bool removeInequalityRedundancies) |
---|
387 | { |
---|
388 | ensureCddInitialisation(); |
---|
389 | |
---|
390 | int numberOfEqualities=equations.getHeight(); |
---|
391 | int numberOfInequalities=inequalities.getHeight(); |
---|
392 | int numberOfRows=numberOfEqualities+numberOfInequalities; |
---|
393 | |
---|
394 | if(numberOfRows==0)return;//the full space, so description is already irredundant |
---|
395 | |
---|
396 | // dd_rowset r=NULL; |
---|
397 | ZMatrix g=inequalities; |
---|
398 | g.append(equations); |
---|
399 | |
---|
400 | // dd_LPSolverType solver=dd_DualSimplex; |
---|
401 | dd_MatrixPtr A=NULL; |
---|
402 | dd_ErrorType err=dd_NoError; |
---|
403 | |
---|
404 | A=ZMatrix2MatrixGmp(g,&err); |
---|
405 | if (err!=dd_NoError) goto _L99; |
---|
406 | |
---|
407 | for(int i=numberOfInequalities;i<numberOfRows;i++) |
---|
408 | set_addelem(A->linset,i+1); |
---|
409 | |
---|
410 | A->objective=dd_LPmax; |
---|
411 | |
---|
412 | dd_rowset impl_linset; |
---|
413 | dd_rowset redset; |
---|
414 | dd_rowindex newpos; |
---|
415 | |
---|
416 | if(removeInequalityRedundancies) |
---|
417 | dd_MatrixCanonicalize(&A, &impl_linset, &redset, &newpos, &err); |
---|
418 | else |
---|
419 | dd_MatrixCanonicalizeLinearity(&A, &impl_linset, &newpos, &err); |
---|
420 | |
---|
421 | if (err!=dd_NoError) goto _L99; |
---|
422 | |
---|
423 | { |
---|
424 | int n=A->colsize-1; |
---|
425 | equations=ZMatrix(0,n); //TODO: the number of rows needed is actually known |
---|
426 | inequalities=ZMatrix(0,n); //is known by set_card(). That might save some copying. |
---|
427 | |
---|
428 | { |
---|
429 | int rowsize=A->rowsize; |
---|
430 | QVector point(n); |
---|
431 | for(int i=0;i<rowsize;i++) |
---|
432 | { |
---|
433 | for(int j=0;j<n;j++)point[j]=Rational(A->matrix[i][j+1]); |
---|
434 | ((set_member(i+1,A->linset))?equations:inequalities).appendRow(QToZVectorPrimitive(point)); |
---|
435 | } |
---|
436 | } |
---|
437 | assert(set_card(A->linset)==equations.getHeight()); |
---|
438 | assert(A->rowsize==equations.getHeight()+inequalities.getHeight()); |
---|
439 | |
---|
440 | set_free(impl_linset); |
---|
441 | if(removeInequalityRedundancies) |
---|
442 | set_free(redset); |
---|
443 | free(newpos); |
---|
444 | |
---|
445 | dd_FreeMatrix(A); |
---|
446 | return; |
---|
447 | } |
---|
448 | _L99: |
---|
449 | assert(!"Cddlib reported error when called by Gfanlib."); |
---|
450 | } |
---|
451 | ZVector relativeInteriorPoint(const ZMatrix &inequalities, const ZMatrix &equations) |
---|
452 | { |
---|
453 | QVector retUnscaled(inequalities.getWidth()); |
---|
454 | ensureCddInitialisation(); |
---|
455 | int numberOfEqualities=equations.getHeight(); |
---|
456 | int numberOfInequalities=inequalities.getHeight(); |
---|
457 | int numberOfRows=numberOfEqualities+numberOfInequalities; |
---|
458 | |
---|
459 | // dd_rowset r=NULL; |
---|
460 | ZMatrix g=inequalities; |
---|
461 | g.append(equations); |
---|
462 | |
---|
463 | dd_LPSolverType solver=dd_DualSimplex; |
---|
464 | dd_MatrixPtr A=NULL; |
---|
465 | dd_ErrorType err=dd_NoError; |
---|
466 | |
---|
467 | A=ZMatrix2MatrixGmp(g,&err); |
---|
468 | if (err!=dd_NoError) goto _L99; |
---|
469 | { |
---|
470 | dd_LPSolutionPtr lps1; |
---|
471 | dd_LPPtr lp,lp1; |
---|
472 | |
---|
473 | for(int i=0;i<numberOfInequalities;i++) |
---|
474 | dd_set_si(A->matrix[i][0],-1); |
---|
475 | for(int i=numberOfInequalities;i<numberOfRows;i++) |
---|
476 | set_addelem(A->linset,i+1); |
---|
477 | |
---|
478 | A->objective=dd_LPmax; |
---|
479 | lp=dd_Matrix2LP(A, &err); |
---|
480 | if (err!=dd_NoError) goto _L99; |
---|
481 | |
---|
482 | lp1=dd_MakeLPforInteriorFinding(lp); |
---|
483 | dd_LPSolve(lp1,solver,&err); |
---|
484 | if (err!=dd_NoError) goto _L99; |
---|
485 | |
---|
486 | lps1=dd_CopyLPSolution(lp1); |
---|
487 | |
---|
488 | assert(!dd_Negative(lps1->optvalue)); |
---|
489 | |
---|
490 | for (int j=1; j <(lps1->d)-1; j++) |
---|
491 | retUnscaled[j-1]=Rational(lps1->sol[j]); |
---|
492 | |
---|
493 | dd_FreeLPData(lp); |
---|
494 | dd_FreeLPSolution(lps1); |
---|
495 | dd_FreeLPData(lp1); |
---|
496 | dd_FreeMatrix(A); |
---|
497 | return QToZVectorPrimitive(retUnscaled); |
---|
498 | } |
---|
499 | _L99: |
---|
500 | assert(0); |
---|
501 | return QToZVectorPrimitive(retUnscaled); |
---|
502 | } |
---|
503 | void dual(ZMatrix const &inequalities, ZMatrix const &equations, ZMatrix &dualInequalities, ZMatrix &dualEquations) |
---|
504 | { |
---|
505 | int result; |
---|
506 | |
---|
507 | dd_MatrixPtr A=NULL; |
---|
508 | dd_ErrorType err=dd_NoError; |
---|
509 | |
---|
510 | ensureCddInitialisation(); |
---|
511 | |
---|
512 | A=ZMatrix2MatrixGmp(inequalities, equations, &err); |
---|
513 | |
---|
514 | dd_PolyhedraPtr poly; |
---|
515 | poly=dd_DDMatrix2Poly2(A, dd_LexMin, &err); |
---|
516 | |
---|
517 | if (poly->child==NULL || poly->child->CompStatus!=dd_AllFound) assert(0); |
---|
518 | |
---|
519 | dd_MatrixPtr A2=dd_CopyGenerators(poly); |
---|
520 | |
---|
521 | dualInequalities=getConstraints(A2,false); |
---|
522 | dualEquations=getConstraints(A2,true); |
---|
523 | |
---|
524 | dd_FreeMatrix(A2); |
---|
525 | dd_FreeMatrix(A); |
---|
526 | dd_FreePolyhedra(poly); |
---|
527 | |
---|
528 | return; |
---|
529 | _L99: |
---|
530 | assert(0); |
---|
531 | } |
---|
532 | // this procedure is take from cddio.c. |
---|
533 | static void dd_ComputeAinc(dd_PolyhedraPtr poly) |
---|
534 | { |
---|
535 | /* This generates the input incidence array poly->Ainc, and |
---|
536 | two sets: poly->Ared, poly->Adom. |
---|
537 | */ |
---|
538 | dd_bigrange k; |
---|
539 | dd_rowrange i,m1; |
---|
540 | dd_colrange j; |
---|
541 | dd_boolean redundant; |
---|
542 | dd_MatrixPtr M=NULL; |
---|
543 | mytype sum,temp; |
---|
544 | |
---|
545 | dd_init(sum); dd_init(temp); |
---|
546 | if (poly->AincGenerated==dd_TRUE) goto _L99; |
---|
547 | |
---|
548 | M=dd_CopyOutput(poly); |
---|
549 | poly->n=M->rowsize; |
---|
550 | m1=poly->m1; |
---|
551 | |
---|
552 | /* this number is same as poly->m, except when |
---|
553 | poly is given by nonhomogeneous inequalty: |
---|
554 | !(poly->homogeneous) && poly->representation==Inequality, |
---|
555 | it is poly->m+1. See dd_ConeDataLoad. |
---|
556 | */ |
---|
557 | poly->Ainc=(set_type*)calloc(m1, sizeof(set_type)); |
---|
558 | for(i=1; i<=m1; i++) set_initialize(&(poly->Ainc[i-1]),poly->n); |
---|
559 | set_initialize(&(poly->Ared), m1); |
---|
560 | set_initialize(&(poly->Adom), m1); |
---|
561 | |
---|
562 | for (k=1; k<=poly->n; k++){ |
---|
563 | for (i=1; i<=poly->m; i++){ |
---|
564 | dd_set(sum,dd_purezero); |
---|
565 | for (j=1; j<=poly->d; j++){ |
---|
566 | dd_mul(temp,poly->A[i-1][j-1],M->matrix[k-1][j-1]); |
---|
567 | dd_add(sum,sum,temp); |
---|
568 | } |
---|
569 | if (dd_EqualToZero(sum)) { |
---|
570 | set_addelem(poly->Ainc[i-1], k); |
---|
571 | } |
---|
572 | } |
---|
573 | if (!(poly->homogeneous) && poly->representation==dd_Inequality){ |
---|
574 | if (dd_EqualToZero(M->matrix[k-1][0])) { |
---|
575 | set_addelem(poly->Ainc[m1-1], k); /* added infinity inequality (1,0,0,...,0) */ |
---|
576 | } |
---|
577 | } |
---|
578 | } |
---|
579 | |
---|
580 | for (i=1; i<=m1; i++){ |
---|
581 | if (set_card(poly->Ainc[i-1])==M->rowsize){ |
---|
582 | set_addelem(poly->Adom, i); |
---|
583 | } |
---|
584 | } |
---|
585 | for (i=m1; i>=1; i--){ |
---|
586 | if (set_card(poly->Ainc[i-1])==0){ |
---|
587 | redundant=dd_TRUE; |
---|
588 | set_addelem(poly->Ared, i); |
---|
589 | }else { |
---|
590 | redundant=dd_FALSE; |
---|
591 | for (k=1; k<=m1; k++) { |
---|
592 | if (k!=i && !set_member(k, poly->Ared) && !set_member(k, poly->Adom) && |
---|
593 | set_subset(poly->Ainc[i-1], poly->Ainc[k-1])){ |
---|
594 | if (!redundant){ |
---|
595 | redundant=dd_TRUE; |
---|
596 | } |
---|
597 | set_addelem(poly->Ared, i); |
---|
598 | } |
---|
599 | } |
---|
600 | } |
---|
601 | } |
---|
602 | dd_FreeMatrix(M); |
---|
603 | poly->AincGenerated=dd_TRUE; |
---|
604 | _L99:; |
---|
605 | dd_clear(sum); dd_clear(temp); |
---|
606 | } |
---|
607 | |
---|
608 | |
---|
609 | std::vector<std::vector<int> > extremeRaysInequalityIndices(const ZMatrix &inequalities) |
---|
610 | { |
---|
611 | int dim2=inequalities.getHeight(); |
---|
612 | if(dim2==0)return std::vector<std::vector<int> >(); |
---|
613 | // int dimension=inequalities.getWidth(); |
---|
614 | |
---|
615 | dd_MatrixPtr A=NULL; |
---|
616 | dd_ErrorType err=dd_NoError; |
---|
617 | |
---|
618 | ensureCddInitialisation(); |
---|
619 | A=ZMatrix2MatrixGmp(inequalities, &err); |
---|
620 | |
---|
621 | dd_PolyhedraPtr poly; |
---|
622 | poly=dd_DDMatrix2Poly2(A, dd_LexMin, &err); |
---|
623 | |
---|
624 | if (poly->child==NULL || poly->child->CompStatus!=dd_AllFound) assert(0); |
---|
625 | if (poly->AincGenerated==dd_FALSE) dd_ComputeAinc(poly); |
---|
626 | |
---|
627 | std::vector<std::vector<int> > ret; |
---|
628 | |
---|
629 | /* |
---|
630 | How do we interpret the cddlib output? For a long ting gfan has |
---|
631 | been using poly->n as the number of rays of the cone and thus |
---|
632 | returned sets of indices that actually gave the lineality |
---|
633 | space. The mistake was then caught later in PolyhedralCone. On Feb |
---|
634 | 17 2009 gfan was changed to check the length of each set to make |
---|
635 | sure that it does not specify the lineality space and only return |
---|
636 | those sets giving rise to rays. This does not seem to be the best |
---|
637 | strategy and might even be wrong. |
---|
638 | */ |
---|
639 | |
---|
640 | |
---|
641 | for (int k=1; k<=poly->n; k++) |
---|
642 | { |
---|
643 | int length=0; |
---|
644 | for (int i=1; i<=poly->m1; i++) |
---|
645 | if(set_member(k,poly->Ainc[i-1]))length++; |
---|
646 | if(length!=dim2) |
---|
647 | { |
---|
648 | std::vector<int> v(length); |
---|
649 | int j=0; |
---|
650 | for (int i=1; i<=poly->m1; i++) |
---|
651 | if(set_member(k,poly->Ainc[i-1]))v[j++]=i-1; |
---|
652 | ret.push_back(v); |
---|
653 | } |
---|
654 | } |
---|
655 | |
---|
656 | dd_FreeMatrix(A); |
---|
657 | dd_FreePolyhedra(poly); |
---|
658 | |
---|
659 | return ret; |
---|
660 | _L99: |
---|
661 | assert(0); |
---|
662 | return std::vector<std::vector<int> >(); |
---|
663 | } |
---|
664 | |
---|
665 | }; |
---|
666 | |
---|
667 | LpSolver lpSolver; |
---|
668 | |
---|
669 | bool ZCone::isInStateMinimum(int s)const |
---|
670 | { |
---|
671 | return state>=s; |
---|
672 | } |
---|
673 | |
---|
674 | |
---|
675 | bool operator<(ZCone const &a, ZCone const &b) |
---|
676 | { |
---|
677 | assert(a.state>=3); |
---|
678 | assert(b.state>=3); |
---|
679 | |
---|
680 | if(a.n<b.n)return true; |
---|
681 | if(a.n>b.n)return false; |
---|
682 | |
---|
683 | if(a.equations<b.equations)return true; |
---|
684 | if(b.equations<a.equations)return false; |
---|
685 | |
---|
686 | if(a.inequalities<b.inequalities)return true; |
---|
687 | if(b.inequalities<a.inequalities)return false; |
---|
688 | |
---|
689 | return false; |
---|
690 | } |
---|
691 | |
---|
692 | |
---|
693 | bool operator!=(ZCone const &a, ZCone const &b) |
---|
694 | { |
---|
695 | return (a<b)||(b<a); |
---|
696 | } |
---|
697 | |
---|
698 | |
---|
699 | void ZCone::ensureStateAsMinimum(int s)const |
---|
700 | { |
---|
701 | if((state<1) && (s==1)) |
---|
702 | { |
---|
703 | { |
---|
704 | QMatrix m=ZToQMatrix(equations); |
---|
705 | m.reduce(); |
---|
706 | m.removeZeroRows(); |
---|
707 | |
---|
708 | ZMatrix newInequalities(0,inequalities.getWidth()); |
---|
709 | for(int i=0;i<inequalities.getHeight();i++) |
---|
710 | { |
---|
711 | QVector w=ZToQVector(inequalities[i]); |
---|
712 | w=m.canonicalize(w); |
---|
713 | if(!w.isZero()) |
---|
714 | newInequalities.appendRow(QToZVectorPrimitive(w)); |
---|
715 | } |
---|
716 | |
---|
717 | inequalities=newInequalities; |
---|
718 | inequalities.sortAndRemoveDuplicateRows(); |
---|
719 | equations=QToZMatrixPrimitive(m); |
---|
720 | } |
---|
721 | |
---|
722 | if(!(preassumptions&PCP_impliedEquationsKnown)) |
---|
723 | if(inequalities.getHeight()>1)//there can be no implied equation unless we have at least two inequalities |
---|
724 | lpSolver.removeRedundantRows(inequalities,equations,false); |
---|
725 | |
---|
726 | assert(inequalities.getWidth()==equations.getWidth()); |
---|
727 | } |
---|
728 | if((state<2) && (s>=2) && !(preassumptions&PCP_facetsKnown)) |
---|
729 | { |
---|
730 | /* if(inequalities.size()>25) |
---|
731 | { |
---|
732 | IntegerVectorList h1; |
---|
733 | IntegerVectorList h2; |
---|
734 | bool a=false; |
---|
735 | for(IntegerVectorList::const_iterator i=inequalities.begin();i!=inequalities.end();i++) |
---|
736 | { |
---|
737 | if(a) |
---|
738 | h1.push_back(*i); |
---|
739 | else |
---|
740 | h2.push_back(*i); |
---|
741 | a=!a; |
---|
742 | } |
---|
743 | PolyhedralCone c1(h1,equations); |
---|
744 | PolyhedralCone c2(h2,equations); |
---|
745 | c1.ensureStateAsMinimum(2); |
---|
746 | c2.ensureStateAsMinimum(2); |
---|
747 | inequalities=c1.inequalities; |
---|
748 | for(IntegerVectorList::const_iterator i=c2.inequalities.begin();i!=c2.inequalities.end();i++) |
---|
749 | inequalities.push_back(*i); |
---|
750 | } |
---|
751 | */ |
---|
752 | if(equations.getHeight()) |
---|
753 | { |
---|
754 | QMatrix m=ZToQMatrix(equations); |
---|
755 | m.reduce(); |
---|
756 | m.REformToRREform(); |
---|
757 | ZMatrix inequalities2(0,equations.getWidth()); |
---|
758 | for(int i=0;i<inequalities.getHeight();i++) |
---|
759 | { |
---|
760 | inequalities2.appendRow(QToZVectorPrimitive(m.canonicalize(ZToQVector(inequalities[i])))); |
---|
761 | } |
---|
762 | inequalities=LpSolver::fastNormals(inequalities2); |
---|
763 | goto noFallBack; |
---|
764 | fallBack://alternativ (disabled) |
---|
765 | lpSolver.removeRedundantRows(inequalities,equations,true); |
---|
766 | noFallBack:; |
---|
767 | } |
---|
768 | else |
---|
769 | inequalities=LpSolver::fastNormals(inequalities); |
---|
770 | } |
---|
771 | if((state<3) && (s>=3)) |
---|
772 | { |
---|
773 | QMatrix equations2=ZToQMatrix(equations); |
---|
774 | equations2.reduce(false,false,true); |
---|
775 | equations2.REformToRREform(true); |
---|
776 | for(int i=0;i<inequalities.getHeight();i++) |
---|
777 | { |
---|
778 | inequalities[i]=QToZVectorPrimitive(equations2.canonicalize(ZToQVector(inequalities[i]))); |
---|
779 | } |
---|
780 | inequalities.sortRows(); |
---|
781 | equations=QToZMatrixPrimitive(equations2); |
---|
782 | } |
---|
783 | if(state<s) |
---|
784 | state=s; |
---|
785 | } |
---|
786 | |
---|
787 | std::ostream &operator<<(std::ostream &f, ZCone const &c) |
---|
788 | { |
---|
789 | f<<"Ambient dimension:"<<c.n<<std::endl; |
---|
790 | f<<"Inequalities:"<<std::endl; |
---|
791 | f<<c.inequalities<<std::endl; |
---|
792 | f<<"Equations:"<<std::endl; |
---|
793 | f<<c.equations<<std::endl; |
---|
794 | return f; |
---|
795 | } |
---|
796 | |
---|
797 | std::string ZCone::toString()const |
---|
798 | { |
---|
799 | std::stringstream f; |
---|
800 | f<<*this; |
---|
801 | return f.str(); |
---|
802 | } |
---|
803 | |
---|
804 | ZCone::ZCone(int ambientDimension): |
---|
805 | preassumptions(PCP_impliedEquationsKnown|PCP_facetsKnown), |
---|
806 | state(1), |
---|
807 | n(ambientDimension), |
---|
808 | multiplicity(1), |
---|
809 | linearForms(ZMatrix(0,ambientDimension)), |
---|
810 | inequalities(ZMatrix(0,ambientDimension)), |
---|
811 | equations(ZMatrix(0,ambientDimension)), |
---|
812 | haveExtremeRaysBeenCached(false) |
---|
813 | { |
---|
814 | } |
---|
815 | |
---|
816 | |
---|
817 | ZCone::ZCone(ZMatrix const &inequalities_, ZMatrix const &equations_, int preassumptions_): |
---|
818 | preassumptions(preassumptions_), |
---|
819 | state(0), |
---|
820 | n(inequalities_.getWidth()), |
---|
821 | multiplicity(1), |
---|
822 | linearForms(ZMatrix(0,inequalities_.getWidth())), |
---|
823 | inequalities(inequalities_), |
---|
824 | equations(equations_), |
---|
825 | haveExtremeRaysBeenCached(false) |
---|
826 | { |
---|
827 | assert(preassumptions_<4);//OTHERWISE WE ARE DOING SOMETHING STUPID LIKE SPECIFYING AMBIENT DIMENSION |
---|
828 | assert(equations_.getWidth()==n); |
---|
829 | ensureStateAsMinimum(1); |
---|
830 | } |
---|
831 | |
---|
832 | void ZCone::canonicalize() |
---|
833 | { |
---|
834 | ensureStateAsMinimum(3); |
---|
835 | } |
---|
836 | |
---|
837 | void ZCone::findFacets() |
---|
838 | { |
---|
839 | ensureStateAsMinimum(2); |
---|
840 | } |
---|
841 | |
---|
842 | ZMatrix ZCone::getFacets()const |
---|
843 | { |
---|
844 | ensureStateAsMinimum(2); |
---|
845 | return inequalities; |
---|
846 | } |
---|
847 | |
---|
848 | void ZCone::findImpliedEquations() |
---|
849 | { |
---|
850 | ensureStateAsMinimum(1); |
---|
851 | } |
---|
852 | |
---|
853 | ZMatrix ZCone::getImpliedEquations()const |
---|
854 | { |
---|
855 | ensureStateAsMinimum(1); |
---|
856 | return equations; |
---|
857 | } |
---|
858 | |
---|
859 | ZVector ZCone::getRelativeInteriorPoint()const |
---|
860 | { |
---|
861 | ensureStateAsMinimum(1); |
---|
862 | // assert(state>=1); |
---|
863 | |
---|
864 | return lpSolver.relativeInteriorPoint(inequalities,equations); |
---|
865 | } |
---|
866 | |
---|
867 | ZVector ZCone::getUniquePoint()const |
---|
868 | { |
---|
869 | ZMatrix rays=extremeRays(); |
---|
870 | ZVector ret(n); |
---|
871 | for(int i=0;i<rays.getHeight();i++) |
---|
872 | ret+=rays[i]; |
---|
873 | |
---|
874 | return ret; |
---|
875 | } |
---|
876 | |
---|
877 | ZVector ZCone::getUniquePointFromExtremeRays(ZMatrix const &extremeRays)const |
---|
878 | { |
---|
879 | ZVector ret(n); |
---|
880 | for(int i=0;i<extremeRays.getHeight();i++) |
---|
881 | if(contains(extremeRays[i]))ret+=extremeRays[i]; |
---|
882 | return ret; |
---|
883 | } |
---|
884 | |
---|
885 | |
---|
886 | int ZCone::ambientDimension()const |
---|
887 | { |
---|
888 | return n; |
---|
889 | } |
---|
890 | |
---|
891 | |
---|
892 | int ZCone::codimension()const |
---|
893 | { |
---|
894 | return ambientDimension()-dimension(); |
---|
895 | } |
---|
896 | |
---|
897 | |
---|
898 | int ZCone::dimension()const |
---|
899 | { |
---|
900 | // assert(state>=1); |
---|
901 | ensureStateAsMinimum(1); |
---|
902 | return ambientDimension()-equations.getHeight(); |
---|
903 | } |
---|
904 | |
---|
905 | |
---|
906 | int ZCone::dimensionOfLinealitySpace()const |
---|
907 | { |
---|
908 | ZMatrix temp=inequalities; |
---|
909 | temp.append(equations); |
---|
910 | ZCone temp2(ZMatrix(0,n),temp); |
---|
911 | return temp2.dimension(); |
---|
912 | } |
---|
913 | |
---|
914 | |
---|
915 | bool ZCone::isOrigin()const |
---|
916 | { |
---|
917 | return dimension()==0; |
---|
918 | } |
---|
919 | |
---|
920 | |
---|
921 | bool ZCone::isFullSpace()const |
---|
922 | { |
---|
923 | for(int i=0;i<inequalities.getHeight();i++) |
---|
924 | if(!inequalities[i].isZero())return false; |
---|
925 | for(int i=0;i<equations.getHeight();i++) |
---|
926 | if(!equations[i].isZero())return false; |
---|
927 | return true; |
---|
928 | } |
---|
929 | |
---|
930 | |
---|
931 | ZCone intersection(const ZCone &a, const ZCone &b) |
---|
932 | { |
---|
933 | assert(a.ambientDimension()==b.ambientDimension()); |
---|
934 | ZMatrix inequalities=a.inequalities; |
---|
935 | inequalities.append(b.inequalities); |
---|
936 | ZMatrix equations=a.equations; |
---|
937 | equations.append(b.equations); |
---|
938 | |
---|
939 | equations.sortAndRemoveDuplicateRows(); |
---|
940 | inequalities.sortAndRemoveDuplicateRows(); |
---|
941 | |
---|
942 | { |
---|
943 | ZMatrix Aequations=a.equations; |
---|
944 | ZMatrix Ainequalities=a.inequalities; |
---|
945 | Aequations.sortAndRemoveDuplicateRows(); |
---|
946 | Ainequalities.sortAndRemoveDuplicateRows(); |
---|
947 | if((Ainequalities.getHeight()==inequalities.getHeight()) && (Aequations.getHeight()==equations.getHeight()))return a; |
---|
948 | ZMatrix Bequations=b.equations; |
---|
949 | ZMatrix Binequalities=b.inequalities; |
---|
950 | Bequations.sortAndRemoveDuplicateRows(); |
---|
951 | Binequalities.sortAndRemoveDuplicateRows(); |
---|
952 | if((Binequalities.getHeight()==inequalities.getHeight()) && (Bequations.getHeight()==equations.getHeight()))return b; |
---|
953 | } |
---|
954 | |
---|
955 | return ZCone(inequalities,equations); |
---|
956 | } |
---|
957 | |
---|
958 | /* |
---|
959 | PolyhedralCone product(const PolyhedralCone &a, const PolyhedralCone &b) |
---|
960 | { |
---|
961 | IntegerVectorList equations2; |
---|
962 | IntegerVectorList inequalities2; |
---|
963 | |
---|
964 | int n1=a.n; |
---|
965 | int n2=b.n; |
---|
966 | |
---|
967 | for(IntegerVectorList::const_iterator i=a.equations.begin();i!=a.equations.end();i++) |
---|
968 | equations2.push_back(concatenation(*i,IntegerVector(n2))); |
---|
969 | for(IntegerVectorList::const_iterator i=b.equations.begin();i!=b.equations.end();i++) |
---|
970 | equations2.push_back(concatenation(IntegerVector(n1),*i)); |
---|
971 | for(IntegerVectorList::const_iterator i=a.inequalities.begin();i!=a.inequalities.end();i++) |
---|
972 | inequalities2.push_back(concatenation(*i,IntegerVector(n2))); |
---|
973 | for(IntegerVectorList::const_iterator i=b.inequalities.begin();i!=b.inequalities.end();i++) |
---|
974 | inequalities2.push_back(concatenation(IntegerVector(n1),*i)); |
---|
975 | |
---|
976 | PolyhedralCone ret(inequalities2,equations2,n1+n2); |
---|
977 | ret.setMultiplicity(a.getMultiplicity()*b.getMultiplicity()); |
---|
978 | ret.setLinearForm(concatenation(a.getLinearForm(),b.getLinearForm())); |
---|
979 | |
---|
980 | ret.ensureStateAsMinimum(a.state); |
---|
981 | ret.ensureStateAsMinimum(b.state); |
---|
982 | |
---|
983 | return ret; |
---|
984 | }*/ |
---|
985 | |
---|
986 | |
---|
987 | ZCone ZCone::positiveOrthant(int dimension) |
---|
988 | { |
---|
989 | return ZCone(ZMatrix::identity(dimension),ZMatrix(0,dimension)); |
---|
990 | } |
---|
991 | |
---|
992 | |
---|
993 | ZCone ZCone::givenByRays(ZMatrix const &generators, ZMatrix const &linealitySpace) |
---|
994 | { |
---|
995 | //rewrite modulo lineality space |
---|
996 | /* ZMatrix newGenerators(generators.getHeight(),generators.getWidth()); |
---|
997 | { |
---|
998 | QMatrix l=ZToQMatrix(linealitySpace); |
---|
999 | l.reduce(); |
---|
1000 | for(int i=0;i<generators.getHeight();i++) |
---|
1001 | newGenerators[i]=QToZVectorPrimitive(l.canonicalize(ZToQVector(generators[i]))); |
---|
1002 | } |
---|
1003 | */ |
---|
1004 | // ZCone dual(newGenerators,linealitySpace); |
---|
1005 | ZCone dual(generators,linealitySpace); |
---|
1006 | // dual.findFacets(); |
---|
1007 | // dual.canonicalize(); |
---|
1008 | ZMatrix inequalities=dual.extremeRays(); |
---|
1009 | |
---|
1010 | /* ZMatrix span=generators; |
---|
1011 | span.append(linealitySpace); |
---|
1012 | QMatrix m2Q=ZToQMatrix(span); |
---|
1013 | ZMatrix equations=QToZMatrixPrimitive(m2Q.reduceAndComputeKernel()); |
---|
1014 | */ |
---|
1015 | ZMatrix equations=dual.generatorsOfLinealitySpace(); |
---|
1016 | // equations.reduce();equations.removeZeroRows(); |
---|
1017 | |
---|
1018 | |
---|
1019 | return ZCone(inequalities,equations,PCP_impliedEquationsKnown|PCP_facetsKnown); |
---|
1020 | } |
---|
1021 | |
---|
1022 | |
---|
1023 | bool ZCone::containsPositiveVector()const |
---|
1024 | { |
---|
1025 | ZCone temp=intersection(*this,ZCone::positiveOrthant(n)); |
---|
1026 | return temp.getRelativeInteriorPoint().isPositive(); |
---|
1027 | } |
---|
1028 | |
---|
1029 | |
---|
1030 | bool ZCone::contains(ZVector const &v)const |
---|
1031 | { |
---|
1032 | for(int i=0;i<equations.getHeight();i++) |
---|
1033 | { |
---|
1034 | if(!dot(equations[i],v).isZero())return false; |
---|
1035 | } |
---|
1036 | for(int i=0;i<inequalities.getHeight();i++) |
---|
1037 | { |
---|
1038 | if(dot(inequalities[i],v).sign()<0)return false; |
---|
1039 | } |
---|
1040 | return true; |
---|
1041 | } |
---|
1042 | |
---|
1043 | |
---|
1044 | bool ZCone::containsRowsOf(ZMatrix const &m)const |
---|
1045 | { |
---|
1046 | for(int i=0;i<m.getHeight();i++) |
---|
1047 | if(!contains(m[i]))return false; |
---|
1048 | return true; |
---|
1049 | } |
---|
1050 | |
---|
1051 | |
---|
1052 | bool ZCone::contains(ZCone const &c)const |
---|
1053 | { |
---|
1054 | ZCone c2=intersection(*this,c); |
---|
1055 | ZCone c3=c; |
---|
1056 | c2.canonicalize(); |
---|
1057 | c3.canonicalize(); |
---|
1058 | return !(c2!=c3); |
---|
1059 | } |
---|
1060 | |
---|
1061 | |
---|
1062 | bool ZCone::containsRelatively(ZVector const &v)const |
---|
1063 | { |
---|
1064 | ensureStateAsMinimum(1); |
---|
1065 | // assert(state>=1); |
---|
1066 | for(int i=0;i<equations.getHeight();i++) |
---|
1067 | { |
---|
1068 | if(!dot(equations[i],v).isZero())return false; |
---|
1069 | } |
---|
1070 | for(int i=0;i<inequalities.getHeight();i++) |
---|
1071 | { |
---|
1072 | if(dot(inequalities[i],v).sign()<=0)return false; |
---|
1073 | } |
---|
1074 | return true; |
---|
1075 | } |
---|
1076 | |
---|
1077 | |
---|
1078 | bool ZCone::isSimplicial()const |
---|
1079 | { |
---|
1080 | // assert(state>=2); |
---|
1081 | ensureStateAsMinimum(2); |
---|
1082 | return codimension()+inequalities.getHeight()+dimensionOfLinealitySpace()==n; |
---|
1083 | } |
---|
1084 | |
---|
1085 | |
---|
1086 | ZCone ZCone::linealitySpace()const |
---|
1087 | { |
---|
1088 | ZCone ret(ZMatrix(0,n),combineOnTop(equations,inequalities)); |
---|
1089 | // ret.ensureStateAsMinimum(state); |
---|
1090 | return ret; |
---|
1091 | } |
---|
1092 | |
---|
1093 | |
---|
1094 | ZCone ZCone::dualCone()const |
---|
1095 | { |
---|
1096 | ensureStateAsMinimum(1); |
---|
1097 | // assert(state>=1); |
---|
1098 | |
---|
1099 | ZMatrix dualInequalities,dualEquations; |
---|
1100 | lpSolver.dual(inequalities,equations,dualInequalities,dualEquations); |
---|
1101 | ZCone ret(dualInequalities,dualEquations); |
---|
1102 | ret.ensureStateAsMinimum(state); |
---|
1103 | |
---|
1104 | return ret; |
---|
1105 | } |
---|
1106 | |
---|
1107 | |
---|
1108 | ZCone ZCone::negated()const |
---|
1109 | { |
---|
1110 | ZCone ret(-inequalities,equations,(areFacetsKnown()?PCP_facetsKnown:0)|(areImpliedEquationsKnown()?PCP_impliedEquationsKnown:0)); |
---|
1111 | // ret.ensureStateAsMinimum(state); |
---|
1112 | return ret; |
---|
1113 | } |
---|
1114 | |
---|
1115 | |
---|
1116 | ZMatrix ZCone::extremeRays(ZMatrix const *generatorsOfLinealitySpace)const |
---|
1117 | { |
---|
1118 | // assert((dimension()==ambientDimension()) || (state>=3)); |
---|
1119 | if(dimension()!=ambientDimension()) |
---|
1120 | ensureStateAsMinimum(3); |
---|
1121 | |
---|
1122 | if(haveExtremeRaysBeenCached)return cachedExtremeRays; |
---|
1123 | ZMatrix ret(0,n); |
---|
1124 | std::vector<std::vector<int> > indices=lpSolver.extremeRaysInequalityIndices(inequalities); |
---|
1125 | |
---|
1126 | for(unsigned i=0;i<indices.size();i++) |
---|
1127 | { |
---|
1128 | /* At this point we know lineality space, implied equations and |
---|
1129 | also inequalities for the ray. To construct a vector on the |
---|
1130 | ray which is stable under (or indendent of) angle and |
---|
1131 | linarity preserving transformation we find the dimension 1 |
---|
1132 | subspace orthorgonal to the implied equations and the |
---|
1133 | lineality space and pick a suitable primitive generator */ |
---|
1134 | |
---|
1135 | /* To be more precise, |
---|
1136 | * let E be the set of equations, and v the inequality defining a ray R. |
---|
1137 | * We wish to find a vector satisfying these, but it must also be orthogonal |
---|
1138 | * to the lineality space of the cone, that is, in the span of {E,v}. |
---|
1139 | * One way to get such a vector is to project v to E an get a vector p. |
---|
1140 | * Then v-p is in the span of {E,v} by construction. |
---|
1141 | * The vector v-p is also in the orthogonal complement to E by construction, |
---|
1142 | * that is, the span of R. |
---|
1143 | * We wish to argue that it is not zero. |
---|
1144 | * That would imply that v=p, meaning that v is in the span of the equations. |
---|
1145 | * However, that would contradict that R is a ray. |
---|
1146 | * In case v-p does not satisfy the inequality v (is this possible?), we change the sign. |
---|
1147 | * |
---|
1148 | * As a consequence we need the following procedure |
---|
1149 | * primitiveProjection(): |
---|
1150 | * Input: E,v |
---|
1151 | * Output: A primitive representation of the vector v-p, where p is the projection of v onto E |
---|
1152 | * |
---|
1153 | * Notice that the output is a Q linear combination of the input and that p is |
---|
1154 | * a linear combination of E. The check that p has been computed correctly, |
---|
1155 | * it suffices to check that v-p satisfies the equations E. |
---|
1156 | * The routine will actually first compute a multiple of v-p. |
---|
1157 | * It will do this using floating point arithmetics. It will then transform |
---|
1158 | * the coefficients to get the multiple of v-p into integers. Then it |
---|
1159 | * verifies in exact arithmetics, that with these coefficients we get a point |
---|
1160 | * satisfying E. It then returns the primitive vector on the ray v-p. |
---|
1161 | * In case of a failure it falls back to an implementation using rational arithmetics. |
---|
1162 | */ |
---|
1163 | |
---|
1164 | |
---|
1165 | std::vector<int> asVector(inequalities.getHeight()); |
---|
1166 | for(unsigned j=0;j<indices[i].size();j++){asVector[indices[i][j]]=1;} |
---|
1167 | ZMatrix equations=this->equations; |
---|
1168 | ZVector theInequality; |
---|
1169 | |
---|
1170 | for(unsigned j=0;j<asVector.size();j++) |
---|
1171 | if(asVector[j]) |
---|
1172 | equations.appendRow(inequalities[j]); |
---|
1173 | else |
---|
1174 | theInequality=inequalities[j]; |
---|
1175 | |
---|
1176 | assert(!theInequality.isZero()); |
---|
1177 | |
---|
1178 | ZVector thePrimitiveVector; |
---|
1179 | if(generatorsOfLinealitySpace) |
---|
1180 | { |
---|
1181 | QMatrix temp=ZToQMatrix(combineOnTop(equations,*generatorsOfLinealitySpace)); |
---|
1182 | thePrimitiveVector=QToZVectorPrimitive(temp.reduceAndComputeVectorInKernel()); |
---|
1183 | } |
---|
1184 | else |
---|
1185 | { |
---|
1186 | QMatrix linealitySpaceOrth=ZToQMatrix(combineOnTop(this->equations,inequalities)); |
---|
1187 | |
---|
1188 | |
---|
1189 | QMatrix temp=combineOnTop(linealitySpaceOrth.reduceAndComputeKernel(),ZToQMatrix(equations)); |
---|
1190 | thePrimitiveVector=QToZVectorPrimitive(temp.reduceAndComputeVectorInKernel()); |
---|
1191 | } |
---|
1192 | if(!contains(thePrimitiveVector))thePrimitiveVector=-thePrimitiveVector; |
---|
1193 | ret.appendRow(thePrimitiveVector); |
---|
1194 | } |
---|
1195 | |
---|
1196 | cachedExtremeRays=ret; |
---|
1197 | haveExtremeRaysBeenCached=true; |
---|
1198 | |
---|
1199 | return ret; |
---|
1200 | } |
---|
1201 | |
---|
1202 | |
---|
1203 | Integer ZCone::getMultiplicity()const |
---|
1204 | { |
---|
1205 | return multiplicity; |
---|
1206 | } |
---|
1207 | |
---|
1208 | |
---|
1209 | void ZCone::setMultiplicity(Integer const &m) |
---|
1210 | { |
---|
1211 | multiplicity=m; |
---|
1212 | } |
---|
1213 | |
---|
1214 | |
---|
1215 | ZMatrix ZCone::getLinearForms()const |
---|
1216 | { |
---|
1217 | return linearForms; |
---|
1218 | } |
---|
1219 | |
---|
1220 | |
---|
1221 | void ZCone::setLinearForms(ZMatrix const &linearForms_) |
---|
1222 | { |
---|
1223 | linearForms=linearForms_; |
---|
1224 | } |
---|
1225 | |
---|
1226 | |
---|
1227 | ZMatrix ZCone::quotientLatticeBasis()const |
---|
1228 | { |
---|
1229 | // assert(isInStateMinimum(1));// Implied equations must have been computed in order to know the span of the cone |
---|
1230 | ensureStateAsMinimum(1); |
---|
1231 | |
---|
1232 | |
---|
1233 | int a=equations.getHeight(); |
---|
1234 | int b=inequalities.getHeight(); |
---|
1235 | |
---|
1236 | // Implementation below could be moved to nonLP part of code. |
---|
1237 | |
---|
1238 | // small vector space defined by a+b equations.... big by a equations. |
---|
1239 | |
---|
1240 | ZMatrix M=combineLeftRight(combineLeftRight( |
---|
1241 | equations.transposed(), |
---|
1242 | inequalities.transposed()), |
---|
1243 | ZMatrix::identity(n)); |
---|
1244 | M.reduce(false,true); |
---|
1245 | /* |
---|
1246 | [A|B|I] is reduced to [A'|B'|C'] meaning [A'|B']=C'[A|B] and A'=C'A. |
---|
1247 | |
---|
1248 | [A'|B'] is in row echelon form, implying that the rows of C' corresponding to zero rows |
---|
1249 | of [A'|B'] generate the lattice cokernel of [A|B] - that is the linealityspace intersected with Z^n. |
---|
1250 | |
---|
1251 | [A'] is in row echelon form, implying that the rows of C' corresponding to zero rows of [A'] generate |
---|
1252 | the lattice cokernel of [A] - that is the span of the cone intersected with Z^n. |
---|
1253 | |
---|
1254 | It is clear that the second row set is a superset of the first. Their difference is a basis for the quotient. |
---|
1255 | */ |
---|
1256 | ZMatrix ret(0,n); |
---|
1257 | |
---|
1258 | for(int i=0;i<M.getHeight();i++) |
---|
1259 | if(M[i].toVector().subvector(0,a).isZero()&&!M[i].toVector().subvector(a,a+b).isZero()) |
---|
1260 | { |
---|
1261 | ret.appendRow(M[i].toVector().subvector(a+b,a+b+n)); |
---|
1262 | } |
---|
1263 | |
---|
1264 | return ret; |
---|
1265 | } |
---|
1266 | |
---|
1267 | |
---|
1268 | ZVector ZCone::semiGroupGeneratorOfRay()const |
---|
1269 | { |
---|
1270 | ZMatrix temp=quotientLatticeBasis(); |
---|
1271 | assert(temp.getHeight()==1); |
---|
1272 | for(int i=0;i<inequalities.getHeight();i++) |
---|
1273 | if(dot(temp[0].toVector(),inequalities[i].toVector()).sign()<0) |
---|
1274 | { |
---|
1275 | temp[0]=-temp[0].toVector(); |
---|
1276 | break; |
---|
1277 | } |
---|
1278 | return temp[0]; |
---|
1279 | } |
---|
1280 | |
---|
1281 | |
---|
1282 | ZCone ZCone::link(ZVector const &w)const |
---|
1283 | { |
---|
1284 | /* Observe that the inequalities giving rise to facets |
---|
1285 | * also give facets in the link, if they are kept as |
---|
1286 | * inequalities. This means that the state cannot decrease |
---|
1287 | * when taking links - that is why we specify the PCP flags. |
---|
1288 | */ |
---|
1289 | ZMatrix inequalities2(0,n); |
---|
1290 | for(int j=0;j<inequalities.getHeight();j++) |
---|
1291 | if(dot(w,inequalities[j]).sign()==0)inequalities2.appendRow(inequalities[j]); |
---|
1292 | ZCone C(inequalities2,equations,(areImpliedEquationsKnown()?PCP_impliedEquationsKnown:0)|(areFacetsKnown()?PCP_facetsKnown:0)); |
---|
1293 | C.ensureStateAsMinimum(state); |
---|
1294 | |
---|
1295 | C.setLinearForms(getLinearForms()); |
---|
1296 | C.setMultiplicity(getMultiplicity()); |
---|
1297 | |
---|
1298 | return C; |
---|
1299 | } |
---|
1300 | |
---|
1301 | bool ZCone::hasFace(ZCone const &f)const |
---|
1302 | { |
---|
1303 | if(!contains(f.getRelativeInteriorPoint()))return false; |
---|
1304 | ZCone temp=faceContaining(f.getRelativeInteriorPoint()); |
---|
1305 | temp.canonicalize(); |
---|
1306 | // ZCone temp2=*this; |
---|
1307 | ZCone temp2=f; |
---|
1308 | temp2.canonicalize(); |
---|
1309 | // std::cout << temp << std::endl; |
---|
1310 | // std::cout << temp2 << std::endl; |
---|
1311 | |
---|
1312 | return !(temp2!=temp); |
---|
1313 | } |
---|
1314 | |
---|
1315 | ZCone ZCone::faceContaining(ZVector const &v)const |
---|
1316 | { |
---|
1317 | assert(n==(int)v.size()); |
---|
1318 | assert(contains(v)); |
---|
1319 | ZMatrix newEquations=equations; |
---|
1320 | ZMatrix newInequalities(0,n); |
---|
1321 | for(int i=0;i<inequalities.getHeight();i++) |
---|
1322 | if(dot(inequalities[i],v).sign()!=0) |
---|
1323 | newInequalities.appendRow(inequalities[i]); |
---|
1324 | else |
---|
1325 | newEquations.appendRow(inequalities[i]); |
---|
1326 | |
---|
1327 | ZCone ret(newInequalities,newEquations,(state>=1)?PCP_impliedEquationsKnown:0); |
---|
1328 | ret.ensureStateAsMinimum(state); |
---|
1329 | return ret; |
---|
1330 | } |
---|
1331 | |
---|
1332 | |
---|
1333 | ZMatrix ZCone::getInequalities()const |
---|
1334 | { |
---|
1335 | return inequalities; |
---|
1336 | } |
---|
1337 | |
---|
1338 | |
---|
1339 | ZMatrix ZCone::getEquations()const |
---|
1340 | { |
---|
1341 | return equations; |
---|
1342 | } |
---|
1343 | |
---|
1344 | |
---|
1345 | ZMatrix ZCone::generatorsOfSpan()const |
---|
1346 | { |
---|
1347 | ensureStateAsMinimum(1); |
---|
1348 | QMatrix l=ZToQMatrix(equations); |
---|
1349 | return QToZMatrixPrimitive(l.reduceAndComputeKernel()); |
---|
1350 | } |
---|
1351 | |
---|
1352 | |
---|
1353 | ZMatrix ZCone::generatorsOfLinealitySpace()const |
---|
1354 | { |
---|
1355 | QMatrix l=ZToQMatrix(combineOnTop(inequalities,equations)); |
---|
1356 | return QToZMatrixPrimitive(l.reduceAndComputeKernel()); |
---|
1357 | } |
---|
1358 | |
---|
1359 | } |
---|