source: git/gfanlib/gfanlib_zcone.h @ 5443c1

spielwiese
Last change on this file since 5443c1 was 15813d, checked in by Hans Schoenemann <hannes@…>, 8 years ago
format
  • Property mode set to 100644
File size: 14.2 KB
Line 
1/*
2 * lib_cone.h
3 *
4 *  Created on: Sep 28, 2010
5 *      Author: anders
6 */
7
8#ifndef LIB_CONE_H_
9#define LIB_CONE_H_
10
11#include "gfanlib_matrix.h"
12
13namespace gfan{
14/**
15 * Returns true if cddlib is needed for the ZCone implementation.
16 */
17        bool isCddlibRequired();
18        /**
19         * Only call this function if gfanlib is the only code in your program using cddlib.
20         * Should be paired with a deinitializeCddlibIfRequired() call.
21         * Calling the function repeatedly may cause memory leaks even if deinitializeCddlibIfRequired() is also called.
22         */
23        void initializeCddlibIfRequired();
24        /**
25         * This function may do nothing.
26         */
27        void deinitializeCddlibIfRequired();
28
29/**
30A PolyhedralCone is represented by linear inequalities and equations. The inequalities are non-strict
31and stored as the rows of a matrix and the equations are stored as rows of a second matrix.
32
33A cone can be in one of the four states:
340) Nothing has been done to remove redundancies. This is the initial state.
351) A basis for the true, implied equations space has been computed. This means that
36   the implied equations have been computed. In particular the dimension of the cone is known.
372) Redundant inequalities have been computed and have been eliminated.
38   This means that the true set of facets is known - one for each element in halfSpaces.
393) The inequalities and equations from 2) have been transformed into a canonical form. Besides having
40   a unique representation for the cone this also allows comparisons between cones with operator<().
41
42Since moving for one state to the next is expensive, the user of the PolyhedralCone can specify flags
43at the construction of the cone informing about which things are known.
44
45PCP_impliedEquationsKnown means that the given set of equations generate the space of implied equations.
46PCP_facetsKnown means that each inequalities describe define a (different) facet of the cone.
47
48Each cone has the additional information: multiplicity and linear forms.
49The multiplicity is an integer whose default value is one. It can be set by the user.
50When a cone is projected, it can happen that the multiplicity changes according to a lattice index.
51The linear forms are stored in a matrix linearForms, whose width equals the dimension of the ambient space.
52The idea is that a collection of cones in this way can represent a piecewise linear function (a tropical rational function).
53
54Caching:
55When new properties are computed by changing state the information is stored in the object by updating equations and inequalities.
56When some other properties are computed, such as rays the result is cached in the object. Each cached property has a corresponding flag telling if a cached value has been stored.
57These methods
58for these properties are considered const. Caching only works for extreme rays at the moment.
59
60Notice:
61The lineality space of a cone C is C\cap(-C).
62A cone is ray if its dimension is 1+the dimension of the its lineality space.
63
64Should the user of this class know about the states?
65
66need to think about this...
67Always putting the cone in state 1 after something has changed helps a lot.
68Then all operations can be performed except comparing and getting facets with
69out taking the cone to a special state.
70
71
72Things to change:
73- Thomas wants operations where the natural description is the dual to be fast.
74  One way to achieve this is as Frank suggests to have a state -1, in which only
75  the generator description is known. These should be stored in the cache. If it
76  is required to move to state 0, then the inequality description is computed.
77  This sounds like a reasonable solution, but of course, what we are really storing is the dual.
78
79 - Basically all data in the object should be mutable, while almost every method should be const.
80
81 - A method should set the cone in a given state if required. The reason for this is that
82   it will be difficult for the user to figure out which state is required and therefore
83   will tend to call canonicalize when not needed.
84
85 - Cache should be added for more properties.
86
87Optimization:
88- When inequalities can be represented in 32 bit some optimizations can be done.
89
90More things to consider:
91- Does it make sense to do dimension reduction when lineality space / linear span has been
92  computed?
93
94
95When calling generated by rays, two flags should be passed.
96
97 */
98
99enum PolyhedralConePreassumptions{
100  PCP_none=0,
101  PCP_impliedEquationsKnown=1,
102  PCP_facetsKnown=2
103};
104
105class ZCone;
106ZCone intersection(const ZCone &a, const ZCone &b);
107class ZCone
108{
109  int preassumptions;
110  mutable int state;
111  int n;
112  Integer multiplicity;
113  ZMatrix linearForms;
114  mutable ZMatrix inequalities;
115  mutable ZMatrix equations;
116  mutable ZMatrix cachedExtremeRays;
117/**
118 * If this bool is true it means that cachedExtremeRays contains the extreme rays as found by extremeRays().
119 */
120  mutable bool haveExtremeRaysBeenCached;
121  void ensureStateAsMinimum(int s)const;
122
123  bool isInStateMinimum(int s)const;
124  int getState()const;
125public:
126   /**
127    * Constructs a polyhedral cone with specified equations and ineqalities. They are read off as rows
128    * of the matrices. For efficiency it is possible to specifying a PolyhedralConePreassumptions flag
129    * which tells what is known about the description already.
130    */
131     ZCone(ZMatrix const &inequalities_, ZMatrix const &equations_, int preassumptions_=PCP_none);
132
133     /**
134      * Get the multiplicity of the cone.
135      */
136     Integer getMultiplicity()const;
137     /**
138      * Set the multiplicity of the cone.
139      */
140     void setMultiplicity(Integer const &m);
141     /**
142      * Returns the matrix of linear forms stored in the cone object.
143      */
144     ZMatrix getLinearForms()const;
145     /**
146      * Store a matrix of linear forms in the cone object.
147      */
148     void setLinearForms(ZMatrix const &linearForms_);
149
150     /**
151      * Get the inequalities in the description of the cone.
152      */
153     ZMatrix getInequalities()const;
154     /**
155      * Get the equations in the description of the cone.
156      */
157     ZMatrix getEquations()const;
158     /**
159      * Compute generators of the span of the cone. They are stored as rows of the returned matrix.
160      */
161     ZMatrix generatorsOfSpan()const;
162     /**
163      * Compute generators of the lineality space of the cone. The returned set of generators is a vector spaces basis. They are stored as rows of the returned matrix.
164      */
165     ZMatrix generatorsOfLinealitySpace()const;
166     /**
167      * Returns true iff it is known that every inequalities in the description defines a different facets of the cone.
168      */
169     bool areFacetsKnown()const{return (state>=2)||(preassumptions&PCP_facetsKnown);}
170     /**
171      * Returns true iff it is known that the set of equations span the space of implied equations of the description.
172      */
173     bool areImpliedEquationsKnown()const{return (state>=1)||(preassumptions&PCP_impliedEquationsKnown);}
174     /**
175      * Returns true iff the extreme rays are known.
176      */
177     bool areExtremeRaysKnown()const{return haveExtremeRaysBeenCached;}
178
179     /**
180      * Takes the cone to a canonical form. After taking cones to canonical form, two cones are the same
181      * if and only if their matrices of equations and inequalities are the same.
182      */
183     void canonicalize();
184     /**
185      * Computes and returns the facet inequalities of the cone.
186      */
187     ZMatrix getFacets()const;
188     /**
189      * After this function has been called all inequalities describe different facets of the cone.
190      */
191     void findFacets();
192     /**
193      * The set of linear forms vanishing on the cone is a subspace. This routine returns a basis
194      * of this subspace as the rows of a matrix.
195      */
196     ZMatrix getImpliedEquations()const;
197     /**
198      * After this function has been called a minimal set of implied equations for the cone is known and is
199      * returned when calling getEquations(). The returned equations form a basis of the space of implied
200      * equations.
201      */
202     void findImpliedEquations();
203
204     /**
205      * Constructor for polyhedral cone with no inequalities or equations. Tthat is, the full space of some dimension.
206      */
207     ZCone(int ambientDimension=0);
208
209     /**
210      * Computes are relative interior point of the cone.
211      */
212     ZVector getRelativeInteriorPoint()const;
213  /**
214     Assuming that this cone C is in state at least 3 (why not 2?), this routine returns a relative interior point v(C) of C with the following properties:
215     1) v is a function, that is v(C) is found deterministically
216     2) for any angle preserving, lattice preserving and lineality space preserving transformation T of R^n we have that v(T(C))=T(v(C)). This makes it easy to check if two cones in the same fan are equal up to symmetry. Here preserving the lineality space L just means T(L)=L.
217  */
218     ZVector getUniquePoint()const;
219  /**
220   * Takes a list of possible extreme rays and add up those actually contained in the cone.
221   */
222     ZVector getUniquePointFromExtremeRays(ZMatrix const &extremeRays)const;
223     /**
224      * Returns the dimension of the ambient space.
225      */
226     int ambientDimension()const;
227     /**
228      * Returns the dimension of the cone.
229      */
230     int dimension()const;
231     /**
232      * Returns (ambient dimension)-(dimension).
233      */
234     int codimension()const;
235     /**
236      * Returns the dimension of the lineality space of the cone.
237      */
238     int dimensionOfLinealitySpace()const;
239     /**
240      * Returns true iff the cone is the origin.
241      */
242     bool isOrigin()const;
243     /**
244      * Returns true iff the cone is the full space.
245      */
246     bool isFullSpace()const;
247
248     /**
249      * Returns the intersection of cone a and b as a cone object.
250      */
251     friend ZCone intersection(const ZCone &a, const ZCone &b);
252     /**
253      * Returns the Cartesian product of the two cones a and b.
254      */
255     friend ZCone product(const ZCone &a, const ZCone &b);
256     /**
257      * Returns the positive orthant of some dimension as a polyhedral cone.
258      */
259     static ZCone positiveOrthant(int dimension);
260     /**
261      * Returns the cone which is the sum of row span of linealitySpace and
262      * the non-negative span of the rows of generators.
263      */
264     static ZCone givenByRays(ZMatrix const &generators, ZMatrix const &linealitySpace);
265
266     /**
267      * To use the comparison operator< the cones must have been canonicalized.
268      */
269     friend bool operator<(ZCone const &a, ZCone const &b);
270     /**
271      * To use the comparison operator!= the cones must have been canonicalized.
272      */
273     friend bool operator!=(ZCone const &a, ZCone const &b);
274
275     /**
276      * Returns true iff the cone contains a positive vector.
277      */
278     bool containsPositiveVector()const;
279     /**
280      * Returns true iff the cone contains the specified vector v.
281      */
282     bool contains(ZVector const &v)const;
283     /**
284      * Returns true iff the cone contains all rows of the matrix l.
285      */
286     bool containsRowsOf(ZMatrix const &l)const;
287     /**
288      * Returns true iff c is contained in the cone.
289      */
290     bool contains(ZCone const &c)const;
291     /**
292      * Returns true iff the PolyhedralCone contains v in its relative interior. False otherwise. The cone must be in state at least 1.
293      */
294     bool containsRelatively(ZVector const &v)const;
295     /*
296      * Returns true iff the cone is simplicial. That is, iff the dimension of the cone equals the number of facets.
297      */
298     bool isSimplicial()const;
299
300     //PolyhedralCone permuted(IntegerVector const &v)const;
301
302     /**
303      * Returns the lineality space of the cone as a polyhedral cone.
304      */
305     ZCone linealitySpace()const;
306
307     /**
308      * Returns the dual cone of the cone.
309      */
310     ZCone dualCone()const;
311     /**
312      * Return -C, where C is the cone.
313      */
314     ZCone negated()const;
315     /**
316      * Compute the extreme rays of the cone, and return generators of these as the rows of a matrix.
317      * The returned extreme rays are represented by vectors which are orthogonal to the lineality
318      * space and which are primitive primitive.
319      * This makes them unique and invariant under lattice and angle preserving linear transformations
320      * in the sense that a transformed cone would give the same set of extreme rays except the
321      * extreme rays have been transformed.
322      * If generators for the lineality space are known, they can be supplied. This can
323      * speed up computations a lot.
324      */
325    ZMatrix extremeRays(ZMatrix const *generatorsOfLinealitySpace=0)const;
326    /**
327       The cone defines two lattices, namely Z^n intersected with the
328       span of the cone and Z^n intersected with the lineality space of
329       the cone. Clearly the second is contained in the
330       first. Furthermore, the second is a saturated lattice of the
331       first. The quotient is torsion-free - hence a lattice. Generators
332       of this lattice as vectors in the span of the cone are computed
333       by this routine. The implied equations must be known when this
334       function is called - if not the routine asserts.
335     */
336    ZMatrix quotientLatticeBasis()const;
337    /**
338       For a ray (dim=linealitydim +1)
339       the quotent lattice described in quotientLatticeBasis() is
340       isomorphic to Z. In fact the ray intersected with Z^n modulo the
341       lineality space intersected with Z^n is a semigroup generated by
342       just one element. This routine computes that element as an
343       integer vector in the cone. Asserts if the cone is not a ray.
344       Asserts if the implied equations have not been computed.
345     */
346    ZVector semiGroupGeneratorOfRay()const;
347
348    /**
349       Computes the link of the face containing v in its relative
350       interior.
351     */
352    ZCone link(ZVector const &w)const;
353
354    /**
355       Tests if f is a face of the cone.
356     */
357    bool hasFace(ZCone const &f)const;
358    /**
359       Computes the face of the cone containing v in its relative interior.
360       The vector MUST be contained in the cone.
361    */
362    ZCone faceContaining(ZVector const &v)const;
363    /**
364     * Computes the projection of the cone to the first newn coordinates.
365     * The ambient space of the returned cone has dimension newn.
366     */
367    // PolyhedralCone projection(int newn)const;
368    friend std::ostream &operator<<(std::ostream &f, ZCone const &c);
369    std::string toString()const;
370};
371
372}
373
374
375
376
377#endif /* LIB_CONE_H_ */
Note: See TracBrowser for help on using the repository browser.