1 | // emacs edit mode for this file is -*- C++ -*- |
---|
2 | /**************************************** |
---|
3 | * Computer Algebra System SINGULAR * |
---|
4 | ****************************************/ |
---|
5 | // $Id: clapsing.cc,v 1.40 2009-08-06 10:18:24 Singular Exp $ |
---|
6 | /* |
---|
7 | * ABSTRACT: interface between Singular and factory |
---|
8 | */ |
---|
9 | |
---|
10 | //#define FACTORIZE2_DEBUG |
---|
11 | #include "mod2.h" |
---|
12 | #include "omalloc.h" |
---|
13 | #ifdef HAVE_FACTORY |
---|
14 | #define SI_DONT_HAVE_GLOBAL_VARS |
---|
15 | #include "structs.h" |
---|
16 | #include "clapsing.h" |
---|
17 | #include "numbers.h" |
---|
18 | #include "ring.h" |
---|
19 | #include "ffields.h" |
---|
20 | #include <factory.h> |
---|
21 | #include "clapconv.h" |
---|
22 | #include <factor.h> |
---|
23 | //CanonicalForm algcd(const CanonicalForm & F, const CanonicalForm & g, const CFList & as, const Varlist & order); |
---|
24 | CanonicalForm alg_gcd(const CanonicalForm &, const CanonicalForm &, const CFList &); |
---|
25 | #include "ring.h" |
---|
26 | |
---|
27 | void out_cf(char *s1,const CanonicalForm &f,char *s2); |
---|
28 | |
---|
29 | poly singclap_gcd ( poly f, poly g ) |
---|
30 | { |
---|
31 | poly res=NULL; |
---|
32 | |
---|
33 | if (f!=NULL) pCleardenom(f); |
---|
34 | if (g!=NULL) pCleardenom(g); |
---|
35 | else return f; // g==0 => gcd=f (but do a pCleardenom) |
---|
36 | if (f==NULL) return g; // f==0 => gcd=g (but do a pCleardenom) |
---|
37 | |
---|
38 | if (pIsConstantPoly(f) || pIsConstantPoly(g)) |
---|
39 | { |
---|
40 | pDelete(&f); |
---|
41 | pDelete(&g); |
---|
42 | return pOne(); |
---|
43 | } |
---|
44 | |
---|
45 | // for now there is only the possibility to handle polynomials over |
---|
46 | // Q and Fp ... |
---|
47 | Off(SW_RATIONAL); |
---|
48 | if (( nGetChar() == 0 || nGetChar() > 1 ) |
---|
49 | && (currRing->parameter==NULL)) |
---|
50 | { |
---|
51 | CanonicalForm newGCD(const CanonicalForm & A, const CanonicalForm & B); |
---|
52 | setCharacteristic( nGetChar() ); |
---|
53 | CanonicalForm F( convSingPFactoryP( f ) ), G( convSingPFactoryP( g ) ); |
---|
54 | //if (nGetChar() > 1 ) |
---|
55 | //{ |
---|
56 | // res=convFactoryPSingP( newGCD( F,G )); |
---|
57 | // if (!nGreaterZero(pGetCoeff(res))) res=pNeg(res); |
---|
58 | //} |
---|
59 | //else |
---|
60 | res=convFactoryPSingP( gcd( F, G ) ); |
---|
61 | } |
---|
62 | // and over Q(a) / Fp(a) |
---|
63 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
64 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
65 | { |
---|
66 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
67 | else setCharacteristic( -nGetChar() ); |
---|
68 | if (currRing->minpoly!=NULL) |
---|
69 | { |
---|
70 | #if 0 |
---|
71 | if (( nGetChar()==1 ) /* Q(a) */ && (!isOn(SW_USE_QGCD))) |
---|
72 | { |
---|
73 | // WerrorS( feNotImplemented ); |
---|
74 | CanonicalForm mipo=convSingTrFactoryP(((lnumber)currRing->minpoly)->z); |
---|
75 | //Varlist ord; |
---|
76 | //ord.append(mipo.mvar()); |
---|
77 | CFList as(mipo); |
---|
78 | Variable a=rootOf(mipo); |
---|
79 | //CanonicalForm F( convSingAPFactoryAP( f,a ) ), G( convSingAPFactoryAP( g,a ) ); |
---|
80 | CanonicalForm F( convSingTrPFactoryP(f) ), G( convSingTrPFactoryP(g) ); |
---|
81 | //res= convFactoryAPSingAP( algcd( F, G, as, ord) ); |
---|
82 | //res= convFactoryAPSingAP( alg_gcd( F, G, as) ); |
---|
83 | res= convFactoryAPSingAP( alg_gcd( F, G, as) ); |
---|
84 | } |
---|
85 | else |
---|
86 | #endif |
---|
87 | { |
---|
88 | bool b=isOn(SW_USE_QGCD); |
---|
89 | if ( nGetChar()==1 ) On(SW_USE_QGCD); |
---|
90 | CanonicalForm mipo=convSingTrFactoryP(((lnumber)currRing->minpoly)->z); |
---|
91 | Variable a=rootOf(mipo); |
---|
92 | CanonicalForm F( convSingAPFactoryAP( f,a ) ), G( convSingAPFactoryAP( g,a ) ); |
---|
93 | res= convFactoryAPSingAP( gcd( F, G ) ); |
---|
94 | if (!b) Off(SW_USE_QGCD); |
---|
95 | } |
---|
96 | } |
---|
97 | else |
---|
98 | { |
---|
99 | CanonicalForm F( convSingTrPFactoryP( f ) ), G( convSingTrPFactoryP( g ) ); |
---|
100 | res= convFactoryPSingTrP( gcd( F, G ) ); |
---|
101 | } |
---|
102 | } |
---|
103 | #if 0 |
---|
104 | else if (( nGetChar()>1 )&&(currRing->parameter!=NULL)) /* GF(q) */ |
---|
105 | { |
---|
106 | int p=rChar(currRing); |
---|
107 | int n=2; |
---|
108 | int t=p*p; |
---|
109 | while (t!=nChar) { t*=p;n++; } |
---|
110 | setCharacteristic(p,n,'a'); |
---|
111 | CanonicalForm F( convSingGFFactoryGF( f ) ), G( convSingGFFactoryGF( g ) ); |
---|
112 | res= convFactoryGFSingGF( gcd( F, G ) ); |
---|
113 | } |
---|
114 | #endif |
---|
115 | else |
---|
116 | WerrorS( feNotImplemented ); |
---|
117 | |
---|
118 | Off(SW_RATIONAL); |
---|
119 | pDelete(&f); |
---|
120 | pDelete(&g); |
---|
121 | pTest(res); |
---|
122 | return res; |
---|
123 | } |
---|
124 | |
---|
125 | poly singclap_gcd_r ( poly f, poly g, const ring r ) |
---|
126 | { |
---|
127 | // assume pCleardenom is done |
---|
128 | // assume f!=0, g!=0 |
---|
129 | poly res=NULL; |
---|
130 | |
---|
131 | if (p_IsConstantPoly(f,r) || p_IsConstantPoly(g,r)) |
---|
132 | { |
---|
133 | return pOne(); |
---|
134 | } |
---|
135 | |
---|
136 | // for now there is only the possibility to handle polynomials over |
---|
137 | // Q and Fp ... |
---|
138 | Off(SW_RATIONAL); |
---|
139 | if (rField_is_Q(r) || (rField_is_Zp(r))) |
---|
140 | { |
---|
141 | CanonicalForm newGCD(const CanonicalForm & A, const CanonicalForm & B); |
---|
142 | setCharacteristic( n_GetChar(r) ); |
---|
143 | CanonicalForm F( conv_SingPFactoryP( f,r ) ), G( conv_SingPFactoryP( g, r ) ); |
---|
144 | //if (nGetChar() > 1 ) |
---|
145 | //{ |
---|
146 | // res=convFactoryPSingP( newGCD( F,G )); |
---|
147 | // if (!nGreaterZero(pGetCoeff(res))) res=pNeg(res); |
---|
148 | //} |
---|
149 | //else |
---|
150 | res=conv_FactoryPSingP( gcd( F, G ) , r); |
---|
151 | } |
---|
152 | else |
---|
153 | WerrorS( feNotImplemented ); |
---|
154 | |
---|
155 | Off(SW_RATIONAL); |
---|
156 | pTest(res); |
---|
157 | return res; |
---|
158 | } |
---|
159 | |
---|
160 | /*2 find the maximal exponent of var(i) in poly p*/ |
---|
161 | int pGetExp_Var(poly p, int i) |
---|
162 | { |
---|
163 | int m=0; |
---|
164 | int mm; |
---|
165 | while (p!=NULL) |
---|
166 | { |
---|
167 | mm=pGetExp(p,i); |
---|
168 | if (mm>m) m=mm; |
---|
169 | pIter(p); |
---|
170 | } |
---|
171 | return m; |
---|
172 | } |
---|
173 | |
---|
174 | poly singclap_resultant ( poly f, poly g , poly x) |
---|
175 | { |
---|
176 | int i=pIsPurePower(x); |
---|
177 | if (i==0) |
---|
178 | { |
---|
179 | WerrorS("3rd argument must be a ring variable"); |
---|
180 | return NULL; |
---|
181 | } |
---|
182 | if ((f==NULL) || (g==NULL)) |
---|
183 | return NULL; |
---|
184 | // for now there is only the possibility to handle polynomials over |
---|
185 | // Q and Fp ... |
---|
186 | if (( nGetChar() == 0 || nGetChar() > 1 ) |
---|
187 | && (currRing->parameter==NULL)) |
---|
188 | { |
---|
189 | Variable X(i); |
---|
190 | setCharacteristic( nGetChar() ); |
---|
191 | CanonicalForm F( convSingPFactoryP( f ) ), G( convSingPFactoryP( g ) ); |
---|
192 | poly res=convFactoryPSingP( resultant( F, G, X ) ); |
---|
193 | Off(SW_RATIONAL); |
---|
194 | return res; |
---|
195 | } |
---|
196 | // and over Q(a) / Fp(a) |
---|
197 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
198 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
199 | { |
---|
200 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
201 | else setCharacteristic( -nGetChar() ); |
---|
202 | poly res; |
---|
203 | Variable X(i+rPar(currRing)); |
---|
204 | if (currRing->minpoly!=NULL) |
---|
205 | { |
---|
206 | //Variable X(i); |
---|
207 | CanonicalForm mipo=convSingTrFactoryP(((lnumber)currRing->minpoly)->z); |
---|
208 | Variable a=rootOf(mipo); |
---|
209 | CanonicalForm F( convSingAPFactoryAP( f,a ) ), G( convSingAPFactoryAP( g,a ) ); |
---|
210 | res= convFactoryAPSingAP( resultant( F, G, X ) ); |
---|
211 | } |
---|
212 | else |
---|
213 | { |
---|
214 | //Variable X(i+rPar(currRing)); |
---|
215 | number nf,ng; |
---|
216 | pCleardenom_n(f,nf);pCleardenom_n(g,ng); |
---|
217 | int ef,eg; |
---|
218 | ef=pGetExp_Var(f,i); |
---|
219 | eg=pGetExp_Var(g,i); |
---|
220 | CanonicalForm F( convSingTrPFactoryP( f ) ), G( convSingTrPFactoryP( g ) ); |
---|
221 | res= convFactoryPSingTrP( resultant( F, G, X ) ); |
---|
222 | if ((nf!=NULL)&&(!nIsOne(nf))&&(!nIsZero(nf))) |
---|
223 | { |
---|
224 | number n=nInvers(nf); |
---|
225 | while(eg>0) |
---|
226 | { |
---|
227 | res=pMult_nn(res,n); |
---|
228 | eg--; |
---|
229 | } |
---|
230 | nDelete(&n); |
---|
231 | } |
---|
232 | nDelete(&nf); |
---|
233 | if ((ng!=NULL)&&(!nIsOne(ng))&&(!nIsZero(ng))) |
---|
234 | { |
---|
235 | number n=nInvers(ng); |
---|
236 | while(ef>0) |
---|
237 | { |
---|
238 | res=pMult_nn(res,n); |
---|
239 | ef--; |
---|
240 | } |
---|
241 | nDelete(&n); |
---|
242 | } |
---|
243 | nDelete(&ng); |
---|
244 | } |
---|
245 | Off(SW_RATIONAL); |
---|
246 | return res; |
---|
247 | } |
---|
248 | else |
---|
249 | WerrorS( feNotImplemented ); |
---|
250 | return NULL; |
---|
251 | } |
---|
252 | //poly singclap_resultant ( poly f, poly g , poly x) |
---|
253 | //{ |
---|
254 | // int i=pVar(x); |
---|
255 | // if (i==0) |
---|
256 | // { |
---|
257 | // WerrorS("ringvar expected"); |
---|
258 | // return NULL; |
---|
259 | // } |
---|
260 | // ideal I=idInit(1,1); |
---|
261 | // |
---|
262 | // // get the coeffs von f wrt. x: |
---|
263 | // I->m[0]=pCopy(f); |
---|
264 | // matrix ffi=mpCoeffs(I,i); |
---|
265 | // ffi->rank=1; |
---|
266 | // ffi->ncols=ffi->nrows; |
---|
267 | // ffi->nrows=1; |
---|
268 | // ideal fi=(ideal)ffi; |
---|
269 | // |
---|
270 | // // get the coeffs von g wrt. x: |
---|
271 | // I->m[0]=pCopy(g); |
---|
272 | // matrix ggi=mpCoeffs(I,i); |
---|
273 | // ggi->rank=1; |
---|
274 | // ggi->ncols=ggi->nrows; |
---|
275 | // ggi->nrows=1; |
---|
276 | // ideal gi=(ideal)ggi; |
---|
277 | // |
---|
278 | // // contruct the matrix: |
---|
279 | // int fn=IDELEMS(fi); //= deg(f,x)+1 |
---|
280 | // int gn=IDELEMS(gi); //= deg(g,x)+1 |
---|
281 | // matrix m=mpNew(fn+gn-2,fn+gn-2); |
---|
282 | // if(m==NULL) |
---|
283 | // { |
---|
284 | // return NULL; |
---|
285 | // } |
---|
286 | // |
---|
287 | // // enter the coeffs into m: |
---|
288 | // int j; |
---|
289 | // for(i=0;i<gn-1;i++) |
---|
290 | // { |
---|
291 | // for(j=0;j<fn;j++) |
---|
292 | // { |
---|
293 | // MATELEM(m,i+1,fn-j+i)=pCopy(fi->m[j]); |
---|
294 | // } |
---|
295 | // } |
---|
296 | // for(i=0;i<fn-1;i++) |
---|
297 | // { |
---|
298 | // for(j=0;j<gn;j++) |
---|
299 | // { |
---|
300 | // MATELEM(m,gn+i,gn-j+i)=pCopy(gi->m[j]); |
---|
301 | // } |
---|
302 | // } |
---|
303 | // |
---|
304 | // poly r=mpDet(m); |
---|
305 | // |
---|
306 | // idDelete(&fi); |
---|
307 | // idDelete(&gi); |
---|
308 | // idDelete((ideal *)&m); |
---|
309 | // return r; |
---|
310 | //} |
---|
311 | |
---|
312 | BOOLEAN singclap_extgcd ( poly f, poly g, poly &res, poly &pa, poly &pb ) |
---|
313 | { |
---|
314 | // for now there is only the possibility to handle univariate |
---|
315 | // polynomials over |
---|
316 | // Q and Fp ... |
---|
317 | res=NULL;pa=NULL;pb=NULL; |
---|
318 | On(SW_SYMMETRIC_FF); |
---|
319 | if (( nGetChar() == 0 || nGetChar() > 1 ) |
---|
320 | && (currRing->parameter==NULL)) |
---|
321 | { |
---|
322 | setCharacteristic( nGetChar() ); |
---|
323 | CanonicalForm F( convSingPFactoryP( f ) ), G( convSingPFactoryP( g ) ); |
---|
324 | CanonicalForm FpG=F+G; |
---|
325 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
326 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
327 | { |
---|
328 | Off(SW_RATIONAL); |
---|
329 | WerrorS("not univariate"); |
---|
330 | return TRUE; |
---|
331 | } |
---|
332 | CanonicalForm Fa,Gb; |
---|
333 | On(SW_RATIONAL); |
---|
334 | res=convFactoryPSingP( extgcd( F, G, Fa, Gb ) ); |
---|
335 | pa=convFactoryPSingP(Fa); |
---|
336 | pb=convFactoryPSingP(Gb); |
---|
337 | Off(SW_RATIONAL); |
---|
338 | } |
---|
339 | // and over Q(a) / Fp(a) |
---|
340 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
341 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
342 | { |
---|
343 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
344 | else setCharacteristic( -nGetChar() ); |
---|
345 | CanonicalForm Fa,Gb; |
---|
346 | if (currRing->minpoly!=NULL) |
---|
347 | { |
---|
348 | CanonicalForm mipo=convSingTrFactoryP(((lnumber)currRing->minpoly)->z); |
---|
349 | Variable a=rootOf(mipo); |
---|
350 | CanonicalForm F( convSingAPFactoryAP( f,a ) ), G( convSingAPFactoryAP( g,a ) ); |
---|
351 | CanonicalForm FpG=F+G; |
---|
352 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
353 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
354 | { |
---|
355 | WerrorS("not univariate"); |
---|
356 | return TRUE; |
---|
357 | } |
---|
358 | res= convFactoryAPSingAP( extgcd( F, G, Fa, Gb ) ); |
---|
359 | pa=convFactoryAPSingAP(Fa); |
---|
360 | pb=convFactoryAPSingAP(Gb); |
---|
361 | } |
---|
362 | else |
---|
363 | { |
---|
364 | CanonicalForm F( convSingTrPFactoryP( f ) ), G( convSingTrPFactoryP( g ) ); |
---|
365 | CanonicalForm FpG=F+G; |
---|
366 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
367 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
368 | { |
---|
369 | Off(SW_RATIONAL); |
---|
370 | WerrorS("not univariate"); |
---|
371 | return TRUE; |
---|
372 | } |
---|
373 | res= convFactoryPSingTrP( extgcd( F, G, Fa, Gb ) ); |
---|
374 | pa=convFactoryPSingTrP(Fa); |
---|
375 | pb=convFactoryPSingTrP(Gb); |
---|
376 | } |
---|
377 | Off(SW_RATIONAL); |
---|
378 | } |
---|
379 | else |
---|
380 | { |
---|
381 | WerrorS( feNotImplemented ); |
---|
382 | return TRUE; |
---|
383 | } |
---|
384 | return FALSE; |
---|
385 | } |
---|
386 | |
---|
387 | poly singclap_pdivide ( poly f, poly g ) |
---|
388 | { |
---|
389 | // for now there is only the possibility to handle polynomials over |
---|
390 | // Q and Fp ... |
---|
391 | poly res=NULL; |
---|
392 | On(SW_RATIONAL); |
---|
393 | if (( nGetChar() == 0 || nGetChar() > 1 ) |
---|
394 | && (currRing->parameter==NULL)) |
---|
395 | { |
---|
396 | setCharacteristic( nGetChar() ); |
---|
397 | CanonicalForm F( convSingPFactoryP( f ) ), G( convSingPFactoryP( g ) ); |
---|
398 | res = convFactoryPSingP( F / G ); |
---|
399 | } |
---|
400 | // and over Q(a) / Fp(a) |
---|
401 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
402 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
403 | { |
---|
404 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
405 | else setCharacteristic( -nGetChar() ); |
---|
406 | if (currRing->minpoly!=NULL) |
---|
407 | { |
---|
408 | CanonicalForm mipo=convSingTrFactoryP(((lnumber)currRing->minpoly)->z); |
---|
409 | Variable a=rootOf(mipo); |
---|
410 | CanonicalForm F( convSingAPFactoryAP( f,a ) ), G( convSingAPFactoryAP( g,a ) ); |
---|
411 | res= convFactoryAPSingAP( F / G ); |
---|
412 | } |
---|
413 | else |
---|
414 | { |
---|
415 | CanonicalForm F( convSingTrPFactoryP( f ) ), G( convSingTrPFactoryP( g ) ); |
---|
416 | res= convFactoryPSingTrP( F / G ); |
---|
417 | } |
---|
418 | } |
---|
419 | #if 0 // not yet working |
---|
420 | else if (rField_is_GF()) |
---|
421 | { |
---|
422 | //Print("GF(%d^%d)\n",nfCharP,nfMinPoly[0]); |
---|
423 | setCharacteristic( nfCharP,nfMinPoly[0], currRing->parameter[0][0] ); |
---|
424 | CanonicalForm F( convSingGFFactoryGF( f ) ), G( convSingGFFactoryGF( g ) ); |
---|
425 | res = convFactoryGFSingGF( F / G ); |
---|
426 | } |
---|
427 | #endif |
---|
428 | else |
---|
429 | WerrorS( feNotImplemented ); |
---|
430 | Off(SW_RATIONAL); |
---|
431 | return res; |
---|
432 | } |
---|
433 | |
---|
434 | void singclap_divide_content ( poly f ) |
---|
435 | { |
---|
436 | if ( f==NULL ) |
---|
437 | { |
---|
438 | return; |
---|
439 | } |
---|
440 | else if ( pNext( f ) == NULL ) |
---|
441 | { |
---|
442 | pSetCoeff( f, nInit( 1 ) ); |
---|
443 | return; |
---|
444 | } |
---|
445 | else |
---|
446 | { |
---|
447 | if ( nGetChar() == 1 ) |
---|
448 | setCharacteristic( 0 ); |
---|
449 | else if ( nGetChar() == -1 ) |
---|
450 | return; /* not implemented for R */ |
---|
451 | else if ( nGetChar() < 0 ) |
---|
452 | setCharacteristic( -nGetChar() ); |
---|
453 | else if (currRing->parameter==NULL) /* not GF(q) */ |
---|
454 | setCharacteristic( nGetChar() ); |
---|
455 | else |
---|
456 | return; /* not implemented*/ |
---|
457 | |
---|
458 | CFList L; |
---|
459 | CanonicalForm g, h; |
---|
460 | poly p = pNext(f); |
---|
461 | |
---|
462 | // first attemp: find 2 smallest g: |
---|
463 | |
---|
464 | number g1=pGetCoeff(f); |
---|
465 | number g2=pGetCoeff(p); // p==pNext(f); |
---|
466 | pIter(p); |
---|
467 | int sz1=nSize(g1); |
---|
468 | int sz2=nSize(g2); |
---|
469 | if (sz1>sz2) |
---|
470 | { |
---|
471 | number gg=g1; |
---|
472 | g1=g2; g2=gg; |
---|
473 | int sz=sz1; |
---|
474 | sz1=sz2; sz2=sz; |
---|
475 | } |
---|
476 | while (p!=NULL) |
---|
477 | { |
---|
478 | int n_sz=nSize(pGetCoeff(p)); |
---|
479 | if (n_sz<sz1) |
---|
480 | { |
---|
481 | sz2=sz1; |
---|
482 | g2=g1; |
---|
483 | g1=pGetCoeff(p); |
---|
484 | sz1=n_sz; |
---|
485 | if (sz1<=3) break; |
---|
486 | } |
---|
487 | else if(n_sz<sz2) |
---|
488 | { |
---|
489 | sz2=n_sz; |
---|
490 | g2=pGetCoeff(p); |
---|
491 | sz2=n_sz; |
---|
492 | } |
---|
493 | pIter(p); |
---|
494 | } |
---|
495 | g = convSingTrFactoryP( ((lnumber)g1)->z ); |
---|
496 | g = gcd( g, convSingTrFactoryP( ((lnumber)g2)->z )); |
---|
497 | |
---|
498 | // second run: gcd's |
---|
499 | |
---|
500 | p = f; |
---|
501 | while ( (p != NULL) && (g != 1) && ( g != 0)) |
---|
502 | { |
---|
503 | h = convSingTrFactoryP( ((lnumber)pGetCoeff(p))->z ); |
---|
504 | pIter( p ); |
---|
505 | |
---|
506 | g = gcd( g, h ); |
---|
507 | |
---|
508 | L.append( h ); |
---|
509 | } |
---|
510 | if (( g == 1 ) || (g == 0)) |
---|
511 | { |
---|
512 | // pTest(f); |
---|
513 | return; |
---|
514 | } |
---|
515 | else |
---|
516 | { |
---|
517 | CFListIterator i; |
---|
518 | for ( i = L, p = f; i.hasItem(); i++, p=pNext(p) ) |
---|
519 | { |
---|
520 | lnumber c=(lnumber)pGetCoeff(p); |
---|
521 | napDelete(&c->z); |
---|
522 | c->z=convFactoryPSingTr( i.getItem() / g ); |
---|
523 | //nTest((number)c); |
---|
524 | //#ifdef LDEBUG |
---|
525 | //number cn=(number)c; |
---|
526 | //StringSetS(""); nWrite(nt); StringAppend(" ==> "); |
---|
527 | //nWrite(cn);PrintS(StringAppend("\n")); |
---|
528 | //#endif |
---|
529 | } |
---|
530 | } |
---|
531 | // pTest(f); |
---|
532 | } |
---|
533 | } |
---|
534 | |
---|
535 | static int primepower(int c) |
---|
536 | { |
---|
537 | int p=1; |
---|
538 | int cc=c; |
---|
539 | while(cc!= rInternalChar(currRing)) { cc*=c; p++; } |
---|
540 | return p; |
---|
541 | } |
---|
542 | |
---|
543 | BOOLEAN count_Factors(ideal I, intvec *v,int j, poly &f, poly fac) |
---|
544 | { |
---|
545 | pTest(f); |
---|
546 | pTest(fac); |
---|
547 | int e=0; |
---|
548 | if (!pIsConstantPoly(fac)) |
---|
549 | { |
---|
550 | #ifdef FACTORIZE2_DEBUG |
---|
551 | printf("start count_Factors(%d), Fdeg=%d, factor deg=%d\n",j,pTotaldegree(f),pTotaldegree(fac)); |
---|
552 | p_wrp(fac,currRing);PrintLn(); |
---|
553 | #endif |
---|
554 | On(SW_RATIONAL); |
---|
555 | CanonicalForm F, FAC,Q,R; |
---|
556 | Variable a; |
---|
557 | if (( nGetChar() == 0 || nGetChar() > 1 ) |
---|
558 | && (currRing->parameter==NULL)) |
---|
559 | { |
---|
560 | F=convSingPFactoryP( f ); |
---|
561 | FAC=convSingPFactoryP( fac ); |
---|
562 | } |
---|
563 | // and over Q(a) / Fp(a) |
---|
564 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
565 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
566 | { |
---|
567 | if (currRing->minpoly!=NULL) |
---|
568 | { |
---|
569 | CanonicalForm mipo=convSingTrFactoryP(((lnumber)currRing->minpoly)->z); |
---|
570 | a=rootOf(mipo); |
---|
571 | F=convSingAPFactoryAP( f,a ); |
---|
572 | FAC=convSingAPFactoryAP( fac,a ); |
---|
573 | } |
---|
574 | else |
---|
575 | { |
---|
576 | F=convSingTrPFactoryP( f ); |
---|
577 | FAC=convSingTrPFactoryP( fac ); |
---|
578 | } |
---|
579 | } |
---|
580 | else |
---|
581 | WerrorS( feNotImplemented ); |
---|
582 | |
---|
583 | poly q; |
---|
584 | loop |
---|
585 | { |
---|
586 | Q=F; |
---|
587 | Q/=FAC; |
---|
588 | R=Q; |
---|
589 | R*=FAC; |
---|
590 | R-=F; |
---|
591 | if (R.isZero()) |
---|
592 | { |
---|
593 | if (( nGetChar() == 0 || nGetChar() > 1 ) |
---|
594 | && (currRing->parameter==NULL)) |
---|
595 | { |
---|
596 | q = convFactoryPSingP( Q ); |
---|
597 | } |
---|
598 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
599 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
600 | { |
---|
601 | if (currRing->minpoly!=NULL) |
---|
602 | { |
---|
603 | q= convFactoryAPSingAP( Q ); |
---|
604 | } |
---|
605 | else |
---|
606 | { |
---|
607 | q= convFactoryPSingTrP( Q ); |
---|
608 | } |
---|
609 | } |
---|
610 | e++; pDelete(&f); f=q; q=NULL; F=Q; |
---|
611 | } |
---|
612 | else |
---|
613 | { |
---|
614 | break; |
---|
615 | } |
---|
616 | } |
---|
617 | if (e==0) |
---|
618 | { |
---|
619 | Off(SW_RATIONAL); |
---|
620 | return FALSE; |
---|
621 | } |
---|
622 | } |
---|
623 | else e=1; |
---|
624 | I->m[j]=fac; |
---|
625 | if (v!=NULL) (*v)[j]=e; |
---|
626 | Off(SW_RATIONAL); |
---|
627 | return TRUE; |
---|
628 | } |
---|
629 | |
---|
630 | int singclap_factorize_retry; |
---|
631 | extern int libfac_interruptflag; |
---|
632 | |
---|
633 | ideal singclap_factorize ( poly f, intvec ** v , int with_exps) |
---|
634 | { |
---|
635 | pTest(f); |
---|
636 | #ifdef FACTORIZE2_DEBUG |
---|
637 | printf("singclap_factorize, degree %d\n",pTotaldegree(f)); |
---|
638 | #endif |
---|
639 | // with_exps: 3,1 return only true factors, no exponents |
---|
640 | // 2 return true factors and exponents |
---|
641 | // 0 return coeff, factors and exponents |
---|
642 | BOOLEAN save_errorreported=errorreported; |
---|
643 | |
---|
644 | ideal res=NULL; |
---|
645 | |
---|
646 | // handle factorize(0) ========================================= |
---|
647 | if (f==NULL) |
---|
648 | { |
---|
649 | res=idInit(1,1); |
---|
650 | if (with_exps!=1) |
---|
651 | { |
---|
652 | (*v)=new intvec(1); |
---|
653 | (**v)[0]=1; |
---|
654 | } |
---|
655 | return res; |
---|
656 | } |
---|
657 | // handle factorize(mon) ========================================= |
---|
658 | if (pNext(f)==NULL) |
---|
659 | { |
---|
660 | int i=0; |
---|
661 | int n=0; |
---|
662 | int e; |
---|
663 | for(i=pVariables;i>0;i--) if(pGetExp(f,i)!=0) n++; |
---|
664 | if (with_exps==0) n++; // with coeff |
---|
665 | res=idInit(si_max(n,1),1); |
---|
666 | switch(with_exps) |
---|
667 | { |
---|
668 | case 0: // with coef & exp. |
---|
669 | res->m[0]=pOne(); |
---|
670 | pSetCoeff(res->m[0],nCopy(pGetCoeff(f))); |
---|
671 | // no break |
---|
672 | case 2: // with exp. |
---|
673 | (*v)=new intvec(si_max(1,n)); |
---|
674 | (**v)[0]=1; |
---|
675 | // no break |
---|
676 | case 1: ; |
---|
677 | #ifdef TEST |
---|
678 | default: ; |
---|
679 | #endif |
---|
680 | } |
---|
681 | if (n==0) |
---|
682 | { |
---|
683 | res->m[0]=pOne(); |
---|
684 | // (**v)[0]=1; is already done |
---|
685 | return res; |
---|
686 | } |
---|
687 | for(i=pVariables;i>0;i--) |
---|
688 | { |
---|
689 | e=pGetExp(f,i); |
---|
690 | if(e!=0) |
---|
691 | { |
---|
692 | n--; |
---|
693 | poly p=pOne(); |
---|
694 | pSetExp(p,i,1); |
---|
695 | pSetm(p); |
---|
696 | res->m[n]=p; |
---|
697 | if (with_exps!=1) (**v)[n]=e; |
---|
698 | } |
---|
699 | } |
---|
700 | return res; |
---|
701 | } |
---|
702 | //PrintS("S:");pWrite(f);PrintLn(); |
---|
703 | // use factory/libfac in general ============================== |
---|
704 | Off(SW_RATIONAL); |
---|
705 | On(SW_SYMMETRIC_FF); |
---|
706 | #ifdef HAVE_NTL |
---|
707 | extern int prime_number; |
---|
708 | if(rField_is_Q()) prime_number=0; |
---|
709 | #endif |
---|
710 | CFFList L; |
---|
711 | number N=NULL; |
---|
712 | number NN=NULL; |
---|
713 | number old_lead_coeff=nCopy(pGetCoeff(f)); |
---|
714 | |
---|
715 | if (!rField_is_Zp() && !rField_is_Zp_a()) /* Q, Q(a) */ |
---|
716 | { |
---|
717 | //if (f!=NULL) // already tested at start of routine |
---|
718 | { |
---|
719 | number n0=nCopy(pGetCoeff(f)); |
---|
720 | if (with_exps==0) |
---|
721 | N=nCopy(n0); |
---|
722 | pCleardenom(f); |
---|
723 | NN=nDiv(n0,pGetCoeff(f)); |
---|
724 | nDelete(&n0); |
---|
725 | if (with_exps==0) |
---|
726 | { |
---|
727 | nDelete(&N); |
---|
728 | N=nCopy(NN); |
---|
729 | } |
---|
730 | } |
---|
731 | } |
---|
732 | else if (rField_is_Zp_a()) |
---|
733 | { |
---|
734 | //if (f!=NULL) // already tested at start of routine |
---|
735 | if (singclap_factorize_retry==0) |
---|
736 | { |
---|
737 | number n0=nCopy(pGetCoeff(f)); |
---|
738 | if (with_exps==0) |
---|
739 | N=nCopy(n0); |
---|
740 | pNorm(f); |
---|
741 | pCleardenom(f); |
---|
742 | NN=nDiv(n0,pGetCoeff(f)); |
---|
743 | nDelete(&n0); |
---|
744 | if (with_exps==0) |
---|
745 | { |
---|
746 | nDelete(&N); |
---|
747 | N=nCopy(NN); |
---|
748 | } |
---|
749 | } |
---|
750 | } |
---|
751 | if (rField_is_Q() || rField_is_Zp()) |
---|
752 | { |
---|
753 | setCharacteristic( nGetChar() ); |
---|
754 | CanonicalForm F( convSingPFactoryP( f ) ); |
---|
755 | if (nGetChar()==0) /* Q */ |
---|
756 | { |
---|
757 | L = factorize( F ); |
---|
758 | } |
---|
759 | else /* Fp */ |
---|
760 | { |
---|
761 | do |
---|
762 | { |
---|
763 | libfac_interruptflag=0; |
---|
764 | L = Factorize( F ); |
---|
765 | } |
---|
766 | while ((libfac_interruptflag!=0) ||(L.isEmpty())); |
---|
767 | } |
---|
768 | } |
---|
769 | #if 0 |
---|
770 | else if (rField_is_GF()) |
---|
771 | { |
---|
772 | int c=rChar(currRing); |
---|
773 | setCharacteristic( c, primepower(c) ); |
---|
774 | CanonicalForm F( convSingGFFactoryGF( f ) ); |
---|
775 | if (F.isUnivariate()) |
---|
776 | { |
---|
777 | L = factorize( F ); |
---|
778 | } |
---|
779 | else |
---|
780 | { |
---|
781 | goto notImpl; |
---|
782 | } |
---|
783 | } |
---|
784 | #endif |
---|
785 | // and over Q(a) / Fp(a) |
---|
786 | else if (rField_is_Extension()) |
---|
787 | { |
---|
788 | if (rField_is_Q_a()) setCharacteristic( 0 ); |
---|
789 | else setCharacteristic( -nGetChar() ); |
---|
790 | if (currRing->minpoly!=NULL) |
---|
791 | { |
---|
792 | CanonicalForm mipo=convSingTrFactoryP(((lnumber)currRing->minpoly)->z); |
---|
793 | Variable a=rootOf(mipo); |
---|
794 | CanonicalForm F( convSingAPFactoryAP( f,a ) ); |
---|
795 | if (rField_is_Zp_a() && F.isUnivariate()) |
---|
796 | { |
---|
797 | L = factorize( F, a ); |
---|
798 | } |
---|
799 | else |
---|
800 | { |
---|
801 | CanonicalForm G( convSingTrPFactoryP( f ) ); |
---|
802 | // over Q(a) / multivariate over Fp(a) |
---|
803 | do |
---|
804 | { |
---|
805 | libfac_interruptflag=0; |
---|
806 | L=Factorize2(G, mipo); |
---|
807 | } |
---|
808 | while ((libfac_interruptflag!=0) ||(L.isEmpty())); |
---|
809 | #ifdef FACTORIZE2_DEBUG |
---|
810 | printf("while okay\n"); |
---|
811 | #endif |
---|
812 | libfac_interruptflag=0; |
---|
813 | } |
---|
814 | } |
---|
815 | else |
---|
816 | { |
---|
817 | CanonicalForm F( convSingTrPFactoryP( f ) ); |
---|
818 | if (rField_is_Q_a()) |
---|
819 | { |
---|
820 | L = factorize( F ); |
---|
821 | } |
---|
822 | else /* Fp(a) */ |
---|
823 | { |
---|
824 | L = Factorize( F ); |
---|
825 | } |
---|
826 | } |
---|
827 | } |
---|
828 | else |
---|
829 | { |
---|
830 | goto notImpl; |
---|
831 | } |
---|
832 | { |
---|
833 | poly ff=pCopy(f); // a copy for the retry stuff |
---|
834 | // the first factor should be a constant |
---|
835 | if ( ! L.getFirst().factor().inCoeffDomain() ) |
---|
836 | L.insert(CFFactor(1,1)); |
---|
837 | // convert into ideal |
---|
838 | int n = L.length(); |
---|
839 | if (n==0) n=1; |
---|
840 | CFFListIterator J=L; |
---|
841 | int j=0; |
---|
842 | if (with_exps!=1) |
---|
843 | { |
---|
844 | if ((with_exps==2)&&(n>1)) |
---|
845 | { |
---|
846 | n--; |
---|
847 | J++; |
---|
848 | } |
---|
849 | *v = new intvec( n ); |
---|
850 | } |
---|
851 | res = idInit( n ,1); |
---|
852 | for ( ; J.hasItem(); J++, j++ ) |
---|
853 | { |
---|
854 | poly p; |
---|
855 | if (with_exps!=1) (**v)[j] = J.getItem().exp(); |
---|
856 | if (rField_is_Zp() || rField_is_Q()) /* Q, Fp */ |
---|
857 | { |
---|
858 | //count_Factors(res,*v,f, j, convFactoryPSingP( J.getItem().factor() ); |
---|
859 | res->m[j] = convFactoryPSingP( J.getItem().factor() ); |
---|
860 | } |
---|
861 | #if 0 |
---|
862 | else if (rField_is_GF()) |
---|
863 | res->m[j] = convFactoryGFSingGF( J.getItem().factor() ); |
---|
864 | #endif |
---|
865 | else if (rField_is_Extension()) /* Q(a), Fp(a) */ |
---|
866 | { |
---|
867 | intvec *w=NULL; |
---|
868 | if (v!=NULL) w=*v; |
---|
869 | if (currRing->minpoly==NULL) |
---|
870 | { |
---|
871 | if(!count_Factors(res,w,j,ff,convFactoryPSingTrP( J.getItem().factor() ))) |
---|
872 | { |
---|
873 | if (w!=NULL) |
---|
874 | (*w)[j]=1; |
---|
875 | res->m[j]=pOne(); |
---|
876 | } |
---|
877 | } |
---|
878 | else |
---|
879 | { |
---|
880 | if (!count_Factors(res,w,j,ff,convFactoryAPSingAP( J.getItem().factor() ))) |
---|
881 | { |
---|
882 | if (w!=NULL) |
---|
883 | (*w)[j]=1; |
---|
884 | res->m[j]=pOne(); |
---|
885 | } |
---|
886 | } |
---|
887 | } |
---|
888 | } |
---|
889 | if (rField_is_Extension() && (!pIsConstantPoly(ff))) |
---|
890 | { |
---|
891 | singclap_factorize_retry++; |
---|
892 | if (singclap_factorize_retry<3) |
---|
893 | { |
---|
894 | int jj; |
---|
895 | #ifdef FACTORIZE2_DEBUG |
---|
896 | printf("factorize_retry\n"); |
---|
897 | #endif |
---|
898 | intvec *ww=NULL; |
---|
899 | idTest(res); |
---|
900 | ideal h=singclap_factorize ( ff, &ww , with_exps); |
---|
901 | idTest(h); |
---|
902 | int l=(*v)->length(); |
---|
903 | (*v)->resize(l+ww->length()); |
---|
904 | for(jj=0;jj<ww->length();jj++) |
---|
905 | (**v)[jj+l]=(*ww)[jj]; |
---|
906 | delete ww; |
---|
907 | ideal hh=idInit(IDELEMS(res)+IDELEMS(h),1); |
---|
908 | for(jj=IDELEMS(res)-1;jj>=0;jj--) |
---|
909 | { |
---|
910 | hh->m[jj]=res->m[jj]; |
---|
911 | res->m[jj]=NULL; |
---|
912 | } |
---|
913 | for(jj=IDELEMS(h)-1;jj>=0;jj--) |
---|
914 | { |
---|
915 | hh->m[jj+IDELEMS(res)]=h->m[jj]; |
---|
916 | h->m[jj]=NULL; |
---|
917 | } |
---|
918 | idDelete(&res); |
---|
919 | idDelete(&h); |
---|
920 | res=hh; |
---|
921 | idTest(res); |
---|
922 | ff=NULL; |
---|
923 | } |
---|
924 | else |
---|
925 | { |
---|
926 | WarnS("problem with factorize"); |
---|
927 | #if 0 |
---|
928 | pWrite(ff); |
---|
929 | idShow(res); |
---|
930 | #endif |
---|
931 | idDelete(&res); |
---|
932 | res=idInit(2,1); |
---|
933 | res->m[0]=pOne(); |
---|
934 | res->m[1]=ff; ff=NULL; |
---|
935 | } |
---|
936 | } |
---|
937 | pDelete(&ff); |
---|
938 | if (N!=NULL) |
---|
939 | { |
---|
940 | pMult_nn(res->m[0],N); |
---|
941 | nDelete(&N); |
---|
942 | N=NULL; |
---|
943 | } |
---|
944 | // delete constants |
---|
945 | if (res!=NULL) |
---|
946 | { |
---|
947 | int i=IDELEMS(res)-1; |
---|
948 | int j=0; |
---|
949 | for(;i>=0;i--) |
---|
950 | { |
---|
951 | if ((res->m[i]!=NULL) |
---|
952 | && (pNext(res->m[i])==NULL) |
---|
953 | && (pIsConstant(res->m[i]))) |
---|
954 | { |
---|
955 | if (with_exps!=0) |
---|
956 | { |
---|
957 | pDelete(&(res->m[i])); |
---|
958 | if ((v!=NULL) && ((*v)!=NULL)) |
---|
959 | (**v)[i]=0; |
---|
960 | j++; |
---|
961 | } |
---|
962 | else if (i!=0) |
---|
963 | { |
---|
964 | while ((v!=NULL) && ((*v)!=NULL) && ((**v)[i]>1)) |
---|
965 | { |
---|
966 | res->m[0]=pMult(res->m[0],pCopy(res->m[i])); |
---|
967 | (**v)[i]--; |
---|
968 | } |
---|
969 | res->m[0]=pMult(res->m[0],res->m[i]); |
---|
970 | res->m[i]=NULL; |
---|
971 | if ((v!=NULL) && ((*v)!=NULL)) |
---|
972 | (**v)[i]=1; |
---|
973 | j++; |
---|
974 | } |
---|
975 | } |
---|
976 | } |
---|
977 | if (j>0) |
---|
978 | { |
---|
979 | idSkipZeroes(res); |
---|
980 | if ((v!=NULL) && ((*v)!=NULL)) |
---|
981 | { |
---|
982 | intvec *w=*v; |
---|
983 | int len=IDELEMS(res); |
---|
984 | *v = new intvec( len ); |
---|
985 | for (i=0,j=0;i<si_min(w->length(),len);i++) |
---|
986 | { |
---|
987 | if((*w)[i]!=0) |
---|
988 | { |
---|
989 | (**v)[j]=(*w)[i]; j++; |
---|
990 | } |
---|
991 | } |
---|
992 | delete w; |
---|
993 | } |
---|
994 | } |
---|
995 | if (res->m[0]==NULL) |
---|
996 | { |
---|
997 | res->m[0]=pOne(); |
---|
998 | } |
---|
999 | } |
---|
1000 | } |
---|
1001 | if (rField_is_Q_a() && (currRing->minpoly!=NULL)) |
---|
1002 | { |
---|
1003 | int i=IDELEMS(res)-1; |
---|
1004 | int stop=1; |
---|
1005 | if (with_exps!=0) stop=0; |
---|
1006 | for(;i>=stop;i--) |
---|
1007 | { |
---|
1008 | pNorm(res->m[i]); |
---|
1009 | } |
---|
1010 | if (with_exps==0) pSetCoeff(res->m[0],old_lead_coeff); |
---|
1011 | else nDelete(&old_lead_coeff); |
---|
1012 | } |
---|
1013 | else |
---|
1014 | nDelete(&old_lead_coeff); |
---|
1015 | errorreported=save_errorreported; |
---|
1016 | notImpl: |
---|
1017 | if (res==NULL) |
---|
1018 | WerrorS( feNotImplemented ); |
---|
1019 | if (NN!=NULL) |
---|
1020 | { |
---|
1021 | nDelete(&NN); |
---|
1022 | } |
---|
1023 | if (N!=NULL) |
---|
1024 | { |
---|
1025 | nDelete(&N); |
---|
1026 | } |
---|
1027 | //if (f!=NULL) pDelete(&f); |
---|
1028 | //PrintS("......S\n"); |
---|
1029 | return res; |
---|
1030 | } |
---|
1031 | ideal singclap_sqrfree ( poly f) |
---|
1032 | { |
---|
1033 | pTest(f); |
---|
1034 | #ifdef FACTORIZE2_DEBUG |
---|
1035 | printf("singclap_sqrfree, degree %d\n",pTotaldegree(f)); |
---|
1036 | #endif |
---|
1037 | // with_exps: 3,1 return only true factors, no exponents |
---|
1038 | // 2 return true factors and exponents |
---|
1039 | // 0 return coeff, factors and exponents |
---|
1040 | BOOLEAN save_errorreported=errorreported; |
---|
1041 | |
---|
1042 | ideal res=NULL; |
---|
1043 | |
---|
1044 | // handle factorize(0) ========================================= |
---|
1045 | if (f==NULL) |
---|
1046 | { |
---|
1047 | res=idInit(1,1); |
---|
1048 | return res; |
---|
1049 | } |
---|
1050 | // handle factorize(mon) ========================================= |
---|
1051 | if (pNext(f)==NULL) |
---|
1052 | { |
---|
1053 | int i=0; |
---|
1054 | int n=0; |
---|
1055 | int e; |
---|
1056 | for(i=pVariables;i>0;i--) if(pGetExp(f,i)!=0) n++; |
---|
1057 | n++; // with coeff |
---|
1058 | res=idInit(si_max(n,1),1); |
---|
1059 | res->m[0]=pOne(); |
---|
1060 | pSetCoeff(res->m[0],nCopy(pGetCoeff(f))); |
---|
1061 | if (n==0) |
---|
1062 | { |
---|
1063 | res->m[0]=pOne(); |
---|
1064 | // (**v)[0]=1; is already done |
---|
1065 | return res; |
---|
1066 | } |
---|
1067 | for(i=pVariables;i>0;i--) |
---|
1068 | { |
---|
1069 | e=pGetExp(f,i); |
---|
1070 | if(e!=0) |
---|
1071 | { |
---|
1072 | n--; |
---|
1073 | poly p=pOne(); |
---|
1074 | pSetExp(p,i,1); |
---|
1075 | pSetm(p); |
---|
1076 | res->m[n]=p; |
---|
1077 | } |
---|
1078 | } |
---|
1079 | return res; |
---|
1080 | } |
---|
1081 | //PrintS("S:");pWrite(f);PrintLn(); |
---|
1082 | // use factory/libfac in general ============================== |
---|
1083 | Off(SW_RATIONAL); |
---|
1084 | On(SW_SYMMETRIC_FF); |
---|
1085 | #ifdef HAVE_NTL |
---|
1086 | extern int prime_number; |
---|
1087 | if(rField_is_Q()) prime_number=0; |
---|
1088 | #endif |
---|
1089 | CFFList L; |
---|
1090 | |
---|
1091 | if (!rField_is_Zp() && !rField_is_Zp_a()) /* Q, Q(a) */ |
---|
1092 | { |
---|
1093 | //if (f!=NULL) // already tested at start of routine |
---|
1094 | { |
---|
1095 | pCleardenom(f); |
---|
1096 | } |
---|
1097 | } |
---|
1098 | else if (rField_is_Zp_a()) |
---|
1099 | { |
---|
1100 | //if (f!=NULL) // already tested at start of routine |
---|
1101 | if (singclap_factorize_retry==0) |
---|
1102 | { |
---|
1103 | pNorm(f); |
---|
1104 | pCleardenom(f); |
---|
1105 | } |
---|
1106 | } |
---|
1107 | if (rField_is_Q() || rField_is_Zp()) |
---|
1108 | { |
---|
1109 | setCharacteristic( nGetChar() ); |
---|
1110 | CanonicalForm F( convSingPFactoryP( f ) ); |
---|
1111 | L = sqrFree( F ); |
---|
1112 | } |
---|
1113 | #if 0 |
---|
1114 | else if (rField_is_GF()) |
---|
1115 | { |
---|
1116 | int c=rChar(currRing); |
---|
1117 | setCharacteristic( c, primepower(c) ); |
---|
1118 | CanonicalForm F( convSingGFFactoryGF( f ) ); |
---|
1119 | if (F.isUnivariate()) |
---|
1120 | { |
---|
1121 | L = factorize( F ); |
---|
1122 | } |
---|
1123 | else |
---|
1124 | { |
---|
1125 | goto notImpl; |
---|
1126 | } |
---|
1127 | } |
---|
1128 | #endif |
---|
1129 | // and over Q(a) / Fp(a) |
---|
1130 | else if (rField_is_Extension()) |
---|
1131 | { |
---|
1132 | if (rField_is_Q_a()) setCharacteristic( 0 ); |
---|
1133 | else setCharacteristic( -nGetChar() ); |
---|
1134 | if (currRing->minpoly!=NULL) |
---|
1135 | { |
---|
1136 | CanonicalForm mipo=convSingTrFactoryP(((lnumber)currRing->minpoly)->z); |
---|
1137 | Variable a=rootOf(mipo); |
---|
1138 | CanonicalForm F( convSingAPFactoryAP( f,a ) ); |
---|
1139 | CFFList SqrFreeMV( const CanonicalForm & f , const CanonicalForm & mipo=0) ; |
---|
1140 | |
---|
1141 | L = SqrFreeMV( F,mipo ); |
---|
1142 | //WarnS("L = sqrFree( F,mipo );"); |
---|
1143 | //L = sqrFree( F ); |
---|
1144 | } |
---|
1145 | else |
---|
1146 | { |
---|
1147 | CanonicalForm F( convSingTrPFactoryP( f ) ); |
---|
1148 | L = sqrFree( F ); |
---|
1149 | } |
---|
1150 | } |
---|
1151 | else |
---|
1152 | { |
---|
1153 | goto notImpl; |
---|
1154 | } |
---|
1155 | { |
---|
1156 | poly ff=pCopy(f); // a copy for the retry stuff |
---|
1157 | // convert into ideal |
---|
1158 | int n = L.length(); |
---|
1159 | if (n==0) n=1; |
---|
1160 | CFFListIterator J=L; |
---|
1161 | int j=0; |
---|
1162 | res = idInit( n ,1); |
---|
1163 | for ( ; J.hasItem(); J++, j++ ) |
---|
1164 | { |
---|
1165 | poly p; |
---|
1166 | if (rField_is_Zp() || rField_is_Q()) /* Q, Fp */ |
---|
1167 | //count_Factors(res,*v,f, j, convFactoryPSingP( J.getItem().factor() ); |
---|
1168 | res->m[j] = convFactoryPSingP( J.getItem().factor() ); |
---|
1169 | #if 0 |
---|
1170 | else if (rField_is_GF()) |
---|
1171 | res->m[j] = convFactoryGFSingGF( J.getItem().factor() ); |
---|
1172 | #endif |
---|
1173 | else if (rField_is_Extension()) /* Q(a), Fp(a) */ |
---|
1174 | { |
---|
1175 | if (currRing->minpoly==NULL) |
---|
1176 | res->m[j]=convFactoryPSingTrP( J.getItem().factor() ); |
---|
1177 | else |
---|
1178 | res->m[j]=convFactoryAPSingAP( J.getItem().factor() ); |
---|
1179 | } |
---|
1180 | } |
---|
1181 | if (res->m[0]==NULL) |
---|
1182 | { |
---|
1183 | res->m[0]=pOne(); |
---|
1184 | } |
---|
1185 | } |
---|
1186 | errorreported=save_errorreported; |
---|
1187 | notImpl: |
---|
1188 | if (res==NULL) |
---|
1189 | WerrorS( feNotImplemented ); |
---|
1190 | return res; |
---|
1191 | } |
---|
1192 | matrix singclap_irrCharSeries ( ideal I) |
---|
1193 | { |
---|
1194 | if (idIs0(I)) return mpNew(1,1); |
---|
1195 | |
---|
1196 | // for now there is only the possibility to handle polynomials over |
---|
1197 | // Q and Fp ... |
---|
1198 | matrix res=NULL; |
---|
1199 | int i; |
---|
1200 | Off(SW_RATIONAL); |
---|
1201 | On(SW_SYMMETRIC_FF); |
---|
1202 | CFList L; |
---|
1203 | ListCFList LL; |
---|
1204 | if (((nGetChar() == 0) || (nGetChar() > 1) ) |
---|
1205 | && (currRing->parameter==NULL)) |
---|
1206 | { |
---|
1207 | setCharacteristic( nGetChar() ); |
---|
1208 | for(i=0;i<IDELEMS(I);i++) |
---|
1209 | { |
---|
1210 | poly p=I->m[i]; |
---|
1211 | if (p!=NULL) |
---|
1212 | { |
---|
1213 | p=pCopy(p); |
---|
1214 | pCleardenom(p); |
---|
1215 | L.append(convSingPFactoryP(p)); |
---|
1216 | } |
---|
1217 | } |
---|
1218 | } |
---|
1219 | // and over Q(a) / Fp(a) |
---|
1220 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
1221 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
1222 | { |
---|
1223 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1224 | else setCharacteristic( -nGetChar() ); |
---|
1225 | for(i=0;i<IDELEMS(I);i++) |
---|
1226 | { |
---|
1227 | poly p=I->m[i]; |
---|
1228 | if (p!=NULL) |
---|
1229 | { |
---|
1230 | p=pCopy(p); |
---|
1231 | pCleardenom(p); |
---|
1232 | L.append(convSingTrPFactoryP(p)); |
---|
1233 | } |
---|
1234 | } |
---|
1235 | } |
---|
1236 | else |
---|
1237 | { |
---|
1238 | WerrorS( feNotImplemented ); |
---|
1239 | return res; |
---|
1240 | } |
---|
1241 | |
---|
1242 | // a very bad work-around --- FIX IT in libfac |
---|
1243 | // should be fixed as of 2001/6/27 |
---|
1244 | int tries=0; |
---|
1245 | int m,n; |
---|
1246 | ListIterator<CFList> LLi; |
---|
1247 | loop |
---|
1248 | { |
---|
1249 | LL=IrrCharSeries(L); |
---|
1250 | m= LL.length(); // Anzahl Zeilen |
---|
1251 | n=0; |
---|
1252 | for ( LLi = LL; LLi.hasItem(); LLi++ ) |
---|
1253 | { |
---|
1254 | n = si_max(LLi.getItem().length(),n); |
---|
1255 | } |
---|
1256 | if ((m!=0) && (n!=0)) break; |
---|
1257 | tries++; |
---|
1258 | if (tries>=5) break; |
---|
1259 | } |
---|
1260 | if ((m==0) || (n==0)) |
---|
1261 | { |
---|
1262 | Warn("char_series returns %d x %d matrix from %d input polys (%d)", |
---|
1263 | m,n,IDELEMS(I)+1,LL.length()); |
---|
1264 | iiWriteMatrix((matrix)I,"I",2,0); |
---|
1265 | m=si_max(m,1); |
---|
1266 | n=si_max(n,1); |
---|
1267 | } |
---|
1268 | res=mpNew(m,n); |
---|
1269 | CFListIterator Li; |
---|
1270 | for ( m=1, LLi = LL; LLi.hasItem(); LLi++, m++ ) |
---|
1271 | { |
---|
1272 | for (n=1, Li = LLi.getItem(); Li.hasItem(); Li++, n++) |
---|
1273 | { |
---|
1274 | if ( (nGetChar() == 0) || (nGetChar() > 1) ) |
---|
1275 | MATELEM(res,m,n)=convFactoryPSingP(Li.getItem()); |
---|
1276 | else |
---|
1277 | MATELEM(res,m,n)=convFactoryPSingTrP(Li.getItem()); |
---|
1278 | } |
---|
1279 | } |
---|
1280 | Off(SW_RATIONAL); |
---|
1281 | return res; |
---|
1282 | } |
---|
1283 | |
---|
1284 | char* singclap_neworder ( ideal I) |
---|
1285 | { |
---|
1286 | int i; |
---|
1287 | Off(SW_RATIONAL); |
---|
1288 | On(SW_SYMMETRIC_FF); |
---|
1289 | CFList L; |
---|
1290 | if (((nGetChar() == 0) || (nGetChar() > 1) ) |
---|
1291 | && (currRing->parameter==NULL)) |
---|
1292 | { |
---|
1293 | setCharacteristic( nGetChar() ); |
---|
1294 | for(i=0;i<IDELEMS(I);i++) |
---|
1295 | { |
---|
1296 | L.append(convSingPFactoryP(I->m[i])); |
---|
1297 | } |
---|
1298 | } |
---|
1299 | // and over Q(a) / Fp(a) |
---|
1300 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
1301 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
1302 | { |
---|
1303 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1304 | else setCharacteristic( -nGetChar() ); |
---|
1305 | for(i=0;i<IDELEMS(I);i++) |
---|
1306 | { |
---|
1307 | L.append(convSingTrPFactoryP(I->m[i])); |
---|
1308 | } |
---|
1309 | } |
---|
1310 | else |
---|
1311 | { |
---|
1312 | WerrorS( feNotImplemented ); |
---|
1313 | return NULL; |
---|
1314 | } |
---|
1315 | |
---|
1316 | List<int> IL=neworderint(L); |
---|
1317 | ListIterator<int> Li; |
---|
1318 | StringSetS(""); |
---|
1319 | Li = IL; |
---|
1320 | int offs=rPar(currRing); |
---|
1321 | int* mark=(int*)omAlloc0((pVariables+offs)*sizeof(int)); |
---|
1322 | int cnt=pVariables+offs; |
---|
1323 | loop |
---|
1324 | { |
---|
1325 | if(! Li.hasItem()) break; |
---|
1326 | BOOLEAN done=TRUE; |
---|
1327 | i=Li.getItem()-1; |
---|
1328 | mark[i]=1; |
---|
1329 | if (i<offs) |
---|
1330 | { |
---|
1331 | done=FALSE; |
---|
1332 | //StringAppendS(currRing->parameter[i]); |
---|
1333 | } |
---|
1334 | else |
---|
1335 | { |
---|
1336 | StringAppendS(currRing->names[i-offs]); |
---|
1337 | } |
---|
1338 | Li++; |
---|
1339 | cnt--; |
---|
1340 | if(cnt==0) break; |
---|
1341 | if (done) StringAppendS(","); |
---|
1342 | } |
---|
1343 | for(i=0;i<pVariables+offs;i++) |
---|
1344 | { |
---|
1345 | BOOLEAN done=TRUE; |
---|
1346 | if(mark[i]==0) |
---|
1347 | { |
---|
1348 | if (i<offs) |
---|
1349 | { |
---|
1350 | done=FALSE; |
---|
1351 | //StringAppendS(currRing->parameter[i]); |
---|
1352 | } |
---|
1353 | else |
---|
1354 | { |
---|
1355 | StringAppendS(currRing->names[i-offs]); |
---|
1356 | } |
---|
1357 | cnt--; |
---|
1358 | if(cnt==0) break; |
---|
1359 | if (done) StringAppendS(","); |
---|
1360 | } |
---|
1361 | } |
---|
1362 | char * s=omStrDup(StringAppendS("")); |
---|
1363 | if (s[strlen(s)-1]==',') s[strlen(s)-1]='\0'; |
---|
1364 | return s; |
---|
1365 | } |
---|
1366 | |
---|
1367 | BOOLEAN singclap_isSqrFree(poly f) |
---|
1368 | { |
---|
1369 | BOOLEAN b=FALSE; |
---|
1370 | Off(SW_RATIONAL); |
---|
1371 | // Q / Fp |
---|
1372 | if (((nGetChar() == 0) || (nGetChar() > 1) ) |
---|
1373 | &&(currRing->parameter==NULL)) |
---|
1374 | { |
---|
1375 | setCharacteristic( nGetChar() ); |
---|
1376 | CanonicalForm F( convSingPFactoryP( f ) ); |
---|
1377 | if((nGetChar()>1)&&(!F.isUnivariate())) |
---|
1378 | goto err; |
---|
1379 | b=(BOOLEAN)isSqrFree(F); |
---|
1380 | } |
---|
1381 | // and over Q(a) / Fp(a) |
---|
1382 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
1383 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
1384 | { |
---|
1385 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1386 | else setCharacteristic( -nGetChar() ); |
---|
1387 | //if (currRing->minpoly!=NULL) |
---|
1388 | //{ |
---|
1389 | // CanonicalForm mipo=convSingTrFactoryP(((lnumber)currRing->minpoly)->z); |
---|
1390 | // Variable a=rootOf(mipo); |
---|
1391 | // CanonicalForm F( convSingAPFactoryAP( f,a ) ); |
---|
1392 | // ... |
---|
1393 | //} |
---|
1394 | //else |
---|
1395 | { |
---|
1396 | CanonicalForm F( convSingTrPFactoryP( f ) ); |
---|
1397 | b=(BOOLEAN)isSqrFree(F); |
---|
1398 | } |
---|
1399 | Off(SW_RATIONAL); |
---|
1400 | } |
---|
1401 | else |
---|
1402 | { |
---|
1403 | err: |
---|
1404 | WerrorS( feNotImplemented ); |
---|
1405 | } |
---|
1406 | return b; |
---|
1407 | } |
---|
1408 | |
---|
1409 | poly singclap_det( const matrix m ) |
---|
1410 | { |
---|
1411 | int r=m->rows(); |
---|
1412 | if (r!=m->cols()) |
---|
1413 | { |
---|
1414 | Werror("det of %d x %d matrix",r,m->cols()); |
---|
1415 | return NULL; |
---|
1416 | } |
---|
1417 | poly res=NULL; |
---|
1418 | if (( nGetChar() == 0 || nGetChar() > 1 ) |
---|
1419 | && (currRing->parameter==NULL)) |
---|
1420 | { |
---|
1421 | setCharacteristic( nGetChar() ); |
---|
1422 | CFMatrix M(r,r); |
---|
1423 | int i,j; |
---|
1424 | for(i=r;i>0;i--) |
---|
1425 | { |
---|
1426 | for(j=r;j>0;j--) |
---|
1427 | { |
---|
1428 | M(i,j)=convSingPFactoryP(MATELEM(m,i,j)); |
---|
1429 | } |
---|
1430 | } |
---|
1431 | res= convFactoryPSingP( determinant(M,r) ) ; |
---|
1432 | } |
---|
1433 | // and over Q(a) / Fp(a) |
---|
1434 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
1435 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
1436 | { |
---|
1437 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1438 | else setCharacteristic( -nGetChar() ); |
---|
1439 | CFMatrix M(r,r); |
---|
1440 | poly res; |
---|
1441 | if (currRing->minpoly!=NULL) |
---|
1442 | { |
---|
1443 | CanonicalForm mipo=convSingTrFactoryP(((lnumber)currRing->minpoly)->z); |
---|
1444 | Variable a=rootOf(mipo); |
---|
1445 | int i,j; |
---|
1446 | for(i=r;i>0;i--) |
---|
1447 | { |
---|
1448 | for(j=r;j>0;j--) |
---|
1449 | { |
---|
1450 | M(i,j)=convSingAPFactoryAP(MATELEM(m,i,j),a); |
---|
1451 | } |
---|
1452 | } |
---|
1453 | res= convFactoryAPSingAP( determinant(M,r) ) ; |
---|
1454 | } |
---|
1455 | else |
---|
1456 | { |
---|
1457 | int i,j; |
---|
1458 | for(i=r;i>0;i--) |
---|
1459 | { |
---|
1460 | for(j=r;j>0;j--) |
---|
1461 | { |
---|
1462 | M(i,j)=convSingTrPFactoryP(MATELEM(m,i,j)); |
---|
1463 | } |
---|
1464 | } |
---|
1465 | res= convFactoryPSingTrP( determinant(M,r) ); |
---|
1466 | } |
---|
1467 | } |
---|
1468 | else |
---|
1469 | WerrorS( feNotImplemented ); |
---|
1470 | Off(SW_RATIONAL); |
---|
1471 | return res; |
---|
1472 | } |
---|
1473 | |
---|
1474 | int singclap_det_i( intvec * m ) |
---|
1475 | { |
---|
1476 | setCharacteristic( 0 ); |
---|
1477 | CFMatrix M(m->rows(),m->cols()); |
---|
1478 | int i,j; |
---|
1479 | for(i=m->rows();i>0;i--) |
---|
1480 | { |
---|
1481 | for(j=m->cols();j>0;j--) |
---|
1482 | { |
---|
1483 | M(i,j)=IMATELEM(*m,i,j); |
---|
1484 | } |
---|
1485 | } |
---|
1486 | int res= convFactoryISingI( determinant(M,m->rows())) ; |
---|
1487 | Off(SW_RATIONAL); |
---|
1488 | return res; |
---|
1489 | } |
---|
1490 | napoly singclap_alglcm ( napoly f, napoly g ) |
---|
1491 | { |
---|
1492 | |
---|
1493 | // over Q(a) / Fp(a) |
---|
1494 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1495 | else setCharacteristic( -nGetChar() ); |
---|
1496 | napoly res; |
---|
1497 | |
---|
1498 | if (currRing->minpoly!=NULL) |
---|
1499 | { |
---|
1500 | CanonicalForm mipo=convSingTrFactoryP(((lnumber)currRing->minpoly)->z); |
---|
1501 | Variable a=rootOf(mipo); |
---|
1502 | CanonicalForm F( convSingAFactoryA( f,a ) ), G( convSingAFactoryA( g,a ) ); |
---|
1503 | CanonicalForm GCD; |
---|
1504 | |
---|
1505 | // calculate gcd |
---|
1506 | GCD = gcd( F, G ); |
---|
1507 | |
---|
1508 | // calculate lcm |
---|
1509 | res= convFactoryASingA( (F/GCD)*G ); |
---|
1510 | } |
---|
1511 | else |
---|
1512 | { |
---|
1513 | CanonicalForm F( convSingTrFactoryP( f ) ), G( convSingTrFactoryP( g ) ); |
---|
1514 | CanonicalForm GCD; |
---|
1515 | // calculate gcd |
---|
1516 | GCD = gcd( F, G ); |
---|
1517 | |
---|
1518 | // calculate lcm |
---|
1519 | res= convFactoryPSingTr( (F/GCD)*G ); |
---|
1520 | } |
---|
1521 | |
---|
1522 | Off(SW_RATIONAL); |
---|
1523 | return res; |
---|
1524 | } |
---|
1525 | |
---|
1526 | void singclap_algdividecontent ( napoly f, napoly g, napoly &ff, napoly &gg ) |
---|
1527 | { |
---|
1528 | // over Q(a) / Fp(a) |
---|
1529 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1530 | else setCharacteristic( -nGetChar() ); |
---|
1531 | ff=gg=NULL; |
---|
1532 | On(SW_RATIONAL); |
---|
1533 | |
---|
1534 | if (currRing->minpoly!=NULL) |
---|
1535 | { |
---|
1536 | CanonicalForm mipo=convSingTrFactoryP(((lnumber)currRing->minpoly)->z); |
---|
1537 | Variable a=rootOf(mipo); |
---|
1538 | CanonicalForm F( convSingAFactoryA( f,a ) ), G( convSingAFactoryA( g,a ) ); |
---|
1539 | CanonicalForm GCD; |
---|
1540 | |
---|
1541 | GCD=gcd( F, G ); |
---|
1542 | |
---|
1543 | if ((GCD!=1) && (GCD!=0)) |
---|
1544 | { |
---|
1545 | ff= convFactoryASingA( F/ GCD ); |
---|
1546 | gg= convFactoryASingA( G/ GCD ); |
---|
1547 | } |
---|
1548 | } |
---|
1549 | else |
---|
1550 | { |
---|
1551 | CanonicalForm F( convSingTrFactoryP( f ) ), G( convSingTrFactoryP( g ) ); |
---|
1552 | CanonicalForm GCD; |
---|
1553 | |
---|
1554 | GCD=gcd( F, G ); |
---|
1555 | |
---|
1556 | if ((GCD!=1) && (GCD!=0)) |
---|
1557 | { |
---|
1558 | ff= convFactoryPSingTr( F/ GCD ); |
---|
1559 | gg= convFactoryPSingTr( G/ GCD ); |
---|
1560 | } |
---|
1561 | } |
---|
1562 | |
---|
1563 | Off(SW_RATIONAL); |
---|
1564 | } |
---|
1565 | |
---|
1566 | #if 0 |
---|
1567 | lists singclap_chineseRemainder(lists x, lists q) |
---|
1568 | { |
---|
1569 | //assume(x->nr == q->nr); |
---|
1570 | //assume(x->nr >= 0); |
---|
1571 | int n=x->nr+1; |
---|
1572 | if ((x->nr<0) || (x->nr!=q->nr)) |
---|
1573 | { |
---|
1574 | WerrorS("list are empty or not of equal length"); |
---|
1575 | return NULL; |
---|
1576 | } |
---|
1577 | lists res=(lists)omAlloc0Bin(slists_bin); |
---|
1578 | CFArray X(1,n), Q(1,n); |
---|
1579 | int i; |
---|
1580 | for(i=0; i<n; i++) |
---|
1581 | { |
---|
1582 | if (x->m[i-1].Typ()==INT_CMD) |
---|
1583 | { |
---|
1584 | X[i]=(int)x->m[i-1].Data(); |
---|
1585 | } |
---|
1586 | else if (x->m[i-1].Typ()==NUMBER_CMD) |
---|
1587 | { |
---|
1588 | number N=(number)x->m[i-1].Data(); |
---|
1589 | X[i]=convSingNFactoryN(N); |
---|
1590 | } |
---|
1591 | else |
---|
1592 | { |
---|
1593 | WerrorS("illegal type in chineseRemainder"); |
---|
1594 | omFreeBin(res,slists_bin); |
---|
1595 | return NULL; |
---|
1596 | } |
---|
1597 | if (q->m[i-1].Typ()==INT_CMD) |
---|
1598 | { |
---|
1599 | Q[i]=(int)q->m[i-1].Data(); |
---|
1600 | } |
---|
1601 | else if (q->m[i-1].Typ()==NUMBER_CMD) |
---|
1602 | { |
---|
1603 | number N=(number)x->m[i-1].Data(); |
---|
1604 | Q[i]=convSingNFactoryN(N); |
---|
1605 | } |
---|
1606 | else |
---|
1607 | { |
---|
1608 | WerrorS("illegal type in chineseRemainder"); |
---|
1609 | omFreeBin(res,slists_bin); |
---|
1610 | return NULL; |
---|
1611 | } |
---|
1612 | } |
---|
1613 | CanonicalForm r, prod; |
---|
1614 | chineseRemainder( X, Q, r, prod ); |
---|
1615 | res->Init(2); |
---|
1616 | res->m[0].rtyp=NUMBER_CMD; |
---|
1617 | res->m[1].rtyp=NUMBER_CMD; |
---|
1618 | res->m[0].data=(char *)convFactoryNSingN( r ); |
---|
1619 | res->m[1].data=(char *)convFactoryNSingN( prod ); |
---|
1620 | return res; |
---|
1621 | } |
---|
1622 | #endif |
---|
1623 | #endif |
---|