1 | // emacs edit mode for this file is -*- C++ -*- |
---|
2 | /**************************************** |
---|
3 | * Computer Algebra System SINGULAR * |
---|
4 | ****************************************/ |
---|
5 | // $Id: clapsing.cc,v 1.43 2009-08-13 15:31:27 Singular Exp $ |
---|
6 | /* |
---|
7 | * ABSTRACT: interface between Singular and factory |
---|
8 | */ |
---|
9 | |
---|
10 | //#define FACTORIZE2_DEBUG |
---|
11 | #include "mod2.h" |
---|
12 | #include "omalloc.h" |
---|
13 | #ifdef HAVE_FACTORY |
---|
14 | #define SI_DONT_HAVE_GLOBAL_VARS |
---|
15 | #include "structs.h" |
---|
16 | #include "clapsing.h" |
---|
17 | #include "numbers.h" |
---|
18 | #include "ring.h" |
---|
19 | #include "ffields.h" |
---|
20 | #include <factory.h> |
---|
21 | #include "clapconv.h" |
---|
22 | #include <factor.h> |
---|
23 | //CanonicalForm algcd(const CanonicalForm & F, const CanonicalForm & g, const CFList & as, const Varlist & order); |
---|
24 | CanonicalForm alg_gcd(const CanonicalForm &, const CanonicalForm &, const CFList &); |
---|
25 | #include "ring.h" |
---|
26 | |
---|
27 | void out_cf(char *s1,const CanonicalForm &f,char *s2); |
---|
28 | |
---|
29 | poly singclap_gcd_r ( poly f, poly g, const ring r ) |
---|
30 | { |
---|
31 | // assume pCleardenom is done |
---|
32 | // assume f!=0, g!=0 |
---|
33 | poly res=NULL; |
---|
34 | |
---|
35 | if (p_IsConstantPoly(f,r) || p_IsConstantPoly(g,r)) |
---|
36 | { |
---|
37 | return p_One(r); |
---|
38 | } |
---|
39 | |
---|
40 | // for now there is only the possibility to handle polynomials over |
---|
41 | // Q and Fp ... |
---|
42 | Off(SW_RATIONAL); |
---|
43 | if (rField_is_Q(r) || (rField_is_Zp(r))) |
---|
44 | { |
---|
45 | CanonicalForm newGCD(const CanonicalForm & A, const CanonicalForm & B); |
---|
46 | setCharacteristic( n_GetChar(r) ); |
---|
47 | CanonicalForm F( convSingPFactoryP( f,r ) ), G( convSingPFactoryP( g, r ) ); |
---|
48 | //if (nGetChar() > 1 ) |
---|
49 | //{ |
---|
50 | // res=convFactoryPSingP( newGCD( F,G )); |
---|
51 | // if (!nGreaterZero(pGetCoeff(res))) res=pNeg(res); |
---|
52 | //} |
---|
53 | //else |
---|
54 | res=convFactoryPSingP( gcd( F, G ) , r); |
---|
55 | } |
---|
56 | // and over Q(a) / Fp(a) |
---|
57 | else if (( n_GetChar(r)==1 ) /* Q(a) */ |
---|
58 | || (n_GetChar(r) <-1)) /* Fp(a) */ |
---|
59 | { |
---|
60 | if (n_GetChar(r)==1) setCharacteristic( 0 ); |
---|
61 | else setCharacteristic( -n_GetChar(r) ); |
---|
62 | if (r->minpoly!=NULL) |
---|
63 | { |
---|
64 | #if 0 |
---|
65 | if (( n_GetChar(r)==1 ) /* Q(a) */ && (!isOn(SW_USE_QGCD))) |
---|
66 | { |
---|
67 | // WerrorS( feNotImplemented ); |
---|
68 | CanonicalForm mipo=convSingPFactoryP(((lnumber)r->minpoly)->z,r->algring); |
---|
69 | //Varlist ord; |
---|
70 | //ord.append(mipo.mvar()); |
---|
71 | CFList as(mipo); |
---|
72 | Variable a=rootOf(mipo); |
---|
73 | //CanonicalForm F( convSingAPFactoryAP( f,a,r ) ), G( convSingAPFactoryAP( g,a,r ) ); |
---|
74 | CanonicalForm F( convSingTrPFactoryP(f,r) ), G( convSingTrPFactoryP(g,r) ); |
---|
75 | //res= convFactoryAPSingAP( algcd( F, G, as, ord) ); |
---|
76 | //res= convFactoryAPSingAP( alg_gcd( F, G, as) ); |
---|
77 | res= convFactoryAPSingAP( alg_gcd( F, G, as),r ); |
---|
78 | } |
---|
79 | else |
---|
80 | #endif |
---|
81 | { |
---|
82 | bool b=isOn(SW_USE_QGCD); |
---|
83 | if ( nGetChar()==1 ) On(SW_USE_QGCD); |
---|
84 | CanonicalForm mipo=convSingPFactoryP(((lnumber)r->minpoly)->z, |
---|
85 | r->algring); |
---|
86 | Variable a=rootOf(mipo); |
---|
87 | CanonicalForm F( convSingAPFactoryAP( f,a ) ), |
---|
88 | G( convSingAPFactoryAP( g,a ) ); |
---|
89 | res= convFactoryAPSingAP( gcd( F, G ) ); |
---|
90 | if (!b) Off(SW_USE_QGCD); |
---|
91 | } |
---|
92 | } |
---|
93 | else |
---|
94 | { |
---|
95 | CanonicalForm F( convSingTrPFactoryP( f,r ) ), G( convSingTrPFactoryP( g,r ) ); |
---|
96 | res= convFactoryPSingTrP( gcd( F, G ),r ); |
---|
97 | } |
---|
98 | } |
---|
99 | #if 0 |
---|
100 | else if (( n_GetChar(r)>1 )&&(r->parameter!=NULL)) /* GF(q) */ |
---|
101 | { |
---|
102 | int p=rChar(r); |
---|
103 | int n=2; |
---|
104 | int t=p*p; |
---|
105 | while (t!=n_Char(r)) { t*=p;n++; } |
---|
106 | setCharacteristic(p,n,'a'); |
---|
107 | CanonicalForm F( convSingGFFactoryGF( f,r ) ), G( convSingGFFactoryGF( g,r ) ); |
---|
108 | res= convFactoryGFSingGF( gcd( F, G ),r ); |
---|
109 | } |
---|
110 | #endif |
---|
111 | else |
---|
112 | WerrorS( feNotImplemented ); |
---|
113 | |
---|
114 | Off(SW_RATIONAL); |
---|
115 | return res; |
---|
116 | } |
---|
117 | |
---|
118 | poly singclap_gcd ( poly f, poly g ) |
---|
119 | { |
---|
120 | poly res=NULL; |
---|
121 | |
---|
122 | if (f!=NULL) pCleardenom(f); |
---|
123 | if (g!=NULL) pCleardenom(g); |
---|
124 | else return f; // g==0 => gcd=f (but do a pCleardenom) |
---|
125 | if (f==NULL) return g; // f==0 => gcd=g (but do a pCleardenom) |
---|
126 | |
---|
127 | res=singclap_gcd_r(f,g,currRing); |
---|
128 | pDelete(&f); |
---|
129 | pDelete(&g); |
---|
130 | return res; |
---|
131 | } |
---|
132 | |
---|
133 | /*2 find the maximal exponent of var(i) in poly p*/ |
---|
134 | int pGetExp_Var(poly p, int i) |
---|
135 | { |
---|
136 | int m=0; |
---|
137 | int mm; |
---|
138 | while (p!=NULL) |
---|
139 | { |
---|
140 | mm=pGetExp(p,i); |
---|
141 | if (mm>m) m=mm; |
---|
142 | pIter(p); |
---|
143 | } |
---|
144 | return m; |
---|
145 | } |
---|
146 | |
---|
147 | poly singclap_resultant ( poly f, poly g , poly x) |
---|
148 | { |
---|
149 | int i=pIsPurePower(x); |
---|
150 | if (i==0) |
---|
151 | { |
---|
152 | WerrorS("3rd argument must be a ring variable"); |
---|
153 | return NULL; |
---|
154 | } |
---|
155 | if ((f==NULL) || (g==NULL)) |
---|
156 | return NULL; |
---|
157 | // for now there is only the possibility to handle polynomials over |
---|
158 | // Q and Fp ... |
---|
159 | if (( nGetChar() == 0 || nGetChar() > 1 ) |
---|
160 | && (currRing->parameter==NULL)) |
---|
161 | { |
---|
162 | Variable X(i); |
---|
163 | setCharacteristic( nGetChar() ); |
---|
164 | CanonicalForm F( convSingPFactoryP( f ) ), G( convSingPFactoryP( g ) ); |
---|
165 | poly res=convFactoryPSingP( resultant( F, G, X ) ); |
---|
166 | Off(SW_RATIONAL); |
---|
167 | return res; |
---|
168 | } |
---|
169 | // and over Q(a) / Fp(a) |
---|
170 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
171 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
172 | { |
---|
173 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
174 | else setCharacteristic( -nGetChar() ); |
---|
175 | poly res; |
---|
176 | Variable X(i+rPar(currRing)); |
---|
177 | if (currRing->minpoly!=NULL) |
---|
178 | { |
---|
179 | //Variable X(i); |
---|
180 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
181 | currRing->algring); |
---|
182 | Variable a=rootOf(mipo); |
---|
183 | CanonicalForm F( convSingAPFactoryAP( f,a ) ), G( convSingAPFactoryAP( g,a ) ); |
---|
184 | res= convFactoryAPSingAP( resultant( F, G, X ) ); |
---|
185 | } |
---|
186 | else |
---|
187 | { |
---|
188 | //Variable X(i+rPar(currRing)); |
---|
189 | number nf,ng; |
---|
190 | pCleardenom_n(f,nf);pCleardenom_n(g,ng); |
---|
191 | int ef,eg; |
---|
192 | ef=pGetExp_Var(f,i); |
---|
193 | eg=pGetExp_Var(g,i); |
---|
194 | CanonicalForm F( convSingTrPFactoryP( f ) ), G( convSingTrPFactoryP( g ) ); |
---|
195 | res= convFactoryPSingTrP( resultant( F, G, X ) ); |
---|
196 | if ((nf!=NULL)&&(!nIsOne(nf))&&(!nIsZero(nf))) |
---|
197 | { |
---|
198 | number n=nInvers(nf); |
---|
199 | while(eg>0) |
---|
200 | { |
---|
201 | res=pMult_nn(res,n); |
---|
202 | eg--; |
---|
203 | } |
---|
204 | nDelete(&n); |
---|
205 | } |
---|
206 | nDelete(&nf); |
---|
207 | if ((ng!=NULL)&&(!nIsOne(ng))&&(!nIsZero(ng))) |
---|
208 | { |
---|
209 | number n=nInvers(ng); |
---|
210 | while(ef>0) |
---|
211 | { |
---|
212 | res=pMult_nn(res,n); |
---|
213 | ef--; |
---|
214 | } |
---|
215 | nDelete(&n); |
---|
216 | } |
---|
217 | nDelete(&ng); |
---|
218 | } |
---|
219 | Off(SW_RATIONAL); |
---|
220 | return res; |
---|
221 | } |
---|
222 | else |
---|
223 | WerrorS( feNotImplemented ); |
---|
224 | return NULL; |
---|
225 | } |
---|
226 | //poly singclap_resultant ( poly f, poly g , poly x) |
---|
227 | //{ |
---|
228 | // int i=pVar(x); |
---|
229 | // if (i==0) |
---|
230 | // { |
---|
231 | // WerrorS("ringvar expected"); |
---|
232 | // return NULL; |
---|
233 | // } |
---|
234 | // ideal I=idInit(1,1); |
---|
235 | // |
---|
236 | // // get the coeffs von f wrt. x: |
---|
237 | // I->m[0]=pCopy(f); |
---|
238 | // matrix ffi=mpCoeffs(I,i); |
---|
239 | // ffi->rank=1; |
---|
240 | // ffi->ncols=ffi->nrows; |
---|
241 | // ffi->nrows=1; |
---|
242 | // ideal fi=(ideal)ffi; |
---|
243 | // |
---|
244 | // // get the coeffs von g wrt. x: |
---|
245 | // I->m[0]=pCopy(g); |
---|
246 | // matrix ggi=mpCoeffs(I,i); |
---|
247 | // ggi->rank=1; |
---|
248 | // ggi->ncols=ggi->nrows; |
---|
249 | // ggi->nrows=1; |
---|
250 | // ideal gi=(ideal)ggi; |
---|
251 | // |
---|
252 | // // contruct the matrix: |
---|
253 | // int fn=IDELEMS(fi); //= deg(f,x)+1 |
---|
254 | // int gn=IDELEMS(gi); //= deg(g,x)+1 |
---|
255 | // matrix m=mpNew(fn+gn-2,fn+gn-2); |
---|
256 | // if(m==NULL) |
---|
257 | // { |
---|
258 | // return NULL; |
---|
259 | // } |
---|
260 | // |
---|
261 | // // enter the coeffs into m: |
---|
262 | // int j; |
---|
263 | // for(i=0;i<gn-1;i++) |
---|
264 | // { |
---|
265 | // for(j=0;j<fn;j++) |
---|
266 | // { |
---|
267 | // MATELEM(m,i+1,fn-j+i)=pCopy(fi->m[j]); |
---|
268 | // } |
---|
269 | // } |
---|
270 | // for(i=0;i<fn-1;i++) |
---|
271 | // { |
---|
272 | // for(j=0;j<gn;j++) |
---|
273 | // { |
---|
274 | // MATELEM(m,gn+i,gn-j+i)=pCopy(gi->m[j]); |
---|
275 | // } |
---|
276 | // } |
---|
277 | // |
---|
278 | // poly r=mpDet(m); |
---|
279 | // |
---|
280 | // idDelete(&fi); |
---|
281 | // idDelete(&gi); |
---|
282 | // idDelete((ideal *)&m); |
---|
283 | // return r; |
---|
284 | //} |
---|
285 | |
---|
286 | BOOLEAN singclap_extgcd ( poly f, poly g, poly &res, poly &pa, poly &pb ) |
---|
287 | { |
---|
288 | // for now there is only the possibility to handle univariate |
---|
289 | // polynomials over |
---|
290 | // Q and Fp ... |
---|
291 | res=NULL;pa=NULL;pb=NULL; |
---|
292 | On(SW_SYMMETRIC_FF); |
---|
293 | if (( nGetChar() == 0 || nGetChar() > 1 ) |
---|
294 | && (currRing->parameter==NULL)) |
---|
295 | { |
---|
296 | setCharacteristic( nGetChar() ); |
---|
297 | CanonicalForm F( convSingPFactoryP( f ) ), G( convSingPFactoryP( g ) ); |
---|
298 | CanonicalForm FpG=F+G; |
---|
299 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
300 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
301 | { |
---|
302 | Off(SW_RATIONAL); |
---|
303 | WerrorS("not univariate"); |
---|
304 | return TRUE; |
---|
305 | } |
---|
306 | CanonicalForm Fa,Gb; |
---|
307 | On(SW_RATIONAL); |
---|
308 | res=convFactoryPSingP( extgcd( F, G, Fa, Gb ) ); |
---|
309 | pa=convFactoryPSingP(Fa); |
---|
310 | pb=convFactoryPSingP(Gb); |
---|
311 | Off(SW_RATIONAL); |
---|
312 | } |
---|
313 | // and over Q(a) / Fp(a) |
---|
314 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
315 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
316 | { |
---|
317 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
318 | else setCharacteristic( -nGetChar() ); |
---|
319 | CanonicalForm Fa,Gb; |
---|
320 | if (currRing->minpoly!=NULL) |
---|
321 | { |
---|
322 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
323 | currRing->algring); |
---|
324 | Variable a=rootOf(mipo); |
---|
325 | CanonicalForm F( convSingAPFactoryAP( f,a ) ), G( convSingAPFactoryAP( g,a ) ); |
---|
326 | CanonicalForm FpG=F+G; |
---|
327 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
328 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
329 | { |
---|
330 | WerrorS("not univariate"); |
---|
331 | return TRUE; |
---|
332 | } |
---|
333 | res= convFactoryAPSingAP( extgcd( F, G, Fa, Gb ) ); |
---|
334 | pa=convFactoryAPSingAP(Fa); |
---|
335 | pb=convFactoryAPSingAP(Gb); |
---|
336 | } |
---|
337 | else |
---|
338 | { |
---|
339 | CanonicalForm F( convSingTrPFactoryP( f ) ), G( convSingTrPFactoryP( g ) ); |
---|
340 | CanonicalForm FpG=F+G; |
---|
341 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
342 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
343 | { |
---|
344 | Off(SW_RATIONAL); |
---|
345 | WerrorS("not univariate"); |
---|
346 | return TRUE; |
---|
347 | } |
---|
348 | res= convFactoryPSingTrP( extgcd( F, G, Fa, Gb ) ); |
---|
349 | pa=convFactoryPSingTrP(Fa); |
---|
350 | pb=convFactoryPSingTrP(Gb); |
---|
351 | } |
---|
352 | Off(SW_RATIONAL); |
---|
353 | } |
---|
354 | else |
---|
355 | { |
---|
356 | WerrorS( feNotImplemented ); |
---|
357 | return TRUE; |
---|
358 | } |
---|
359 | return FALSE; |
---|
360 | } |
---|
361 | |
---|
362 | BOOLEAN singclap_extgcd_r ( poly f, poly g, poly &res, poly &pa, poly &pb, const ring r ) |
---|
363 | { |
---|
364 | // for now there is only the possibility to handle univariate |
---|
365 | // polynomials over |
---|
366 | // Q and Fp ... |
---|
367 | res=NULL;pa=NULL;pb=NULL; |
---|
368 | On(SW_SYMMETRIC_FF); |
---|
369 | if (( n_GetChar(r) == 0 || n_GetChar(r) > 1 ) |
---|
370 | && (r->parameter==NULL)) |
---|
371 | { |
---|
372 | setCharacteristic( n_GetChar(r) ); |
---|
373 | CanonicalForm F( convSingPFactoryP( f,r ) ), G( convSingPFactoryP( g,r) ); |
---|
374 | CanonicalForm FpG=F+G; |
---|
375 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
376 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
377 | { |
---|
378 | Off(SW_RATIONAL); |
---|
379 | WerrorS("not univariate"); |
---|
380 | return TRUE; |
---|
381 | } |
---|
382 | CanonicalForm Fa,Gb; |
---|
383 | On(SW_RATIONAL); |
---|
384 | res=convFactoryPSingP( extgcd( F, G, Fa, Gb ),r ); |
---|
385 | pa=convFactoryPSingP(Fa,r); |
---|
386 | pb=convFactoryPSingP(Gb,r); |
---|
387 | Off(SW_RATIONAL); |
---|
388 | } |
---|
389 | // and over Q(a) / Fp(a) |
---|
390 | else if (( n_GetChar(r)==1 ) /* Q(a) */ |
---|
391 | || (n_GetChar(r) <-1)) /* Fp(a) */ |
---|
392 | { |
---|
393 | if (n_GetChar(r)==1) setCharacteristic( 0 ); |
---|
394 | else setCharacteristic( -n_GetChar(r) ); |
---|
395 | CanonicalForm Fa,Gb; |
---|
396 | if (r->minpoly!=NULL) |
---|
397 | { |
---|
398 | CanonicalForm mipo=convSingPFactoryP(((lnumber)r->minpoly)->z, |
---|
399 | r->algring); |
---|
400 | Variable a=rootOf(mipo); |
---|
401 | CanonicalForm F( convSingAPFactoryAP( f,a ) ), |
---|
402 | G( convSingAPFactoryAP( g,a ) ); |
---|
403 | CanonicalForm FpG=F+G; |
---|
404 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
405 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
406 | { |
---|
407 | WerrorS("not univariate"); |
---|
408 | return TRUE; |
---|
409 | } |
---|
410 | res= convFactoryAPSingAP( extgcd( F, G, Fa, Gb ) ); |
---|
411 | pa=convFactoryAPSingAP(Fa); |
---|
412 | pb=convFactoryAPSingAP(Gb); |
---|
413 | } |
---|
414 | else |
---|
415 | { |
---|
416 | CanonicalForm F( convSingTrPFactoryP( f, r ) ), G( convSingTrPFactoryP( g, r ) ); |
---|
417 | CanonicalForm FpG=F+G; |
---|
418 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
419 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
420 | { |
---|
421 | Off(SW_RATIONAL); |
---|
422 | WerrorS("not univariate"); |
---|
423 | return TRUE; |
---|
424 | } |
---|
425 | res= convFactoryPSingTrP( extgcd( F, G, Fa, Gb ), r ); |
---|
426 | pa=convFactoryPSingTrP(Fa, r); |
---|
427 | pb=convFactoryPSingTrP(Gb, r); |
---|
428 | } |
---|
429 | Off(SW_RATIONAL); |
---|
430 | } |
---|
431 | else |
---|
432 | { |
---|
433 | WerrorS( feNotImplemented ); |
---|
434 | return TRUE; |
---|
435 | } |
---|
436 | return FALSE; |
---|
437 | } |
---|
438 | |
---|
439 | poly singclap_pdivide ( poly f, poly g ) |
---|
440 | { |
---|
441 | // for now there is only the possibility to handle polynomials over |
---|
442 | // Q and Fp ... |
---|
443 | poly res=NULL; |
---|
444 | On(SW_RATIONAL); |
---|
445 | if (( nGetChar() == 0 || nGetChar() > 1 ) |
---|
446 | && (currRing->parameter==NULL)) |
---|
447 | { |
---|
448 | setCharacteristic( nGetChar() ); |
---|
449 | CanonicalForm F( convSingPFactoryP( f ) ), G( convSingPFactoryP( g ) ); |
---|
450 | res = convFactoryPSingP( F / G ); |
---|
451 | } |
---|
452 | // and over Q(a) / Fp(a) |
---|
453 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
454 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
455 | { |
---|
456 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
457 | else setCharacteristic( -nGetChar() ); |
---|
458 | if (currRing->minpoly!=NULL) |
---|
459 | { |
---|
460 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
461 | currRing->algring); |
---|
462 | Variable a=rootOf(mipo); |
---|
463 | CanonicalForm F( convSingAPFactoryAP( f,a ) ), G( convSingAPFactoryAP( g,a ) ); |
---|
464 | res= convFactoryAPSingAP( F / G ); |
---|
465 | } |
---|
466 | else |
---|
467 | { |
---|
468 | CanonicalForm F( convSingTrPFactoryP( f ) ), G( convSingTrPFactoryP( g ) ); |
---|
469 | res= convFactoryPSingTrP( F / G ); |
---|
470 | } |
---|
471 | } |
---|
472 | #if 0 // not yet working |
---|
473 | else if (rField_is_GF()) |
---|
474 | { |
---|
475 | //Print("GF(%d^%d)\n",nfCharP,nfMinPoly[0]); |
---|
476 | setCharacteristic( nfCharP,nfMinPoly[0], currRing->parameter[0][0] ); |
---|
477 | CanonicalForm F( convSingGFFactoryGF( f ) ), G( convSingGFFactoryGF( g ) ); |
---|
478 | res = convFactoryGFSingGF( F / G ); |
---|
479 | } |
---|
480 | #endif |
---|
481 | else |
---|
482 | WerrorS( feNotImplemented ); |
---|
483 | Off(SW_RATIONAL); |
---|
484 | return res; |
---|
485 | } |
---|
486 | |
---|
487 | void singclap_divide_content ( poly f ) |
---|
488 | { |
---|
489 | if ( f==NULL ) |
---|
490 | { |
---|
491 | return; |
---|
492 | } |
---|
493 | else if ( pNext( f ) == NULL ) |
---|
494 | { |
---|
495 | pSetCoeff( f, nInit( 1 ) ); |
---|
496 | return; |
---|
497 | } |
---|
498 | else |
---|
499 | { |
---|
500 | if ( nGetChar() == 1 ) |
---|
501 | setCharacteristic( 0 ); |
---|
502 | else if ( nGetChar() == -1 ) |
---|
503 | return; /* not implemented for R */ |
---|
504 | else if ( nGetChar() < 0 ) |
---|
505 | setCharacteristic( -nGetChar() ); |
---|
506 | else if (currRing->parameter==NULL) /* not GF(q) */ |
---|
507 | setCharacteristic( nGetChar() ); |
---|
508 | else |
---|
509 | return; /* not implemented*/ |
---|
510 | |
---|
511 | CFList L; |
---|
512 | CanonicalForm g, h; |
---|
513 | poly p = pNext(f); |
---|
514 | |
---|
515 | // first attemp: find 2 smallest g: |
---|
516 | |
---|
517 | number g1=pGetCoeff(f); |
---|
518 | number g2=pGetCoeff(p); // p==pNext(f); |
---|
519 | pIter(p); |
---|
520 | int sz1=nSize(g1); |
---|
521 | int sz2=nSize(g2); |
---|
522 | if (sz1>sz2) |
---|
523 | { |
---|
524 | number gg=g1; |
---|
525 | g1=g2; g2=gg; |
---|
526 | int sz=sz1; |
---|
527 | sz1=sz2; sz2=sz; |
---|
528 | } |
---|
529 | while (p!=NULL) |
---|
530 | { |
---|
531 | int n_sz=nSize(pGetCoeff(p)); |
---|
532 | if (n_sz<sz1) |
---|
533 | { |
---|
534 | sz2=sz1; |
---|
535 | g2=g1; |
---|
536 | g1=pGetCoeff(p); |
---|
537 | sz1=n_sz; |
---|
538 | if (sz1<=3) break; |
---|
539 | } |
---|
540 | else if(n_sz<sz2) |
---|
541 | { |
---|
542 | sz2=n_sz; |
---|
543 | g2=pGetCoeff(p); |
---|
544 | sz2=n_sz; |
---|
545 | } |
---|
546 | pIter(p); |
---|
547 | } |
---|
548 | g = convSingPFactoryP( ((lnumber)g1)->z, currRing->algring ); |
---|
549 | g = gcd( g, convSingPFactoryP( ((lnumber)g2)->z , currRing->algring)); |
---|
550 | |
---|
551 | // second run: gcd's |
---|
552 | |
---|
553 | p = f; |
---|
554 | while ( (p != NULL) && (g != 1) && ( g != 0)) |
---|
555 | { |
---|
556 | h = convSingPFactoryP( ((lnumber)pGetCoeff(p))->z, currRing->algring ); |
---|
557 | pIter( p ); |
---|
558 | |
---|
559 | g = gcd( g, h ); |
---|
560 | |
---|
561 | L.append( h ); |
---|
562 | } |
---|
563 | if (( g == 1 ) || (g == 0)) |
---|
564 | { |
---|
565 | // pTest(f); |
---|
566 | return; |
---|
567 | } |
---|
568 | else |
---|
569 | { |
---|
570 | CFListIterator i; |
---|
571 | for ( i = L, p = f; i.hasItem(); i++, p=pNext(p) ) |
---|
572 | { |
---|
573 | lnumber c=(lnumber)pGetCoeff(p); |
---|
574 | napDelete(&c->z); |
---|
575 | c->z=convFactoryPSingP( i.getItem() / g, currRing->algring ); |
---|
576 | //nTest((number)c); |
---|
577 | //#ifdef LDEBUG |
---|
578 | //number cn=(number)c; |
---|
579 | //StringSetS(""); nWrite(nt); StringAppend(" ==> "); |
---|
580 | //nWrite(cn);PrintS(StringAppend("\n")); |
---|
581 | //#endif |
---|
582 | } |
---|
583 | } |
---|
584 | // pTest(f); |
---|
585 | } |
---|
586 | } |
---|
587 | |
---|
588 | static int primepower(int c) |
---|
589 | { |
---|
590 | int p=1; |
---|
591 | int cc=c; |
---|
592 | while(cc!= rInternalChar(currRing)) { cc*=c; p++; } |
---|
593 | return p; |
---|
594 | } |
---|
595 | |
---|
596 | BOOLEAN count_Factors(ideal I, intvec *v,int j, poly &f, poly fac) |
---|
597 | { |
---|
598 | pTest(f); |
---|
599 | pTest(fac); |
---|
600 | int e=0; |
---|
601 | if (!pIsConstantPoly(fac)) |
---|
602 | { |
---|
603 | #ifdef FACTORIZE2_DEBUG |
---|
604 | printf("start count_Factors(%d), Fdeg=%d, factor deg=%d\n",j,pTotaldegree(f),pTotaldegree(fac)); |
---|
605 | p_wrp(fac,currRing);PrintLn(); |
---|
606 | #endif |
---|
607 | On(SW_RATIONAL); |
---|
608 | CanonicalForm F, FAC,Q,R; |
---|
609 | Variable a; |
---|
610 | if (( nGetChar() == 0 || nGetChar() > 1 ) |
---|
611 | && (currRing->parameter==NULL)) |
---|
612 | { |
---|
613 | F=convSingPFactoryP( f ); |
---|
614 | FAC=convSingPFactoryP( fac ); |
---|
615 | } |
---|
616 | // and over Q(a) / Fp(a) |
---|
617 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
618 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
619 | { |
---|
620 | if (currRing->minpoly!=NULL) |
---|
621 | { |
---|
622 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
623 | currRing->algring); |
---|
624 | a=rootOf(mipo); |
---|
625 | F=convSingAPFactoryAP( f,a ); |
---|
626 | FAC=convSingAPFactoryAP( fac,a ); |
---|
627 | } |
---|
628 | else |
---|
629 | { |
---|
630 | F=convSingTrPFactoryP( f ); |
---|
631 | FAC=convSingTrPFactoryP( fac ); |
---|
632 | } |
---|
633 | } |
---|
634 | else |
---|
635 | WerrorS( feNotImplemented ); |
---|
636 | |
---|
637 | poly q; |
---|
638 | loop |
---|
639 | { |
---|
640 | Q=F; |
---|
641 | Q/=FAC; |
---|
642 | R=Q; |
---|
643 | R*=FAC; |
---|
644 | R-=F; |
---|
645 | if (R.isZero()) |
---|
646 | { |
---|
647 | if (( nGetChar() == 0 || nGetChar() > 1 ) |
---|
648 | && (currRing->parameter==NULL)) |
---|
649 | { |
---|
650 | q = convFactoryPSingP( Q ); |
---|
651 | } |
---|
652 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
653 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
654 | { |
---|
655 | if (currRing->minpoly!=NULL) |
---|
656 | { |
---|
657 | q= convFactoryAPSingAP( Q ); |
---|
658 | } |
---|
659 | else |
---|
660 | { |
---|
661 | q= convFactoryPSingTrP( Q ); |
---|
662 | } |
---|
663 | } |
---|
664 | e++; pDelete(&f); f=q; q=NULL; F=Q; |
---|
665 | } |
---|
666 | else |
---|
667 | { |
---|
668 | break; |
---|
669 | } |
---|
670 | } |
---|
671 | if (e==0) |
---|
672 | { |
---|
673 | Off(SW_RATIONAL); |
---|
674 | return FALSE; |
---|
675 | } |
---|
676 | } |
---|
677 | else e=1; |
---|
678 | I->m[j]=fac; |
---|
679 | if (v!=NULL) (*v)[j]=e; |
---|
680 | Off(SW_RATIONAL); |
---|
681 | return TRUE; |
---|
682 | } |
---|
683 | |
---|
684 | int singclap_factorize_retry; |
---|
685 | extern int libfac_interruptflag; |
---|
686 | |
---|
687 | ideal singclap_factorize ( poly f, intvec ** v , int with_exps) |
---|
688 | { |
---|
689 | pTest(f); |
---|
690 | #ifdef FACTORIZE2_DEBUG |
---|
691 | printf("singclap_factorize, degree %d\n",pTotaldegree(f)); |
---|
692 | #endif |
---|
693 | // with_exps: 3,1 return only true factors, no exponents |
---|
694 | // 2 return true factors and exponents |
---|
695 | // 0 return coeff, factors and exponents |
---|
696 | BOOLEAN save_errorreported=errorreported; |
---|
697 | |
---|
698 | ideal res=NULL; |
---|
699 | |
---|
700 | // handle factorize(0) ========================================= |
---|
701 | if (f==NULL) |
---|
702 | { |
---|
703 | res=idInit(1,1); |
---|
704 | if (with_exps!=1) |
---|
705 | { |
---|
706 | (*v)=new intvec(1); |
---|
707 | (**v)[0]=1; |
---|
708 | } |
---|
709 | return res; |
---|
710 | } |
---|
711 | // handle factorize(mon) ========================================= |
---|
712 | if (pNext(f)==NULL) |
---|
713 | { |
---|
714 | int i=0; |
---|
715 | int n=0; |
---|
716 | int e; |
---|
717 | for(i=pVariables;i>0;i--) if(pGetExp(f,i)!=0) n++; |
---|
718 | if (with_exps==0) n++; // with coeff |
---|
719 | res=idInit(si_max(n,1),1); |
---|
720 | switch(with_exps) |
---|
721 | { |
---|
722 | case 0: // with coef & exp. |
---|
723 | res->m[0]=pOne(); |
---|
724 | pSetCoeff(res->m[0],nCopy(pGetCoeff(f))); |
---|
725 | // no break |
---|
726 | case 2: // with exp. |
---|
727 | (*v)=new intvec(si_max(1,n)); |
---|
728 | (**v)[0]=1; |
---|
729 | // no break |
---|
730 | case 1: ; |
---|
731 | #ifdef TEST |
---|
732 | default: ; |
---|
733 | #endif |
---|
734 | } |
---|
735 | if (n==0) |
---|
736 | { |
---|
737 | res->m[0]=pOne(); |
---|
738 | // (**v)[0]=1; is already done |
---|
739 | return res; |
---|
740 | } |
---|
741 | for(i=pVariables;i>0;i--) |
---|
742 | { |
---|
743 | e=pGetExp(f,i); |
---|
744 | if(e!=0) |
---|
745 | { |
---|
746 | n--; |
---|
747 | poly p=pOne(); |
---|
748 | pSetExp(p,i,1); |
---|
749 | pSetm(p); |
---|
750 | res->m[n]=p; |
---|
751 | if (with_exps!=1) (**v)[n]=e; |
---|
752 | } |
---|
753 | } |
---|
754 | return res; |
---|
755 | } |
---|
756 | //PrintS("S:");pWrite(f);PrintLn(); |
---|
757 | // use factory/libfac in general ============================== |
---|
758 | Off(SW_RATIONAL); |
---|
759 | On(SW_SYMMETRIC_FF); |
---|
760 | #ifdef HAVE_NTL |
---|
761 | extern int prime_number; |
---|
762 | if(rField_is_Q()) prime_number=0; |
---|
763 | #endif |
---|
764 | CFFList L; |
---|
765 | number N=NULL; |
---|
766 | number NN=NULL; |
---|
767 | number old_lead_coeff=nCopy(pGetCoeff(f)); |
---|
768 | |
---|
769 | if (!rField_is_Zp() && !rField_is_Zp_a()) /* Q, Q(a) */ |
---|
770 | { |
---|
771 | //if (f!=NULL) // already tested at start of routine |
---|
772 | { |
---|
773 | number n0=nCopy(pGetCoeff(f)); |
---|
774 | if (with_exps==0) |
---|
775 | N=nCopy(n0); |
---|
776 | pCleardenom(f); |
---|
777 | NN=nDiv(n0,pGetCoeff(f)); |
---|
778 | nDelete(&n0); |
---|
779 | if (with_exps==0) |
---|
780 | { |
---|
781 | nDelete(&N); |
---|
782 | N=nCopy(NN); |
---|
783 | } |
---|
784 | } |
---|
785 | } |
---|
786 | else if (rField_is_Zp_a()) |
---|
787 | { |
---|
788 | //if (f!=NULL) // already tested at start of routine |
---|
789 | if (singclap_factorize_retry==0) |
---|
790 | { |
---|
791 | number n0=nCopy(pGetCoeff(f)); |
---|
792 | if (with_exps==0) |
---|
793 | N=nCopy(n0); |
---|
794 | pNorm(f); |
---|
795 | pCleardenom(f); |
---|
796 | NN=nDiv(n0,pGetCoeff(f)); |
---|
797 | nDelete(&n0); |
---|
798 | if (with_exps==0) |
---|
799 | { |
---|
800 | nDelete(&N); |
---|
801 | N=nCopy(NN); |
---|
802 | } |
---|
803 | } |
---|
804 | } |
---|
805 | if (rField_is_Q() || rField_is_Zp()) |
---|
806 | { |
---|
807 | setCharacteristic( nGetChar() ); |
---|
808 | CanonicalForm F( convSingPFactoryP( f ) ); |
---|
809 | if (nGetChar()==0) /* Q */ |
---|
810 | { |
---|
811 | L = factorize( F ); |
---|
812 | } |
---|
813 | else /* Fp */ |
---|
814 | { |
---|
815 | do |
---|
816 | { |
---|
817 | libfac_interruptflag=0; |
---|
818 | L = Factorize( F ); |
---|
819 | } |
---|
820 | while ((libfac_interruptflag!=0) ||(L.isEmpty())); |
---|
821 | } |
---|
822 | } |
---|
823 | #if 0 |
---|
824 | else if (rField_is_GF()) |
---|
825 | { |
---|
826 | int c=rChar(currRing); |
---|
827 | setCharacteristic( c, primepower(c) ); |
---|
828 | CanonicalForm F( convSingGFFactoryGF( f ) ); |
---|
829 | if (F.isUnivariate()) |
---|
830 | { |
---|
831 | L = factorize( F ); |
---|
832 | } |
---|
833 | else |
---|
834 | { |
---|
835 | goto notImpl; |
---|
836 | } |
---|
837 | } |
---|
838 | #endif |
---|
839 | // and over Q(a) / Fp(a) |
---|
840 | else if (rField_is_Extension()) |
---|
841 | { |
---|
842 | if (rField_is_Q_a()) setCharacteristic( 0 ); |
---|
843 | else setCharacteristic( -nGetChar() ); |
---|
844 | if (currRing->minpoly!=NULL) |
---|
845 | { |
---|
846 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
847 | currRing->algring); |
---|
848 | Variable a=rootOf(mipo); |
---|
849 | CanonicalForm F( convSingAPFactoryAP( f,a ) ); |
---|
850 | if (rField_is_Zp_a() && F.isUnivariate()) |
---|
851 | { |
---|
852 | L = factorize( F, a ); |
---|
853 | } |
---|
854 | else |
---|
855 | { |
---|
856 | CanonicalForm G( convSingTrPFactoryP( f ) ); |
---|
857 | // over Q(a) / multivariate over Fp(a) |
---|
858 | do |
---|
859 | { |
---|
860 | libfac_interruptflag=0; |
---|
861 | L=Factorize2(G, mipo); |
---|
862 | } |
---|
863 | while ((libfac_interruptflag!=0) ||(L.isEmpty())); |
---|
864 | #ifdef FACTORIZE2_DEBUG |
---|
865 | printf("while okay\n"); |
---|
866 | #endif |
---|
867 | libfac_interruptflag=0; |
---|
868 | } |
---|
869 | } |
---|
870 | else |
---|
871 | { |
---|
872 | CanonicalForm F( convSingTrPFactoryP( f ) ); |
---|
873 | if (rField_is_Q_a()) |
---|
874 | { |
---|
875 | L = factorize( F ); |
---|
876 | } |
---|
877 | else /* Fp(a) */ |
---|
878 | { |
---|
879 | L = Factorize( F ); |
---|
880 | } |
---|
881 | } |
---|
882 | } |
---|
883 | else |
---|
884 | { |
---|
885 | goto notImpl; |
---|
886 | } |
---|
887 | { |
---|
888 | poly ff=pCopy(f); // a copy for the retry stuff |
---|
889 | // the first factor should be a constant |
---|
890 | if ( ! L.getFirst().factor().inCoeffDomain() ) |
---|
891 | L.insert(CFFactor(1,1)); |
---|
892 | // convert into ideal |
---|
893 | int n = L.length(); |
---|
894 | if (n==0) n=1; |
---|
895 | CFFListIterator J=L; |
---|
896 | int j=0; |
---|
897 | if (with_exps!=1) |
---|
898 | { |
---|
899 | if ((with_exps==2)&&(n>1)) |
---|
900 | { |
---|
901 | n--; |
---|
902 | J++; |
---|
903 | } |
---|
904 | *v = new intvec( n ); |
---|
905 | } |
---|
906 | res = idInit( n ,1); |
---|
907 | for ( ; J.hasItem(); J++, j++ ) |
---|
908 | { |
---|
909 | poly p; |
---|
910 | if (with_exps!=1) (**v)[j] = J.getItem().exp(); |
---|
911 | if (rField_is_Zp() || rField_is_Q()) /* Q, Fp */ |
---|
912 | { |
---|
913 | //count_Factors(res,*v,f, j, convFactoryPSingP( J.getItem().factor() ); |
---|
914 | res->m[j] = convFactoryPSingP( J.getItem().factor() ); |
---|
915 | } |
---|
916 | #if 0 |
---|
917 | else if (rField_is_GF()) |
---|
918 | res->m[j] = convFactoryGFSingGF( J.getItem().factor() ); |
---|
919 | #endif |
---|
920 | else if (rField_is_Extension()) /* Q(a), Fp(a) */ |
---|
921 | { |
---|
922 | intvec *w=NULL; |
---|
923 | if (v!=NULL) w=*v; |
---|
924 | if (currRing->minpoly==NULL) |
---|
925 | { |
---|
926 | if(!count_Factors(res,w,j,ff,convFactoryPSingTrP( J.getItem().factor() ))) |
---|
927 | { |
---|
928 | if (w!=NULL) |
---|
929 | (*w)[j]=1; |
---|
930 | res->m[j]=pOne(); |
---|
931 | } |
---|
932 | } |
---|
933 | else |
---|
934 | { |
---|
935 | if (!count_Factors(res,w,j,ff,convFactoryAPSingAP( J.getItem().factor() ))) |
---|
936 | { |
---|
937 | if (w!=NULL) |
---|
938 | (*w)[j]=1; |
---|
939 | res->m[j]=pOne(); |
---|
940 | } |
---|
941 | } |
---|
942 | } |
---|
943 | } |
---|
944 | if (rField_is_Extension() && (!pIsConstantPoly(ff))) |
---|
945 | { |
---|
946 | singclap_factorize_retry++; |
---|
947 | if (singclap_factorize_retry<3) |
---|
948 | { |
---|
949 | int jj; |
---|
950 | #ifdef FACTORIZE2_DEBUG |
---|
951 | printf("factorize_retry\n"); |
---|
952 | #endif |
---|
953 | intvec *ww=NULL; |
---|
954 | idTest(res); |
---|
955 | ideal h=singclap_factorize ( ff, &ww , with_exps); |
---|
956 | idTest(h); |
---|
957 | int l=(*v)->length(); |
---|
958 | (*v)->resize(l+ww->length()); |
---|
959 | for(jj=0;jj<ww->length();jj++) |
---|
960 | (**v)[jj+l]=(*ww)[jj]; |
---|
961 | delete ww; |
---|
962 | ideal hh=idInit(IDELEMS(res)+IDELEMS(h),1); |
---|
963 | for(jj=IDELEMS(res)-1;jj>=0;jj--) |
---|
964 | { |
---|
965 | hh->m[jj]=res->m[jj]; |
---|
966 | res->m[jj]=NULL; |
---|
967 | } |
---|
968 | for(jj=IDELEMS(h)-1;jj>=0;jj--) |
---|
969 | { |
---|
970 | hh->m[jj+IDELEMS(res)]=h->m[jj]; |
---|
971 | h->m[jj]=NULL; |
---|
972 | } |
---|
973 | idDelete(&res); |
---|
974 | idDelete(&h); |
---|
975 | res=hh; |
---|
976 | idTest(res); |
---|
977 | ff=NULL; |
---|
978 | } |
---|
979 | else |
---|
980 | { |
---|
981 | WarnS("problem with factorize"); |
---|
982 | #if 0 |
---|
983 | pWrite(ff); |
---|
984 | idShow(res); |
---|
985 | #endif |
---|
986 | idDelete(&res); |
---|
987 | res=idInit(2,1); |
---|
988 | res->m[0]=pOne(); |
---|
989 | res->m[1]=ff; ff=NULL; |
---|
990 | } |
---|
991 | } |
---|
992 | pDelete(&ff); |
---|
993 | if (N!=NULL) |
---|
994 | { |
---|
995 | pMult_nn(res->m[0],N); |
---|
996 | nDelete(&N); |
---|
997 | N=NULL; |
---|
998 | } |
---|
999 | // delete constants |
---|
1000 | if (res!=NULL) |
---|
1001 | { |
---|
1002 | int i=IDELEMS(res)-1; |
---|
1003 | int j=0; |
---|
1004 | for(;i>=0;i--) |
---|
1005 | { |
---|
1006 | if ((res->m[i]!=NULL) |
---|
1007 | && (pNext(res->m[i])==NULL) |
---|
1008 | && (pIsConstant(res->m[i]))) |
---|
1009 | { |
---|
1010 | if (with_exps!=0) |
---|
1011 | { |
---|
1012 | pDelete(&(res->m[i])); |
---|
1013 | if ((v!=NULL) && ((*v)!=NULL)) |
---|
1014 | (**v)[i]=0; |
---|
1015 | j++; |
---|
1016 | } |
---|
1017 | else if (i!=0) |
---|
1018 | { |
---|
1019 | while ((v!=NULL) && ((*v)!=NULL) && ((**v)[i]>1)) |
---|
1020 | { |
---|
1021 | res->m[0]=pMult(res->m[0],pCopy(res->m[i])); |
---|
1022 | (**v)[i]--; |
---|
1023 | } |
---|
1024 | res->m[0]=pMult(res->m[0],res->m[i]); |
---|
1025 | res->m[i]=NULL; |
---|
1026 | if ((v!=NULL) && ((*v)!=NULL)) |
---|
1027 | (**v)[i]=1; |
---|
1028 | j++; |
---|
1029 | } |
---|
1030 | } |
---|
1031 | } |
---|
1032 | if (j>0) |
---|
1033 | { |
---|
1034 | idSkipZeroes(res); |
---|
1035 | if ((v!=NULL) && ((*v)!=NULL)) |
---|
1036 | { |
---|
1037 | intvec *w=*v; |
---|
1038 | int len=IDELEMS(res); |
---|
1039 | *v = new intvec( len ); |
---|
1040 | for (i=0,j=0;i<si_min(w->length(),len);i++) |
---|
1041 | { |
---|
1042 | if((*w)[i]!=0) |
---|
1043 | { |
---|
1044 | (**v)[j]=(*w)[i]; j++; |
---|
1045 | } |
---|
1046 | } |
---|
1047 | delete w; |
---|
1048 | } |
---|
1049 | } |
---|
1050 | if (res->m[0]==NULL) |
---|
1051 | { |
---|
1052 | res->m[0]=pOne(); |
---|
1053 | } |
---|
1054 | } |
---|
1055 | } |
---|
1056 | if (rField_is_Q_a() && (currRing->minpoly!=NULL)) |
---|
1057 | { |
---|
1058 | int i=IDELEMS(res)-1; |
---|
1059 | int stop=1; |
---|
1060 | if (with_exps!=0) stop=0; |
---|
1061 | for(;i>=stop;i--) |
---|
1062 | { |
---|
1063 | pNorm(res->m[i]); |
---|
1064 | } |
---|
1065 | if (with_exps==0) pSetCoeff(res->m[0],old_lead_coeff); |
---|
1066 | else nDelete(&old_lead_coeff); |
---|
1067 | } |
---|
1068 | else |
---|
1069 | nDelete(&old_lead_coeff); |
---|
1070 | errorreported=save_errorreported; |
---|
1071 | notImpl: |
---|
1072 | if (res==NULL) |
---|
1073 | WerrorS( feNotImplemented ); |
---|
1074 | if (NN!=NULL) |
---|
1075 | { |
---|
1076 | nDelete(&NN); |
---|
1077 | } |
---|
1078 | if (N!=NULL) |
---|
1079 | { |
---|
1080 | nDelete(&N); |
---|
1081 | } |
---|
1082 | //if (f!=NULL) pDelete(&f); |
---|
1083 | //PrintS("......S\n"); |
---|
1084 | return res; |
---|
1085 | } |
---|
1086 | ideal singclap_sqrfree ( poly f) |
---|
1087 | { |
---|
1088 | pTest(f); |
---|
1089 | #ifdef FACTORIZE2_DEBUG |
---|
1090 | printf("singclap_sqrfree, degree %d\n",pTotaldegree(f)); |
---|
1091 | #endif |
---|
1092 | // with_exps: 3,1 return only true factors, no exponents |
---|
1093 | // 2 return true factors and exponents |
---|
1094 | // 0 return coeff, factors and exponents |
---|
1095 | BOOLEAN save_errorreported=errorreported; |
---|
1096 | |
---|
1097 | ideal res=NULL; |
---|
1098 | |
---|
1099 | // handle factorize(0) ========================================= |
---|
1100 | if (f==NULL) |
---|
1101 | { |
---|
1102 | res=idInit(1,1); |
---|
1103 | return res; |
---|
1104 | } |
---|
1105 | // handle factorize(mon) ========================================= |
---|
1106 | if (pNext(f)==NULL) |
---|
1107 | { |
---|
1108 | int i=0; |
---|
1109 | int n=0; |
---|
1110 | int e; |
---|
1111 | for(i=pVariables;i>0;i--) if(pGetExp(f,i)!=0) n++; |
---|
1112 | n++; // with coeff |
---|
1113 | res=idInit(si_max(n,1),1); |
---|
1114 | res->m[0]=pOne(); |
---|
1115 | pSetCoeff(res->m[0],nCopy(pGetCoeff(f))); |
---|
1116 | if (n==0) |
---|
1117 | { |
---|
1118 | res->m[0]=pOne(); |
---|
1119 | // (**v)[0]=1; is already done |
---|
1120 | return res; |
---|
1121 | } |
---|
1122 | for(i=pVariables;i>0;i--) |
---|
1123 | { |
---|
1124 | e=pGetExp(f,i); |
---|
1125 | if(e!=0) |
---|
1126 | { |
---|
1127 | n--; |
---|
1128 | poly p=pOne(); |
---|
1129 | pSetExp(p,i,1); |
---|
1130 | pSetm(p); |
---|
1131 | res->m[n]=p; |
---|
1132 | } |
---|
1133 | } |
---|
1134 | return res; |
---|
1135 | } |
---|
1136 | //PrintS("S:");pWrite(f);PrintLn(); |
---|
1137 | // use factory/libfac in general ============================== |
---|
1138 | Off(SW_RATIONAL); |
---|
1139 | On(SW_SYMMETRIC_FF); |
---|
1140 | #ifdef HAVE_NTL |
---|
1141 | extern int prime_number; |
---|
1142 | if(rField_is_Q()) prime_number=0; |
---|
1143 | #endif |
---|
1144 | CFFList L; |
---|
1145 | |
---|
1146 | if (!rField_is_Zp() && !rField_is_Zp_a()) /* Q, Q(a) */ |
---|
1147 | { |
---|
1148 | //if (f!=NULL) // already tested at start of routine |
---|
1149 | { |
---|
1150 | pCleardenom(f); |
---|
1151 | } |
---|
1152 | } |
---|
1153 | else if (rField_is_Zp_a()) |
---|
1154 | { |
---|
1155 | //if (f!=NULL) // already tested at start of routine |
---|
1156 | if (singclap_factorize_retry==0) |
---|
1157 | { |
---|
1158 | pNorm(f); |
---|
1159 | pCleardenom(f); |
---|
1160 | } |
---|
1161 | } |
---|
1162 | if (rField_is_Q() || rField_is_Zp()) |
---|
1163 | { |
---|
1164 | setCharacteristic( nGetChar() ); |
---|
1165 | CanonicalForm F( convSingPFactoryP( f ) ); |
---|
1166 | L = sqrFree( F ); |
---|
1167 | } |
---|
1168 | #if 0 |
---|
1169 | else if (rField_is_GF()) |
---|
1170 | { |
---|
1171 | int c=rChar(currRing); |
---|
1172 | setCharacteristic( c, primepower(c) ); |
---|
1173 | CanonicalForm F( convSingGFFactoryGF( f ) ); |
---|
1174 | if (F.isUnivariate()) |
---|
1175 | { |
---|
1176 | L = factorize( F ); |
---|
1177 | } |
---|
1178 | else |
---|
1179 | { |
---|
1180 | goto notImpl; |
---|
1181 | } |
---|
1182 | } |
---|
1183 | #endif |
---|
1184 | // and over Q(a) / Fp(a) |
---|
1185 | else if (rField_is_Extension()) |
---|
1186 | { |
---|
1187 | if (rField_is_Q_a()) setCharacteristic( 0 ); |
---|
1188 | else setCharacteristic( -nGetChar() ); |
---|
1189 | if (currRing->minpoly!=NULL) |
---|
1190 | { |
---|
1191 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
1192 | currRing->algring); |
---|
1193 | Variable a=rootOf(mipo); |
---|
1194 | CanonicalForm F( convSingAPFactoryAP( f,a ) ); |
---|
1195 | CFFList SqrFreeMV( const CanonicalForm & f , const CanonicalForm & mipo=0) ; |
---|
1196 | |
---|
1197 | L = SqrFreeMV( F,mipo ); |
---|
1198 | //WarnS("L = sqrFree( F,mipo );"); |
---|
1199 | //L = sqrFree( F ); |
---|
1200 | } |
---|
1201 | else |
---|
1202 | { |
---|
1203 | CanonicalForm F( convSingTrPFactoryP( f ) ); |
---|
1204 | L = sqrFree( F ); |
---|
1205 | } |
---|
1206 | } |
---|
1207 | else |
---|
1208 | { |
---|
1209 | goto notImpl; |
---|
1210 | } |
---|
1211 | { |
---|
1212 | poly ff=pCopy(f); // a copy for the retry stuff |
---|
1213 | // convert into ideal |
---|
1214 | int n = L.length(); |
---|
1215 | if (n==0) n=1; |
---|
1216 | CFFListIterator J=L; |
---|
1217 | int j=0; |
---|
1218 | res = idInit( n ,1); |
---|
1219 | for ( ; J.hasItem(); J++, j++ ) |
---|
1220 | { |
---|
1221 | poly p; |
---|
1222 | if (rField_is_Zp() || rField_is_Q()) /* Q, Fp */ |
---|
1223 | //count_Factors(res,*v,f, j, convFactoryPSingP( J.getItem().factor() ); |
---|
1224 | res->m[j] = convFactoryPSingP( J.getItem().factor() ); |
---|
1225 | #if 0 |
---|
1226 | else if (rField_is_GF()) |
---|
1227 | res->m[j] = convFactoryGFSingGF( J.getItem().factor() ); |
---|
1228 | #endif |
---|
1229 | else if (rField_is_Extension()) /* Q(a), Fp(a) */ |
---|
1230 | { |
---|
1231 | if (currRing->minpoly==NULL) |
---|
1232 | res->m[j]=convFactoryPSingTrP( J.getItem().factor() ); |
---|
1233 | else |
---|
1234 | res->m[j]=convFactoryAPSingAP( J.getItem().factor() ); |
---|
1235 | } |
---|
1236 | } |
---|
1237 | if (res->m[0]==NULL) |
---|
1238 | { |
---|
1239 | res->m[0]=pOne(); |
---|
1240 | } |
---|
1241 | } |
---|
1242 | errorreported=save_errorreported; |
---|
1243 | notImpl: |
---|
1244 | if (res==NULL) |
---|
1245 | WerrorS( feNotImplemented ); |
---|
1246 | return res; |
---|
1247 | } |
---|
1248 | matrix singclap_irrCharSeries ( ideal I) |
---|
1249 | { |
---|
1250 | if (idIs0(I)) return mpNew(1,1); |
---|
1251 | |
---|
1252 | // for now there is only the possibility to handle polynomials over |
---|
1253 | // Q and Fp ... |
---|
1254 | matrix res=NULL; |
---|
1255 | int i; |
---|
1256 | Off(SW_RATIONAL); |
---|
1257 | On(SW_SYMMETRIC_FF); |
---|
1258 | CFList L; |
---|
1259 | ListCFList LL; |
---|
1260 | if (((nGetChar() == 0) || (nGetChar() > 1) ) |
---|
1261 | && (currRing->parameter==NULL)) |
---|
1262 | { |
---|
1263 | setCharacteristic( nGetChar() ); |
---|
1264 | for(i=0;i<IDELEMS(I);i++) |
---|
1265 | { |
---|
1266 | poly p=I->m[i]; |
---|
1267 | if (p!=NULL) |
---|
1268 | { |
---|
1269 | p=pCopy(p); |
---|
1270 | pCleardenom(p); |
---|
1271 | L.append(convSingPFactoryP(p)); |
---|
1272 | } |
---|
1273 | } |
---|
1274 | } |
---|
1275 | // and over Q(a) / Fp(a) |
---|
1276 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
1277 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
1278 | { |
---|
1279 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1280 | else setCharacteristic( -nGetChar() ); |
---|
1281 | for(i=0;i<IDELEMS(I);i++) |
---|
1282 | { |
---|
1283 | poly p=I->m[i]; |
---|
1284 | if (p!=NULL) |
---|
1285 | { |
---|
1286 | p=pCopy(p); |
---|
1287 | pCleardenom(p); |
---|
1288 | L.append(convSingTrPFactoryP(p)); |
---|
1289 | } |
---|
1290 | } |
---|
1291 | } |
---|
1292 | else |
---|
1293 | { |
---|
1294 | WerrorS( feNotImplemented ); |
---|
1295 | return res; |
---|
1296 | } |
---|
1297 | |
---|
1298 | // a very bad work-around --- FIX IT in libfac |
---|
1299 | // should be fixed as of 2001/6/27 |
---|
1300 | int tries=0; |
---|
1301 | int m,n; |
---|
1302 | ListIterator<CFList> LLi; |
---|
1303 | loop |
---|
1304 | { |
---|
1305 | LL=IrrCharSeries(L); |
---|
1306 | m= LL.length(); // Anzahl Zeilen |
---|
1307 | n=0; |
---|
1308 | for ( LLi = LL; LLi.hasItem(); LLi++ ) |
---|
1309 | { |
---|
1310 | n = si_max(LLi.getItem().length(),n); |
---|
1311 | } |
---|
1312 | if ((m!=0) && (n!=0)) break; |
---|
1313 | tries++; |
---|
1314 | if (tries>=5) break; |
---|
1315 | } |
---|
1316 | if ((m==0) || (n==0)) |
---|
1317 | { |
---|
1318 | Warn("char_series returns %d x %d matrix from %d input polys (%d)", |
---|
1319 | m,n,IDELEMS(I)+1,LL.length()); |
---|
1320 | iiWriteMatrix((matrix)I,"I",2,0); |
---|
1321 | m=si_max(m,1); |
---|
1322 | n=si_max(n,1); |
---|
1323 | } |
---|
1324 | res=mpNew(m,n); |
---|
1325 | CFListIterator Li; |
---|
1326 | for ( m=1, LLi = LL; LLi.hasItem(); LLi++, m++ ) |
---|
1327 | { |
---|
1328 | for (n=1, Li = LLi.getItem(); Li.hasItem(); Li++, n++) |
---|
1329 | { |
---|
1330 | if ( (nGetChar() == 0) || (nGetChar() > 1) ) |
---|
1331 | MATELEM(res,m,n)=convFactoryPSingP(Li.getItem()); |
---|
1332 | else |
---|
1333 | MATELEM(res,m,n)=convFactoryPSingTrP(Li.getItem()); |
---|
1334 | } |
---|
1335 | } |
---|
1336 | Off(SW_RATIONAL); |
---|
1337 | return res; |
---|
1338 | } |
---|
1339 | |
---|
1340 | char* singclap_neworder ( ideal I) |
---|
1341 | { |
---|
1342 | int i; |
---|
1343 | Off(SW_RATIONAL); |
---|
1344 | On(SW_SYMMETRIC_FF); |
---|
1345 | CFList L; |
---|
1346 | if (((nGetChar() == 0) || (nGetChar() > 1) ) |
---|
1347 | && (currRing->parameter==NULL)) |
---|
1348 | { |
---|
1349 | setCharacteristic( nGetChar() ); |
---|
1350 | for(i=0;i<IDELEMS(I);i++) |
---|
1351 | { |
---|
1352 | L.append(convSingPFactoryP(I->m[i])); |
---|
1353 | } |
---|
1354 | } |
---|
1355 | // and over Q(a) / Fp(a) |
---|
1356 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
1357 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
1358 | { |
---|
1359 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1360 | else setCharacteristic( -nGetChar() ); |
---|
1361 | for(i=0;i<IDELEMS(I);i++) |
---|
1362 | { |
---|
1363 | L.append(convSingTrPFactoryP(I->m[i])); |
---|
1364 | } |
---|
1365 | } |
---|
1366 | else |
---|
1367 | { |
---|
1368 | WerrorS( feNotImplemented ); |
---|
1369 | return NULL; |
---|
1370 | } |
---|
1371 | |
---|
1372 | List<int> IL=neworderint(L); |
---|
1373 | ListIterator<int> Li; |
---|
1374 | StringSetS(""); |
---|
1375 | Li = IL; |
---|
1376 | int offs=rPar(currRing); |
---|
1377 | int* mark=(int*)omAlloc0((pVariables+offs)*sizeof(int)); |
---|
1378 | int cnt=pVariables+offs; |
---|
1379 | loop |
---|
1380 | { |
---|
1381 | if(! Li.hasItem()) break; |
---|
1382 | BOOLEAN done=TRUE; |
---|
1383 | i=Li.getItem()-1; |
---|
1384 | mark[i]=1; |
---|
1385 | if (i<offs) |
---|
1386 | { |
---|
1387 | done=FALSE; |
---|
1388 | //StringAppendS(currRing->parameter[i]); |
---|
1389 | } |
---|
1390 | else |
---|
1391 | { |
---|
1392 | StringAppendS(currRing->names[i-offs]); |
---|
1393 | } |
---|
1394 | Li++; |
---|
1395 | cnt--; |
---|
1396 | if(cnt==0) break; |
---|
1397 | if (done) StringAppendS(","); |
---|
1398 | } |
---|
1399 | for(i=0;i<pVariables+offs;i++) |
---|
1400 | { |
---|
1401 | BOOLEAN done=TRUE; |
---|
1402 | if(mark[i]==0) |
---|
1403 | { |
---|
1404 | if (i<offs) |
---|
1405 | { |
---|
1406 | done=FALSE; |
---|
1407 | //StringAppendS(currRing->parameter[i]); |
---|
1408 | } |
---|
1409 | else |
---|
1410 | { |
---|
1411 | StringAppendS(currRing->names[i-offs]); |
---|
1412 | } |
---|
1413 | cnt--; |
---|
1414 | if(cnt==0) break; |
---|
1415 | if (done) StringAppendS(","); |
---|
1416 | } |
---|
1417 | } |
---|
1418 | char * s=omStrDup(StringAppendS("")); |
---|
1419 | if (s[strlen(s)-1]==',') s[strlen(s)-1]='\0'; |
---|
1420 | return s; |
---|
1421 | } |
---|
1422 | |
---|
1423 | BOOLEAN singclap_isSqrFree(poly f) |
---|
1424 | { |
---|
1425 | BOOLEAN b=FALSE; |
---|
1426 | Off(SW_RATIONAL); |
---|
1427 | // Q / Fp |
---|
1428 | if (((nGetChar() == 0) || (nGetChar() > 1) ) |
---|
1429 | &&(currRing->parameter==NULL)) |
---|
1430 | { |
---|
1431 | setCharacteristic( nGetChar() ); |
---|
1432 | CanonicalForm F( convSingPFactoryP( f ) ); |
---|
1433 | if((nGetChar()>1)&&(!F.isUnivariate())) |
---|
1434 | goto err; |
---|
1435 | b=(BOOLEAN)isSqrFree(F); |
---|
1436 | } |
---|
1437 | // and over Q(a) / Fp(a) |
---|
1438 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
1439 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
1440 | { |
---|
1441 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1442 | else setCharacteristic( -nGetChar() ); |
---|
1443 | //if (currRing->minpoly!=NULL) |
---|
1444 | //{ |
---|
1445 | // CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
1446 | // currRing->algring); |
---|
1447 | // Variable a=rootOf(mipo); |
---|
1448 | // CanonicalForm F( convSingAPFactoryAP( f,a ) ); |
---|
1449 | // ... |
---|
1450 | //} |
---|
1451 | //else |
---|
1452 | { |
---|
1453 | CanonicalForm F( convSingTrPFactoryP( f ) ); |
---|
1454 | b=(BOOLEAN)isSqrFree(F); |
---|
1455 | } |
---|
1456 | Off(SW_RATIONAL); |
---|
1457 | } |
---|
1458 | else |
---|
1459 | { |
---|
1460 | err: |
---|
1461 | WerrorS( feNotImplemented ); |
---|
1462 | } |
---|
1463 | return b; |
---|
1464 | } |
---|
1465 | |
---|
1466 | poly singclap_det( const matrix m ) |
---|
1467 | { |
---|
1468 | int r=m->rows(); |
---|
1469 | if (r!=m->cols()) |
---|
1470 | { |
---|
1471 | Werror("det of %d x %d matrix",r,m->cols()); |
---|
1472 | return NULL; |
---|
1473 | } |
---|
1474 | poly res=NULL; |
---|
1475 | if (( nGetChar() == 0 || nGetChar() > 1 ) |
---|
1476 | && (currRing->parameter==NULL)) |
---|
1477 | { |
---|
1478 | setCharacteristic( nGetChar() ); |
---|
1479 | CFMatrix M(r,r); |
---|
1480 | int i,j; |
---|
1481 | for(i=r;i>0;i--) |
---|
1482 | { |
---|
1483 | for(j=r;j>0;j--) |
---|
1484 | { |
---|
1485 | M(i,j)=convSingPFactoryP(MATELEM(m,i,j)); |
---|
1486 | } |
---|
1487 | } |
---|
1488 | res= convFactoryPSingP( determinant(M,r) ) ; |
---|
1489 | } |
---|
1490 | // and over Q(a) / Fp(a) |
---|
1491 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
1492 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
1493 | { |
---|
1494 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1495 | else setCharacteristic( -nGetChar() ); |
---|
1496 | CFMatrix M(r,r); |
---|
1497 | poly res; |
---|
1498 | if (currRing->minpoly!=NULL) |
---|
1499 | { |
---|
1500 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
1501 | currRing->algring); |
---|
1502 | Variable a=rootOf(mipo); |
---|
1503 | int i,j; |
---|
1504 | for(i=r;i>0;i--) |
---|
1505 | { |
---|
1506 | for(j=r;j>0;j--) |
---|
1507 | { |
---|
1508 | M(i,j)=convSingAPFactoryAP(MATELEM(m,i,j),a); |
---|
1509 | } |
---|
1510 | } |
---|
1511 | res= convFactoryAPSingAP( determinant(M,r) ) ; |
---|
1512 | } |
---|
1513 | else |
---|
1514 | { |
---|
1515 | int i,j; |
---|
1516 | for(i=r;i>0;i--) |
---|
1517 | { |
---|
1518 | for(j=r;j>0;j--) |
---|
1519 | { |
---|
1520 | M(i,j)=convSingTrPFactoryP(MATELEM(m,i,j)); |
---|
1521 | } |
---|
1522 | } |
---|
1523 | res= convFactoryPSingTrP( determinant(M,r) ); |
---|
1524 | } |
---|
1525 | } |
---|
1526 | else |
---|
1527 | WerrorS( feNotImplemented ); |
---|
1528 | Off(SW_RATIONAL); |
---|
1529 | return res; |
---|
1530 | } |
---|
1531 | |
---|
1532 | int singclap_det_i( intvec * m ) |
---|
1533 | { |
---|
1534 | setCharacteristic( 0 ); |
---|
1535 | CFMatrix M(m->rows(),m->cols()); |
---|
1536 | int i,j; |
---|
1537 | for(i=m->rows();i>0;i--) |
---|
1538 | { |
---|
1539 | for(j=m->cols();j>0;j--) |
---|
1540 | { |
---|
1541 | M(i,j)=IMATELEM(*m,i,j); |
---|
1542 | } |
---|
1543 | } |
---|
1544 | int res= convFactoryISingI( determinant(M,m->rows())) ; |
---|
1545 | Off(SW_RATIONAL); |
---|
1546 | return res; |
---|
1547 | } |
---|
1548 | napoly singclap_alglcm ( napoly f, napoly g ) |
---|
1549 | { |
---|
1550 | |
---|
1551 | // over Q(a) / Fp(a) |
---|
1552 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1553 | else setCharacteristic( -nGetChar() ); |
---|
1554 | napoly res; |
---|
1555 | |
---|
1556 | if (currRing->minpoly!=NULL) |
---|
1557 | { |
---|
1558 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
1559 | currRing->algring); |
---|
1560 | Variable a=rootOf(mipo); |
---|
1561 | CanonicalForm F( convSingAFactoryA( f,a ) ), G( convSingAFactoryA( g,a ) ); |
---|
1562 | CanonicalForm GCD; |
---|
1563 | |
---|
1564 | // calculate gcd |
---|
1565 | GCD = gcd( F, G ); |
---|
1566 | |
---|
1567 | // calculate lcm |
---|
1568 | res= convFactoryASingA( (F/GCD)*G ); |
---|
1569 | } |
---|
1570 | else |
---|
1571 | { |
---|
1572 | CanonicalForm F( convSingPFactoryP( f,currRing->algring ) ), |
---|
1573 | G( convSingPFactoryP( g,currRing->algring ) ); |
---|
1574 | CanonicalForm GCD; |
---|
1575 | // calculate gcd |
---|
1576 | GCD = gcd( F, G ); |
---|
1577 | |
---|
1578 | // calculate lcm |
---|
1579 | res= convFactoryPSingP( (F/GCD)*G, currRing->algring ); |
---|
1580 | } |
---|
1581 | |
---|
1582 | Off(SW_RATIONAL); |
---|
1583 | return res; |
---|
1584 | } |
---|
1585 | |
---|
1586 | void singclap_algdividecontent ( napoly f, napoly g, napoly &ff, napoly &gg ) |
---|
1587 | { |
---|
1588 | // over Q(a) / Fp(a) |
---|
1589 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1590 | else setCharacteristic( -nGetChar() ); |
---|
1591 | ff=gg=NULL; |
---|
1592 | On(SW_RATIONAL); |
---|
1593 | |
---|
1594 | if (currRing->minpoly!=NULL) |
---|
1595 | { |
---|
1596 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
1597 | currRing->algring); |
---|
1598 | Variable a=rootOf(mipo); |
---|
1599 | CanonicalForm F( convSingAFactoryA( f,a ) ), G( convSingAFactoryA( g,a ) ); |
---|
1600 | CanonicalForm GCD; |
---|
1601 | |
---|
1602 | GCD=gcd( F, G ); |
---|
1603 | |
---|
1604 | if ((GCD!=1) && (GCD!=0)) |
---|
1605 | { |
---|
1606 | ff= convFactoryASingA( F/ GCD ); |
---|
1607 | gg= convFactoryASingA( G/ GCD ); |
---|
1608 | } |
---|
1609 | } |
---|
1610 | else |
---|
1611 | { |
---|
1612 | CanonicalForm F( convSingPFactoryP( f,currRing->algring ) ), |
---|
1613 | G( convSingPFactoryP( g,currRing->algring ) ); |
---|
1614 | CanonicalForm GCD; |
---|
1615 | |
---|
1616 | GCD=gcd( F, G ); |
---|
1617 | |
---|
1618 | if ((GCD!=1) && (GCD!=0)) |
---|
1619 | { |
---|
1620 | ff= convFactoryPSingP( F/ GCD, currRing->algring ); |
---|
1621 | gg= convFactoryPSingP( G/ GCD, currRing->algring ); |
---|
1622 | } |
---|
1623 | } |
---|
1624 | |
---|
1625 | Off(SW_RATIONAL); |
---|
1626 | } |
---|
1627 | |
---|
1628 | #if 0 |
---|
1629 | lists singclap_chineseRemainder(lists x, lists q) |
---|
1630 | { |
---|
1631 | //assume(x->nr == q->nr); |
---|
1632 | //assume(x->nr >= 0); |
---|
1633 | int n=x->nr+1; |
---|
1634 | if ((x->nr<0) || (x->nr!=q->nr)) |
---|
1635 | { |
---|
1636 | WerrorS("list are empty or not of equal length"); |
---|
1637 | return NULL; |
---|
1638 | } |
---|
1639 | lists res=(lists)omAlloc0Bin(slists_bin); |
---|
1640 | CFArray X(1,n), Q(1,n); |
---|
1641 | int i; |
---|
1642 | for(i=0; i<n; i++) |
---|
1643 | { |
---|
1644 | if (x->m[i-1].Typ()==INT_CMD) |
---|
1645 | { |
---|
1646 | X[i]=(int)x->m[i-1].Data(); |
---|
1647 | } |
---|
1648 | else if (x->m[i-1].Typ()==NUMBER_CMD) |
---|
1649 | { |
---|
1650 | number N=(number)x->m[i-1].Data(); |
---|
1651 | X[i]=convSingNFactoryN(N); |
---|
1652 | } |
---|
1653 | else |
---|
1654 | { |
---|
1655 | WerrorS("illegal type in chineseRemainder"); |
---|
1656 | omFreeBin(res,slists_bin); |
---|
1657 | return NULL; |
---|
1658 | } |
---|
1659 | if (q->m[i-1].Typ()==INT_CMD) |
---|
1660 | { |
---|
1661 | Q[i]=(int)q->m[i-1].Data(); |
---|
1662 | } |
---|
1663 | else if (q->m[i-1].Typ()==NUMBER_CMD) |
---|
1664 | { |
---|
1665 | number N=(number)x->m[i-1].Data(); |
---|
1666 | Q[i]=convSingNFactoryN(N); |
---|
1667 | } |
---|
1668 | else |
---|
1669 | { |
---|
1670 | WerrorS("illegal type in chineseRemainder"); |
---|
1671 | omFreeBin(res,slists_bin); |
---|
1672 | return NULL; |
---|
1673 | } |
---|
1674 | } |
---|
1675 | CanonicalForm r, prod; |
---|
1676 | chineseRemainder( X, Q, r, prod ); |
---|
1677 | res->Init(2); |
---|
1678 | res->m[0].rtyp=NUMBER_CMD; |
---|
1679 | res->m[1].rtyp=NUMBER_CMD; |
---|
1680 | res->m[0].data=(char *)convFactoryNSingN( r ); |
---|
1681 | res->m[1].data=(char *)convFactoryNSingN( prod ); |
---|
1682 | return res; |
---|
1683 | } |
---|
1684 | #endif |
---|
1685 | #endif |
---|