1 | // emacs edit mode for this file is -*- C++ -*- |
---|
2 | /**************************************** |
---|
3 | * Computer Algebra System SINGULAR * |
---|
4 | ****************************************/ |
---|
5 | // $Id$ |
---|
6 | /* |
---|
7 | * ABSTRACT: interface between Singular and factory |
---|
8 | */ |
---|
9 | |
---|
10 | //#define FACTORIZE2_DEBUG |
---|
11 | #include <kernel/mod2.h> |
---|
12 | #include <omalloc/omalloc.h> |
---|
13 | #ifdef HAVE_FACTORY |
---|
14 | #define SI_DONT_HAVE_GLOBAL_VARS |
---|
15 | #include <kernel/structs.h> |
---|
16 | #include <kernel/clapsing.h> |
---|
17 | #include <kernel/numbers.h> |
---|
18 | #include <kernel/ring.h> |
---|
19 | #include <kernel/ideals.h> |
---|
20 | #include <kernel/ffields.h> |
---|
21 | #include <factory/factory.h> |
---|
22 | #include <kernel/clapconv.h> |
---|
23 | #include <libfac/factor.h> |
---|
24 | #include <kernel/ring.h> |
---|
25 | |
---|
26 | void out_cf(const char *s1,const CanonicalForm &f,const char *s2); |
---|
27 | |
---|
28 | poly singclap_gcd_r ( poly f, poly g, const ring r ) |
---|
29 | { |
---|
30 | // assume p_Cleardenom is done |
---|
31 | // assume f!=0, g!=0 |
---|
32 | poly res=NULL; |
---|
33 | |
---|
34 | assume(f!=NULL); |
---|
35 | assume(g!=NULL); |
---|
36 | |
---|
37 | if((pNext(f)==NULL) && (pNext(g)==NULL)) |
---|
38 | { |
---|
39 | poly p=pOne(); |
---|
40 | for(int i=rVar(r);i>0;i--) |
---|
41 | p_SetExp(p,i,si_min(p_GetExp(f,i,r),p_GetExp(g,i,r)),r); |
---|
42 | p_Setm(p,r); |
---|
43 | return p; |
---|
44 | } |
---|
45 | |
---|
46 | // for now there is only the possibility to handle polynomials over |
---|
47 | // Q and Fp ... |
---|
48 | Off(SW_RATIONAL); |
---|
49 | if (rField_is_Q(r) || (rField_is_Zp(r))) |
---|
50 | { |
---|
51 | setCharacteristic( n_GetChar(r) ); |
---|
52 | CanonicalForm F( convSingPFactoryP( f,r ) ), G( convSingPFactoryP( g, r ) ); |
---|
53 | res=convFactoryPSingP( gcd( F, G ) , r); |
---|
54 | } |
---|
55 | // and over Q(a) / Fp(a) |
---|
56 | else if ( rField_is_Extension(r)) |
---|
57 | { |
---|
58 | if ( rField_is_Q_a(r)) setCharacteristic( 0 ); |
---|
59 | else setCharacteristic( -n_GetChar(r) ); |
---|
60 | if (r->minpoly!=NULL) |
---|
61 | { |
---|
62 | bool b1=isOn(SW_USE_QGCD); |
---|
63 | bool b2=isOn(SW_USE_fieldGCD); |
---|
64 | if ( rField_is_Q_a() ) On(SW_USE_QGCD); |
---|
65 | else On(SW_USE_fieldGCD); |
---|
66 | CanonicalForm mipo=convSingPFactoryP(((lnumber)r->minpoly)->z, |
---|
67 | r->algring); |
---|
68 | Variable a=rootOf(mipo); |
---|
69 | CanonicalForm F( convSingAPFactoryAP( f,a,r ) ), |
---|
70 | G( convSingAPFactoryAP( g,a,r ) ); |
---|
71 | res= convFactoryAPSingAP( gcd( F, G ),currRing ); |
---|
72 | if (!b1) Off(SW_USE_QGCD); |
---|
73 | if (!b2) Off(SW_USE_fieldGCD); |
---|
74 | } |
---|
75 | else |
---|
76 | { |
---|
77 | CanonicalForm F( convSingTrPFactoryP( f,r ) ), G( convSingTrPFactoryP( g,r ) ); |
---|
78 | res= convFactoryPSingTrP( gcd( F, G ),r ); |
---|
79 | } |
---|
80 | } |
---|
81 | #if 0 |
---|
82 | else if (( n_GetChar(r)>1 )&&(r->parameter!=NULL)) /* GF(q) */ |
---|
83 | { |
---|
84 | int p=rChar(r); |
---|
85 | int n=2; |
---|
86 | int t=p*p; |
---|
87 | while (t!=n_Char(r)) { t*=p;n++; } |
---|
88 | setCharacteristic(p,n,'a'); |
---|
89 | CanonicalForm F( convSingGFFactoryGF( f,r ) ), G( convSingGFFactoryGF( g,r ) ); |
---|
90 | res= convFactoryGFSingGF( gcd( F, G ),r ); |
---|
91 | } |
---|
92 | #endif |
---|
93 | else |
---|
94 | WerrorS( feNotImplemented ); |
---|
95 | |
---|
96 | Off(SW_RATIONAL); |
---|
97 | return res; |
---|
98 | } |
---|
99 | |
---|
100 | poly singclap_gcd ( poly f, poly g ) |
---|
101 | { |
---|
102 | poly res=NULL; |
---|
103 | |
---|
104 | if (f!=NULL) p_Cleardenom(f, currRing); |
---|
105 | if (g!=NULL) p_Cleardenom(g, currRing); |
---|
106 | else return f; // g==0 => gcd=f (but do a p_Cleardenom) |
---|
107 | if (f==NULL) return g; // f==0 => gcd=g (but do a p_Cleardenom) |
---|
108 | |
---|
109 | res=singclap_gcd_r(f,g,currRing); |
---|
110 | pDelete(&f); |
---|
111 | pDelete(&g); |
---|
112 | return res; |
---|
113 | } |
---|
114 | |
---|
115 | /*2 find the maximal exponent of var(i) in poly p*/ |
---|
116 | int pGetExp_Var(poly p, int i) |
---|
117 | { |
---|
118 | int m=0; |
---|
119 | int mm; |
---|
120 | while (p!=NULL) |
---|
121 | { |
---|
122 | mm=pGetExp(p,i); |
---|
123 | if (mm>m) m=mm; |
---|
124 | pIter(p); |
---|
125 | } |
---|
126 | return m; |
---|
127 | } |
---|
128 | |
---|
129 | poly singclap_resultant ( poly f, poly g , poly x) |
---|
130 | { |
---|
131 | int i=pIsPurePower(x); |
---|
132 | if (i==0) |
---|
133 | { |
---|
134 | WerrorS("3rd argument must be a ring variable"); |
---|
135 | return NULL; |
---|
136 | } |
---|
137 | if ((f==NULL) || (g==NULL)) |
---|
138 | return NULL; |
---|
139 | // for now there is only the possibility to handle polynomials over |
---|
140 | // Q and Fp ... |
---|
141 | if (rField_is_Zp() || rField_is_Q()) |
---|
142 | { |
---|
143 | Variable X(i); |
---|
144 | setCharacteristic( nGetChar() ); |
---|
145 | CanonicalForm F( convSingPFactoryP( f ) ), G( convSingPFactoryP( g ) ); |
---|
146 | poly res=convFactoryPSingP( resultant( F, G, X ) ); |
---|
147 | Off(SW_RATIONAL); |
---|
148 | return res; |
---|
149 | } |
---|
150 | // and over Q(a) / Fp(a) |
---|
151 | else if (rField_is_Extension()) |
---|
152 | { |
---|
153 | if (rField_is_Q_a()) setCharacteristic( 0 ); |
---|
154 | else setCharacteristic( -nGetChar() ); |
---|
155 | poly res; |
---|
156 | Variable X(i+rPar(currRing)); |
---|
157 | if (currRing->minpoly!=NULL) |
---|
158 | { |
---|
159 | //Variable X(i); |
---|
160 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
161 | currRing->algring); |
---|
162 | Variable a=rootOf(mipo); |
---|
163 | CanonicalForm F( convSingAPFactoryAP( f,a,currRing ) ), |
---|
164 | G( convSingAPFactoryAP( g,a,currRing ) ); |
---|
165 | res= convFactoryAPSingAP( resultant( F, G, X ),currRing ); |
---|
166 | } |
---|
167 | else |
---|
168 | { |
---|
169 | //Variable X(i+rPar(currRing)); |
---|
170 | number nf,ng; |
---|
171 | p_Cleardenom_n(f, currRing,nf);p_Cleardenom_n(g, currRing,ng); |
---|
172 | int ef,eg; |
---|
173 | ef=pGetExp_Var(f,i); |
---|
174 | eg=pGetExp_Var(g,i); |
---|
175 | CanonicalForm F( convSingTrPFactoryP( f ) ), G( convSingTrPFactoryP( g ) ); |
---|
176 | res= convFactoryPSingTrP( resultant( F, G, X ) ); |
---|
177 | if ((nf!=NULL)&&(!nIsOne(nf))&&(!nIsZero(nf))) |
---|
178 | { |
---|
179 | number n=nInvers(nf); |
---|
180 | while(eg>0) |
---|
181 | { |
---|
182 | res=pMult_nn(res,n); |
---|
183 | eg--; |
---|
184 | } |
---|
185 | nDelete(&n); |
---|
186 | } |
---|
187 | nDelete(&nf); |
---|
188 | if ((ng!=NULL)&&(!nIsOne(ng))&&(!nIsZero(ng))) |
---|
189 | { |
---|
190 | number n=nInvers(ng); |
---|
191 | while(ef>0) |
---|
192 | { |
---|
193 | res=pMult_nn(res,n); |
---|
194 | ef--; |
---|
195 | } |
---|
196 | nDelete(&n); |
---|
197 | } |
---|
198 | nDelete(&ng); |
---|
199 | } |
---|
200 | Off(SW_RATIONAL); |
---|
201 | return res; |
---|
202 | } |
---|
203 | else |
---|
204 | WerrorS( feNotImplemented ); |
---|
205 | return NULL; |
---|
206 | } |
---|
207 | //poly singclap_resultant ( poly f, poly g , poly x) |
---|
208 | //{ |
---|
209 | // int i=pVar(x); |
---|
210 | // if (i==0) |
---|
211 | // { |
---|
212 | // WerrorS("ringvar expected"); |
---|
213 | // return NULL; |
---|
214 | // } |
---|
215 | // ideal I=idInit(1,1); |
---|
216 | // |
---|
217 | // // get the coeffs von f wrt. x: |
---|
218 | // I->m[0]=pCopy(f); |
---|
219 | // matrix ffi=mpCoeffs(I,i); |
---|
220 | // ffi->rank=1; |
---|
221 | // ffi->ncols=ffi->nrows; |
---|
222 | // ffi->nrows=1; |
---|
223 | // ideal fi=(ideal)ffi; |
---|
224 | // |
---|
225 | // // get the coeffs von g wrt. x: |
---|
226 | // I->m[0]=pCopy(g); |
---|
227 | // matrix ggi=mpCoeffs(I,i); |
---|
228 | // ggi->rank=1; |
---|
229 | // ggi->ncols=ggi->nrows; |
---|
230 | // ggi->nrows=1; |
---|
231 | // ideal gi=(ideal)ggi; |
---|
232 | // |
---|
233 | // // contruct the matrix: |
---|
234 | // int fn=IDELEMS(fi); //= deg(f,x)+1 |
---|
235 | // int gn=IDELEMS(gi); //= deg(g,x)+1 |
---|
236 | // matrix m=mpNew(fn+gn-2,fn+gn-2); |
---|
237 | // if(m==NULL) |
---|
238 | // { |
---|
239 | // return NULL; |
---|
240 | // } |
---|
241 | // |
---|
242 | // // enter the coeffs into m: |
---|
243 | // int j; |
---|
244 | // for(i=0;i<gn-1;i++) |
---|
245 | // { |
---|
246 | // for(j=0;j<fn;j++) |
---|
247 | // { |
---|
248 | // MATELEM(m,i+1,fn-j+i)=pCopy(fi->m[j]); |
---|
249 | // } |
---|
250 | // } |
---|
251 | // for(i=0;i<fn-1;i++) |
---|
252 | // { |
---|
253 | // for(j=0;j<gn;j++) |
---|
254 | // { |
---|
255 | // MATELEM(m,gn+i,gn-j+i)=pCopy(gi->m[j]); |
---|
256 | // } |
---|
257 | // } |
---|
258 | // |
---|
259 | // poly r=mpDet(m); |
---|
260 | // |
---|
261 | // idDelete(&fi); |
---|
262 | // idDelete(&gi); |
---|
263 | // idDelete((ideal *)&m); |
---|
264 | // return r; |
---|
265 | //} |
---|
266 | |
---|
267 | BOOLEAN singclap_extgcd ( poly f, poly g, poly &res, poly &pa, poly &pb ) |
---|
268 | { |
---|
269 | // for now there is only the possibility to handle univariate |
---|
270 | // polynomials over |
---|
271 | // Q and Fp ... |
---|
272 | res=NULL;pa=NULL;pb=NULL; |
---|
273 | On(SW_SYMMETRIC_FF); |
---|
274 | if (rField_is_Zp() || rField_is_Q()) |
---|
275 | { |
---|
276 | setCharacteristic( nGetChar() ); |
---|
277 | CanonicalForm F( convSingPFactoryP( f ) ), G( convSingPFactoryP( g ) ); |
---|
278 | CanonicalForm FpG=F+G; |
---|
279 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
280 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
281 | { |
---|
282 | Off(SW_RATIONAL); |
---|
283 | WerrorS("not univariate"); |
---|
284 | return TRUE; |
---|
285 | } |
---|
286 | CanonicalForm Fa,Gb; |
---|
287 | On(SW_RATIONAL); |
---|
288 | res=convFactoryPSingP( extgcd( F, G, Fa, Gb ) ); |
---|
289 | pa=convFactoryPSingP(Fa); |
---|
290 | pb=convFactoryPSingP(Gb); |
---|
291 | Off(SW_RATIONAL); |
---|
292 | } |
---|
293 | // and over Q(a) / Fp(a) |
---|
294 | else if (rField_is_Extension()) |
---|
295 | { |
---|
296 | if (rField_is_Q_a()) setCharacteristic( 0 ); |
---|
297 | else setCharacteristic( -nGetChar() ); |
---|
298 | CanonicalForm Fa,Gb; |
---|
299 | if (currRing->minpoly!=NULL) |
---|
300 | { |
---|
301 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
302 | currRing->algring); |
---|
303 | Variable a=rootOf(mipo); |
---|
304 | CanonicalForm F( convSingAPFactoryAP( f,a,currRing ) ), |
---|
305 | G( convSingAPFactoryAP( g,a,currRing ) ); |
---|
306 | CanonicalForm FpG=F+G; |
---|
307 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
308 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
309 | { |
---|
310 | WerrorS("not univariate"); |
---|
311 | return TRUE; |
---|
312 | } |
---|
313 | res= convFactoryAPSingAP( extgcd( F, G, Fa, Gb ),currRing ); |
---|
314 | pa=convFactoryAPSingAP(Fa,currRing); |
---|
315 | pb=convFactoryAPSingAP(Gb,currRing); |
---|
316 | } |
---|
317 | else |
---|
318 | { |
---|
319 | CanonicalForm F( convSingTrPFactoryP( f ) ), G( convSingTrPFactoryP( g ) ); |
---|
320 | CanonicalForm FpG=F+G; |
---|
321 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
322 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
323 | { |
---|
324 | Off(SW_RATIONAL); |
---|
325 | WerrorS("not univariate"); |
---|
326 | return TRUE; |
---|
327 | } |
---|
328 | res= convFactoryPSingTrP( extgcd( F, G, Fa, Gb ) ); |
---|
329 | pa=convFactoryPSingTrP(Fa); |
---|
330 | pb=convFactoryPSingTrP(Gb); |
---|
331 | } |
---|
332 | Off(SW_RATIONAL); |
---|
333 | } |
---|
334 | else |
---|
335 | { |
---|
336 | WerrorS( feNotImplemented ); |
---|
337 | return TRUE; |
---|
338 | } |
---|
339 | #ifndef NDEBUG |
---|
340 | // checking the result of extgcd: |
---|
341 | poly dummy; |
---|
342 | dummy=pSub(pAdd(pMult(pCopy(f),pCopy(pa)),pMult(pCopy(g),pCopy(pb))),pCopy(res)); |
---|
343 | if (dummy!=NULL) |
---|
344 | { |
---|
345 | PrintS("extgcd( ");pWrite(f);pWrite0(g);PrintS(" )\n"); |
---|
346 | PrintS("gcd, co-factors:");pWrite(res); pWrite(pa);pWrite(pb); |
---|
347 | pDelete(&dummy); |
---|
348 | } |
---|
349 | #endif |
---|
350 | return FALSE; |
---|
351 | } |
---|
352 | |
---|
353 | BOOLEAN singclap_extgcd_r ( poly f, poly g, poly &res, poly &pa, poly &pb, const ring r ) |
---|
354 | { |
---|
355 | // for now there is only the possibility to handle univariate |
---|
356 | // polynomials over |
---|
357 | // Q and Fp ... |
---|
358 | res=NULL;pa=NULL;pb=NULL; |
---|
359 | On(SW_SYMMETRIC_FF); |
---|
360 | if ( rField_is_Q(r) || rField_is_Zp(r) ) |
---|
361 | { |
---|
362 | setCharacteristic( n_GetChar(r) ); |
---|
363 | CanonicalForm F( convSingPFactoryP( f,r ) ), G( convSingPFactoryP( g,r) ); |
---|
364 | CanonicalForm FpG=F+G; |
---|
365 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
366 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
367 | { |
---|
368 | Off(SW_RATIONAL); |
---|
369 | WerrorS("not univariate"); |
---|
370 | return TRUE; |
---|
371 | } |
---|
372 | CanonicalForm Fa,Gb; |
---|
373 | On(SW_RATIONAL); |
---|
374 | res=convFactoryPSingP( extgcd( F, G, Fa, Gb ),r ); |
---|
375 | pa=convFactoryPSingP(Fa,r); |
---|
376 | pb=convFactoryPSingP(Gb,r); |
---|
377 | Off(SW_RATIONAL); |
---|
378 | } |
---|
379 | // and over Q(a) / Fp(a) |
---|
380 | else if ( rField_is_Extension(r)) |
---|
381 | { |
---|
382 | if (rField_is_Q_a(r)) setCharacteristic( 0 ); |
---|
383 | else setCharacteristic( -n_GetChar(r) ); |
---|
384 | CanonicalForm Fa,Gb; |
---|
385 | if (r->minpoly!=NULL) |
---|
386 | { |
---|
387 | CanonicalForm mipo=convSingPFactoryP(((lnumber)r->minpoly)->z, |
---|
388 | r->algring); |
---|
389 | Variable a=rootOf(mipo); |
---|
390 | CanonicalForm F( convSingAPFactoryAP( f,a,r ) ), |
---|
391 | G( convSingAPFactoryAP( g,a,r ) ); |
---|
392 | CanonicalForm FpG=F+G; |
---|
393 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
394 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
395 | { |
---|
396 | WerrorS("not univariate"); |
---|
397 | return TRUE; |
---|
398 | } |
---|
399 | res= convFactoryAPSingAP( extgcd( F, G, Fa, Gb ),currRing ); |
---|
400 | pa=convFactoryAPSingAP(Fa,currRing); |
---|
401 | pb=convFactoryAPSingAP(Gb,currRing); |
---|
402 | } |
---|
403 | else |
---|
404 | { |
---|
405 | CanonicalForm F( convSingTrPFactoryP( f, r ) ), G( convSingTrPFactoryP( g, r ) ); |
---|
406 | CanonicalForm FpG=F+G; |
---|
407 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
408 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
409 | { |
---|
410 | Off(SW_RATIONAL); |
---|
411 | WerrorS("not univariate"); |
---|
412 | return TRUE; |
---|
413 | } |
---|
414 | res= convFactoryPSingTrP( extgcd( F, G, Fa, Gb ), r ); |
---|
415 | pa=convFactoryPSingTrP(Fa, r); |
---|
416 | pb=convFactoryPSingTrP(Gb, r); |
---|
417 | } |
---|
418 | Off(SW_RATIONAL); |
---|
419 | } |
---|
420 | else |
---|
421 | { |
---|
422 | WerrorS( feNotImplemented ); |
---|
423 | return TRUE; |
---|
424 | } |
---|
425 | return FALSE; |
---|
426 | } |
---|
427 | |
---|
428 | poly singclap_pdivide ( poly f, poly g ) |
---|
429 | { |
---|
430 | poly res=NULL; |
---|
431 | On(SW_RATIONAL); |
---|
432 | if (rField_is_Zp() || rField_is_Q()) |
---|
433 | { |
---|
434 | setCharacteristic( nGetChar() ); |
---|
435 | CanonicalForm F( convSingPFactoryP( f ) ), G( convSingPFactoryP( g ) ); |
---|
436 | res = convFactoryPSingP( F / G ); |
---|
437 | } |
---|
438 | else if (rField_is_Extension()) |
---|
439 | { |
---|
440 | if (rField_is_Q_a()) setCharacteristic( 0 ); |
---|
441 | else setCharacteristic( -nGetChar() ); |
---|
442 | if (currRing->minpoly!=NULL) |
---|
443 | { |
---|
444 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
445 | currRing->algring); |
---|
446 | Variable a=rootOf(mipo); |
---|
447 | CanonicalForm F( convSingAPFactoryAP( f,a,currRing ) ), |
---|
448 | G( convSingAPFactoryAP( g,a,currRing ) ); |
---|
449 | res= convFactoryAPSingAP( F / G,currRing ); |
---|
450 | } |
---|
451 | else |
---|
452 | { |
---|
453 | CanonicalForm F( convSingTrPFactoryP( f ) ), G( convSingTrPFactoryP( g ) ); |
---|
454 | res= convFactoryPSingTrP( F / G ); |
---|
455 | } |
---|
456 | } |
---|
457 | #if 0 // not yet working |
---|
458 | else if (rField_is_GF()) |
---|
459 | { |
---|
460 | //Print("GF(%d^%d)\n",nfCharP,nfMinPoly[0]); |
---|
461 | setCharacteristic( nfCharP,nfMinPoly[0], currRing->parameter[0][0] ); |
---|
462 | CanonicalForm F( convSingGFFactoryGF( f ) ), G( convSingGFFactoryGF( g ) ); |
---|
463 | res = convFactoryGFSingGF( F / G ); |
---|
464 | } |
---|
465 | #endif |
---|
466 | else |
---|
467 | WerrorS( feNotImplemented ); |
---|
468 | Off(SW_RATIONAL); |
---|
469 | return res; |
---|
470 | } |
---|
471 | |
---|
472 | poly singclap_pdivide_r ( poly f, poly g, const ring r ) |
---|
473 | { |
---|
474 | poly res=NULL; |
---|
475 | On(SW_RATIONAL); |
---|
476 | if (rField_is_Zp(r) || rField_is_Q(r)) |
---|
477 | { |
---|
478 | setCharacteristic( n_GetChar(r) ); |
---|
479 | CanonicalForm F( convSingPFactoryP( f,r ) ), G( convSingPFactoryP( g,r ) ); |
---|
480 | res = convFactoryPSingP( F / G,r ); |
---|
481 | } |
---|
482 | else if (rField_is_Extension(r)) |
---|
483 | { |
---|
484 | if (rField_is_Q_a(r)) setCharacteristic( 0 ); |
---|
485 | else setCharacteristic( -n_GetChar(r) ); |
---|
486 | if (r->minpoly!=NULL) |
---|
487 | { |
---|
488 | CanonicalForm mipo=convSingPFactoryP(((lnumber)r->minpoly)->z, |
---|
489 | r->algring); |
---|
490 | Variable a=rootOf(mipo); |
---|
491 | CanonicalForm F( convSingAPFactoryAP( f,a,r ) ), |
---|
492 | G( convSingAPFactoryAP( g,a,r ) ); |
---|
493 | res= convFactoryAPSingAP( F / G, r ); |
---|
494 | } |
---|
495 | else |
---|
496 | { |
---|
497 | CanonicalForm F( convSingTrPFactoryP( f,r ) ), G( convSingTrPFactoryP( g,r ) ); |
---|
498 | res= convFactoryPSingTrP( F / G,r ); |
---|
499 | } |
---|
500 | } |
---|
501 | #if 0 // not yet working |
---|
502 | else if (rField_is_GF()) |
---|
503 | { |
---|
504 | //Print("GF(%d^%d)\n",nfCharP,nfMinPoly[0]); |
---|
505 | setCharacteristic( nfCharP,nfMinPoly[0], currRing->parameter[0][0] ); |
---|
506 | CanonicalForm F( convSingGFFactoryGF( f ) ), G( convSingGFFactoryGF( g ) ); |
---|
507 | res = convFactoryGFSingGF( F / G ); |
---|
508 | } |
---|
509 | #endif |
---|
510 | else |
---|
511 | WerrorS( feNotImplemented ); |
---|
512 | Off(SW_RATIONAL); |
---|
513 | return res; |
---|
514 | } |
---|
515 | |
---|
516 | void singclap_divide_content ( poly f ) |
---|
517 | { |
---|
518 | if ( f==NULL ) |
---|
519 | { |
---|
520 | return; |
---|
521 | } |
---|
522 | else if ( pNext( f ) == NULL ) |
---|
523 | { |
---|
524 | pSetCoeff( f, nInit( 1 ) ); |
---|
525 | return; |
---|
526 | } |
---|
527 | else |
---|
528 | { |
---|
529 | if ( rField_is_Q_a() ) |
---|
530 | setCharacteristic( 0 ); |
---|
531 | else if ( rField_is_Zp_a() ) |
---|
532 | setCharacteristic( -nGetChar() ); |
---|
533 | else |
---|
534 | return; /* not implemented*/ |
---|
535 | |
---|
536 | CFList L; |
---|
537 | CanonicalForm g, h; |
---|
538 | poly p = pNext(f); |
---|
539 | |
---|
540 | // first attemp: find 2 smallest g: |
---|
541 | |
---|
542 | number g1=pGetCoeff(f); |
---|
543 | number g2=pGetCoeff(p); // p==pNext(f); |
---|
544 | pIter(p); |
---|
545 | int sz1=nSize(g1); |
---|
546 | int sz2=nSize(g2); |
---|
547 | if (sz1>sz2) |
---|
548 | { |
---|
549 | number gg=g1; |
---|
550 | g1=g2; g2=gg; |
---|
551 | int sz=sz1; |
---|
552 | sz1=sz2; sz2=sz; |
---|
553 | } |
---|
554 | while (p!=NULL) |
---|
555 | { |
---|
556 | int n_sz=nSize(pGetCoeff(p)); |
---|
557 | if (n_sz<sz1) |
---|
558 | { |
---|
559 | sz2=sz1; |
---|
560 | g2=g1; |
---|
561 | g1=pGetCoeff(p); |
---|
562 | sz1=n_sz; |
---|
563 | if (sz1<=3) break; |
---|
564 | } |
---|
565 | else if(n_sz<sz2) |
---|
566 | { |
---|
567 | sz2=n_sz; |
---|
568 | g2=pGetCoeff(p); |
---|
569 | sz2=n_sz; |
---|
570 | } |
---|
571 | pIter(p); |
---|
572 | } |
---|
573 | g = convSingPFactoryP( ((lnumber)g1)->z, currRing->algring ); |
---|
574 | g = gcd( g, convSingPFactoryP( ((lnumber)g2)->z , currRing->algring)); |
---|
575 | |
---|
576 | // second run: gcd's |
---|
577 | |
---|
578 | p = f; |
---|
579 | while ( (p != NULL) && (g != 1) && ( g != 0)) |
---|
580 | { |
---|
581 | h = convSingPFactoryP( ((lnumber)pGetCoeff(p))->z, currRing->algring ); |
---|
582 | pIter( p ); |
---|
583 | |
---|
584 | g = gcd( g, h ); |
---|
585 | |
---|
586 | L.append( h ); |
---|
587 | } |
---|
588 | if (( g == 1 ) || (g == 0)) |
---|
589 | { |
---|
590 | // pTest(f); |
---|
591 | return; |
---|
592 | } |
---|
593 | else |
---|
594 | { |
---|
595 | CFListIterator i; |
---|
596 | for ( i = L, p = f; i.hasItem(); i++, p=pNext(p) ) |
---|
597 | { |
---|
598 | lnumber c=(lnumber)pGetCoeff(p); |
---|
599 | p_Delete(&c->z,nacRing); |
---|
600 | c->z=convFactoryPSingP( i.getItem() / g, currRing->algring ); |
---|
601 | //nTest((number)c); |
---|
602 | //#ifdef LDEBUG |
---|
603 | //number cn=(number)c; |
---|
604 | //StringSetS(""); nWrite(nt); StringAppend(" ==> "); |
---|
605 | //nWrite(cn);PrintS(StringAppend("\n")); |
---|
606 | //#endif |
---|
607 | } |
---|
608 | } |
---|
609 | // pTest(f); |
---|
610 | } |
---|
611 | } |
---|
612 | |
---|
613 | static int primepower(int c) |
---|
614 | { |
---|
615 | int p=1; |
---|
616 | int cc=c; |
---|
617 | while(cc!= rInternalChar(currRing)) { cc*=c; p++; } |
---|
618 | return p; |
---|
619 | } |
---|
620 | |
---|
621 | BOOLEAN count_Factors(ideal I, intvec *v,int j, poly &f, poly fac) |
---|
622 | { |
---|
623 | pTest(f); |
---|
624 | pTest(fac); |
---|
625 | int e=0; |
---|
626 | if (!pIsConstantPoly(fac)) |
---|
627 | { |
---|
628 | #ifdef FACTORIZE2_DEBUG |
---|
629 | printf("start count_Factors(%d), Fdeg=%d, factor deg=%d\n",j,pTotaldegree(f),pTotaldegree(fac)); |
---|
630 | p_wrp(fac,currRing);PrintLn(); |
---|
631 | #endif |
---|
632 | On(SW_RATIONAL); |
---|
633 | CanonicalForm F, FAC,Q,R; |
---|
634 | Variable a; |
---|
635 | if (rField_is_Zp() || rField_is_Q()) |
---|
636 | { |
---|
637 | F=convSingPFactoryP( f ); |
---|
638 | FAC=convSingPFactoryP( fac ); |
---|
639 | } |
---|
640 | else if (rField_is_Extension()) |
---|
641 | { |
---|
642 | if (currRing->minpoly!=NULL) |
---|
643 | { |
---|
644 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
645 | currRing->algring); |
---|
646 | a=rootOf(mipo); |
---|
647 | F=convSingAPFactoryAP( f,a,currRing ); |
---|
648 | FAC=convSingAPFactoryAP( fac,a,currRing ); |
---|
649 | } |
---|
650 | else |
---|
651 | { |
---|
652 | F=convSingTrPFactoryP( f ); |
---|
653 | FAC=convSingTrPFactoryP( fac ); |
---|
654 | } |
---|
655 | } |
---|
656 | else |
---|
657 | WerrorS( feNotImplemented ); |
---|
658 | |
---|
659 | poly q; |
---|
660 | loop |
---|
661 | { |
---|
662 | Q=F; |
---|
663 | Q/=FAC; |
---|
664 | R=Q; |
---|
665 | R*=FAC; |
---|
666 | R-=F; |
---|
667 | if (R.isZero()) |
---|
668 | { |
---|
669 | if (rField_is_Zp() || rField_is_Q()) |
---|
670 | { |
---|
671 | q = convFactoryPSingP( Q ); |
---|
672 | } |
---|
673 | else if (rField_is_Extension()) |
---|
674 | { |
---|
675 | if (currRing->minpoly!=NULL) |
---|
676 | { |
---|
677 | q= convFactoryAPSingAP( Q,currRing ); |
---|
678 | } |
---|
679 | else |
---|
680 | { |
---|
681 | q= convFactoryPSingTrP( Q ); |
---|
682 | } |
---|
683 | } |
---|
684 | e++; pDelete(&f); f=q; q=NULL; F=Q; |
---|
685 | } |
---|
686 | else |
---|
687 | { |
---|
688 | break; |
---|
689 | } |
---|
690 | } |
---|
691 | if (e==0) |
---|
692 | { |
---|
693 | Off(SW_RATIONAL); |
---|
694 | return FALSE; |
---|
695 | } |
---|
696 | } |
---|
697 | else e=1; |
---|
698 | I->m[j]=fac; |
---|
699 | if (v!=NULL) (*v)[j]=e; |
---|
700 | Off(SW_RATIONAL); |
---|
701 | return TRUE; |
---|
702 | } |
---|
703 | |
---|
704 | int singclap_factorize_retry; |
---|
705 | extern int libfac_interruptflag; |
---|
706 | |
---|
707 | ideal singclap_factorize ( poly f, intvec ** v , int with_exps) |
---|
708 | /* destroys f, sets *v */ |
---|
709 | { |
---|
710 | pTest(f); |
---|
711 | #ifdef FACTORIZE2_DEBUG |
---|
712 | printf("singclap_factorize, degree %ld\n",pTotaldegree(f)); |
---|
713 | #endif |
---|
714 | // with_exps: 3,1 return only true factors, no exponents |
---|
715 | // 2 return true factors and exponents |
---|
716 | // 0 return coeff, factors and exponents |
---|
717 | BOOLEAN save_errorreported=errorreported; |
---|
718 | |
---|
719 | ideal res=NULL; |
---|
720 | |
---|
721 | // handle factorize(0) ========================================= |
---|
722 | if (f==NULL) |
---|
723 | { |
---|
724 | res=idInit(1,1); |
---|
725 | if (with_exps!=1) |
---|
726 | { |
---|
727 | (*v)=new intvec(1); |
---|
728 | (**v)[0]=1; |
---|
729 | } |
---|
730 | return res; |
---|
731 | } |
---|
732 | // handle factorize(mon) ========================================= |
---|
733 | if (pNext(f)==NULL) |
---|
734 | { |
---|
735 | int i=0; |
---|
736 | int n=0; |
---|
737 | int e; |
---|
738 | for(i=pVariables;i>0;i--) if(pGetExp(f,i)!=0) n++; |
---|
739 | if (with_exps==0) n++; // with coeff |
---|
740 | res=idInit(si_max(n,1),1); |
---|
741 | switch(with_exps) |
---|
742 | { |
---|
743 | case 0: // with coef & exp. |
---|
744 | res->m[0]=pNSet(nCopy(pGetCoeff(f))); |
---|
745 | // no break |
---|
746 | case 2: // with exp. |
---|
747 | (*v)=new intvec(si_max(1,n)); |
---|
748 | (**v)[0]=1; |
---|
749 | // no break |
---|
750 | case 1: ; |
---|
751 | #ifdef TEST |
---|
752 | default: ; |
---|
753 | #endif |
---|
754 | } |
---|
755 | if (n==0) |
---|
756 | { |
---|
757 | res->m[0]=pOne(); |
---|
758 | // (**v)[0]=1; is already done |
---|
759 | } |
---|
760 | else |
---|
761 | { |
---|
762 | for(i=pVariables;i>0;i--) |
---|
763 | { |
---|
764 | e=pGetExp(f,i); |
---|
765 | if(e!=0) |
---|
766 | { |
---|
767 | n--; |
---|
768 | poly p=pOne(); |
---|
769 | pSetExp(p,i,1); |
---|
770 | pSetm(p); |
---|
771 | res->m[n]=p; |
---|
772 | if (with_exps!=1) (**v)[n]=e; |
---|
773 | } |
---|
774 | } |
---|
775 | } |
---|
776 | pDelete(&f); |
---|
777 | return res; |
---|
778 | } |
---|
779 | //PrintS("S:");pWrite(f);PrintLn(); |
---|
780 | // use factory/libfac in general ============================== |
---|
781 | Off(SW_RATIONAL); |
---|
782 | On(SW_SYMMETRIC_FF); |
---|
783 | #ifdef HAVE_NTL |
---|
784 | extern int prime_number; |
---|
785 | if(rField_is_Q()) prime_number=0; |
---|
786 | #endif |
---|
787 | CFFList L; |
---|
788 | number N=NULL; |
---|
789 | number NN=NULL; |
---|
790 | number old_lead_coeff=nCopy(pGetCoeff(f)); |
---|
791 | |
---|
792 | if (!rField_is_Zp() && !rField_is_Zp_a()) /* Q, Q(a) */ |
---|
793 | { |
---|
794 | //if (f!=NULL) // already tested at start of routine |
---|
795 | { |
---|
796 | number n0=nCopy(pGetCoeff(f)); |
---|
797 | if (with_exps==0) |
---|
798 | N=nCopy(n0); |
---|
799 | p_Cleardenom(f, currRing); |
---|
800 | NN=nDiv(n0,pGetCoeff(f)); |
---|
801 | nDelete(&n0); |
---|
802 | if (with_exps==0) |
---|
803 | { |
---|
804 | nDelete(&N); |
---|
805 | N=nCopy(NN); |
---|
806 | } |
---|
807 | } |
---|
808 | } |
---|
809 | else if (rField_is_Zp_a()) |
---|
810 | { |
---|
811 | //if (f!=NULL) // already tested at start of routine |
---|
812 | if (singclap_factorize_retry==0) |
---|
813 | { |
---|
814 | number n0=nCopy(pGetCoeff(f)); |
---|
815 | if (with_exps==0) |
---|
816 | N=nCopy(n0); |
---|
817 | pNorm(f); |
---|
818 | p_Cleardenom(f, currRing); |
---|
819 | NN=nDiv(n0,pGetCoeff(f)); |
---|
820 | nDelete(&n0); |
---|
821 | if (with_exps==0) |
---|
822 | { |
---|
823 | nDelete(&N); |
---|
824 | N=nCopy(NN); |
---|
825 | } |
---|
826 | } |
---|
827 | } |
---|
828 | if (rField_is_Q() || rField_is_Zp()) |
---|
829 | { |
---|
830 | setCharacteristic( nGetChar() ); |
---|
831 | CanonicalForm F( convSingPFactoryP( f ) ); |
---|
832 | L = factorize( F ); |
---|
833 | } |
---|
834 | #if 0 |
---|
835 | else if (rField_is_GF()) |
---|
836 | { |
---|
837 | int c=rChar(currRing); |
---|
838 | setCharacteristic( c, primepower(c) ); |
---|
839 | CanonicalForm F( convSingGFFactoryGF( f ) ); |
---|
840 | if (F.isUnivariate()) |
---|
841 | { |
---|
842 | L = factorize( F ); |
---|
843 | } |
---|
844 | else |
---|
845 | { |
---|
846 | goto notImpl; |
---|
847 | } |
---|
848 | } |
---|
849 | #endif |
---|
850 | // and over Q(a) / Fp(a) |
---|
851 | else if (rField_is_Extension()) |
---|
852 | { |
---|
853 | if (rField_is_Q_a()) setCharacteristic( 0 ); |
---|
854 | else setCharacteristic( -nGetChar() ); |
---|
855 | if (currRing->minpoly!=NULL) |
---|
856 | { |
---|
857 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
858 | currRing->algring); |
---|
859 | Variable a=rootOf(mipo); |
---|
860 | CanonicalForm F( convSingAPFactoryAP( f,a,currRing ) ); |
---|
861 | if (rField_is_Zp_a()) |
---|
862 | { |
---|
863 | L = factorize( F, a ); |
---|
864 | } |
---|
865 | else |
---|
866 | { |
---|
867 | // over Q(a) |
---|
868 | if (F.isUnivariate()) |
---|
869 | { |
---|
870 | L= factorize (F, a); |
---|
871 | } |
---|
872 | else |
---|
873 | { |
---|
874 | CanonicalForm G( convSingTrPFactoryP( f ) ); |
---|
875 | do |
---|
876 | { |
---|
877 | libfac_interruptflag=0; |
---|
878 | L=Factorize2(G, mipo); |
---|
879 | } |
---|
880 | while ((libfac_interruptflag!=0) ||(L.isEmpty())); |
---|
881 | #ifdef FACTORIZE2_DEBUG |
---|
882 | printf("while okay\n"); |
---|
883 | #endif |
---|
884 | libfac_interruptflag=0; |
---|
885 | } |
---|
886 | } |
---|
887 | } |
---|
888 | else |
---|
889 | { |
---|
890 | CanonicalForm F( convSingTrPFactoryP( f ) ); |
---|
891 | L = factorize( F ); |
---|
892 | } |
---|
893 | } |
---|
894 | else |
---|
895 | { |
---|
896 | goto notImpl; |
---|
897 | } |
---|
898 | { |
---|
899 | poly ff=pCopy(f); // a copy for the retry stuff |
---|
900 | // the first factor should be a constant |
---|
901 | if ( ! L.getFirst().factor().inCoeffDomain() ) |
---|
902 | L.insert(CFFactor(1,1)); |
---|
903 | // convert into ideal |
---|
904 | int n = L.length(); |
---|
905 | if (n==0) n=1; |
---|
906 | CFFListIterator J=L; |
---|
907 | int j=0; |
---|
908 | if (with_exps!=1) |
---|
909 | { |
---|
910 | if ((with_exps==2)&&(n>1)) |
---|
911 | { |
---|
912 | n--; |
---|
913 | J++; |
---|
914 | } |
---|
915 | *v = new intvec( n ); |
---|
916 | } |
---|
917 | res = idInit( n ,1); |
---|
918 | for ( ; J.hasItem(); J++, j++ ) |
---|
919 | { |
---|
920 | poly p; |
---|
921 | if (with_exps!=1) (**v)[j] = J.getItem().exp(); |
---|
922 | if (rField_is_Zp() || rField_is_Q()) /* Q, Fp */ |
---|
923 | { |
---|
924 | //count_Factors(res,*v,f, j, convFactoryPSingP( J.getItem().factor() ); |
---|
925 | res->m[j] = convFactoryPSingP( J.getItem().factor() ); |
---|
926 | } |
---|
927 | #if 0 |
---|
928 | else if (rField_is_GF()) |
---|
929 | res->m[j] = convFactoryGFSingGF( J.getItem().factor() ); |
---|
930 | #endif |
---|
931 | else if (rField_is_Extension()) /* Q(a), Fp(a) */ |
---|
932 | { |
---|
933 | intvec *w=NULL; |
---|
934 | if (v!=NULL) w=*v; |
---|
935 | if (currRing->minpoly==NULL) |
---|
936 | { |
---|
937 | if(!count_Factors(res,w,j,ff,convFactoryPSingTrP( J.getItem().factor() ))) |
---|
938 | { |
---|
939 | if (w!=NULL) |
---|
940 | (*w)[j]=1; |
---|
941 | res->m[j]=pOne(); |
---|
942 | } |
---|
943 | } |
---|
944 | else |
---|
945 | { |
---|
946 | if (!count_Factors(res,w,j,ff,convFactoryAPSingAP( J.getItem().factor(),currRing ))) |
---|
947 | { |
---|
948 | if (w!=NULL) |
---|
949 | (*w)[j]=1; |
---|
950 | res->m[j]=pOne(); |
---|
951 | } |
---|
952 | } |
---|
953 | } |
---|
954 | } |
---|
955 | if (rField_is_Extension() && (!pIsConstantPoly(ff))) |
---|
956 | { |
---|
957 | singclap_factorize_retry++; |
---|
958 | if (singclap_factorize_retry<3) |
---|
959 | { |
---|
960 | int jj; |
---|
961 | #ifdef FACTORIZE2_DEBUG |
---|
962 | printf("factorize_retry\n"); |
---|
963 | #endif |
---|
964 | intvec *ww=NULL; |
---|
965 | idTest(res); |
---|
966 | ideal h=singclap_factorize ( ff, &ww , with_exps); |
---|
967 | idTest(h); |
---|
968 | int l=(*v)->length(); |
---|
969 | (*v)->resize(l+ww->length()); |
---|
970 | for(jj=0;jj<ww->length();jj++) |
---|
971 | (**v)[jj+l]=(*ww)[jj]; |
---|
972 | delete ww; |
---|
973 | ideal hh=idInit(IDELEMS(res)+IDELEMS(h),1); |
---|
974 | for(jj=IDELEMS(res)-1;jj>=0;jj--) |
---|
975 | { |
---|
976 | hh->m[jj]=res->m[jj]; |
---|
977 | res->m[jj]=NULL; |
---|
978 | } |
---|
979 | for(jj=IDELEMS(h)-1;jj>=0;jj--) |
---|
980 | { |
---|
981 | hh->m[jj+IDELEMS(res)]=h->m[jj]; |
---|
982 | h->m[jj]=NULL; |
---|
983 | } |
---|
984 | idDelete(&res); |
---|
985 | idDelete(&h); |
---|
986 | res=hh; |
---|
987 | idTest(res); |
---|
988 | ff=NULL; |
---|
989 | } |
---|
990 | else |
---|
991 | { |
---|
992 | WarnS("problem with factorize"); |
---|
993 | #if 0 |
---|
994 | pWrite(ff); |
---|
995 | idShow(res); |
---|
996 | #endif |
---|
997 | idDelete(&res); |
---|
998 | res=idInit(2,1); |
---|
999 | res->m[0]=pOne(); |
---|
1000 | res->m[1]=ff; ff=NULL; |
---|
1001 | } |
---|
1002 | } |
---|
1003 | pDelete(&ff); |
---|
1004 | if (N!=NULL) |
---|
1005 | { |
---|
1006 | pMult_nn(res->m[0],N); |
---|
1007 | nDelete(&N); |
---|
1008 | N=NULL; |
---|
1009 | } |
---|
1010 | // delete constants |
---|
1011 | if (res!=NULL) |
---|
1012 | { |
---|
1013 | int i=IDELEMS(res)-1; |
---|
1014 | int j=0; |
---|
1015 | for(;i>=0;i--) |
---|
1016 | { |
---|
1017 | if ((res->m[i]!=NULL) |
---|
1018 | && (pNext(res->m[i])==NULL) |
---|
1019 | && (pIsConstant(res->m[i]))) |
---|
1020 | { |
---|
1021 | if (with_exps!=0) |
---|
1022 | { |
---|
1023 | pDelete(&(res->m[i])); |
---|
1024 | if ((v!=NULL) && ((*v)!=NULL)) |
---|
1025 | (**v)[i]=0; |
---|
1026 | j++; |
---|
1027 | } |
---|
1028 | else if (i!=0) |
---|
1029 | { |
---|
1030 | while ((v!=NULL) && ((*v)!=NULL) && ((**v)[i]>1)) |
---|
1031 | { |
---|
1032 | res->m[0]=pMult(res->m[0],pCopy(res->m[i])); |
---|
1033 | (**v)[i]--; |
---|
1034 | } |
---|
1035 | res->m[0]=pMult(res->m[0],res->m[i]); |
---|
1036 | res->m[i]=NULL; |
---|
1037 | if ((v!=NULL) && ((*v)!=NULL)) |
---|
1038 | (**v)[i]=1; |
---|
1039 | j++; |
---|
1040 | } |
---|
1041 | } |
---|
1042 | } |
---|
1043 | if (j>0) |
---|
1044 | { |
---|
1045 | idSkipZeroes(res); |
---|
1046 | if ((v!=NULL) && ((*v)!=NULL)) |
---|
1047 | { |
---|
1048 | intvec *w=*v; |
---|
1049 | int len=IDELEMS(res); |
---|
1050 | *v = new intvec( len ); |
---|
1051 | for (i=0,j=0;i<si_min(w->length(),len);i++) |
---|
1052 | { |
---|
1053 | if((*w)[i]!=0) |
---|
1054 | { |
---|
1055 | (**v)[j]=(*w)[i]; j++; |
---|
1056 | } |
---|
1057 | } |
---|
1058 | delete w; |
---|
1059 | } |
---|
1060 | } |
---|
1061 | if (res->m[0]==NULL) |
---|
1062 | { |
---|
1063 | res->m[0]=pOne(); |
---|
1064 | } |
---|
1065 | } |
---|
1066 | } |
---|
1067 | if (rField_is_Q_a() && (currRing->minpoly!=NULL)) |
---|
1068 | { |
---|
1069 | int i=IDELEMS(res)-1; |
---|
1070 | int stop=1; |
---|
1071 | if (with_exps!=0) stop=0; |
---|
1072 | for(;i>=stop;i--) |
---|
1073 | { |
---|
1074 | pNorm(res->m[i]); |
---|
1075 | } |
---|
1076 | if (with_exps==0) pSetCoeff(res->m[0],old_lead_coeff); |
---|
1077 | else nDelete(&old_lead_coeff); |
---|
1078 | } |
---|
1079 | else |
---|
1080 | nDelete(&old_lead_coeff); |
---|
1081 | errorreported=save_errorreported; |
---|
1082 | notImpl: |
---|
1083 | if (res==NULL) |
---|
1084 | WerrorS( feNotImplemented ); |
---|
1085 | if (NN!=NULL) |
---|
1086 | { |
---|
1087 | nDelete(&NN); |
---|
1088 | } |
---|
1089 | if (N!=NULL) |
---|
1090 | { |
---|
1091 | nDelete(&N); |
---|
1092 | } |
---|
1093 | if (f!=NULL) pDelete(&f); |
---|
1094 | //PrintS("......S\n"); |
---|
1095 | return res; |
---|
1096 | } |
---|
1097 | ideal singclap_sqrfree ( poly f) |
---|
1098 | { |
---|
1099 | pTest(f); |
---|
1100 | #ifdef FACTORIZE2_DEBUG |
---|
1101 | printf("singclap_sqrfree, degree %d\n",pTotaldegree(f)); |
---|
1102 | #endif |
---|
1103 | // with_exps: 3,1 return only true factors, no exponents |
---|
1104 | // 2 return true factors and exponents |
---|
1105 | // 0 return coeff, factors and exponents |
---|
1106 | BOOLEAN save_errorreported=errorreported; |
---|
1107 | |
---|
1108 | ideal res=NULL; |
---|
1109 | |
---|
1110 | // handle factorize(0) ========================================= |
---|
1111 | if (f==NULL) |
---|
1112 | { |
---|
1113 | res=idInit(1,1); |
---|
1114 | return res; |
---|
1115 | } |
---|
1116 | // handle factorize(mon) ========================================= |
---|
1117 | if (pNext(f)==NULL) |
---|
1118 | { |
---|
1119 | int i=0; |
---|
1120 | int n=0; |
---|
1121 | int e; |
---|
1122 | for(i=pVariables;i>0;i--) if(pGetExp(f,i)!=0) n++; |
---|
1123 | n++; // with coeff |
---|
1124 | res=idInit(si_max(n,1),1); |
---|
1125 | res->m[0]=pNSet(nCopy(pGetCoeff(f))); |
---|
1126 | if (n==0) |
---|
1127 | { |
---|
1128 | res->m[0]=pOne(); |
---|
1129 | // (**v)[0]=1; is already done |
---|
1130 | return res; |
---|
1131 | } |
---|
1132 | for(i=pVariables;i>0;i--) |
---|
1133 | { |
---|
1134 | e=pGetExp(f,i); |
---|
1135 | if(e!=0) |
---|
1136 | { |
---|
1137 | n--; |
---|
1138 | poly p=pOne(); |
---|
1139 | pSetExp(p,i,1); |
---|
1140 | pSetm(p); |
---|
1141 | res->m[n]=p; |
---|
1142 | } |
---|
1143 | } |
---|
1144 | return res; |
---|
1145 | } |
---|
1146 | //PrintS("S:");pWrite(f);PrintLn(); |
---|
1147 | // use factory/libfac in general ============================== |
---|
1148 | Off(SW_RATIONAL); |
---|
1149 | On(SW_SYMMETRIC_FF); |
---|
1150 | #ifdef HAVE_NTL |
---|
1151 | extern int prime_number; |
---|
1152 | if(rField_is_Q()) prime_number=0; |
---|
1153 | #endif |
---|
1154 | CFFList L; |
---|
1155 | |
---|
1156 | if (!rField_is_Zp() && !rField_is_Zp_a()) /* Q, Q(a) */ |
---|
1157 | { |
---|
1158 | //if (f!=NULL) // already tested at start of routine |
---|
1159 | { |
---|
1160 | p_Cleardenom(f, currRing); |
---|
1161 | } |
---|
1162 | } |
---|
1163 | else if (rField_is_Zp_a()) |
---|
1164 | { |
---|
1165 | //if (f!=NULL) // already tested at start of routine |
---|
1166 | if (singclap_factorize_retry==0) |
---|
1167 | { |
---|
1168 | pNorm(f); |
---|
1169 | p_Cleardenom(f, currRing); |
---|
1170 | } |
---|
1171 | } |
---|
1172 | if (rField_is_Q() || rField_is_Zp()) |
---|
1173 | { |
---|
1174 | setCharacteristic( nGetChar() ); |
---|
1175 | CanonicalForm F( convSingPFactoryP( f ) ); |
---|
1176 | L = sqrFree( F ); |
---|
1177 | } |
---|
1178 | #if 0 |
---|
1179 | else if (rField_is_GF()) |
---|
1180 | { |
---|
1181 | int c=rChar(currRing); |
---|
1182 | setCharacteristic( c, primepower(c) ); |
---|
1183 | CanonicalForm F( convSingGFFactoryGF( f ) ); |
---|
1184 | if (F.isUnivariate()) |
---|
1185 | { |
---|
1186 | L = factorize( F ); |
---|
1187 | } |
---|
1188 | else |
---|
1189 | { |
---|
1190 | goto notImpl; |
---|
1191 | } |
---|
1192 | } |
---|
1193 | #endif |
---|
1194 | // and over Q(a) / Fp(a) |
---|
1195 | else if (rField_is_Extension()) |
---|
1196 | { |
---|
1197 | if (rField_is_Q_a()) setCharacteristic( 0 ); |
---|
1198 | else setCharacteristic( -nGetChar() ); |
---|
1199 | if (currRing->minpoly!=NULL) |
---|
1200 | { |
---|
1201 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
1202 | currRing->algring); |
---|
1203 | Variable a=rootOf(mipo); |
---|
1204 | CanonicalForm F( convSingAPFactoryAP( f,a,currRing ) ); |
---|
1205 | CFFList SqrFreeMV( const CanonicalForm & f , const CanonicalForm & mipo=0) ; |
---|
1206 | |
---|
1207 | L = SqrFreeMV( F,mipo ); |
---|
1208 | //WarnS("L = sqrFree( F,mipo );"); |
---|
1209 | //L = sqrFree( F ); |
---|
1210 | } |
---|
1211 | else |
---|
1212 | { |
---|
1213 | CanonicalForm F( convSingTrPFactoryP( f ) ); |
---|
1214 | L = sqrFree( F ); |
---|
1215 | } |
---|
1216 | } |
---|
1217 | else |
---|
1218 | { |
---|
1219 | goto notImpl; |
---|
1220 | } |
---|
1221 | { |
---|
1222 | // convert into ideal |
---|
1223 | int n = L.length(); |
---|
1224 | if (n==0) n=1; |
---|
1225 | CFFListIterator J=L; |
---|
1226 | int j=0; |
---|
1227 | res = idInit( n ,1); |
---|
1228 | for ( ; J.hasItem(); J++, j++ ) |
---|
1229 | { |
---|
1230 | poly p; |
---|
1231 | if (rField_is_Zp() || rField_is_Q()) /* Q, Fp */ |
---|
1232 | //count_Factors(res,*v,f, j, convFactoryPSingP( J.getItem().factor() ); |
---|
1233 | res->m[j] = convFactoryPSingP( J.getItem().factor() ); |
---|
1234 | #if 0 |
---|
1235 | else if (rField_is_GF()) |
---|
1236 | res->m[j] = convFactoryGFSingGF( J.getItem().factor() ); |
---|
1237 | #endif |
---|
1238 | else if (rField_is_Extension()) /* Q(a), Fp(a) */ |
---|
1239 | { |
---|
1240 | if (currRing->minpoly==NULL) |
---|
1241 | res->m[j]=convFactoryPSingTrP( J.getItem().factor() ); |
---|
1242 | else |
---|
1243 | res->m[j]=convFactoryAPSingAP( J.getItem().factor(),currRing ); |
---|
1244 | } |
---|
1245 | } |
---|
1246 | if (res->m[0]==NULL) |
---|
1247 | { |
---|
1248 | res->m[0]=pOne(); |
---|
1249 | } |
---|
1250 | } |
---|
1251 | pDelete(&f); |
---|
1252 | errorreported=save_errorreported; |
---|
1253 | notImpl: |
---|
1254 | if (res==NULL) |
---|
1255 | WerrorS( feNotImplemented ); |
---|
1256 | return res; |
---|
1257 | } |
---|
1258 | matrix singclap_irrCharSeries ( ideal I) |
---|
1259 | { |
---|
1260 | if (idIs0(I)) return mpNew(1,1); |
---|
1261 | |
---|
1262 | // for now there is only the possibility to handle polynomials over |
---|
1263 | // Q and Fp ... |
---|
1264 | matrix res=NULL; |
---|
1265 | int i; |
---|
1266 | Off(SW_RATIONAL); |
---|
1267 | On(SW_SYMMETRIC_FF); |
---|
1268 | CFList L; |
---|
1269 | ListCFList LL; |
---|
1270 | if (((nGetChar() == 0) || (nGetChar() > 1) ) |
---|
1271 | && (currRing->parameter==NULL)) |
---|
1272 | { |
---|
1273 | setCharacteristic( nGetChar() ); |
---|
1274 | for(i=0;i<IDELEMS(I);i++) |
---|
1275 | { |
---|
1276 | poly p=I->m[i]; |
---|
1277 | if (p!=NULL) |
---|
1278 | { |
---|
1279 | p=pCopy(p); |
---|
1280 | p_Cleardenom(p, currRing); |
---|
1281 | L.append(convSingPFactoryP(p)); |
---|
1282 | } |
---|
1283 | } |
---|
1284 | } |
---|
1285 | // and over Q(a) / Fp(a) |
---|
1286 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
1287 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
1288 | { |
---|
1289 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1290 | else setCharacteristic( -nGetChar() ); |
---|
1291 | for(i=0;i<IDELEMS(I);i++) |
---|
1292 | { |
---|
1293 | poly p=I->m[i]; |
---|
1294 | if (p!=NULL) |
---|
1295 | { |
---|
1296 | p=pCopy(p); |
---|
1297 | p_Cleardenom(p, currRing); |
---|
1298 | L.append(convSingTrPFactoryP(p)); |
---|
1299 | } |
---|
1300 | } |
---|
1301 | } |
---|
1302 | else |
---|
1303 | { |
---|
1304 | WerrorS( feNotImplemented ); |
---|
1305 | return res; |
---|
1306 | } |
---|
1307 | |
---|
1308 | // a very bad work-around --- FIX IT in libfac |
---|
1309 | // should be fixed as of 2001/6/27 |
---|
1310 | int tries=0; |
---|
1311 | int m,n; |
---|
1312 | ListIterator<CFList> LLi; |
---|
1313 | loop |
---|
1314 | { |
---|
1315 | LL=IrrCharSeries(L); |
---|
1316 | m= LL.length(); // Anzahl Zeilen |
---|
1317 | n=0; |
---|
1318 | for ( LLi = LL; LLi.hasItem(); LLi++ ) |
---|
1319 | { |
---|
1320 | n = si_max(LLi.getItem().length(),n); |
---|
1321 | } |
---|
1322 | if ((m!=0) && (n!=0)) break; |
---|
1323 | tries++; |
---|
1324 | if (tries>=5) break; |
---|
1325 | } |
---|
1326 | if ((m==0) || (n==0)) |
---|
1327 | { |
---|
1328 | Warn("char_series returns %d x %d matrix from %d input polys (%d)", |
---|
1329 | m,n,IDELEMS(I)+1,LL.length()); |
---|
1330 | iiWriteMatrix((matrix)I,"I",2,0); |
---|
1331 | m=si_max(m,1); |
---|
1332 | n=si_max(n,1); |
---|
1333 | } |
---|
1334 | res=mpNew(m,n); |
---|
1335 | CFListIterator Li; |
---|
1336 | for ( m=1, LLi = LL; LLi.hasItem(); LLi++, m++ ) |
---|
1337 | { |
---|
1338 | for (n=1, Li = LLi.getItem(); Li.hasItem(); Li++, n++) |
---|
1339 | { |
---|
1340 | if ( (nGetChar() == 0) || (nGetChar() > 1) ) |
---|
1341 | MATELEM(res,m,n)=convFactoryPSingP(Li.getItem()); |
---|
1342 | else |
---|
1343 | MATELEM(res,m,n)=convFactoryPSingTrP(Li.getItem()); |
---|
1344 | } |
---|
1345 | } |
---|
1346 | Off(SW_RATIONAL); |
---|
1347 | return res; |
---|
1348 | } |
---|
1349 | |
---|
1350 | char* singclap_neworder ( ideal I) |
---|
1351 | { |
---|
1352 | int i; |
---|
1353 | Off(SW_RATIONAL); |
---|
1354 | On(SW_SYMMETRIC_FF); |
---|
1355 | CFList L; |
---|
1356 | if (((nGetChar() == 0) || (nGetChar() > 1) ) |
---|
1357 | && (currRing->parameter==NULL)) |
---|
1358 | { |
---|
1359 | setCharacteristic( nGetChar() ); |
---|
1360 | for(i=0;i<IDELEMS(I);i++) |
---|
1361 | { |
---|
1362 | L.append(convSingPFactoryP(I->m[i])); |
---|
1363 | } |
---|
1364 | } |
---|
1365 | // and over Q(a) / Fp(a) |
---|
1366 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
1367 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
1368 | { |
---|
1369 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1370 | else setCharacteristic( -nGetChar() ); |
---|
1371 | for(i=0;i<IDELEMS(I);i++) |
---|
1372 | { |
---|
1373 | L.append(convSingTrPFactoryP(I->m[i])); |
---|
1374 | } |
---|
1375 | } |
---|
1376 | else |
---|
1377 | { |
---|
1378 | WerrorS( feNotImplemented ); |
---|
1379 | return NULL; |
---|
1380 | } |
---|
1381 | |
---|
1382 | List<int> IL=neworderint(L); |
---|
1383 | ListIterator<int> Li; |
---|
1384 | StringSetS(""); |
---|
1385 | Li = IL; |
---|
1386 | int offs=rPar(currRing); |
---|
1387 | int* mark=(int*)omAlloc0((pVariables+offs)*sizeof(int)); |
---|
1388 | int cnt=pVariables+offs; |
---|
1389 | loop |
---|
1390 | { |
---|
1391 | if(! Li.hasItem()) break; |
---|
1392 | BOOLEAN done=TRUE; |
---|
1393 | i=Li.getItem()-1; |
---|
1394 | mark[i]=1; |
---|
1395 | if (i<offs) |
---|
1396 | { |
---|
1397 | done=FALSE; |
---|
1398 | //StringAppendS(currRing->parameter[i]); |
---|
1399 | } |
---|
1400 | else |
---|
1401 | { |
---|
1402 | StringAppendS(currRing->names[i-offs]); |
---|
1403 | } |
---|
1404 | Li++; |
---|
1405 | cnt--; |
---|
1406 | if(cnt==0) break; |
---|
1407 | if (done) StringAppendS(","); |
---|
1408 | } |
---|
1409 | for(i=0;i<pVariables+offs;i++) |
---|
1410 | { |
---|
1411 | BOOLEAN done=TRUE; |
---|
1412 | if(mark[i]==0) |
---|
1413 | { |
---|
1414 | if (i<offs) |
---|
1415 | { |
---|
1416 | done=FALSE; |
---|
1417 | //StringAppendS(currRing->parameter[i]); |
---|
1418 | } |
---|
1419 | else |
---|
1420 | { |
---|
1421 | StringAppendS(currRing->names[i-offs]); |
---|
1422 | } |
---|
1423 | cnt--; |
---|
1424 | if(cnt==0) break; |
---|
1425 | if (done) StringAppendS(","); |
---|
1426 | } |
---|
1427 | } |
---|
1428 | char * s=omStrDup(StringAppendS("")); |
---|
1429 | if (s[strlen(s)-1]==',') s[strlen(s)-1]='\0'; |
---|
1430 | return s; |
---|
1431 | } |
---|
1432 | |
---|
1433 | BOOLEAN singclap_isSqrFree(poly f) |
---|
1434 | { |
---|
1435 | BOOLEAN b=FALSE; |
---|
1436 | Off(SW_RATIONAL); |
---|
1437 | // Q / Fp |
---|
1438 | if (((nGetChar() == 0) || (nGetChar() > 1) ) |
---|
1439 | &&(currRing->parameter==NULL)) |
---|
1440 | { |
---|
1441 | setCharacteristic( nGetChar() ); |
---|
1442 | CanonicalForm F( convSingPFactoryP( f ) ); |
---|
1443 | if((nGetChar()>1)&&(!F.isUnivariate())) |
---|
1444 | goto err; |
---|
1445 | b=(BOOLEAN)isSqrFree(F); |
---|
1446 | } |
---|
1447 | // and over Q(a) / Fp(a) |
---|
1448 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
1449 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
1450 | { |
---|
1451 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1452 | else setCharacteristic( -nGetChar() ); |
---|
1453 | //if (currRing->minpoly!=NULL) |
---|
1454 | //{ |
---|
1455 | // CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
1456 | // currRing->algring); |
---|
1457 | // Variable a=rootOf(mipo); |
---|
1458 | // CanonicalForm F( convSingAPFactoryAP( f,a ) ); |
---|
1459 | // ... |
---|
1460 | //} |
---|
1461 | //else |
---|
1462 | { |
---|
1463 | CanonicalForm F( convSingTrPFactoryP( f ) ); |
---|
1464 | b=(BOOLEAN)isSqrFree(F); |
---|
1465 | } |
---|
1466 | Off(SW_RATIONAL); |
---|
1467 | } |
---|
1468 | else |
---|
1469 | { |
---|
1470 | err: |
---|
1471 | WerrorS( feNotImplemented ); |
---|
1472 | } |
---|
1473 | return b; |
---|
1474 | } |
---|
1475 | |
---|
1476 | poly singclap_det( const matrix m ) |
---|
1477 | { |
---|
1478 | int r=m->rows(); |
---|
1479 | if (r!=m->cols()) |
---|
1480 | { |
---|
1481 | Werror("det of %d x %d matrix",r,m->cols()); |
---|
1482 | return NULL; |
---|
1483 | } |
---|
1484 | poly res=NULL; |
---|
1485 | if (( nGetChar() == 0 || nGetChar() > 1 ) |
---|
1486 | && (currRing->parameter==NULL)) |
---|
1487 | { |
---|
1488 | setCharacteristic( nGetChar() ); |
---|
1489 | CFMatrix M(r,r); |
---|
1490 | int i,j; |
---|
1491 | for(i=r;i>0;i--) |
---|
1492 | { |
---|
1493 | for(j=r;j>0;j--) |
---|
1494 | { |
---|
1495 | M(i,j)=convSingPFactoryP(MATELEM(m,i,j)); |
---|
1496 | } |
---|
1497 | } |
---|
1498 | res= convFactoryPSingP( determinant(M,r) ) ; |
---|
1499 | } |
---|
1500 | // and over Q(a) / Fp(a) |
---|
1501 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
1502 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
1503 | { |
---|
1504 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1505 | else setCharacteristic( -nGetChar() ); |
---|
1506 | CFMatrix M(r,r); |
---|
1507 | poly res; |
---|
1508 | if (currRing->minpoly!=NULL) |
---|
1509 | { |
---|
1510 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
1511 | currRing->algring); |
---|
1512 | Variable a=rootOf(mipo); |
---|
1513 | int i,j; |
---|
1514 | for(i=r;i>0;i--) |
---|
1515 | { |
---|
1516 | for(j=r;j>0;j--) |
---|
1517 | { |
---|
1518 | M(i,j)=convSingAPFactoryAP(MATELEM(m,i,j),a,currRing); |
---|
1519 | } |
---|
1520 | } |
---|
1521 | res= convFactoryAPSingAP( determinant(M,r),currRing ) ; |
---|
1522 | } |
---|
1523 | else |
---|
1524 | { |
---|
1525 | int i,j; |
---|
1526 | for(i=r;i>0;i--) |
---|
1527 | { |
---|
1528 | for(j=r;j>0;j--) |
---|
1529 | { |
---|
1530 | M(i,j)=convSingTrPFactoryP(MATELEM(m,i,j)); |
---|
1531 | } |
---|
1532 | } |
---|
1533 | res= convFactoryPSingTrP( determinant(M,r) ); |
---|
1534 | } |
---|
1535 | } |
---|
1536 | else |
---|
1537 | WerrorS( feNotImplemented ); |
---|
1538 | Off(SW_RATIONAL); |
---|
1539 | return res; |
---|
1540 | } |
---|
1541 | |
---|
1542 | int singclap_det_i( intvec * m ) |
---|
1543 | { |
---|
1544 | setCharacteristic( 0 ); |
---|
1545 | CFMatrix M(m->rows(),m->cols()); |
---|
1546 | int i,j; |
---|
1547 | for(i=m->rows();i>0;i--) |
---|
1548 | { |
---|
1549 | for(j=m->cols();j>0;j--) |
---|
1550 | { |
---|
1551 | M(i,j)=IMATELEM(*m,i,j); |
---|
1552 | } |
---|
1553 | } |
---|
1554 | int res= convFactoryISingI( determinant(M,m->rows())) ; |
---|
1555 | Off(SW_RATIONAL); |
---|
1556 | return res; |
---|
1557 | } |
---|
1558 | matrix singntl_HNF(matrix m ) |
---|
1559 | { |
---|
1560 | int r=m->rows(); |
---|
1561 | if (r!=m->cols()) |
---|
1562 | { |
---|
1563 | Werror("HNF of %d x %d matrix",r,m->cols()); |
---|
1564 | return NULL; |
---|
1565 | } |
---|
1566 | matrix res=mpNew(r,r); |
---|
1567 | if (rField_is_Q(currRing)) |
---|
1568 | { |
---|
1569 | |
---|
1570 | CFMatrix M(r,r); |
---|
1571 | int i,j; |
---|
1572 | for(i=r;i>0;i--) |
---|
1573 | { |
---|
1574 | for(j=r;j>0;j--) |
---|
1575 | { |
---|
1576 | M(i,j)=convSingPFactoryP(MATELEM(m,i,j)); |
---|
1577 | } |
---|
1578 | } |
---|
1579 | CFMatrix *MM=cf_HNF(M); |
---|
1580 | for(i=r;i>0;i--) |
---|
1581 | { |
---|
1582 | for(j=r;j>0;j--) |
---|
1583 | { |
---|
1584 | MATELEM(res,i,j)=convFactoryPSingP((*MM)(i,j)); |
---|
1585 | } |
---|
1586 | } |
---|
1587 | delete MM; |
---|
1588 | } |
---|
1589 | return res; |
---|
1590 | } |
---|
1591 | intvec* singntl_HNF(intvec* m ) |
---|
1592 | { |
---|
1593 | int r=m->rows(); |
---|
1594 | if (r!=m->cols()) |
---|
1595 | { |
---|
1596 | Werror("HNF of %d x %d matrix",r,m->cols()); |
---|
1597 | return NULL; |
---|
1598 | } |
---|
1599 | setCharacteristic( 0 ); |
---|
1600 | CFMatrix M(r,r); |
---|
1601 | int i,j; |
---|
1602 | for(i=r;i>0;i--) |
---|
1603 | { |
---|
1604 | for(j=r;j>0;j--) |
---|
1605 | { |
---|
1606 | M(i,j)=IMATELEM(*m,i,j); |
---|
1607 | } |
---|
1608 | } |
---|
1609 | CFMatrix *MM=cf_HNF(M); |
---|
1610 | intvec *mm=ivCopy(m); |
---|
1611 | for(i=r;i>0;i--) |
---|
1612 | { |
---|
1613 | for(j=r;j>0;j--) |
---|
1614 | { |
---|
1615 | IMATELEM(*mm,i,j)=convFactoryISingI((*MM)(i,j)); |
---|
1616 | } |
---|
1617 | } |
---|
1618 | delete MM; |
---|
1619 | return mm; |
---|
1620 | } |
---|
1621 | matrix singntl_LLL(matrix m ) |
---|
1622 | { |
---|
1623 | int r=m->rows(); |
---|
1624 | int c=m->cols(); |
---|
1625 | matrix res=mpNew(r,c); |
---|
1626 | if (rField_is_Q(currRing)) |
---|
1627 | { |
---|
1628 | CFMatrix M(r,c); |
---|
1629 | int i,j; |
---|
1630 | for(i=r;i>0;i--) |
---|
1631 | { |
---|
1632 | for(j=c;j>0;j--) |
---|
1633 | { |
---|
1634 | M(i,j)=convSingPFactoryP(MATELEM(m,i,j)); |
---|
1635 | } |
---|
1636 | } |
---|
1637 | CFMatrix *MM=cf_LLL(M); |
---|
1638 | for(i=r;i>0;i--) |
---|
1639 | { |
---|
1640 | for(j=c;j>0;j--) |
---|
1641 | { |
---|
1642 | MATELEM(res,i,j)=convFactoryPSingP((*MM)(i,j)); |
---|
1643 | } |
---|
1644 | } |
---|
1645 | delete MM; |
---|
1646 | } |
---|
1647 | return res; |
---|
1648 | } |
---|
1649 | intvec* singntl_LLL(intvec* m ) |
---|
1650 | { |
---|
1651 | int r=m->rows(); |
---|
1652 | int c=m->cols(); |
---|
1653 | setCharacteristic( 0 ); |
---|
1654 | CFMatrix M(r,c); |
---|
1655 | int i,j; |
---|
1656 | for(i=r;i>0;i--) |
---|
1657 | { |
---|
1658 | for(j=r;j>0;j--) |
---|
1659 | { |
---|
1660 | M(i,j)=IMATELEM(*m,i,j); |
---|
1661 | } |
---|
1662 | } |
---|
1663 | CFMatrix *MM=cf_LLL(M); |
---|
1664 | intvec *mm=ivCopy(m); |
---|
1665 | for(i=r;i>0;i--) |
---|
1666 | { |
---|
1667 | for(j=c;j>0;j--) |
---|
1668 | { |
---|
1669 | IMATELEM(*mm,i,j)=convFactoryISingI((*MM)(i,j)); |
---|
1670 | } |
---|
1671 | } |
---|
1672 | delete MM; |
---|
1673 | return mm; |
---|
1674 | } |
---|
1675 | |
---|
1676 | napoly singclap_alglcm ( napoly f, napoly g ) |
---|
1677 | { |
---|
1678 | |
---|
1679 | // over Q(a) / Fp(a) |
---|
1680 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1681 | else setCharacteristic( -nGetChar() ); |
---|
1682 | napoly res; |
---|
1683 | |
---|
1684 | if (currRing->minpoly!=NULL) |
---|
1685 | { |
---|
1686 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
1687 | currRing->algring); |
---|
1688 | Variable a=rootOf(mipo); |
---|
1689 | CanonicalForm F( convSingAFactoryA( f,a, currRing ) ), |
---|
1690 | G( convSingAFactoryA( g,a, currRing ) ); |
---|
1691 | CanonicalForm GCD; |
---|
1692 | |
---|
1693 | // calculate gcd |
---|
1694 | GCD = gcd( F, G ); |
---|
1695 | |
---|
1696 | // calculate lcm |
---|
1697 | res= convFactoryASingA( (F/GCD)*G,currRing ); |
---|
1698 | } |
---|
1699 | else |
---|
1700 | { |
---|
1701 | CanonicalForm F( convSingPFactoryP( f,currRing->algring ) ), |
---|
1702 | G( convSingPFactoryP( g,currRing->algring ) ); |
---|
1703 | CanonicalForm GCD; |
---|
1704 | // calculate gcd |
---|
1705 | GCD = gcd( F, G ); |
---|
1706 | |
---|
1707 | // calculate lcm |
---|
1708 | res= convFactoryPSingP( (F/GCD)*G, currRing->algring ); |
---|
1709 | } |
---|
1710 | |
---|
1711 | Off(SW_RATIONAL); |
---|
1712 | return res; |
---|
1713 | } |
---|
1714 | |
---|
1715 | void singclap_algdividecontent ( napoly f, napoly g, napoly &ff, napoly &gg ) |
---|
1716 | { |
---|
1717 | // over Q(a) / Fp(a) |
---|
1718 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1719 | else setCharacteristic( -nGetChar() ); |
---|
1720 | ff=gg=NULL; |
---|
1721 | On(SW_RATIONAL); |
---|
1722 | |
---|
1723 | if (currRing->minpoly!=NULL) |
---|
1724 | { |
---|
1725 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
1726 | currRing->algring); |
---|
1727 | Variable a=rootOf(mipo); |
---|
1728 | CanonicalForm F( convSingAFactoryA( f,a, currRing ) ), |
---|
1729 | G( convSingAFactoryA( g,a, currRing ) ); |
---|
1730 | CanonicalForm GCD; |
---|
1731 | |
---|
1732 | GCD=gcd( F, G ); |
---|
1733 | |
---|
1734 | if ((GCD!=1) && (GCD!=0)) |
---|
1735 | { |
---|
1736 | ff= convFactoryASingA( F/ GCD, currRing ); |
---|
1737 | gg= convFactoryASingA( G/ GCD, currRing ); |
---|
1738 | } |
---|
1739 | } |
---|
1740 | else |
---|
1741 | { |
---|
1742 | CanonicalForm F( convSingPFactoryP( f,currRing->algring ) ), |
---|
1743 | G( convSingPFactoryP( g,currRing->algring ) ); |
---|
1744 | CanonicalForm GCD; |
---|
1745 | |
---|
1746 | GCD=gcd( F, G ); |
---|
1747 | |
---|
1748 | if ((GCD!=1) && (GCD!=0)) |
---|
1749 | { |
---|
1750 | ff= convFactoryPSingP( F/ GCD, currRing->algring ); |
---|
1751 | gg= convFactoryPSingP( G/ GCD, currRing->algring ); |
---|
1752 | } |
---|
1753 | } |
---|
1754 | |
---|
1755 | Off(SW_RATIONAL); |
---|
1756 | } |
---|
1757 | |
---|
1758 | #if 0 |
---|
1759 | lists singclap_chineseRemainder(lists x, lists q) |
---|
1760 | { |
---|
1761 | //assume(x->nr == q->nr); |
---|
1762 | //assume(x->nr >= 0); |
---|
1763 | int n=x->nr+1; |
---|
1764 | if ((x->nr<0) || (x->nr!=q->nr)) |
---|
1765 | { |
---|
1766 | WerrorS("list are empty or not of equal length"); |
---|
1767 | return NULL; |
---|
1768 | } |
---|
1769 | lists res=(lists)omAlloc0Bin(slists_bin); |
---|
1770 | CFArray X(1,n), Q(1,n); |
---|
1771 | int i; |
---|
1772 | for(i=0; i<n; i++) |
---|
1773 | { |
---|
1774 | if (x->m[i-1].Typ()==INT_CMD) |
---|
1775 | { |
---|
1776 | X[i]=(int)x->m[i-1].Data(); |
---|
1777 | } |
---|
1778 | else if (x->m[i-1].Typ()==NUMBER_CMD) |
---|
1779 | { |
---|
1780 | number N=(number)x->m[i-1].Data(); |
---|
1781 | X[i]=convSingNFactoryN(N); |
---|
1782 | } |
---|
1783 | else |
---|
1784 | { |
---|
1785 | WerrorS("illegal type in chineseRemainder"); |
---|
1786 | omFreeBin(res,slists_bin); |
---|
1787 | return NULL; |
---|
1788 | } |
---|
1789 | if (q->m[i-1].Typ()==INT_CMD) |
---|
1790 | { |
---|
1791 | Q[i]=(int)q->m[i-1].Data(); |
---|
1792 | } |
---|
1793 | else if (q->m[i-1].Typ()==NUMBER_CMD) |
---|
1794 | { |
---|
1795 | number N=(number)x->m[i-1].Data(); |
---|
1796 | Q[i]=convSingNFactoryN(N); |
---|
1797 | } |
---|
1798 | else |
---|
1799 | { |
---|
1800 | WerrorS("illegal type in chineseRemainder"); |
---|
1801 | omFreeBin(res,slists_bin); |
---|
1802 | return NULL; |
---|
1803 | } |
---|
1804 | } |
---|
1805 | CanonicalForm r, prod; |
---|
1806 | chineseRemainder( X, Q, r, prod ); |
---|
1807 | res->Init(2); |
---|
1808 | res->m[0].rtyp=NUMBER_CMD; |
---|
1809 | res->m[1].rtyp=NUMBER_CMD; |
---|
1810 | res->m[0].data=(char *)convFactoryNSingN( r ); |
---|
1811 | res->m[1].data=(char *)convFactoryNSingN( prod ); |
---|
1812 | return res; |
---|
1813 | } |
---|
1814 | #endif |
---|
1815 | #endif |
---|