1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* |
---|
5 | * ABSTRACT - Hilbert series |
---|
6 | */ |
---|
7 | |
---|
8 | #include <kernel/mod2.h> |
---|
9 | |
---|
10 | #include <omalloc/omalloc.h> |
---|
11 | #include <misc/auxiliary.h> |
---|
12 | #include <misc/mylimits.h> |
---|
13 | #include <misc/intvec.h> |
---|
14 | |
---|
15 | #include <kernel/combinatorics/hilb.h> |
---|
16 | #include <kernel/combinatorics/stairc.h> |
---|
17 | #include <kernel/combinatorics/hutil.h> |
---|
18 | |
---|
19 | #include <polys/monomials/ring.h> |
---|
20 | #include <polys/monomials/p_polys.h> |
---|
21 | #include <polys/simpleideals.h> |
---|
22 | |
---|
23 | |
---|
24 | // #include <kernel/structs.h> |
---|
25 | // #include <kernel/polys.h> |
---|
26 | //ADICHANGES: |
---|
27 | #include <kernel/ideals.h> |
---|
28 | // #include <kernel/GBEngine/kstd1.h> |
---|
29 | // #include<gmp.h> |
---|
30 | // #include<vector> |
---|
31 | |
---|
32 | |
---|
33 | static int **Qpol; |
---|
34 | static int *Q0, *Ql; |
---|
35 | static int hLength; |
---|
36 | |
---|
37 | |
---|
38 | static int hMinModulweight(intvec *modulweight) |
---|
39 | { |
---|
40 | int i,j,k; |
---|
41 | |
---|
42 | if(modulweight==NULL) return 0; |
---|
43 | j=(*modulweight)[0]; |
---|
44 | for(i=modulweight->rows()-1;i!=0;i--) |
---|
45 | { |
---|
46 | k=(*modulweight)[i]; |
---|
47 | if(k<j) j=k; |
---|
48 | } |
---|
49 | return j; |
---|
50 | } |
---|
51 | |
---|
52 | static void hHilbEst(scfmon stc, int Nstc, varset var, int Nvar) |
---|
53 | { |
---|
54 | int i, j; |
---|
55 | int x, y, z = 1; |
---|
56 | int *p; |
---|
57 | for (i = Nvar; i>0; i--) |
---|
58 | { |
---|
59 | x = 0; |
---|
60 | for (j = 0; j < Nstc; j++) |
---|
61 | { |
---|
62 | y = stc[j][var[i]]; |
---|
63 | if (y > x) |
---|
64 | x = y; |
---|
65 | } |
---|
66 | z += x; |
---|
67 | j = i - 1; |
---|
68 | if (z > Ql[j]) |
---|
69 | { |
---|
70 | if (z>(MAX_INT_VAL)/2) |
---|
71 | { |
---|
72 | Werror("interal arrays too big"); |
---|
73 | return; |
---|
74 | } |
---|
75 | p = (int *)omAlloc((unsigned long)z * sizeof(int)); |
---|
76 | if (Ql[j]!=0) |
---|
77 | { |
---|
78 | if (j==0) |
---|
79 | memcpy(p, Qpol[j], Ql[j] * sizeof(int)); |
---|
80 | omFreeSize((ADDRESS)Qpol[j], Ql[j] * sizeof(int)); |
---|
81 | } |
---|
82 | if (j==0) |
---|
83 | { |
---|
84 | for (x = Ql[j]; x < z; x++) |
---|
85 | p[x] = 0; |
---|
86 | } |
---|
87 | Ql[j] = z; |
---|
88 | Qpol[j] = p; |
---|
89 | } |
---|
90 | } |
---|
91 | } |
---|
92 | |
---|
93 | static int *hAddHilb(int Nv, int x, int *pol, int *lp) |
---|
94 | { |
---|
95 | int l = *lp, ln, i; |
---|
96 | int *pon; |
---|
97 | *lp = ln = l + x; |
---|
98 | pon = Qpol[Nv]; |
---|
99 | memcpy(pon, pol, l * sizeof(int)); |
---|
100 | if (l > x) |
---|
101 | { |
---|
102 | for (i = x; i < l; i++) |
---|
103 | pon[i] -= pol[i - x]; |
---|
104 | for (i = l; i < ln; i++) |
---|
105 | pon[i] = -pol[i - x]; |
---|
106 | } |
---|
107 | else |
---|
108 | { |
---|
109 | for (i = l; i < x; i++) |
---|
110 | pon[i] = 0; |
---|
111 | for (i = x; i < ln; i++) |
---|
112 | pon[i] = -pol[i - x]; |
---|
113 | } |
---|
114 | return pon; |
---|
115 | } |
---|
116 | |
---|
117 | static void hLastHilb(scmon pure, int Nv, varset var, int *pol, int lp) |
---|
118 | { |
---|
119 | int l = lp, x, i, j; |
---|
120 | int *p, *pl; |
---|
121 | p = pol; |
---|
122 | for (i = Nv; i>0; i--) |
---|
123 | { |
---|
124 | x = pure[var[i + 1]]; |
---|
125 | if (x!=0) |
---|
126 | p = hAddHilb(i, x, p, &l); |
---|
127 | } |
---|
128 | pl = *Qpol; |
---|
129 | j = Q0[Nv + 1]; |
---|
130 | for (i = 0; i < l; i++) |
---|
131 | pl[i + j] += p[i]; |
---|
132 | x = pure[var[1]]; |
---|
133 | if (x!=0) |
---|
134 | { |
---|
135 | j += x; |
---|
136 | for (i = 0; i < l; i++) |
---|
137 | pl[i + j] -= p[i]; |
---|
138 | } |
---|
139 | j += l; |
---|
140 | if (j > hLength) |
---|
141 | hLength = j; |
---|
142 | } |
---|
143 | |
---|
144 | static void hHilbStep(scmon pure, scfmon stc, int Nstc, varset var, |
---|
145 | int Nvar, int *pol, int Lpol) |
---|
146 | { |
---|
147 | int iv = Nvar -1, ln, a, a0, a1, b, i; |
---|
148 | int x, x0; |
---|
149 | scmon pn; |
---|
150 | scfmon sn; |
---|
151 | int *pon; |
---|
152 | if (Nstc==0) |
---|
153 | { |
---|
154 | hLastHilb(pure, iv, var, pol, Lpol); |
---|
155 | return; |
---|
156 | } |
---|
157 | x = a = 0; |
---|
158 | pn = hGetpure(pure); |
---|
159 | sn = hGetmem(Nstc, stc, stcmem[iv]); |
---|
160 | hStepS(sn, Nstc, var, Nvar, &a, &x); |
---|
161 | Q0[iv] = Q0[Nvar]; |
---|
162 | ln = Lpol; |
---|
163 | pon = pol; |
---|
164 | if (a == Nstc) |
---|
165 | { |
---|
166 | x = pure[var[Nvar]]; |
---|
167 | if (x!=0) |
---|
168 | pon = hAddHilb(iv, x, pon, &ln); |
---|
169 | hHilbStep(pn, sn, a, var, iv, pon, ln); |
---|
170 | return; |
---|
171 | } |
---|
172 | else |
---|
173 | { |
---|
174 | pon = hAddHilb(iv, x, pon, &ln); |
---|
175 | hHilbStep(pn, sn, a, var, iv, pon, ln); |
---|
176 | } |
---|
177 | b = a; |
---|
178 | x0 = 0; |
---|
179 | loop |
---|
180 | { |
---|
181 | Q0[iv] += (x - x0); |
---|
182 | a0 = a; |
---|
183 | x0 = x; |
---|
184 | hStepS(sn, Nstc, var, Nvar, &a, &x); |
---|
185 | hElimS(sn, &b, a0, a, var, iv); |
---|
186 | a1 = a; |
---|
187 | hPure(sn, a0, &a1, var, iv, pn, &i); |
---|
188 | hLex2S(sn, b, a0, a1, var, iv, hwork); |
---|
189 | b += (a1 - a0); |
---|
190 | ln = Lpol; |
---|
191 | if (a < Nstc) |
---|
192 | { |
---|
193 | pon = hAddHilb(iv, x - x0, pol, &ln); |
---|
194 | hHilbStep(pn, sn, b, var, iv, pon, ln); |
---|
195 | } |
---|
196 | else |
---|
197 | { |
---|
198 | x = pure[var[Nvar]]; |
---|
199 | if (x!=0) |
---|
200 | pon = hAddHilb(iv, x - x0, pol, &ln); |
---|
201 | else |
---|
202 | pon = pol; |
---|
203 | hHilbStep(pn, sn, b, var, iv, pon, ln); |
---|
204 | return; |
---|
205 | } |
---|
206 | } |
---|
207 | } |
---|
208 | |
---|
209 | /* |
---|
210 | *basic routines |
---|
211 | */ |
---|
212 | static void hWDegree(intvec *wdegree) |
---|
213 | { |
---|
214 | int i, k; |
---|
215 | int x; |
---|
216 | |
---|
217 | for (i=(currRing->N); i; i--) |
---|
218 | { |
---|
219 | x = (*wdegree)[i-1]; |
---|
220 | if (x != 1) |
---|
221 | { |
---|
222 | for (k=hNexist-1; k>=0; k--) |
---|
223 | { |
---|
224 | hexist[k][i] *= x; |
---|
225 | } |
---|
226 | } |
---|
227 | } |
---|
228 | } |
---|
229 | // ---------------------------------- ADICHANGES --------------------------------------------- |
---|
230 | //!!!!!!!!!!!!!!!!!!!!! Just for Monomial Ideals !!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
231 | |
---|
232 | //returns the degree of the monomial |
---|
233 | static int DegMon(poly p) |
---|
234 | { |
---|
235 | #if 1 |
---|
236 | int i,deg; |
---|
237 | deg = 0; |
---|
238 | for(i=1;i<=currRing->N;i++) |
---|
239 | { |
---|
240 | deg = deg + p_GetExp(p, i, currRing); |
---|
241 | } |
---|
242 | return(deg); |
---|
243 | #else |
---|
244 | return(p_Deg(p, currRing)); |
---|
245 | #endif |
---|
246 | } |
---|
247 | |
---|
248 | //Tests if the ideal is sorted by degree |
---|
249 | static bool idDegSortTest(ideal I) |
---|
250 | { |
---|
251 | if((I == NULL)||(idIs0(I))) |
---|
252 | { |
---|
253 | return(TRUE); |
---|
254 | } |
---|
255 | for(int i = 0; i<IDELEMS(I)-1; i++) |
---|
256 | { |
---|
257 | if(DegMon(I->m[i])>DegMon(I->m[i+1])) |
---|
258 | { |
---|
259 | idPrint(I); |
---|
260 | Werror("Ideal is not deg sorted!!"); |
---|
261 | return(FALSE); |
---|
262 | } |
---|
263 | } |
---|
264 | return(TRUE); |
---|
265 | } |
---|
266 | |
---|
267 | //adds the new polynomial at the coresponding position |
---|
268 | //and simplifies the ideal |
---|
269 | static ideal SortByDeg_p(ideal I, poly p) |
---|
270 | { |
---|
271 | int i,j; |
---|
272 | if((I == NULL) || (idIs0(I))) |
---|
273 | { |
---|
274 | ideal res = idInit(1,1); |
---|
275 | res->m[0] = p; |
---|
276 | return(res); |
---|
277 | } |
---|
278 | idSkipZeroes(I); |
---|
279 | #if 1 |
---|
280 | for(i = 0; (i<IDELEMS(I)) && (DegMon(I->m[i])<=DegMon(p)); i++) |
---|
281 | { |
---|
282 | if(p_DivisibleBy( I->m[i],p, currRing)) |
---|
283 | { |
---|
284 | return(I); |
---|
285 | } |
---|
286 | } |
---|
287 | for(i = IDELEMS(I)-1; (i>=0) && (DegMon(I->m[i])>=DegMon(p)); i--) |
---|
288 | { |
---|
289 | if(p_DivisibleBy(p,I->m[i], currRing)) |
---|
290 | { |
---|
291 | I->m[i] = NULL; |
---|
292 | } |
---|
293 | } |
---|
294 | if(idIs0(I)) |
---|
295 | { |
---|
296 | idSkipZeroes(I); |
---|
297 | I->m[0] = p; |
---|
298 | return(I); |
---|
299 | } |
---|
300 | #endif |
---|
301 | idSkipZeroes(I); |
---|
302 | //First I take the case when all generators have the same degree |
---|
303 | if(DegMon(I->m[0]) == DegMon(I->m[IDELEMS(I)-1])) |
---|
304 | { |
---|
305 | if(DegMon(p)<DegMon(I->m[0])) |
---|
306 | { |
---|
307 | idInsertPoly(I,p); |
---|
308 | idSkipZeroes(I); |
---|
309 | for(i=IDELEMS(I)-1;i>=1; i--) |
---|
310 | { |
---|
311 | I->m[i] = I->m[i-1]; |
---|
312 | } |
---|
313 | I->m[0] = p; |
---|
314 | return(I); |
---|
315 | } |
---|
316 | if(DegMon(p)>=DegMon(I->m[IDELEMS(I)-1])) |
---|
317 | { |
---|
318 | idInsertPoly(I,p); |
---|
319 | idSkipZeroes(I); |
---|
320 | return(I); |
---|
321 | } |
---|
322 | } |
---|
323 | if(DegMon(p)<=DegMon(I->m[0])) |
---|
324 | { |
---|
325 | idInsertPoly(I,p); |
---|
326 | idSkipZeroes(I); |
---|
327 | for(i=IDELEMS(I)-1;i>=1; i--) |
---|
328 | { |
---|
329 | I->m[i] = I->m[i-1]; |
---|
330 | } |
---|
331 | I->m[0] = p; |
---|
332 | return(I); |
---|
333 | } |
---|
334 | if(DegMon(p)>=DegMon(I->m[IDELEMS(I)-1])) |
---|
335 | { |
---|
336 | idInsertPoly(I,p); |
---|
337 | idSkipZeroes(I); |
---|
338 | return(I); |
---|
339 | } |
---|
340 | for(i = IDELEMS(I)-2; ;) |
---|
341 | { |
---|
342 | if(DegMon(p)==DegMon(I->m[i])) |
---|
343 | { |
---|
344 | idInsertPoly(I,p); |
---|
345 | idSkipZeroes(I); |
---|
346 | for(j = IDELEMS(I)-1; j>=i+1;j--) |
---|
347 | { |
---|
348 | I->m[j] = I->m[j-1]; |
---|
349 | } |
---|
350 | I->m[i] = p; |
---|
351 | return(I); |
---|
352 | } |
---|
353 | if(DegMon(p)>DegMon(I->m[i])) |
---|
354 | { |
---|
355 | idInsertPoly(I,p); |
---|
356 | idSkipZeroes(I); |
---|
357 | for(j = IDELEMS(I)-1; j>=i+2;j--) |
---|
358 | { |
---|
359 | I->m[j] = I->m[j-1]; |
---|
360 | } |
---|
361 | I->m[i+1] = p; |
---|
362 | return(I); |
---|
363 | } |
---|
364 | i--; |
---|
365 | } |
---|
366 | } |
---|
367 | |
---|
368 | //it sorts the ideal by the degrees |
---|
369 | static ideal SortByDeg(ideal I) |
---|
370 | { |
---|
371 | if(idIs0(I)) |
---|
372 | { |
---|
373 | return(I); |
---|
374 | } |
---|
375 | idSkipZeroes(I); |
---|
376 | int i; |
---|
377 | ideal res; |
---|
378 | idSkipZeroes(I); |
---|
379 | res = idInit(1,1); |
---|
380 | res->m[0] = poly(0); |
---|
381 | for(i = 0; i<=IDELEMS(I)-1;i++) |
---|
382 | { |
---|
383 | res = SortByDeg_p(res, I->m[i]); |
---|
384 | } |
---|
385 | idSkipZeroes(res); |
---|
386 | //idDegSortTest(res); |
---|
387 | return(res); |
---|
388 | } |
---|
389 | |
---|
390 | //idQuot(I,p) for I monomial ideal, p a ideal with a single monomial. |
---|
391 | ideal idQuotMon(ideal Iorig, ideal p) |
---|
392 | { |
---|
393 | if(idIs0(Iorig)) |
---|
394 | { |
---|
395 | ideal res = idInit(1,1); |
---|
396 | res->m[0] = poly(0); |
---|
397 | return(res); |
---|
398 | } |
---|
399 | if(idIs0(p)) |
---|
400 | { |
---|
401 | ideal res = idInit(1,1); |
---|
402 | res->m[0] = pOne(); |
---|
403 | return(res); |
---|
404 | } |
---|
405 | ideal I = idCopy(Iorig); |
---|
406 | ideal res = idInit(IDELEMS(I),1); |
---|
407 | int i,j; |
---|
408 | int dummy; |
---|
409 | for(i = 0; i<IDELEMS(I); i++) |
---|
410 | { |
---|
411 | res->m[i] = p_Copy(I->m[i], currRing); |
---|
412 | for(j = 1; (j<=currRing->N) ; j++) |
---|
413 | { |
---|
414 | dummy = p_GetExp(p->m[0], j, currRing); |
---|
415 | if(dummy > 0) |
---|
416 | { |
---|
417 | if(p_GetExp(I->m[i], j, currRing) < dummy) |
---|
418 | { |
---|
419 | p_SetExp(res->m[i], j, 0, currRing); |
---|
420 | } |
---|
421 | else |
---|
422 | { |
---|
423 | p_SetExp(res->m[i], j, p_GetExp(I->m[i], j, currRing) - dummy, currRing); |
---|
424 | } |
---|
425 | } |
---|
426 | } |
---|
427 | p_Setm(res->m[i], currRing); |
---|
428 | if(DegMon(res->m[i]) == DegMon(I->m[i])) |
---|
429 | { |
---|
430 | res->m[i] = NULL; |
---|
431 | } |
---|
432 | else |
---|
433 | { |
---|
434 | I->m[i] = NULL; |
---|
435 | } |
---|
436 | } |
---|
437 | idSkipZeroes(res); |
---|
438 | idSkipZeroes(I); |
---|
439 | if(!idIs0(res)) |
---|
440 | { |
---|
441 | for(i = 0; i<=IDELEMS(res)-1; i++) |
---|
442 | { |
---|
443 | I = SortByDeg_p(I,res->m[i]); |
---|
444 | } |
---|
445 | } |
---|
446 | //idDegSortTest(I); |
---|
447 | return(I); |
---|
448 | } |
---|
449 | |
---|
450 | //id_Add for monomials |
---|
451 | static ideal idAddMon(ideal I, ideal p) |
---|
452 | { |
---|
453 | #if 1 |
---|
454 | I = SortByDeg_p(I,p->m[0]); |
---|
455 | #else |
---|
456 | I = id_Add(I,p,currRing); |
---|
457 | #endif |
---|
458 | //idSkipZeroes(I); |
---|
459 | return(I); |
---|
460 | } |
---|
461 | |
---|
462 | //searches for a variable that is not yet used (assumes that the ideal is sqrfree) |
---|
463 | static poly ChoosePVar (ideal I) |
---|
464 | { |
---|
465 | bool flag=TRUE; |
---|
466 | int i,j; |
---|
467 | poly res; |
---|
468 | for(i=1;i<=currRing->N;i++) |
---|
469 | { |
---|
470 | flag=TRUE; |
---|
471 | for(j=IDELEMS(I)-1;(j>=0)&&(flag);j--) |
---|
472 | { |
---|
473 | if(p_GetExp(I->m[j], i, currRing)>0) |
---|
474 | { |
---|
475 | flag=FALSE; |
---|
476 | } |
---|
477 | } |
---|
478 | |
---|
479 | if(flag == TRUE) |
---|
480 | { |
---|
481 | res = p_ISet(1, currRing); |
---|
482 | p_SetExp(res, i, 1, currRing); |
---|
483 | p_Setm(res,currRing); |
---|
484 | return(res); |
---|
485 | } |
---|
486 | else |
---|
487 | { |
---|
488 | p_Delete(&res, currRing); |
---|
489 | } |
---|
490 | } |
---|
491 | return(NULL); //i.e. it is the maximal ideal |
---|
492 | } |
---|
493 | |
---|
494 | //choice XL: last entry divided by x (xy10z15 -> y9z14) |
---|
495 | static poly ChoosePXL(ideal I) |
---|
496 | { |
---|
497 | int i,j,dummy=0; |
---|
498 | poly m; |
---|
499 | for(i = IDELEMS(I)-1; (i>=0) && (dummy == 0); i--) |
---|
500 | { |
---|
501 | for(j = 1; (j<=currRing->N) && (dummy == 0); j++) |
---|
502 | { |
---|
503 | if(p_GetExp(I->m[i],j, currRing)>1) |
---|
504 | { |
---|
505 | dummy = 1; |
---|
506 | } |
---|
507 | } |
---|
508 | } |
---|
509 | m = p_Copy(I->m[i+1],currRing); |
---|
510 | for(j = 1; j<=currRing->N; j++) |
---|
511 | { |
---|
512 | dummy = p_GetExp(m,j,currRing); |
---|
513 | if(dummy >= 1) |
---|
514 | { |
---|
515 | p_SetExp(m, j, dummy-1, currRing); |
---|
516 | } |
---|
517 | } |
---|
518 | if(!p_IsOne(m, currRing)) |
---|
519 | { |
---|
520 | p_Setm(m, currRing); |
---|
521 | return(m); |
---|
522 | } |
---|
523 | m = ChoosePVar(I); |
---|
524 | return(m); |
---|
525 | } |
---|
526 | |
---|
527 | //choice XF: first entry divided by x (xy10z15 -> y9z14) |
---|
528 | static poly ChoosePXF(ideal I) |
---|
529 | { |
---|
530 | int i,j,dummy=0; |
---|
531 | poly m; |
---|
532 | for(i =0 ; (i<=IDELEMS(I)-1) && (dummy == 0); i++) |
---|
533 | { |
---|
534 | for(j = 1; (j<=currRing->N) && (dummy == 0); j++) |
---|
535 | { |
---|
536 | if(p_GetExp(I->m[i],j, currRing)>1) |
---|
537 | { |
---|
538 | dummy = 1; |
---|
539 | } |
---|
540 | } |
---|
541 | } |
---|
542 | m = p_Copy(I->m[i-1],currRing); |
---|
543 | for(j = 1; j<=currRing->N; j++) |
---|
544 | { |
---|
545 | dummy = p_GetExp(m,j,currRing); |
---|
546 | if(dummy >= 1) |
---|
547 | { |
---|
548 | p_SetExp(m, j, dummy-1, currRing); |
---|
549 | } |
---|
550 | } |
---|
551 | if(!p_IsOne(m, currRing)) |
---|
552 | { |
---|
553 | p_Setm(m, currRing); |
---|
554 | return(m); |
---|
555 | } |
---|
556 | m = ChoosePVar(I); |
---|
557 | return(m); |
---|
558 | } |
---|
559 | |
---|
560 | //choice OL: last entry the first power (xy10z15 -> xy9z15) |
---|
561 | static poly ChoosePOL(ideal I) |
---|
562 | { |
---|
563 | int i,j,dummy; |
---|
564 | poly m; |
---|
565 | for(i = IDELEMS(I)-1;i>=0;i--) |
---|
566 | { |
---|
567 | m = p_Copy(I->m[i],currRing); |
---|
568 | for(j=1;j<=currRing->N;j++) |
---|
569 | { |
---|
570 | dummy = p_GetExp(m,j,currRing); |
---|
571 | if(dummy > 0) |
---|
572 | { |
---|
573 | p_SetExp(m,j,dummy-1,currRing); |
---|
574 | p_Setm(m,currRing); |
---|
575 | } |
---|
576 | } |
---|
577 | if(!p_IsOne(m, currRing)) |
---|
578 | { |
---|
579 | return(m); |
---|
580 | } |
---|
581 | else |
---|
582 | { |
---|
583 | p_Delete(&m,currRing); |
---|
584 | } |
---|
585 | } |
---|
586 | m = ChoosePVar(I); |
---|
587 | return(m); |
---|
588 | } |
---|
589 | |
---|
590 | //choice OF: first entry the first power (xy10z15 -> xy9z15) |
---|
591 | static poly ChoosePOF(ideal I) |
---|
592 | { |
---|
593 | int i,j,dummy; |
---|
594 | poly m; |
---|
595 | for(i = 0 ;i<=IDELEMS(I)-1;i++) |
---|
596 | { |
---|
597 | m = p_Copy(I->m[i],currRing); |
---|
598 | for(j=1;j<=currRing->N;j++) |
---|
599 | { |
---|
600 | dummy = p_GetExp(m,j,currRing); |
---|
601 | if(dummy > 0) |
---|
602 | { |
---|
603 | p_SetExp(m,j,dummy-1,currRing); |
---|
604 | p_Setm(m,currRing); |
---|
605 | } |
---|
606 | } |
---|
607 | if(!p_IsOne(m, currRing)) |
---|
608 | { |
---|
609 | return(m); |
---|
610 | } |
---|
611 | else |
---|
612 | { |
---|
613 | p_Delete(&m,currRing); |
---|
614 | } |
---|
615 | } |
---|
616 | m = ChoosePVar(I); |
---|
617 | return(m); |
---|
618 | } |
---|
619 | |
---|
620 | //choice VL: last entry the first variable with power (xy10z15 -> y) |
---|
621 | static poly ChoosePVL(ideal I) |
---|
622 | { |
---|
623 | int i,j,dummy; |
---|
624 | bool flag = TRUE; |
---|
625 | poly m = p_ISet(1,currRing); |
---|
626 | for(i = IDELEMS(I)-1;(i>=0) && (flag);i--) |
---|
627 | { |
---|
628 | flag = TRUE; |
---|
629 | for(j=1;(j<=currRing->N) && (flag);j++) |
---|
630 | { |
---|
631 | dummy = p_GetExp(I->m[i],j,currRing); |
---|
632 | if(dummy >= 2) |
---|
633 | { |
---|
634 | p_SetExp(m,j,1,currRing); |
---|
635 | p_Setm(m,currRing); |
---|
636 | flag = FALSE; |
---|
637 | } |
---|
638 | } |
---|
639 | if(!p_IsOne(m, currRing)) |
---|
640 | { |
---|
641 | return(m); |
---|
642 | } |
---|
643 | } |
---|
644 | m = ChoosePVar(I); |
---|
645 | return(m); |
---|
646 | } |
---|
647 | |
---|
648 | //choice VF: first entry the first variable with power (xy10z15 -> y) |
---|
649 | static poly ChoosePVF(ideal I) |
---|
650 | { |
---|
651 | int i,j,dummy; |
---|
652 | bool flag = TRUE; |
---|
653 | poly m = p_ISet(1,currRing); |
---|
654 | for(i = 0;(i<=IDELEMS(I)-1) && (flag);i++) |
---|
655 | { |
---|
656 | flag = TRUE; |
---|
657 | for(j=1;(j<=currRing->N) && (flag);j++) |
---|
658 | { |
---|
659 | dummy = p_GetExp(I->m[i],j,currRing); |
---|
660 | if(dummy >= 2) |
---|
661 | { |
---|
662 | p_SetExp(m,j,1,currRing); |
---|
663 | p_Setm(m,currRing); |
---|
664 | flag = FALSE; |
---|
665 | } |
---|
666 | } |
---|
667 | if(!p_IsOne(m, currRing)) |
---|
668 | { |
---|
669 | return(m); |
---|
670 | } |
---|
671 | } |
---|
672 | m = ChoosePVar(I); |
---|
673 | return(m); |
---|
674 | } |
---|
675 | |
---|
676 | //choice JL: last entry just variable with power (xy10z15 -> y10) |
---|
677 | static poly ChoosePJL(ideal I) |
---|
678 | { |
---|
679 | int i,j,dummy; |
---|
680 | bool flag = TRUE; |
---|
681 | poly m = p_ISet(1,currRing); |
---|
682 | for(i = IDELEMS(I)-1;(i>=0) && (flag);i--) |
---|
683 | { |
---|
684 | flag = TRUE; |
---|
685 | for(j=1;(j<=currRing->N) && (flag);j++) |
---|
686 | { |
---|
687 | dummy = p_GetExp(I->m[i],j,currRing); |
---|
688 | if(dummy >= 2) |
---|
689 | { |
---|
690 | p_SetExp(m,j,dummy-1,currRing); |
---|
691 | p_Setm(m,currRing); |
---|
692 | flag = FALSE; |
---|
693 | } |
---|
694 | } |
---|
695 | if(!p_IsOne(m, currRing)) |
---|
696 | { |
---|
697 | return(m); |
---|
698 | } |
---|
699 | } |
---|
700 | m = ChoosePVar(I); |
---|
701 | return(m); |
---|
702 | } |
---|
703 | |
---|
704 | //choice JF: last entry just variable with power -1 (xy10z15 -> y9) |
---|
705 | static poly ChoosePJF(ideal I) |
---|
706 | { |
---|
707 | int i,j,dummy; |
---|
708 | bool flag = TRUE; |
---|
709 | poly m = p_ISet(1,currRing); |
---|
710 | for(i = 0;(i<=IDELEMS(I)-1) && (flag);i++) |
---|
711 | { |
---|
712 | flag = TRUE; |
---|
713 | for(j=1;(j<=currRing->N) && (flag);j++) |
---|
714 | { |
---|
715 | dummy = p_GetExp(I->m[i],j,currRing); |
---|
716 | if(dummy >= 2) |
---|
717 | { |
---|
718 | p_SetExp(m,j,dummy-1,currRing); |
---|
719 | p_Setm(m,currRing); |
---|
720 | flag = FALSE; |
---|
721 | } |
---|
722 | } |
---|
723 | if(!p_IsOne(m, currRing)) |
---|
724 | { |
---|
725 | return(m); |
---|
726 | } |
---|
727 | } |
---|
728 | m = ChoosePVar(I); |
---|
729 | return(m); |
---|
730 | } |
---|
731 | |
---|
732 | //chooses 1 \neq p \not\in S. This choice should be made optimal |
---|
733 | static poly ChooseP(ideal I) |
---|
734 | { |
---|
735 | poly m; |
---|
736 | // TEST TO SEE WHICH ONE IS BETTER |
---|
737 | //m = ChoosePXL(I); |
---|
738 | //m = ChoosePXF(I); |
---|
739 | //m = ChoosePOL(I); |
---|
740 | //m = ChoosePOF(I); |
---|
741 | //m = ChoosePVL(I); |
---|
742 | //m = ChoosePVF(I); |
---|
743 | m = ChoosePJL(I); |
---|
744 | //m = ChoosePJF(I); |
---|
745 | return(m); |
---|
746 | } |
---|
747 | |
---|
748 | ///searches for a monomial of degree d>=2 and divides it by a variable (result monomial of deg d-1) |
---|
749 | static poly SearchP(ideal I) |
---|
750 | { |
---|
751 | int i,j,exp; |
---|
752 | poly res; |
---|
753 | if(DegMon(I->m[IDELEMS(I)-1])<=1) |
---|
754 | { |
---|
755 | res = ChoosePVar(I); |
---|
756 | return(res); |
---|
757 | } |
---|
758 | i = IDELEMS(I)-1; |
---|
759 | res = p_Copy(I->m[i], currRing); |
---|
760 | for(j=1;j<=currRing->N;j++) |
---|
761 | { |
---|
762 | exp = p_GetExp(I->m[i], j, currRing); |
---|
763 | if(exp > 0) |
---|
764 | { |
---|
765 | p_SetExp(res, j, exp - 1, currRing); |
---|
766 | p_Setm(res,currRing); |
---|
767 | break; |
---|
768 | } |
---|
769 | } |
---|
770 | assume( j <= currRing->N ); |
---|
771 | return(res); |
---|
772 | } |
---|
773 | |
---|
774 | //test if the ideal is of the form (x1, ..., xr) |
---|
775 | static bool JustVar(ideal I) |
---|
776 | { |
---|
777 | #if 0 |
---|
778 | int i,j; |
---|
779 | bool foundone; |
---|
780 | for(i=0;i<=IDELEMS(I)-1;i++) |
---|
781 | { |
---|
782 | foundone = FALSE; |
---|
783 | for(j = 1;j<=currRing->N;j++) |
---|
784 | { |
---|
785 | if(p_GetExp(I->m[i], j, currRing)>0) |
---|
786 | { |
---|
787 | if(foundone == TRUE) |
---|
788 | { |
---|
789 | return(FALSE); |
---|
790 | } |
---|
791 | foundone = TRUE; |
---|
792 | } |
---|
793 | } |
---|
794 | } |
---|
795 | return(TRUE); |
---|
796 | #else |
---|
797 | if(DegMon(I->m[IDELEMS(I)-1])>1) |
---|
798 | { |
---|
799 | return(FALSE); |
---|
800 | } |
---|
801 | return(TRUE); |
---|
802 | #endif |
---|
803 | } |
---|
804 | |
---|
805 | //computes the Euler Characteristic of the ideal |
---|
806 | static void eulerchar (ideal I, int variables, mpz_ptr ec) |
---|
807 | { |
---|
808 | loop |
---|
809 | { |
---|
810 | mpz_t dummy; |
---|
811 | if(JustVar(I) == TRUE) |
---|
812 | { |
---|
813 | if(IDELEMS(I) == variables) |
---|
814 | { |
---|
815 | mpz_init(dummy); |
---|
816 | if((variables % 2) == 0) |
---|
817 | {mpz_set_si(dummy, 1);} |
---|
818 | else |
---|
819 | {mpz_set_si(dummy, -1);} |
---|
820 | mpz_add(ec, ec, dummy); |
---|
821 | } |
---|
822 | //mpz_clear(dummy); |
---|
823 | return; |
---|
824 | } |
---|
825 | ideal p = idInit(1,1); |
---|
826 | p->m[0] = SearchP(I); |
---|
827 | //idPrint(I); |
---|
828 | //idPrint(p); |
---|
829 | //printf("\nNow get in idQuotMon\n"); |
---|
830 | ideal Ip = idQuotMon(I,p); |
---|
831 | //idPrint(Ip); |
---|
832 | //Ip = SortByDeg(Ip); |
---|
833 | int i,howmanyvarinp = 0; |
---|
834 | for(i = 1;i<=currRing->N;i++) |
---|
835 | { |
---|
836 | if(p_GetExp(p->m[0],i,currRing)>0) |
---|
837 | { |
---|
838 | howmanyvarinp++; |
---|
839 | } |
---|
840 | } |
---|
841 | eulerchar(Ip, variables-howmanyvarinp, ec); |
---|
842 | id_Delete(&Ip, currRing); |
---|
843 | I = idAddMon(I,p); |
---|
844 | } |
---|
845 | } |
---|
846 | |
---|
847 | //tests if an ideal is Square Free, if no, returns the variable which appears at powers >1 |
---|
848 | static poly SqFree (ideal I) |
---|
849 | { |
---|
850 | int i,j; |
---|
851 | bool flag=TRUE; |
---|
852 | poly notsqrfree = NULL; |
---|
853 | if(DegMon(I->m[IDELEMS(I)-1])<=1) |
---|
854 | { |
---|
855 | return(notsqrfree); |
---|
856 | } |
---|
857 | for(i=IDELEMS(I)-1;(i>=0)&&(flag);i--) |
---|
858 | { |
---|
859 | for(j=1;(j<=currRing->N)&&(flag);j++) |
---|
860 | { |
---|
861 | if(p_GetExp(I->m[i],j,currRing)>1) |
---|
862 | { |
---|
863 | flag=FALSE; |
---|
864 | notsqrfree = p_ISet(1,currRing); |
---|
865 | p_SetExp(notsqrfree,j,1,currRing); |
---|
866 | } |
---|
867 | } |
---|
868 | } |
---|
869 | if(notsqrfree != NULL) |
---|
870 | { |
---|
871 | p_Setm(notsqrfree,currRing); |
---|
872 | } |
---|
873 | return(notsqrfree); |
---|
874 | } |
---|
875 | |
---|
876 | //checks if a polynomial is in I |
---|
877 | static bool IsIn(poly p, ideal I) |
---|
878 | { |
---|
879 | //assumes that I is ordered by degree |
---|
880 | if(idIs0(I)) |
---|
881 | { |
---|
882 | if(p==poly(0)) |
---|
883 | { |
---|
884 | return(TRUE); |
---|
885 | } |
---|
886 | else |
---|
887 | { |
---|
888 | return(FALSE); |
---|
889 | } |
---|
890 | } |
---|
891 | if(p==poly(0)) |
---|
892 | { |
---|
893 | return(FALSE); |
---|
894 | } |
---|
895 | int i,j; |
---|
896 | bool flag; |
---|
897 | for(i = 0;i<IDELEMS(I);i++) |
---|
898 | { |
---|
899 | flag = TRUE; |
---|
900 | for(j = 1;(j<=currRing->N) &&(flag);j++) |
---|
901 | { |
---|
902 | if(p_GetExp(p, j, currRing)<p_GetExp(I->m[i], j, currRing)) |
---|
903 | { |
---|
904 | flag = FALSE; |
---|
905 | } |
---|
906 | } |
---|
907 | if(flag) |
---|
908 | { |
---|
909 | return(TRUE); |
---|
910 | } |
---|
911 | } |
---|
912 | return(FALSE); |
---|
913 | } |
---|
914 | |
---|
915 | //computes the lcm of min I, I monomial ideal |
---|
916 | static poly LCMmon(ideal I) |
---|
917 | { |
---|
918 | if(idIs0(I)) |
---|
919 | { |
---|
920 | return(NULL); |
---|
921 | } |
---|
922 | poly m; |
---|
923 | int dummy,i,j; |
---|
924 | m = p_ISet(1,currRing); |
---|
925 | for(i=1;i<=currRing->N;i++) |
---|
926 | { |
---|
927 | dummy=0; |
---|
928 | for(j=IDELEMS(I)-1;j>=0;j--) |
---|
929 | { |
---|
930 | if(p_GetExp(I->m[j],i,currRing) > dummy) |
---|
931 | { |
---|
932 | dummy = p_GetExp(I->m[j],i,currRing); |
---|
933 | } |
---|
934 | } |
---|
935 | p_SetExp(m,i,dummy,currRing); |
---|
936 | } |
---|
937 | p_Setm(m,currRing); |
---|
938 | return(m); |
---|
939 | } |
---|
940 | |
---|
941 | //the Roune Slice Algorithm |
---|
942 | void rouneslice(ideal I, ideal S, poly q, poly x, int &prune, int &moreprune, int &steps, int &NNN, mpz_ptr &hilbertcoef, int* &hilbpower) |
---|
943 | { |
---|
944 | loop |
---|
945 | { |
---|
946 | (steps)++; |
---|
947 | int i,j; |
---|
948 | int dummy; |
---|
949 | poly m; |
---|
950 | ideal p, koszsimp; |
---|
951 | //----------- PRUNING OF S --------------- |
---|
952 | //S SHOULD IN THIS POINT BE ORDERED BY DEGREE |
---|
953 | for(i=IDELEMS(S)-1;i>=0;i--) |
---|
954 | { |
---|
955 | if(IsIn(S->m[i],I)) |
---|
956 | { |
---|
957 | S->m[i]=NULL; |
---|
958 | prune++; |
---|
959 | } |
---|
960 | } |
---|
961 | idSkipZeroes(S); |
---|
962 | //---------------------------------------- |
---|
963 | for(i=IDELEMS(I)-1;i>=0;i--) |
---|
964 | { |
---|
965 | m = p_Copy(I->m[i],currRing); |
---|
966 | for(j=1;j<=currRing->N;j++) |
---|
967 | { |
---|
968 | dummy = p_GetExp(m,j,currRing); |
---|
969 | if(dummy > 0) |
---|
970 | { |
---|
971 | p_SetExp(m,j,dummy-1,currRing); |
---|
972 | } |
---|
973 | } |
---|
974 | p_Setm(m, currRing); |
---|
975 | if(IsIn(m,S)) |
---|
976 | { |
---|
977 | I->m[i]=NULL; |
---|
978 | //printf("\n Deleted, since pi(m) is in S\n");pWrite(m); |
---|
979 | } |
---|
980 | } |
---|
981 | idSkipZeroes(I); |
---|
982 | //----------- MORE PRUNING OF S ------------ |
---|
983 | m = LCMmon(I); |
---|
984 | if(m != NULL) |
---|
985 | { |
---|
986 | for(i=0;i<IDELEMS(S);i++) |
---|
987 | { |
---|
988 | if(!(p_DivisibleBy(S->m[i], m, currRing))) |
---|
989 | { |
---|
990 | S->m[i] = NULL; |
---|
991 | j++; |
---|
992 | moreprune++; |
---|
993 | } |
---|
994 | else |
---|
995 | { |
---|
996 | if(pLmEqual(S->m[i],m)) |
---|
997 | { |
---|
998 | S->m[i] = NULL; |
---|
999 | moreprune++; |
---|
1000 | } |
---|
1001 | } |
---|
1002 | } |
---|
1003 | idSkipZeroes(S); |
---|
1004 | } |
---|
1005 | /*printf("\n---------------------------\n"); |
---|
1006 | printf("\n I\n");idPrint(I); |
---|
1007 | printf("\n S\n");idPrint(S); |
---|
1008 | printf("\n q\n");pWrite(q); |
---|
1009 | getchar();*/ |
---|
1010 | |
---|
1011 | if(idIs0(I)) |
---|
1012 | { |
---|
1013 | id_Delete(&I, currRing); |
---|
1014 | id_Delete(&S, currRing); |
---|
1015 | p_Delete(&m, currRing); |
---|
1016 | break; |
---|
1017 | } |
---|
1018 | m = LCMmon(I); |
---|
1019 | if(!p_DivisibleBy(x,m, currRing)) |
---|
1020 | { |
---|
1021 | //printf("\nx does not divide lcm(I)"); |
---|
1022 | //printf("\nEmpty set");pWrite(q); |
---|
1023 | id_Delete(&I, currRing); |
---|
1024 | id_Delete(&S, currRing); |
---|
1025 | p_Delete(&m, currRing); |
---|
1026 | break; |
---|
1027 | } |
---|
1028 | m = SqFree(I); |
---|
1029 | if(m==NULL) |
---|
1030 | { |
---|
1031 | //printf("\n Corner: "); |
---|
1032 | //pWrite(q); |
---|
1033 | //printf("\n With the facets of the dual simplex:\n"); |
---|
1034 | //idPrint(I); |
---|
1035 | mpz_t ec; |
---|
1036 | mpz_init(ec); |
---|
1037 | mpz_ptr ec_ptr = ec; |
---|
1038 | eulerchar(I, currRing->N, ec_ptr); |
---|
1039 | bool flag = FALSE; |
---|
1040 | if(NNN==0) |
---|
1041 | { |
---|
1042 | hilbertcoef = (mpz_ptr)omAlloc((NNN+1)*sizeof(mpz_t)); |
---|
1043 | hilbpower = (int*)omAlloc((NNN+1)*sizeof(int)); |
---|
1044 | mpz_init( &hilbertcoef[NNN]); |
---|
1045 | mpz_set( &hilbertcoef[NNN], ec); |
---|
1046 | mpz_clear(ec); |
---|
1047 | hilbpower[NNN] = DegMon(q); |
---|
1048 | NNN++; |
---|
1049 | } |
---|
1050 | else |
---|
1051 | { |
---|
1052 | //I look if the power appears already |
---|
1053 | for(i = 0;(i<NNN)&&(flag == FALSE)&&(DegMon(q)>=hilbpower[i]);i++) |
---|
1054 | { |
---|
1055 | if((hilbpower[i]) == (DegMon(q))) |
---|
1056 | { |
---|
1057 | flag = TRUE; |
---|
1058 | mpz_add(&hilbertcoef[i],&hilbertcoef[i],ec_ptr); |
---|
1059 | } |
---|
1060 | } |
---|
1061 | if(flag == FALSE) |
---|
1062 | { |
---|
1063 | hilbertcoef = (mpz_ptr)omRealloc(hilbertcoef, (NNN+1)*sizeof(mpz_t)); |
---|
1064 | hilbpower = (int*)omRealloc(hilbpower, (NNN+1)*sizeof(int)); |
---|
1065 | mpz_init(&hilbertcoef[NNN]); |
---|
1066 | for(j = NNN; j>i; j--) |
---|
1067 | { |
---|
1068 | mpz_set(&hilbertcoef[j],&hilbertcoef[j-1]); |
---|
1069 | hilbpower[j] = hilbpower[j-1]; |
---|
1070 | } |
---|
1071 | mpz_set( &hilbertcoef[i], ec); |
---|
1072 | mpz_clear(ec); |
---|
1073 | hilbpower[i] = DegMon(q); |
---|
1074 | NNN++; |
---|
1075 | } |
---|
1076 | } |
---|
1077 | break; |
---|
1078 | } |
---|
1079 | m = ChooseP(I); |
---|
1080 | p = idInit(1,1); |
---|
1081 | p->m[0] = m; |
---|
1082 | ideal Ip = idQuotMon(I,p); |
---|
1083 | ideal Sp = idQuotMon(S,p); |
---|
1084 | poly pq = pp_Mult_mm(q,m,currRing); |
---|
1085 | rouneslice(Ip, Sp, pq, x, prune, moreprune, steps, NNN, hilbertcoef,hilbpower); |
---|
1086 | //id_Delete(&Ip, currRing); |
---|
1087 | //id_Delete(&Sp, currRing); |
---|
1088 | S = idAddMon(S,p); |
---|
1089 | p->m[0]=NULL; |
---|
1090 | id_Delete(&p, currRing); // p->m[0] was also in S |
---|
1091 | p_Delete(&pq,currRing); |
---|
1092 | } |
---|
1093 | } |
---|
1094 | |
---|
1095 | //it computes the first hilbert series by means of Roune Slice Algorithm |
---|
1096 | void slicehilb(ideal I) |
---|
1097 | { |
---|
1098 | //printf("Adi changes are here: \n"); |
---|
1099 | int i, NNN = 0; |
---|
1100 | int steps = 0, prune = 0, moreprune = 0; |
---|
1101 | mpz_ptr hilbertcoef; |
---|
1102 | int *hilbpower; |
---|
1103 | ideal S = idInit(1,1); |
---|
1104 | poly q = p_ISet(1,currRing); |
---|
1105 | ideal X = idInit(1,1); |
---|
1106 | X->m[0]=p_One(currRing); |
---|
1107 | for(i=1;i<=currRing->N;i++) |
---|
1108 | { |
---|
1109 | p_SetExp(X->m[0],i,1,currRing); |
---|
1110 | } |
---|
1111 | p_Setm(X->m[0],currRing); |
---|
1112 | I = id_Mult(I,X,currRing); |
---|
1113 | I = SortByDeg(I); |
---|
1114 | //printf("\n-------------RouneSlice--------------\n"); |
---|
1115 | rouneslice(I,S,q,X->m[0],prune, moreprune, steps, NNN, hilbertcoef, hilbpower); |
---|
1116 | //printf("\nIn total Prune got rid of %i elements\n",prune); |
---|
1117 | //printf("\nIn total More Prune got rid of %i elements\n",moreprune); |
---|
1118 | //printf("\nSteps of rouneslice: %i\n\n", steps); |
---|
1119 | mpz_t coefhilb; |
---|
1120 | mpz_t dummy; |
---|
1121 | mpz_init(coefhilb); |
---|
1122 | mpz_init(dummy); |
---|
1123 | printf("\n// %8d t^0",1); |
---|
1124 | for(i = 0; i<NNN; i++) |
---|
1125 | { |
---|
1126 | if(mpz_sgn(&hilbertcoef[i])!=0) |
---|
1127 | { |
---|
1128 | gmp_printf("\n// %8Zd t^%d",&hilbertcoef[i],hilbpower[i]); |
---|
1129 | } |
---|
1130 | } |
---|
1131 | omFreeSize(hilbertcoef, (NNN)*sizeof(mpz_t)); |
---|
1132 | omFreeSize(hilbpower, (NNN)*sizeof(int)); |
---|
1133 | //printf("\n-------------------------------------\n"); |
---|
1134 | } |
---|
1135 | |
---|
1136 | // -------------------------------- END OF CHANGES ------------------------------------------- |
---|
1137 | static intvec * hSeries(ideal S, intvec *modulweight, |
---|
1138 | int /*notstc*/, intvec *wdegree, ideal Q, ring tailRing) |
---|
1139 | { |
---|
1140 | intvec *work, *hseries1=NULL; |
---|
1141 | int mc; |
---|
1142 | int p0; |
---|
1143 | int i, j, k, l, ii, mw; |
---|
1144 | hexist = hInit(S, Q, &hNexist, tailRing); |
---|
1145 | if (hNexist==0) |
---|
1146 | { |
---|
1147 | hseries1=new intvec(2); |
---|
1148 | (*hseries1)[0]=1; |
---|
1149 | (*hseries1)[1]=0; |
---|
1150 | return hseries1; |
---|
1151 | } |
---|
1152 | |
---|
1153 | #if 0 |
---|
1154 | if (wdegree == NULL) |
---|
1155 | hWeight(); |
---|
1156 | else |
---|
1157 | hWDegree(wdegree); |
---|
1158 | #else |
---|
1159 | if (wdegree != NULL) hWDegree(wdegree); |
---|
1160 | #endif |
---|
1161 | |
---|
1162 | p0 = 1; |
---|
1163 | hwork = (scfmon)omAlloc(hNexist * sizeof(scmon)); |
---|
1164 | hvar = (varset)omAlloc(((currRing->N) + 1) * sizeof(int)); |
---|
1165 | hpure = (scmon)omAlloc((1 + ((currRing->N) * (currRing->N))) * sizeof(int)); |
---|
1166 | stcmem = hCreate((currRing->N) - 1); |
---|
1167 | Qpol = (int **)omAlloc(((currRing->N) + 1) * sizeof(int *)); |
---|
1168 | Ql = (int *)omAlloc0(((currRing->N) + 1) * sizeof(int)); |
---|
1169 | Q0 = (int *)omAlloc(((currRing->N) + 1) * sizeof(int)); |
---|
1170 | *Qpol = NULL; |
---|
1171 | hLength = k = j = 0; |
---|
1172 | mc = hisModule; |
---|
1173 | if (mc!=0) |
---|
1174 | { |
---|
1175 | mw = hMinModulweight(modulweight); |
---|
1176 | hstc = (scfmon)omAlloc(hNexist * sizeof(scmon)); |
---|
1177 | } |
---|
1178 | else |
---|
1179 | { |
---|
1180 | mw = 0; |
---|
1181 | hstc = hexist; |
---|
1182 | hNstc = hNexist; |
---|
1183 | } |
---|
1184 | loop |
---|
1185 | { |
---|
1186 | if (mc!=0) |
---|
1187 | { |
---|
1188 | hComp(hexist, hNexist, mc, hstc, &hNstc); |
---|
1189 | if (modulweight != NULL) |
---|
1190 | j = (*modulweight)[mc-1]-mw; |
---|
1191 | } |
---|
1192 | if (hNstc!=0) |
---|
1193 | { |
---|
1194 | hNvar = (currRing->N); |
---|
1195 | for (i = hNvar; i>=0; i--) |
---|
1196 | hvar[i] = i; |
---|
1197 | //if (notstc) // TODO: no mon divides another |
---|
1198 | hStaircase(hstc, &hNstc, hvar, hNvar); |
---|
1199 | hSupp(hstc, hNstc, hvar, &hNvar); |
---|
1200 | if (hNvar!=0) |
---|
1201 | { |
---|
1202 | if ((hNvar > 2) && (hNstc > 10)) |
---|
1203 | hOrdSupp(hstc, hNstc, hvar, hNvar); |
---|
1204 | hHilbEst(hstc, hNstc, hvar, hNvar); |
---|
1205 | memset(hpure, 0, ((currRing->N) + 1) * sizeof(int)); |
---|
1206 | hPure(hstc, 0, &hNstc, hvar, hNvar, hpure, &hNpure); |
---|
1207 | hLexS(hstc, hNstc, hvar, hNvar); |
---|
1208 | Q0[hNvar] = 0; |
---|
1209 | hHilbStep(hpure, hstc, hNstc, hvar, hNvar, &p0, 1); |
---|
1210 | } |
---|
1211 | } |
---|
1212 | else |
---|
1213 | { |
---|
1214 | if(*Qpol!=NULL) |
---|
1215 | (**Qpol)++; |
---|
1216 | else |
---|
1217 | { |
---|
1218 | *Qpol = (int *)omAlloc(sizeof(int)); |
---|
1219 | hLength = *Ql = **Qpol = 1; |
---|
1220 | } |
---|
1221 | } |
---|
1222 | if (*Qpol!=NULL) |
---|
1223 | { |
---|
1224 | i = hLength; |
---|
1225 | while ((i > 0) && ((*Qpol)[i - 1] == 0)) |
---|
1226 | i--; |
---|
1227 | if (i > 0) |
---|
1228 | { |
---|
1229 | l = i + j; |
---|
1230 | if (l > k) |
---|
1231 | { |
---|
1232 | work = new intvec(l); |
---|
1233 | for (ii=0; ii<k; ii++) |
---|
1234 | (*work)[ii] = (*hseries1)[ii]; |
---|
1235 | if (hseries1 != NULL) |
---|
1236 | delete hseries1; |
---|
1237 | hseries1 = work; |
---|
1238 | k = l; |
---|
1239 | } |
---|
1240 | while (i > 0) |
---|
1241 | { |
---|
1242 | (*hseries1)[i + j - 1] += (*Qpol)[i - 1]; |
---|
1243 | (*Qpol)[i - 1] = 0; |
---|
1244 | i--; |
---|
1245 | } |
---|
1246 | } |
---|
1247 | } |
---|
1248 | mc--; |
---|
1249 | if (mc <= 0) |
---|
1250 | break; |
---|
1251 | } |
---|
1252 | if (k==0) |
---|
1253 | { |
---|
1254 | hseries1=new intvec(2); |
---|
1255 | (*hseries1)[0]=0; |
---|
1256 | (*hseries1)[1]=0; |
---|
1257 | } |
---|
1258 | else |
---|
1259 | { |
---|
1260 | l = k+1; |
---|
1261 | while ((*hseries1)[l-2]==0) l--; |
---|
1262 | if (l!=k) |
---|
1263 | { |
---|
1264 | work = new intvec(l); |
---|
1265 | for (ii=l-2; ii>=0; ii--) |
---|
1266 | (*work)[ii] = (*hseries1)[ii]; |
---|
1267 | delete hseries1; |
---|
1268 | hseries1 = work; |
---|
1269 | } |
---|
1270 | (*hseries1)[l-1] = mw; |
---|
1271 | } |
---|
1272 | for (i = 0; i <= (currRing->N); i++) |
---|
1273 | { |
---|
1274 | if (Ql[i]!=0) |
---|
1275 | omFreeSize((ADDRESS)Qpol[i], Ql[i] * sizeof(int)); |
---|
1276 | } |
---|
1277 | omFreeSize((ADDRESS)Q0, ((currRing->N) + 1) * sizeof(int)); |
---|
1278 | omFreeSize((ADDRESS)Ql, ((currRing->N) + 1) * sizeof(int)); |
---|
1279 | omFreeSize((ADDRESS)Qpol, ((currRing->N) + 1) * sizeof(int *)); |
---|
1280 | hKill(stcmem, (currRing->N) - 1); |
---|
1281 | omFreeSize((ADDRESS)hpure, (1 + ((currRing->N) * (currRing->N))) * sizeof(int)); |
---|
1282 | omFreeSize((ADDRESS)hvar, ((currRing->N) + 1) * sizeof(int)); |
---|
1283 | omFreeSize((ADDRESS)hwork, hNexist * sizeof(scmon)); |
---|
1284 | hDelete(hexist, hNexist); |
---|
1285 | if (hisModule!=0) |
---|
1286 | omFreeSize((ADDRESS)hstc, hNexist * sizeof(scmon)); |
---|
1287 | return hseries1; |
---|
1288 | } |
---|
1289 | |
---|
1290 | |
---|
1291 | intvec * hHstdSeries(ideal S, intvec *modulweight, intvec *wdegree, ideal Q, ring tailRing) |
---|
1292 | { |
---|
1293 | return hSeries(S, modulweight, 0, wdegree, Q, tailRing); |
---|
1294 | } |
---|
1295 | |
---|
1296 | intvec * hFirstSeries(ideal S, intvec *modulweight, ideal Q, intvec *wdegree, ring tailRing) |
---|
1297 | { |
---|
1298 | return hSeries(S, modulweight, 1, wdegree, Q, tailRing); |
---|
1299 | } |
---|
1300 | |
---|
1301 | intvec * hSecondSeries(intvec *hseries1) |
---|
1302 | { |
---|
1303 | intvec *work, *hseries2; |
---|
1304 | int i, j, k, s, t, l; |
---|
1305 | if (hseries1 == NULL) |
---|
1306 | return NULL; |
---|
1307 | work = new intvec(hseries1); |
---|
1308 | k = l = work->length()-1; |
---|
1309 | s = 0; |
---|
1310 | for (i = k-1; i >= 0; i--) |
---|
1311 | s += (*work)[i]; |
---|
1312 | loop |
---|
1313 | { |
---|
1314 | if ((s != 0) || (k == 1)) |
---|
1315 | break; |
---|
1316 | s = 0; |
---|
1317 | t = (*work)[k-1]; |
---|
1318 | k--; |
---|
1319 | for (i = k-1; i >= 0; i--) |
---|
1320 | { |
---|
1321 | j = (*work)[i]; |
---|
1322 | (*work)[i] = -t; |
---|
1323 | s += t; |
---|
1324 | t += j; |
---|
1325 | } |
---|
1326 | } |
---|
1327 | hseries2 = new intvec(k+1); |
---|
1328 | for (i = k-1; i >= 0; i--) |
---|
1329 | (*hseries2)[i] = (*work)[i]; |
---|
1330 | (*hseries2)[k] = (*work)[l]; |
---|
1331 | delete work; |
---|
1332 | return hseries2; |
---|
1333 | } |
---|
1334 | |
---|
1335 | void hDegreeSeries(intvec *s1, intvec *s2, int *co, int *mu) |
---|
1336 | { |
---|
1337 | int m, i, j, k; |
---|
1338 | *co = *mu = 0; |
---|
1339 | if ((s1 == NULL) || (s2 == NULL)) |
---|
1340 | return; |
---|
1341 | i = s1->length(); |
---|
1342 | j = s2->length(); |
---|
1343 | if (j > i) |
---|
1344 | return; |
---|
1345 | m = 0; |
---|
1346 | for(k=j-2; k>=0; k--) |
---|
1347 | m += (*s2)[k]; |
---|
1348 | *mu = m; |
---|
1349 | *co = i - j; |
---|
1350 | } |
---|
1351 | |
---|
1352 | static void hPrintHilb(intvec *hseries) |
---|
1353 | { |
---|
1354 | int i, j, l, k; |
---|
1355 | if (hseries == NULL) |
---|
1356 | return; |
---|
1357 | l = hseries->length()-1; |
---|
1358 | k = (*hseries)[l]; |
---|
1359 | for (i = 0; i < l; i++) |
---|
1360 | { |
---|
1361 | j = (*hseries)[i]; |
---|
1362 | if (j != 0) |
---|
1363 | { |
---|
1364 | Print("// %8d t^%d\n", j, i+k); |
---|
1365 | } |
---|
1366 | } |
---|
1367 | } |
---|
1368 | |
---|
1369 | /* |
---|
1370 | *caller |
---|
1371 | */ |
---|
1372 | void hLookSeries(ideal S, intvec *modulweight, ideal Q) |
---|
1373 | { |
---|
1374 | int co, mu, l; |
---|
1375 | intvec *hseries2; |
---|
1376 | intvec *hseries1 = hFirstSeries(S, modulweight, Q); |
---|
1377 | hPrintHilb(hseries1); |
---|
1378 | l = hseries1->length()-1; |
---|
1379 | if (l > 1) |
---|
1380 | hseries2 = hSecondSeries(hseries1); |
---|
1381 | else |
---|
1382 | hseries2 = hseries1; |
---|
1383 | hDegreeSeries(hseries1, hseries2, &co, &mu); |
---|
1384 | PrintLn(); |
---|
1385 | hPrintHilb(hseries2); |
---|
1386 | if ((l == 1) &&(mu == 0)) |
---|
1387 | scPrintDegree((currRing->N)+1, 0); |
---|
1388 | else |
---|
1389 | scPrintDegree(co, mu); |
---|
1390 | if (l>1) |
---|
1391 | delete hseries1; |
---|
1392 | delete hseries2; |
---|
1393 | } |
---|
1394 | |
---|
1395 | |
---|
1396 | |
---|