1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* $Id: f5gb.cc,v 1.13 2008-11-27 17:17:32 ederc Exp $ */ |
---|
5 | /* |
---|
6 | * ABSTRACT: f5gb interface |
---|
7 | */ |
---|
8 | #include "mod2.h" |
---|
9 | #ifdef HAVE_F5 |
---|
10 | #include "kutil.h" |
---|
11 | #include "structs.h" |
---|
12 | #include "omalloc.h" |
---|
13 | #include "polys.h" |
---|
14 | #include "p_polys.h" |
---|
15 | #include "ideals.h" |
---|
16 | #include "febase.h" |
---|
17 | #include "kstd1.h" |
---|
18 | #include "khstd.h" |
---|
19 | #include "kbuckets.h" |
---|
20 | #include "weight.h" |
---|
21 | #include "intvec.h" |
---|
22 | #include "pInline1.h" |
---|
23 | #include "f5gb.h" |
---|
24 | #include "lpolynomial.h" |
---|
25 | #include "lplist.h" |
---|
26 | |
---|
27 | |
---|
28 | |
---|
29 | /*2 |
---|
30 | * sorting ideals by decreasing total degree |
---|
31 | * "left" and "right" are the pointer of the first |
---|
32 | * and last polynomial in the considered ideal |
---|
33 | */ |
---|
34 | void qsort_degree(poly* left, poly* right) |
---|
35 | { |
---|
36 | poly* ptr1 = left; |
---|
37 | poly* ptr2 = right; |
---|
38 | poly p1,p2; |
---|
39 | p2 = *(left + (right - left >> 1)); |
---|
40 | do{ |
---|
41 | while(pTotaldegree(*ptr1, currRing) < pTotaldegree(p2, currRing)){ |
---|
42 | ptr1++; |
---|
43 | } |
---|
44 | while(pTotaldegree(*ptr2, currRing) > pTotaldegree(p2,currRing)){ |
---|
45 | ptr2--; |
---|
46 | } |
---|
47 | if(ptr1 > ptr2){ |
---|
48 | break; |
---|
49 | } |
---|
50 | p1 = *ptr1; |
---|
51 | *ptr1 = *ptr2; |
---|
52 | *ptr2 = p1; |
---|
53 | } while(++ptr1 <= --ptr2); |
---|
54 | |
---|
55 | if(left < ptr2){ |
---|
56 | qsort_degree(left,ptr2); |
---|
57 | } |
---|
58 | if(ptr1 < right){ |
---|
59 | qsort_degree(ptr1,right); |
---|
60 | } |
---|
61 | } |
---|
62 | |
---|
63 | |
---|
64 | /*2 |
---|
65 | * computes incrementally gbs of subsets of the input |
---|
66 | * gb{f_m} -> gb{f_m,f_(m-1)} -> gb{f_m,...,f_1} |
---|
67 | |
---|
68 | LPoly *f5_inc(LPoly* lp, LPoly* g_prev) |
---|
69 | { |
---|
70 | long length = 1; |
---|
71 | |
---|
72 | while(g_prev->getNext() != NULL) { |
---|
73 | length++; |
---|
74 | g_prev++; |
---|
75 | } |
---|
76 | Print("Laenge der Liste: %d\n",length); |
---|
77 | /*critpair *critpairs = new critpair[length]; |
---|
78 | * int i = 1; |
---|
79 | * |
---|
80 | * while(g_prev->getNext()->getNext() != NULL) { |
---|
81 | * critpairs[i] = {lp, g_prev, critpairs[i+1]}; |
---|
82 | * i++; |
---|
83 | * g_prev++; |
---|
84 | * } |
---|
85 | * *critpairs[length] = {lp, g_prev+length-1, NULL}; |
---|
86 | * |
---|
87 | * return lp; |
---|
88 | |
---|
89 | } |
---|
90 | |
---|
91 | */ |
---|
92 | // generating the list lp of ideal generators and test if 1 is in lp |
---|
93 | bool generate_input_list(LPoly* lp, ideal id, poly ONE) |
---|
94 | { |
---|
95 | long j; |
---|
96 | for(j=0; j<IDELEMS(id)-1; j++){ |
---|
97 | |
---|
98 | lp[j].setPoly(id->m[j]); |
---|
99 | |
---|
100 | if(pComparePolys(lp[j].getPoly(), ONE)){ |
---|
101 | Print("1 in GB\n"); |
---|
102 | return(1); |
---|
103 | } |
---|
104 | |
---|
105 | lp[j].setIndex(j+1); |
---|
106 | lp[j].setTerm(ONE); |
---|
107 | lp[j].setDel(false); |
---|
108 | lp[j].setNext(&lp[j+1]); |
---|
109 | Print("Labeled Polynomial %ld: ",j+1); |
---|
110 | Print("Label Term: "); |
---|
111 | pWrite(lp[j].getTerm()); |
---|
112 | Print("Index: %ld\n", lp[j].getIndex()); |
---|
113 | Print("Delete? %d\n", lp[j].getDel()); |
---|
114 | pWrite(lp[j].getPoly()); |
---|
115 | Print("NEUNEUNEU\n\n"); |
---|
116 | } |
---|
117 | return(0); |
---|
118 | } |
---|
119 | |
---|
120 | |
---|
121 | /*2 |
---|
122 | * computes a gb of the ideal i in the ring r with our f5 |
---|
123 | * implementation |
---|
124 | */ |
---|
125 | ideal F5main(ideal i, ring r) { |
---|
126 | |
---|
127 | long j; |
---|
128 | LPoly * lp = new LPoly; |
---|
129 | // definition of one-polynomial as global constant ONE |
---|
130 | poly one = pInit(); |
---|
131 | pSetCoeff(one, nInit(1)); |
---|
132 | static const poly ONE = one; |
---|
133 | |
---|
134 | // |
---|
135 | for(j=0; j<IDELEMS(i); j++) { |
---|
136 | if(NULL != i->m[j]) { |
---|
137 | if(pComparePolys(i->m[j],ONE)) { |
---|
138 | Print("One Polynomial in Input => Computations stopped\n"); |
---|
139 | return(i); |
---|
140 | } |
---|
141 | } |
---|
142 | } |
---|
143 | |
---|
144 | i = kInterRed(i,0); |
---|
145 | qsort_degree(&i->m[0],&i->m[IDELEMS(i)-1]); |
---|
146 | idShow(i); |
---|
147 | |
---|
148 | /* if(generate_input_list(lp,iTmp,ONE)) { |
---|
149 | Print("One Polynomial in Input => Computations stopped"); |
---|
150 | iTmp = idInit(1,0); |
---|
151 | iTmp->m[0] = ONE; |
---|
152 | return(iTmp); |
---|
153 | } |
---|
154 | */ |
---|
155 | Print("Es klappt!\nWIRKLICH!\n"); |
---|
156 | // only for debugging |
---|
157 | lp->get(); |
---|
158 | //return(i); |
---|
159 | LpList lp_list; |
---|
160 | while(NULL != lp->getNext()) { |
---|
161 | lp_list.insert(lp); |
---|
162 | lp = lp->getNext(); |
---|
163 | } |
---|
164 | lp_list.get(); |
---|
165 | return i; |
---|
166 | |
---|
167 | |
---|
168 | } |
---|
169 | |
---|
170 | |
---|
171 | #endif |
---|