1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* $Id: f5gb.cc,v 1.18 2009-01-28 17:20:49 Singular Exp $ */ |
---|
5 | /* |
---|
6 | * ABSTRACT: f5gb interface |
---|
7 | */ |
---|
8 | #include "mod2.h" |
---|
9 | #ifdef HAVE_F5 |
---|
10 | #include "kutil.h" |
---|
11 | #include "structs.h" |
---|
12 | #include "omalloc.h" |
---|
13 | #include "polys.h" |
---|
14 | #include "p_polys.h" |
---|
15 | #include "ideals.h" |
---|
16 | #include "febase.h" |
---|
17 | #include "kstd1.h" |
---|
18 | #include "khstd.h" |
---|
19 | #include "kbuckets.h" |
---|
20 | #include "weight.h" |
---|
21 | #include "intvec.h" |
---|
22 | #include "pInline1.h" |
---|
23 | #include "f5gb.h" |
---|
24 | #include "lpolynomial.h" |
---|
25 | #include "f5lists.h" |
---|
26 | |
---|
27 | |
---|
28 | /* |
---|
29 | ==================================================================== |
---|
30 | sorting ideals by decreasing total degree "left" and "right" are the |
---|
31 | pointer of the first and last polynomial in the considered ideal |
---|
32 | ==================================================================== |
---|
33 | */ |
---|
34 | void qsortDegree(poly* left, poly* right) { |
---|
35 | poly* ptr1 = left; |
---|
36 | poly* ptr2 = right; |
---|
37 | poly p1,p2; |
---|
38 | p2 = *(left + (right - left >> 1)); |
---|
39 | do { |
---|
40 | while(pTotaldegree(*ptr1, currRing) < pTotaldegree(p2, currRing)) { |
---|
41 | ptr1++; |
---|
42 | } |
---|
43 | while(pTotaldegree(*ptr2, currRing) > pTotaldegree(p2,currRing)) { |
---|
44 | ptr2--; |
---|
45 | } |
---|
46 | if(ptr1 > ptr2) { |
---|
47 | break; |
---|
48 | } |
---|
49 | p1 = *ptr1; |
---|
50 | *ptr1 = *ptr2; |
---|
51 | *ptr2 = p1; |
---|
52 | } while(++ptr1 <= --ptr2); |
---|
53 | |
---|
54 | if(left < ptr2) { |
---|
55 | qsortDegree(left,ptr2); |
---|
56 | } |
---|
57 | if(ptr1 < right) { |
---|
58 | qsortDegree(ptr1,right); |
---|
59 | } |
---|
60 | } |
---|
61 | |
---|
62 | |
---|
63 | /* |
---|
64 | ================================================== |
---|
65 | computes incrementally gbs of subsets of the input |
---|
66 | gb{f_m} -> gb{f_m,f_(m-1)} -> gb{f_m,...,f_1} |
---|
67 | ================================================== |
---|
68 | */ |
---|
69 | LList* F5inc(int* i, poly* f_i, LList* gPrev, poly* ONE) { |
---|
70 | gPrev->insert(ONE,i,f_i); |
---|
71 | CList* critPairs = criticalPair(gPrev); |
---|
72 | |
---|
73 | return gPrev; |
---|
74 | } |
---|
75 | |
---|
76 | |
---|
77 | /* |
---|
78 | ================================================================ |
---|
79 | computes a list of critical pairs for the next reduction process |
---|
80 | first element in gPrev is always the newest element which must |
---|
81 | build critical pairs with all other elements in gPrev |
---|
82 | ================================================================ |
---|
83 | */ |
---|
84 | CList* criticalPair(LList* gPrev) { |
---|
85 | poly lcm = pInit(); |
---|
86 | number n = nInit(2); |
---|
87 | nWrite(n); |
---|
88 | pWrite(lcm); |
---|
89 | // initialization for usage in pLcm() |
---|
90 | LNode* first = gPrev->getFirst(); |
---|
91 | LNode* l = gPrev->getFirst()->getNext(); |
---|
92 | poly t1, t2 = pInit(); |
---|
93 | t1 = pHead(*first->getPoly()); |
---|
94 | poly u1 = pOne(); |
---|
95 | poly u2 = pOne(); |
---|
96 | CList* critpairs = NULL; |
---|
97 | // computation of critical pairs |
---|
98 | while( NULL != l) { |
---|
99 | //pWrite( *(gPrev->getFirst()->getPoly()) ); |
---|
100 | //pWrite( *(l->getPoly()) ); |
---|
101 | pLcm(*first->getPoly(), *l->getPoly(), t1); |
---|
102 | pWrite(t1); |
---|
103 | pWrite(u1); |
---|
104 | pWrite(u2); |
---|
105 | pSetCoeff0(lcm,n); |
---|
106 | poly p = lcm; |
---|
107 | pWrite(p); |
---|
108 | Print("%ld\n",pDeg(t1)); |
---|
109 | // computing factors u1 & u2 for new labels |
---|
110 | u1 = pDivide(lcm, t1); |
---|
111 | pWrite(u1); |
---|
112 | pWrite(t1); |
---|
113 | Print("%ld\n",pDeg(t1)); |
---|
114 | //pSetCoeff(u1,pGetCoeff(pOne())); |
---|
115 | pWrite(u1); |
---|
116 | t2 = pHead(*l->getPoly()); |
---|
117 | pWrite(t2); |
---|
118 | // testing stuff |
---|
119 | u1 = ppMult_qq(t1,t2); |
---|
120 | pWrite(u1); |
---|
121 | pWrite(t2); |
---|
122 | Print("%ld\n",pDeg(u1)); |
---|
123 | Print("%ld\n",pDeg(t2)); |
---|
124 | u2 = pDivide(lcm, t2); |
---|
125 | pSetCoeff(u2, pGetCoeff(pOne())); |
---|
126 | pWrite(u2); |
---|
127 | Print("%ld\n",pDeg(u2)); |
---|
128 | // testing both new labels by the F5 Criterion |
---|
129 | if(!criterion1(first, gPrev) && |
---|
130 | !criterion1(l, gPrev)) { |
---|
131 | if(*first->getIndex() == *l->getIndex()) { |
---|
132 | if(pMult(u1, *first->getTerm()) < pMult(u2, *l->getTerm())) { |
---|
133 | //if(!critPairs) { |
---|
134 | CPair* cp = new CPair(pDeg(lcm), u1, first->getLPoly(), u2, |
---|
135 | l->getLPoly()); |
---|
136 | //} |
---|
137 | } |
---|
138 | } |
---|
139 | } |
---|
140 | |
---|
141 | Print("\n"); |
---|
142 | l = l->getNext(); |
---|
143 | } |
---|
144 | return NULL; |
---|
145 | } |
---|
146 | |
---|
147 | /* |
---|
148 | ======================================== |
---|
149 | Criterion 1, i.e. Faugere's F5 Criterion |
---|
150 | ======================================== |
---|
151 | */ |
---|
152 | bool criterion1(LNode* l, LList* gPrev) { |
---|
153 | LNode* testNode = l->getNext(); |
---|
154 | while(NULL != testNode) { |
---|
155 | while(*testNode->getIndex() == *l->getIndex()) { |
---|
156 | testNode = testNode->getNext(); |
---|
157 | } |
---|
158 | } |
---|
159 | |
---|
160 | |
---|
161 | return true; |
---|
162 | } |
---|
163 | |
---|
164 | /* |
---|
165 | ========================================================================== |
---|
166 | MAIN:computes a gb of the ideal i in the ring r with our f5 implementation |
---|
167 | ========================================================================== |
---|
168 | */ |
---|
169 | ideal F5main(ideal id, ring r) { |
---|
170 | int i,j; |
---|
171 | // 1 polynomial for defining initial labels & further tests |
---|
172 | static poly ONE = pOne(); |
---|
173 | i = 1; |
---|
174 | LList* gPrev = new LList( &ONE, &i, &id->m[0]); |
---|
175 | poly* lcm = new poly; |
---|
176 | // initialization for usage in pLcm() |
---|
177 | *lcm = pOne(); |
---|
178 | pWrite(*lcm); |
---|
179 | // definition of one-polynomial as global constant ONE |
---|
180 | //poly one = pInit(); |
---|
181 | //pSetCoeff(one, nInit(1)); |
---|
182 | //static poly ONE = one; |
---|
183 | |
---|
184 | for(j=0; j<IDELEMS(id); j++) { |
---|
185 | if(NULL != id->m[j]) { |
---|
186 | if(pComparePolys(id->m[j],ONE)) { |
---|
187 | Print("One Polynomial in Input => Computations stopped\n"); |
---|
188 | ideal idNew = idInit(1,1); |
---|
189 | idNew->m[0] = ONE; |
---|
190 | return(idNew); |
---|
191 | } |
---|
192 | } |
---|
193 | } |
---|
194 | pLcm( id->m[0], id->m[1], *lcm); |
---|
195 | Print("LCM NEU\n"); |
---|
196 | //*lcm = pHead(*lcm); |
---|
197 | //pWrite(*lcm); |
---|
198 | Print("\n\n"); |
---|
199 | id = kInterRed(id,0); |
---|
200 | qsortDegree(&id->m[0],&id->m[IDELEMS(id)-1]); |
---|
201 | idShow(id); |
---|
202 | poly p = pHead(id->m[0]); |
---|
203 | pWrite(p); |
---|
204 | poly q = pHead(id->m[2]); |
---|
205 | pWrite(q); |
---|
206 | for(i=2; i<=IDELEMS(id); i++) { |
---|
207 | gPrev = F5inc( &i, &id->m[i-1], gPrev, &ONE ); |
---|
208 | } |
---|
209 | // only for debugging |
---|
210 | //LNode* current; |
---|
211 | //LList* g_curr = new LList(lp); |
---|
212 | //} |
---|
213 | //for(i=2; i<IDELEMS(id); i++) { |
---|
214 | //g_curr = F5inc(&i,&id->m[i],g_prev); |
---|
215 | //if(g_curr->polyTest(&ONE)) { |
---|
216 | // Print("One Polynomial in Input => Computations stopped\n"); |
---|
217 | // ideal id_new = idInit(1,1); |
---|
218 | // id_new->m[0] = ONE; |
---|
219 | // return(id_new); |
---|
220 | //} |
---|
221 | //} |
---|
222 | return(id); |
---|
223 | |
---|
224 | |
---|
225 | } |
---|
226 | |
---|
227 | #endif |
---|