1 | // emacs edit mode for this file is -*- C++ -*- |
---|
2 | |
---|
3 | /**************************************** |
---|
4 | * Computer Algebra System SINGULAR * |
---|
5 | ****************************************/ |
---|
6 | /* |
---|
7 | * ABSTRACT - The FGLM-Algorithm |
---|
8 | * Implementation of the fglm algorithm for 0-dimensional ideals, |
---|
9 | * based on an idea by Faugere/Gianni/Lazard and Mora. |
---|
10 | * The procedure CalculateFunctionals calculates the functionals |
---|
11 | * which define the given ideal in the source ring. They build the |
---|
12 | * input for GroebnerViaFunctionals, which defines the reduced |
---|
13 | * groebner basis for the ideal in the destination ring. |
---|
14 | */ |
---|
15 | |
---|
16 | /* Changes: |
---|
17 | * o FindUnivariatePolys added |
---|
18 | */ |
---|
19 | |
---|
20 | #ifdef HAVE_CONFIG_H |
---|
21 | #include "singularconfig.h" |
---|
22 | #endif /* HAVE_CONFIG_H */ |
---|
23 | #include <kernel/mod2.h> |
---|
24 | |
---|
25 | |
---|
26 | // assumes, that NOSTREAMIO is set in factoryconf.h, which is included |
---|
27 | // by templates/list.h. |
---|
28 | |
---|
29 | #include <factory/factory.h> |
---|
30 | |
---|
31 | #include <factory/templates/ftmpl_list.h> |
---|
32 | #include <factory/templates/ftmpl_list.cc> |
---|
33 | |
---|
34 | #include <omalloc/omalloc.h> |
---|
35 | |
---|
36 | #include <misc/options.h> |
---|
37 | #include <misc/intvec.h> |
---|
38 | |
---|
39 | #include <polys/monomials/maps.h> |
---|
40 | #include <polys/monomials/ring.h> |
---|
41 | |
---|
42 | #include <kernel/polys.h> |
---|
43 | #include <kernel/ideals.h> |
---|
44 | #include <kernel/febase.h> |
---|
45 | #include <kernel/kstd1.h> |
---|
46 | |
---|
47 | #include "fglm.h" |
---|
48 | #include "fglmvec.h" |
---|
49 | #include "fglmgauss.h" |
---|
50 | |
---|
51 | #define PROT(msg) |
---|
52 | #define STICKYPROT(msg) if (BTEST1(OPT_PROT)) Print(msg) |
---|
53 | #define PROT2(msg,arg) |
---|
54 | #define STICKYPROT2(msg,arg) if (BTEST1(OPT_PROT)) Print(msg,arg) |
---|
55 | #define fglmASSERT(ignore1,ignore2) |
---|
56 | |
---|
57 | |
---|
58 | |
---|
59 | // internal Version: 1.3.1.12 |
---|
60 | // ============================================================ |
---|
61 | //! The idealFunctionals |
---|
62 | // ============================================================ |
---|
63 | |
---|
64 | struct matElem |
---|
65 | { |
---|
66 | int row; |
---|
67 | number elem; |
---|
68 | }; |
---|
69 | |
---|
70 | struct matHeader |
---|
71 | { |
---|
72 | int size; |
---|
73 | BOOLEAN owner; |
---|
74 | matElem * elems; |
---|
75 | }; |
---|
76 | |
---|
77 | class idealFunctionals |
---|
78 | { |
---|
79 | private: |
---|
80 | int _block; |
---|
81 | int _max; |
---|
82 | int _size; |
---|
83 | int _nfunc; |
---|
84 | int * currentSize; |
---|
85 | matHeader ** func; |
---|
86 | matHeader * grow( int var ); |
---|
87 | public: |
---|
88 | idealFunctionals( int blockSize, int numFuncs ); |
---|
89 | ~idealFunctionals(); |
---|
90 | |
---|
91 | int dimen() const { fglmASSERT( _size>0, "called too early"); return _size; } |
---|
92 | void endofConstruction(); |
---|
93 | void map( ring source ); |
---|
94 | void insertCols( int * divisors, int to ); |
---|
95 | void insertCols( int * divisors, const fglmVector to ); |
---|
96 | fglmVector addCols( const int var, int basisSize, const fglmVector v ) const; |
---|
97 | fglmVector multiply( const fglmVector v, int var ) const; |
---|
98 | }; |
---|
99 | |
---|
100 | |
---|
101 | idealFunctionals::idealFunctionals( int blockSize, int numFuncs ) |
---|
102 | { |
---|
103 | int k; |
---|
104 | _block= blockSize; |
---|
105 | _max= _block; |
---|
106 | _size= 0; |
---|
107 | _nfunc= numFuncs; |
---|
108 | |
---|
109 | currentSize= (int *)omAlloc0( _nfunc*sizeof( int ) ); |
---|
110 | //for ( k= _nfunc-1; k >= 0; k-- ) |
---|
111 | // currentSize[k]= 0; |
---|
112 | |
---|
113 | func= (matHeader **)omAlloc( _nfunc*sizeof( matHeader * ) ); |
---|
114 | for ( k= _nfunc-1; k >= 0; k-- ) |
---|
115 | func[k]= (matHeader *)omAlloc( _max*sizeof( matHeader ) ); |
---|
116 | } |
---|
117 | |
---|
118 | idealFunctionals::~idealFunctionals() |
---|
119 | { |
---|
120 | int k; |
---|
121 | int l; |
---|
122 | int row; |
---|
123 | matHeader * colp; |
---|
124 | matElem * elemp; |
---|
125 | for ( k= _nfunc-1; k >= 0; k-- ) { |
---|
126 | for ( l= _size-1, colp= func[k]; l >= 0; l--, colp++ ) { |
---|
127 | if ( ( colp->owner == TRUE ) && ( colp->size > 0 ) ) { |
---|
128 | for ( row= colp->size-1, elemp= colp->elems; row >= 0; row--, elemp++ ) |
---|
129 | nDelete( & elemp->elem ); |
---|
130 | omFreeSize( (ADDRESS)colp->elems, colp->size*sizeof( matElem ) ); |
---|
131 | } |
---|
132 | } |
---|
133 | omFreeSize( (ADDRESS)func[k], _max*sizeof( matHeader ) ); |
---|
134 | } |
---|
135 | omFreeSize( (ADDRESS)func, _nfunc*sizeof( matHeader * ) ); |
---|
136 | omFreeSize( (ADDRESS)currentSize, _nfunc*sizeof( int ) ); |
---|
137 | } |
---|
138 | |
---|
139 | void |
---|
140 | idealFunctionals::endofConstruction() |
---|
141 | { |
---|
142 | _size= currentSize[0]; |
---|
143 | } |
---|
144 | |
---|
145 | void |
---|
146 | idealFunctionals::map( ring source ) |
---|
147 | { |
---|
148 | // maps from ring source to currentRing. |
---|
149 | int var, col, row; |
---|
150 | matHeader * colp; |
---|
151 | matElem * elemp; |
---|
152 | number newelem; |
---|
153 | |
---|
154 | int * perm = (int *)omAlloc0( (_nfunc+1)*sizeof( int ) ); |
---|
155 | maFindPerm( source->names, source->N, NULL, 0, currRing->names, |
---|
156 | currRing->N, NULL, 0, perm, NULL , currRing->cf->type); |
---|
157 | nMapFunc nMap=n_SetMap( source, currRing); |
---|
158 | |
---|
159 | matHeader ** temp = (matHeader **)omAlloc( _nfunc*sizeof( matHeader * )); |
---|
160 | for ( var= 0; var < _nfunc; var ++ ) { |
---|
161 | for ( col= 0, colp= func[var]; col < _size; col++, colp++ ) { |
---|
162 | if ( colp->owner == TRUE ) { |
---|
163 | for ( row= colp->size-1, elemp= colp->elems; row >= 0; |
---|
164 | row--, elemp++ ) |
---|
165 | { |
---|
166 | newelem= nMap( elemp->elem, source->cf, currRing->cf ); |
---|
167 | nDelete( & elemp->elem ); |
---|
168 | elemp->elem= newelem; |
---|
169 | } |
---|
170 | } |
---|
171 | } |
---|
172 | temp[ perm[var+1]-1 ]= func[var]; |
---|
173 | } |
---|
174 | omFreeSize( (ADDRESS)func, _nfunc*sizeof( matHeader * ) ); |
---|
175 | omFreeSize( (ADDRESS)perm, (_nfunc+1)*sizeof( int ) ); |
---|
176 | func= temp; |
---|
177 | } |
---|
178 | |
---|
179 | matHeader * |
---|
180 | idealFunctionals::grow( int var ) |
---|
181 | { |
---|
182 | if ( currentSize[var-1] == _max ) { |
---|
183 | int k; |
---|
184 | for ( k= _nfunc; k > 0; k-- ) |
---|
185 | func[k-1]= (matHeader *)omReallocSize( func[k-1], _max*sizeof( matHeader ), (_max + _block)*sizeof( matHeader ) ); |
---|
186 | _max+= _block; |
---|
187 | } |
---|
188 | currentSize[var-1]++; |
---|
189 | return func[var-1] + currentSize[var-1] - 1; |
---|
190 | } |
---|
191 | |
---|
192 | void |
---|
193 | idealFunctionals::insertCols( int * divisors, int to ) |
---|
194 | { |
---|
195 | fglmASSERT( 0 < divisors[0] && divisors[0] <= _nfunc, "wrong number of divisors" ); |
---|
196 | int k; |
---|
197 | BOOLEAN owner = TRUE; |
---|
198 | matElem * elems = (matElem *)omAlloc( sizeof( matElem ) ); |
---|
199 | elems->row= to; |
---|
200 | elems->elem= nInit( 1 ); |
---|
201 | for ( k= divisors[0]; k > 0; k-- ) { |
---|
202 | fglmASSERT( 0 < divisors[k] && divisors[k] <= _nfunc, "wrong divisor" ); |
---|
203 | matHeader * colp = grow( divisors[k] ); |
---|
204 | colp->size= 1; |
---|
205 | colp->elems= elems; |
---|
206 | colp->owner= owner; |
---|
207 | owner= FALSE; |
---|
208 | } |
---|
209 | } |
---|
210 | |
---|
211 | |
---|
212 | void |
---|
213 | idealFunctionals::insertCols( int * divisors, const fglmVector to ) |
---|
214 | { |
---|
215 | // divisors runs from divisors[0]..divisors[size-1] |
---|
216 | fglmASSERT( 0 < divisors[0] && divisors[0] <= _nfunc, "wrong number of divisors" ); |
---|
217 | int k, l; |
---|
218 | int numElems= to.numNonZeroElems(); |
---|
219 | matElem * elems; |
---|
220 | matElem * elemp; |
---|
221 | BOOLEAN owner = TRUE; |
---|
222 | if ( numElems > 0 ) { |
---|
223 | elems= (matElem *)omAlloc( numElems * sizeof( matElem ) ); |
---|
224 | for ( k= 1, l= 1, elemp= elems; k <= numElems; k++, elemp++ ) { |
---|
225 | while ( nIsZero( to.getconstelem(l) ) ) l++; |
---|
226 | elemp->row= l; |
---|
227 | elemp->elem= nCopy( to.getconstelem( l ) ); |
---|
228 | l++; // hochzaehlen, damit wir nicht noch einmal die gleiche Stelle testen |
---|
229 | } |
---|
230 | } |
---|
231 | else |
---|
232 | elems= NULL; |
---|
233 | for ( k= divisors[0]; k > 0; k-- ) { |
---|
234 | fglmASSERT( 0 < divisors[k] && divisors[k] <= _nfunc, "wrong divisor" ); |
---|
235 | matHeader * colp = grow( divisors[k] ); |
---|
236 | colp->size= numElems; |
---|
237 | colp->elems= elems; |
---|
238 | colp->owner= owner; |
---|
239 | owner= FALSE; |
---|
240 | } |
---|
241 | } |
---|
242 | |
---|
243 | fglmVector |
---|
244 | idealFunctionals::addCols( const int var, int basisSize, const fglmVector v ) const |
---|
245 | { |
---|
246 | fglmVector result( basisSize ); |
---|
247 | matHeader * colp; |
---|
248 | matElem * elemp; |
---|
249 | number factor, temp; |
---|
250 | int k, l; |
---|
251 | int vsize = v.size(); |
---|
252 | |
---|
253 | fglmASSERT( currentSize[var-1]+1 >= vsize, "wrong v.size()" ); |
---|
254 | for ( k= 1, colp= func[var-1]; k <= vsize; k++, colp++ ) { |
---|
255 | factor= v.getconstelem( k ); |
---|
256 | if ( ! nIsZero( factor ) ) { |
---|
257 | for ( l= colp->size-1, elemp= colp->elems; l >= 0; l--, elemp++ ) { |
---|
258 | temp= nMult( factor, elemp->elem ); |
---|
259 | number newelem= nAdd( result.getconstelem( elemp->row ), temp ); |
---|
260 | nDelete( & temp ); |
---|
261 | nNormalize( newelem ); |
---|
262 | result.setelem( elemp->row, newelem ); |
---|
263 | } |
---|
264 | } |
---|
265 | } |
---|
266 | return result; |
---|
267 | } |
---|
268 | |
---|
269 | fglmVector |
---|
270 | idealFunctionals::multiply( const fglmVector v, int var ) const |
---|
271 | { |
---|
272 | fglmASSERT( v.size() == _size, "multiply: v has wrong size"); |
---|
273 | fglmVector result( _size ); |
---|
274 | matHeader * colp; |
---|
275 | matElem * elemp; |
---|
276 | number factor, temp; |
---|
277 | int k, l; |
---|
278 | for ( k= 1, colp= func[var-1]; k <= _size; k++, colp++ ) { |
---|
279 | factor= v.getconstelem( k ); |
---|
280 | if ( ! nIsZero( factor ) ) { |
---|
281 | for ( l= colp->size-1, elemp= colp->elems; l >= 0; l--, elemp++ ) { |
---|
282 | temp= nMult( factor, elemp->elem ); |
---|
283 | number newelem= nAdd( result.getconstelem( elemp->row ), temp ); |
---|
284 | nDelete( & temp ); |
---|
285 | nNormalize( newelem ); |
---|
286 | result.setelem( elemp->row, newelem ); |
---|
287 | } |
---|
288 | } |
---|
289 | } |
---|
290 | return result; |
---|
291 | } |
---|
292 | |
---|
293 | // ============================================================ |
---|
294 | //! The old basis |
---|
295 | // ============================================================ |
---|
296 | |
---|
297 | // Contains the data for a border-monomial, i.e. the monom itself |
---|
298 | // ( as a Singular-poly ) and its normal-form, described by an |
---|
299 | // fglmVector. The size of the Vector depends on the current size of |
---|
300 | // the basis when the normalForm was computed. |
---|
301 | // monom gets deleted when borderElem comes out of scope. |
---|
302 | class borderElem |
---|
303 | { |
---|
304 | public: |
---|
305 | poly monom; |
---|
306 | fglmVector nf; |
---|
307 | borderElem() : monom(NULL), nf() {} |
---|
308 | borderElem( poly p, fglmVector n ) : monom( p ), nf( n ) {} |
---|
309 | ~borderElem() { if (monom!=NULL) pLmDelete(&monom); } |
---|
310 | #ifndef HAVE_EXPLICIT_CONSTR |
---|
311 | void insertElem( poly p, fglmVector n ) |
---|
312 | { |
---|
313 | monom= p; |
---|
314 | nf= n; |
---|
315 | } |
---|
316 | #endif |
---|
317 | }; |
---|
318 | |
---|
319 | // This class contains the relevant data for the 'candidates' |
---|
320 | // The declaration of class fglmSelem is found in fglm.h |
---|
321 | |
---|
322 | fglmSelem::fglmSelem( poly p, int var ) : monom( p ), numVars( 0 ) |
---|
323 | { |
---|
324 | for ( int k = (currRing->N); k > 0; k-- ) |
---|
325 | if ( pGetExp( monom, k ) > 0 ) |
---|
326 | numVars++; |
---|
327 | divisors= (int *)omAlloc( (numVars+1)*sizeof( int ) ); |
---|
328 | divisors[0]= 0; |
---|
329 | newDivisor( var ); |
---|
330 | } |
---|
331 | |
---|
332 | void |
---|
333 | fglmSelem::cleanup() |
---|
334 | { |
---|
335 | omFreeSize( (ADDRESS)divisors, (numVars+1)*sizeof( int ) ); |
---|
336 | } |
---|
337 | |
---|
338 | // The data-structure for the Functional-Finding-Algorithm. |
---|
339 | class fglmSdata |
---|
340 | { |
---|
341 | private: |
---|
342 | ideal theIdeal; |
---|
343 | int idelems; |
---|
344 | int* varpermutation; |
---|
345 | |
---|
346 | int basisBS; |
---|
347 | int basisMax; |
---|
348 | int basisSize; |
---|
349 | polyset basis; //. rem: runs from basis[1]..basis[dimen] |
---|
350 | |
---|
351 | int borderBS; |
---|
352 | int borderMax; |
---|
353 | int borderSize; |
---|
354 | borderElem * border; //. rem: runs from border[1]..border[dimen] |
---|
355 | |
---|
356 | List<fglmSelem> nlist; |
---|
357 | BOOLEAN _state; |
---|
358 | public: |
---|
359 | fglmSdata( const ideal thisIdeal ); |
---|
360 | ~fglmSdata(); |
---|
361 | |
---|
362 | BOOLEAN state() const { return _state; }; |
---|
363 | int getBasisSize() const { return basisSize; }; |
---|
364 | int newBasisElem( poly & p ); |
---|
365 | void newBorderElem( poly & m, fglmVector v ); |
---|
366 | BOOLEAN candidatesLeft() const { return ( nlist.isEmpty() ? FALSE : TRUE ); } |
---|
367 | fglmSelem nextCandidate(); |
---|
368 | void updateCandidates(); |
---|
369 | int getEdgeNumber( const poly m ) const; |
---|
370 | poly getSpanPoly( int number ) const { return pCopy( (theIdeal->m)[number-1] ); } |
---|
371 | fglmVector getVectorRep( const poly m ); |
---|
372 | fglmVector getBorderDiv( const poly m, int & var ) const; |
---|
373 | }; |
---|
374 | |
---|
375 | fglmSdata::fglmSdata( const ideal thisIdeal ) |
---|
376 | { |
---|
377 | // An dieser Stelle kann die BlockSize ( =BS ) noch sinnvoller berechnet |
---|
378 | // werden, jenachdem wie das Ideal aussieht. |
---|
379 | theIdeal= thisIdeal; |
---|
380 | idelems= IDELEMS( theIdeal ); |
---|
381 | varpermutation = (int*)omAlloc( ((currRing->N)+1)*sizeof(int) ); |
---|
382 | // Sort ring variables by increasing values (because of weighted orderings) |
---|
383 | ideal perm = idMaxIdeal(1); |
---|
384 | intvec *iv = idSort(perm,TRUE); |
---|
385 | idDelete(&perm); |
---|
386 | for(int i = (currRing->N); i > 0; i--) varpermutation[(currRing->N)+1-i] = (*iv)[i-1]; |
---|
387 | delete iv; |
---|
388 | |
---|
389 | basisBS= 100; |
---|
390 | basisMax= basisBS; |
---|
391 | basisSize= 0; |
---|
392 | basis= (polyset)omAlloc( basisMax*sizeof( poly ) ); |
---|
393 | |
---|
394 | borderBS= 100; |
---|
395 | borderMax= borderBS; |
---|
396 | borderSize= 0; |
---|
397 | #ifndef HAVE_EXPLICIT_CONSTR |
---|
398 | border= new borderElem[ borderMax ]; |
---|
399 | #else |
---|
400 | border= (borderElem *)omAlloc( borderMax*sizeof( borderElem ) ); |
---|
401 | #endif |
---|
402 | // rem: the constructors are called in newBorderElem(). |
---|
403 | _state= TRUE; |
---|
404 | } |
---|
405 | |
---|
406 | fglmSdata::~fglmSdata() |
---|
407 | { |
---|
408 | omFreeSize( (ADDRESS)varpermutation, ((currRing->N)+1)*sizeof(int) ); |
---|
409 | for ( int k = basisSize; k > 0; k-- ) |
---|
410 | pLmDelete( basis + k ); //. rem: basis runs from basis[1]..basis[basisSize] |
---|
411 | omFreeSize( (ADDRESS)basis, basisMax*sizeof( poly ) ); |
---|
412 | #ifndef HAVE_EXPLICIT_CONSTR |
---|
413 | delete [] border; |
---|
414 | #else |
---|
415 | for ( int l = borderSize; l > 0; l-- ) |
---|
416 | // rem: the polys of borderElem are deleted via ~borderElem() |
---|
417 | border[l].~borderElem(); |
---|
418 | omFreeSize( (ADDRESS)border, borderMax*sizeof( borderElem ) ); |
---|
419 | #endif |
---|
420 | } |
---|
421 | |
---|
422 | // Inserts poly p without copying into basis, reAllocs Memory if necessary, |
---|
423 | // increases basisSize and returns the new basisSize. |
---|
424 | // Remember: The elements of basis are deleted via pDelete in ~fglmSdata! |
---|
425 | // Sets m= NULL to indicate that now basis is ow(e?)ing the poly. |
---|
426 | int |
---|
427 | fglmSdata::newBasisElem( poly & m ) |
---|
428 | { |
---|
429 | basisSize++; |
---|
430 | if ( basisSize == basisMax ) { |
---|
431 | basis= (polyset)omReallocSize( basis, basisMax*sizeof( poly ), (basisMax + basisBS)*sizeof( poly ) ); |
---|
432 | basisMax+= basisBS; |
---|
433 | } |
---|
434 | basis[basisSize]= m; |
---|
435 | m= NULL; |
---|
436 | return basisSize; |
---|
437 | } |
---|
438 | |
---|
439 | // Inserts poly p and fglmvector v without copying into border, reAllocs Memory |
---|
440 | // if necessary, and increases borderSize. |
---|
441 | // Remember: The poly of border is deleted via ~borderElem in ~fglmSdata! |
---|
442 | // Sets m= NULL to indicate that now border is ow(e?)ing the poly. |
---|
443 | void |
---|
444 | fglmSdata::newBorderElem( poly & m, fglmVector v ) |
---|
445 | { |
---|
446 | borderSize++; |
---|
447 | if ( borderSize == borderMax ) { |
---|
448 | #ifndef HAVE_EXPLICIT_CONSTR |
---|
449 | borderElem * tempborder = new borderElem[ borderMax+borderBS ]; |
---|
450 | for ( int k = 0; k < borderMax; k++ ) { |
---|
451 | tempborder[k]= border[k]; |
---|
452 | border[k].insertElem( NULL, fglmVector() ); |
---|
453 | } |
---|
454 | delete [] border; |
---|
455 | border= tempborder; |
---|
456 | #else |
---|
457 | border= (borderElem *)omReallocSize( border, borderMax*sizeof( borderElem ), (borderMax + borderBS)*sizeof( borderElem ) ); |
---|
458 | #endif |
---|
459 | borderMax+= borderBS; |
---|
460 | } |
---|
461 | #ifndef HAVE_EXPLICIT_CONSTR |
---|
462 | border[borderSize].insertElem( m, v ); |
---|
463 | #else |
---|
464 | border[borderSize].borderElem( m, v ); |
---|
465 | #endif |
---|
466 | m= NULL; |
---|
467 | } |
---|
468 | |
---|
469 | fglmSelem |
---|
470 | fglmSdata::nextCandidate() |
---|
471 | { |
---|
472 | fglmSelem result = nlist.getFirst(); |
---|
473 | nlist.removeFirst(); |
---|
474 | return result; |
---|
475 | } |
---|
476 | |
---|
477 | // Multiplies basis[basisSize] with all ringvariables and inserts the new monomials |
---|
478 | // into the list of candidates, according to the given order. If a monomial already |
---|
479 | // exists, then "insertions" and "divisors" are updated. |
---|
480 | // Assumes that ringvar(varperm[k]) < ringvar(varperm[l]) for k > l |
---|
481 | void |
---|
482 | fglmSdata::updateCandidates() |
---|
483 | { |
---|
484 | ListIterator<fglmSelem> list = nlist; |
---|
485 | fglmASSERT( basisSize > 0 && basisSize < basisMax, "Error(1) in fglmSdata::updateCandidates - wrong bassSize" ); |
---|
486 | poly m = basis[basisSize]; |
---|
487 | poly newmonom = NULL; |
---|
488 | int k = (currRing->N); |
---|
489 | BOOLEAN done = FALSE; |
---|
490 | int state = 0; |
---|
491 | while ( k >= 1 ) |
---|
492 | { |
---|
493 | newmonom = pCopy( m ); |
---|
494 | pIncrExp( newmonom, varpermutation[k] ); |
---|
495 | pSetm( newmonom ); |
---|
496 | done= FALSE; |
---|
497 | while ( list.hasItem() && (!done) ) |
---|
498 | { |
---|
499 | if ( (state= pCmp( list.getItem().monom, newmonom )) < 0 ) |
---|
500 | list++; |
---|
501 | else done= TRUE; |
---|
502 | } |
---|
503 | if ( !done ) |
---|
504 | { |
---|
505 | nlist.append( fglmSelem( newmonom, varpermutation[k] ) ); |
---|
506 | break; |
---|
507 | } |
---|
508 | if ( state == 0 ) |
---|
509 | { |
---|
510 | list.getItem().newDivisor( varpermutation[k] ); |
---|
511 | pLmDelete(&newmonom); |
---|
512 | } |
---|
513 | else |
---|
514 | { |
---|
515 | list.insert( fglmSelem( newmonom, varpermutation[k] ) ); |
---|
516 | } |
---|
517 | k--; |
---|
518 | } |
---|
519 | while ( --k >= 1 ) |
---|
520 | { |
---|
521 | newmonom= pCopy( m ); // HIER |
---|
522 | pIncrExp( newmonom, varpermutation[k] ); |
---|
523 | pSetm( newmonom ); |
---|
524 | nlist.append( fglmSelem( newmonom, varpermutation[k] ) ); |
---|
525 | } |
---|
526 | } |
---|
527 | |
---|
528 | // if p == pHead( (theIdeal->m)[k] ) return k, 0 otherwise |
---|
529 | // (Assumes that pLmEqual just checks the leading monomials without |
---|
530 | // coefficients.) |
---|
531 | int |
---|
532 | fglmSdata::getEdgeNumber( const poly m ) const |
---|
533 | { |
---|
534 | for ( int k = idelems; k > 0; k-- ) |
---|
535 | if ( pLmEqual( m, (theIdeal->m)[k-1] ) ) |
---|
536 | return k; |
---|
537 | return 0; |
---|
538 | } |
---|
539 | |
---|
540 | // Returns the fglmVector v, s.t. |
---|
541 | // p = v[1]*basis(1) + .. + v[basisSize]*basis(basisSize) |
---|
542 | // So the size of v depends on the current size of the basis. |
---|
543 | // Assumes that such an representation exists, i.e. all monoms in p have to be |
---|
544 | // smaller than basis[basisSize] and that basis[k] < basis[l] for k < l. |
---|
545 | fglmVector |
---|
546 | fglmSdata::getVectorRep( const poly p ) |
---|
547 | { |
---|
548 | fglmVector temp( basisSize ); |
---|
549 | poly m = p; |
---|
550 | int num = basisSize; |
---|
551 | while ( m != NULL ) { |
---|
552 | int comp = pCmp( m, basis[num] ); |
---|
553 | if ( comp == 0 ) { |
---|
554 | fglmASSERT( num > 0, "Error(1) in fglmSdata::getVectorRep" ); |
---|
555 | number newelem = nCopy( pGetCoeff( m ) ); |
---|
556 | temp.setelem( num, newelem ); |
---|
557 | num--; |
---|
558 | pIter( m ); |
---|
559 | } |
---|
560 | else { |
---|
561 | if ( comp < 0 ) { |
---|
562 | num--; |
---|
563 | } |
---|
564 | else { |
---|
565 | // This is the place where we can detect if the sourceIdeal |
---|
566 | // is not reduced. In this case m is not in basis[]. Since basis[] |
---|
567 | // is ordered this is the case, if and only if basis[i]<m |
---|
568 | // and basis[j]>m for all j>i |
---|
569 | _state= FALSE; |
---|
570 | return temp; |
---|
571 | } |
---|
572 | } |
---|
573 | } |
---|
574 | return temp; |
---|
575 | } |
---|
576 | |
---|
577 | // Searches through the border for a monomoial bm which devides m and returns |
---|
578 | // its normalform in vector representation. |
---|
579 | // var contains the number of the variable v, s.t. bm = m * v |
---|
580 | fglmVector |
---|
581 | fglmSdata::getBorderDiv( const poly m, int & var ) const |
---|
582 | { |
---|
583 | // int num2 = borderSize; |
---|
584 | // while ( num2 > 0 ) { |
---|
585 | // poly temp = border[num2].monom; |
---|
586 | // if ( pDivisibleBy( temp, m ) ) { |
---|
587 | // poly divisor = pDivideM( m, temp ); |
---|
588 | // int var = pIsPurePower( divisor ); |
---|
589 | // if ( (var != 0) && (pGetCoeff( divisor, var ) == 1) ) { |
---|
590 | // Print( "poly %s divides poly %s", pString( temp ), pString( m ) ); |
---|
591 | // } |
---|
592 | // } |
---|
593 | // num2--; |
---|
594 | // } |
---|
595 | int num = borderSize; |
---|
596 | while ( num > 0 ) { |
---|
597 | poly temp = border[num].monom; |
---|
598 | if ( pDivisibleBy( temp, m ) ) { |
---|
599 | var = (currRing->N); |
---|
600 | while ( var > 0 ) { |
---|
601 | if ( (pGetExp( m, var ) - pGetExp( temp, var )) == 1 ) |
---|
602 | return border[num].nf; |
---|
603 | var--; |
---|
604 | } |
---|
605 | } |
---|
606 | num--; |
---|
607 | } |
---|
608 | return fglmVector(); |
---|
609 | } |
---|
610 | |
---|
611 | void |
---|
612 | internalCalculateFunctionals( const ideal /*& theIdeal*/, idealFunctionals & l, |
---|
613 | fglmSdata & data ) |
---|
614 | { |
---|
615 | |
---|
616 | // insert pOne() into basis and update the workingList: |
---|
617 | poly one = pOne(); |
---|
618 | data.newBasisElem( one ); |
---|
619 | data.updateCandidates(); |
---|
620 | |
---|
621 | STICKYPROT("."); |
---|
622 | while ( data.candidatesLeft() == TRUE ) { |
---|
623 | fglmSelem candidate = data.nextCandidate(); |
---|
624 | if ( candidate.isBasisOrEdge() == TRUE ) { |
---|
625 | int edge = data.getEdgeNumber( candidate.monom ); |
---|
626 | if ( edge != 0 ) |
---|
627 | { |
---|
628 | // now candidate is an edge, i.e. we know its normalform: |
---|
629 | // NF(p) = - ( tail(p)/LC(p) ) |
---|
630 | poly nf = data.getSpanPoly( edge ); |
---|
631 | pNorm( nf ); |
---|
632 | pLmDelete(&nf); //. deletes the leadingmonomial |
---|
633 | nf= pNeg( nf ); |
---|
634 | fglmVector nfv = data.getVectorRep( nf ); |
---|
635 | l.insertCols( candidate.divisors, nfv ); |
---|
636 | data.newBorderElem( candidate.monom, nfv ); |
---|
637 | pDelete( &nf ); |
---|
638 | STICKYPROT( "+" ); |
---|
639 | } |
---|
640 | else |
---|
641 | { |
---|
642 | int basis= data.newBasisElem( candidate.monom ); |
---|
643 | data.updateCandidates(); |
---|
644 | l.insertCols( candidate.divisors, basis ); |
---|
645 | STICKYPROT( "." ); |
---|
646 | } |
---|
647 | } |
---|
648 | else { |
---|
649 | int var = 0; |
---|
650 | fglmVector temp = data.getBorderDiv( candidate.monom, var ); |
---|
651 | fglmASSERT( var > 0, "this should never happen" ); |
---|
652 | fglmVector nfv = l.addCols( var, data.getBasisSize(), temp ); |
---|
653 | data.newBorderElem( candidate.monom, nfv ); |
---|
654 | l.insertCols( candidate.divisors, nfv ); |
---|
655 | STICKYPROT( "-" ); |
---|
656 | } |
---|
657 | candidate.cleanup(); |
---|
658 | } //. while ( data.candidatesLeft() == TRUE ) |
---|
659 | l.endofConstruction(); |
---|
660 | STICKYPROT2( "\nvdim= %i\n", data.getBasisSize() ); |
---|
661 | return; |
---|
662 | } |
---|
663 | |
---|
664 | // Calculates the defining Functionals for the ideal "theIdeal" and |
---|
665 | // returns them in "l". |
---|
666 | // The ideal has to be zero-dimensional and reduced and has to be a |
---|
667 | // real subset of the polynomal ring. |
---|
668 | // In any case it has to be zero-dimensional and minimal (check this |
---|
669 | // via fglmIdealcheck). Any minimal but not reduced ideal is detected. |
---|
670 | // In this case it returns FglmNotReduced. |
---|
671 | // If the base domain is Q, the leading coefficients of the polys |
---|
672 | // have to be in Z. |
---|
673 | // returns TRUE if the result is valid, FALSE if theIdeal |
---|
674 | // is not reduced. |
---|
675 | static BOOLEAN |
---|
676 | CalculateFunctionals( const ideal & theIdeal, idealFunctionals & l ) |
---|
677 | { |
---|
678 | fglmSdata data( theIdeal ); |
---|
679 | internalCalculateFunctionals( theIdeal, l, data ); |
---|
680 | return ( data.state() ); |
---|
681 | } |
---|
682 | |
---|
683 | static BOOLEAN |
---|
684 | CalculateFunctionals( const ideal & theIdeal, idealFunctionals & l, |
---|
685 | poly & p, fglmVector & v ) |
---|
686 | { |
---|
687 | fglmSdata data( theIdeal ); |
---|
688 | internalCalculateFunctionals( theIdeal, l, data ); |
---|
689 | // STICKYPROT("Calculating vector rep\n"); |
---|
690 | v = data.getVectorRep( p ); |
---|
691 | // if ( v.isZero() ) |
---|
692 | // STICKYPROT("vectorrep is 0\n"); |
---|
693 | return ( data.state() ); |
---|
694 | } |
---|
695 | |
---|
696 | // ============================================================ |
---|
697 | //! The new basis |
---|
698 | // ============================================================ |
---|
699 | |
---|
700 | // The declaration of class fglmDelem is found in fglm.h |
---|
701 | |
---|
702 | fglmDelem::fglmDelem( poly & m, fglmVector mv, int v ) : v( mv ), insertions( 0 ), var( v ) |
---|
703 | { |
---|
704 | monom= m; |
---|
705 | m= NULL; |
---|
706 | for ( int k = (currRing->N); k > 0; k-- ) |
---|
707 | if ( pGetExp( monom, k ) > 0 ) |
---|
708 | insertions++; |
---|
709 | // Wir gehen davon aus, dass ein fglmDelem direkt bei der Erzeugung |
---|
710 | // auch in eine Liste eingefuegt wird. Daher wird hier automatisch |
---|
711 | // newDivisor aufgerufen ( v teilt ja m ) |
---|
712 | newDivisor(); |
---|
713 | } |
---|
714 | |
---|
715 | void |
---|
716 | fglmDelem::cleanup() |
---|
717 | { |
---|
718 | if ( monom != NULL ) |
---|
719 | { |
---|
720 | pLmDelete(&monom); |
---|
721 | } |
---|
722 | } |
---|
723 | |
---|
724 | class oldGaussElem |
---|
725 | { |
---|
726 | public: |
---|
727 | fglmVector v; |
---|
728 | fglmVector p; |
---|
729 | number pdenom; |
---|
730 | number fac; |
---|
731 | |
---|
732 | #ifndef HAVE_EXPLICIT_CONSTR |
---|
733 | oldGaussElem() : v(), p(), pdenom( NULL ), fac( NULL ) {} |
---|
734 | #endif |
---|
735 | oldGaussElem( const fglmVector newv, const fglmVector newp, number & newpdenom, number & newfac ) : v( newv ), p( newp ), pdenom( newpdenom ), fac( newfac ) |
---|
736 | { |
---|
737 | newpdenom= NULL; |
---|
738 | newfac= NULL; |
---|
739 | } |
---|
740 | ~oldGaussElem(); |
---|
741 | #ifndef HAVE_EXPLICIT_CONSTR |
---|
742 | void insertElem( const fglmVector newv, const fglmVector newp, number & newpdenom, number & newfac ) |
---|
743 | { |
---|
744 | v= newv; |
---|
745 | p= newp; |
---|
746 | pdenom= newpdenom; |
---|
747 | fac= newfac; |
---|
748 | newpdenom= NULL; |
---|
749 | newfac= NULL; |
---|
750 | } |
---|
751 | #endif |
---|
752 | }; |
---|
753 | |
---|
754 | oldGaussElem::~oldGaussElem() |
---|
755 | { |
---|
756 | nDelete( & fac ); |
---|
757 | nDelete( & pdenom ); |
---|
758 | } |
---|
759 | |
---|
760 | |
---|
761 | class fglmDdata |
---|
762 | { |
---|
763 | private: |
---|
764 | int dimen; |
---|
765 | oldGaussElem * gauss; |
---|
766 | BOOLEAN * isPivot; // [1]..[dimen] |
---|
767 | int * perm; // [1]..[dimen] |
---|
768 | int basisSize; //. the CURRENT basisSize, i.e. basisSize <= dimen |
---|
769 | polyset basis; // [1]..[dimen]. The monoms of the new Vectorspace-basis |
---|
770 | |
---|
771 | int* varpermutation; |
---|
772 | |
---|
773 | int groebnerBS; |
---|
774 | int groebnerSize; |
---|
775 | ideal destId; |
---|
776 | |
---|
777 | List<fglmDelem> nlist; |
---|
778 | public: |
---|
779 | fglmDdata( int dimension ); |
---|
780 | ~fglmDdata(); |
---|
781 | |
---|
782 | int getBasisSize() const { return basisSize; } |
---|
783 | BOOLEAN candidatesLeft() const { return ( nlist.isEmpty() ? FALSE : TRUE ); } |
---|
784 | fglmDelem nextCandidate(); |
---|
785 | void newBasisElem( poly & m, fglmVector v, fglmVector p, number & denom ); |
---|
786 | void updateCandidates( poly m, const fglmVector v ); |
---|
787 | void newGroebnerPoly( fglmVector & v, poly & p ); |
---|
788 | void gaussreduce( fglmVector & v, fglmVector & p, number & denom ); |
---|
789 | ideal buildIdeal() |
---|
790 | { |
---|
791 | idSkipZeroes( destId ); |
---|
792 | return destId; |
---|
793 | } |
---|
794 | }; |
---|
795 | |
---|
796 | fglmDdata::fglmDdata( int dimension ) |
---|
797 | { |
---|
798 | int k; |
---|
799 | dimen= dimension; |
---|
800 | basisSize= 0; |
---|
801 | //. All arrays run from [1]..[dimen], thus omAlloc( dimen + 1 )! |
---|
802 | #ifndef HAVE_EXPLICIT_CONSTR |
---|
803 | gauss= new oldGaussElem[ dimen+1 ]; |
---|
804 | #else |
---|
805 | gauss= (oldGaussElem *)omAlloc( (dimen+1)*sizeof( oldGaussElem ) ); |
---|
806 | #endif |
---|
807 | isPivot= (BOOLEAN *)omAlloc( (dimen+1)*sizeof( BOOLEAN ) ); |
---|
808 | for ( k= dimen; k > 0; k-- ) isPivot[k]= FALSE; |
---|
809 | perm= (int *)omAlloc( (dimen+1)*sizeof( int ) ); |
---|
810 | basis= (polyset)omAlloc( (dimen+1)*sizeof( poly ) ); |
---|
811 | varpermutation = (int*)omAlloc( ((currRing->N)+1)*sizeof(int) ); |
---|
812 | // Sort ring variables by increasing values (because of weighted orderings) |
---|
813 | ideal perm_id = idMaxIdeal(1); |
---|
814 | intvec *iv = idSort(perm_id,TRUE); |
---|
815 | idDelete(&perm_id); |
---|
816 | for(int i = (currRing->N); i > 0; i--) varpermutation[(currRing->N)+1-i] = (*iv)[i-1]; |
---|
817 | delete iv; |
---|
818 | |
---|
819 | groebnerBS= 16; |
---|
820 | groebnerSize= 0; |
---|
821 | destId= idInit( groebnerBS, 1 ); |
---|
822 | } |
---|
823 | |
---|
824 | fglmDdata::~fglmDdata() |
---|
825 | { |
---|
826 | // STICKYPROT2("dimen= %i", dimen); |
---|
827 | // STICKYPROT2("basisSize= %i", basisSize); |
---|
828 | // fglmASSERT( dimen == basisSize, "Es wurden nicht alle BasisElemente gefunden!" ); |
---|
829 | int k; |
---|
830 | #ifndef HAVE_EXPLICIT_CONSTR |
---|
831 | delete [] gauss; |
---|
832 | #else |
---|
833 | // use basisSize instead of dimen because of fglmquot! |
---|
834 | for ( k= basisSize; k > 0; k-- ) |
---|
835 | gauss[k].~oldGaussElem(); |
---|
836 | omFreeSize( (ADDRESS)gauss, (dimen+1)*sizeof( oldGaussElem ) ); |
---|
837 | #endif |
---|
838 | omFreeSize( (ADDRESS)isPivot, (dimen+1)*sizeof( BOOLEAN ) ); |
---|
839 | omFreeSize( (ADDRESS)perm, (dimen+1)*sizeof( int ) ); |
---|
840 | // use basisSize instead of dimen because of fglmquot! |
---|
841 | //. Remember: There is no poly in basis[0], thus k > 0 |
---|
842 | for ( k= basisSize; k > 0; k-- ) |
---|
843 | pLmDelete( basis[k]); |
---|
844 | omFreeSize( (ADDRESS)basis, (dimen+1)*sizeof( poly ) ); |
---|
845 | omFreeSize( (ADDRESS)varpermutation, ((currRing->N)+1)*sizeof(int) ); |
---|
846 | } |
---|
847 | |
---|
848 | fglmDelem |
---|
849 | fglmDdata::nextCandidate() |
---|
850 | { |
---|
851 | fglmDelem result = nlist.getFirst(); |
---|
852 | nlist.removeFirst(); |
---|
853 | return result; |
---|
854 | } |
---|
855 | |
---|
856 | void |
---|
857 | fglmDdata::newBasisElem( poly & m, fglmVector v, fglmVector p, number & denom ) |
---|
858 | { |
---|
859 | // inserts m as a new basis monom. m is NOT copied but directly inserted. |
---|
860 | // returns m=NULL to indicate, that now basis is oweing m. |
---|
861 | basisSize++; |
---|
862 | basis[basisSize]= m; |
---|
863 | m= NULL; |
---|
864 | int k= 1; |
---|
865 | while ( nIsZero(v.getconstelem(k)) || isPivot[k] ) { |
---|
866 | k++; |
---|
867 | } |
---|
868 | fglmASSERT( k <= dimen, "Error(1) in fglmDdata::pivot-search"); |
---|
869 | number pivot= v.getconstelem( k ); |
---|
870 | int pivotcol = k; |
---|
871 | k++; |
---|
872 | while ( k <= dimen ) { |
---|
873 | if ( ! nIsZero( v.getconstelem(k) ) && ! isPivot[k] ) { |
---|
874 | if ( nGreater( v.getconstelem( k ), pivot ) ) { |
---|
875 | pivot= v.getconstelem( k ); |
---|
876 | pivotcol= k; |
---|
877 | } |
---|
878 | } |
---|
879 | k++; |
---|
880 | } |
---|
881 | fglmASSERT( ! nIsZero( pivot ), "Error(2) fglmDdata::Pivotelement ist Null" ); |
---|
882 | isPivot[ pivotcol ]= TRUE; |
---|
883 | perm[basisSize]= pivotcol; |
---|
884 | |
---|
885 | pivot= nCopy( v.getconstelem( pivotcol ) ); |
---|
886 | #ifndef HAVE_EXPLICIT_CONSTR |
---|
887 | gauss[basisSize].insertElem( v, p, denom, pivot ); |
---|
888 | #else |
---|
889 | gauss[basisSize].oldGaussElem( v, p, denom, pivot ); |
---|
890 | #endif |
---|
891 | } |
---|
892 | |
---|
893 | void |
---|
894 | fglmDdata::updateCandidates( poly m, const fglmVector v ) |
---|
895 | { |
---|
896 | ListIterator<fglmDelem> list = nlist; |
---|
897 | poly newmonom = NULL; |
---|
898 | int k = (currRing->N); |
---|
899 | BOOLEAN done = FALSE; |
---|
900 | int state = 0; |
---|
901 | while ( k >= 1 ) |
---|
902 | { |
---|
903 | newmonom = pCopy( m ); |
---|
904 | pIncrExp( newmonom, varpermutation[k] ); |
---|
905 | pSetm( newmonom ); |
---|
906 | done= FALSE; |
---|
907 | while ( list.hasItem() && (!done) ) |
---|
908 | { |
---|
909 | if ( (state= pCmp( list.getItem().monom, newmonom )) < 0 ) |
---|
910 | list++; |
---|
911 | else done= TRUE; |
---|
912 | } |
---|
913 | if ( !done ) |
---|
914 | { |
---|
915 | nlist.append( fglmDelem( newmonom, v, k ) ); |
---|
916 | break; |
---|
917 | } |
---|
918 | if ( state == 0 ) |
---|
919 | { |
---|
920 | list.getItem().newDivisor(); |
---|
921 | pLmDelete( & newmonom ); |
---|
922 | } |
---|
923 | else |
---|
924 | { |
---|
925 | list.insert( fglmDelem( newmonom, v, k ) ); |
---|
926 | } |
---|
927 | k--; |
---|
928 | } |
---|
929 | while ( --k >= 1 ) |
---|
930 | { |
---|
931 | newmonom= pCopy( m ); |
---|
932 | pIncrExp( newmonom, varpermutation[k] ); |
---|
933 | pSetm( newmonom ); |
---|
934 | nlist.append( fglmDelem( newmonom, v, k ) ); |
---|
935 | } |
---|
936 | } |
---|
937 | |
---|
938 | void |
---|
939 | fglmDdata::newGroebnerPoly( fglmVector & p, poly & m ) |
---|
940 | // Inserts gp = p[1]*basis(1)+..+p[basisSize]*basis(basisSize)+p[basisSize+1]*m as |
---|
941 | // a new groebner polynomial for the ideal. |
---|
942 | // All elements (monomials and coefficients) of gp are copied, instead of m. |
---|
943 | // Assumes that p.length() == basisSize+1. |
---|
944 | { |
---|
945 | //. Baue das Polynom von oben nach unten: |
---|
946 | fglmASSERT( p.size() == basisSize+1, "GP::newGroebnerPoly: p has wrong size" ); |
---|
947 | int k; |
---|
948 | poly result = m; |
---|
949 | poly temp = result; |
---|
950 | m= NULL; |
---|
951 | if ( nGetChar() > 0 ) { |
---|
952 | number lead = nCopy( p.getconstelem( basisSize+1 ) ); |
---|
953 | p /= lead; |
---|
954 | nDelete( & lead ); |
---|
955 | } |
---|
956 | if ( nGetChar() == 0 ) { |
---|
957 | number gcd= p.gcd(); |
---|
958 | fglmASSERT( ! nIsZero( gcd ), "FATAL: gcd and thus p is zero" ); |
---|
959 | if ( ! nIsOne( gcd ) ) |
---|
960 | p /= gcd; |
---|
961 | nDelete( & gcd ); |
---|
962 | } |
---|
963 | pSetCoeff( result, nCopy( p.getconstelem( basisSize+1 ) ) ); |
---|
964 | for ( k= basisSize; k > 0; k-- ) { |
---|
965 | if ( ! nIsZero( p.getconstelem( k ) ) ) { |
---|
966 | temp->next= pCopy( basis[k] ); |
---|
967 | pIter( temp ); |
---|
968 | pSetCoeff( temp, nCopy( p.getconstelem( k ) ) ); |
---|
969 | } |
---|
970 | } |
---|
971 | pSetm( result ); |
---|
972 | if ( ! nGreaterZero( pGetCoeff( result ) ) ) result= pNeg( result ); |
---|
973 | if ( groebnerSize == IDELEMS( destId ) ) { |
---|
974 | pEnlargeSet( & destId->m, IDELEMS( destId ), groebnerBS ); |
---|
975 | IDELEMS( destId )+= groebnerBS; |
---|
976 | } |
---|
977 | (destId->m)[groebnerSize]= result; |
---|
978 | groebnerSize++; |
---|
979 | } |
---|
980 | |
---|
981 | void |
---|
982 | fglmDdata::gaussreduce( fglmVector & v, fglmVector & p, number & pdenom ) |
---|
983 | { |
---|
984 | int k; |
---|
985 | number fac1, fac2; |
---|
986 | number temp; |
---|
987 | fglmASSERT( pdenom == NULL, "pdenom in gaussreduce should be NULL" ); |
---|
988 | pdenom= nInit( 1 ); |
---|
989 | number vdenom = v.clearDenom(); |
---|
990 | if ( ! nIsZero( vdenom ) && ! nIsOne( vdenom ) ) { |
---|
991 | p.setelem( p.size(), vdenom ); |
---|
992 | } |
---|
993 | else { |
---|
994 | nDelete( &vdenom ); |
---|
995 | } |
---|
996 | number gcd = v.gcd(); |
---|
997 | if ( ! nIsZero( gcd ) && ! nIsOne( gcd ) ) { |
---|
998 | v /= gcd; |
---|
999 | number temp= nMult( pdenom, gcd ); |
---|
1000 | nDelete( &pdenom ); |
---|
1001 | pdenom= temp; |
---|
1002 | } |
---|
1003 | nDelete( & gcd ); |
---|
1004 | |
---|
1005 | for ( k= 1; k <= basisSize; k++ ) { |
---|
1006 | |
---|
1007 | if ( ! v.elemIsZero( perm[k] ) ) { |
---|
1008 | fac1= gauss[k].fac; |
---|
1009 | fac2= nCopy( v.getconstelem( perm[k] ) ); |
---|
1010 | v.nihilate( fac1, fac2, gauss[k].v ); |
---|
1011 | fac1= nMult( fac1, gauss[k].pdenom ); |
---|
1012 | temp= nMult( fac2, pdenom ); |
---|
1013 | nDelete( &fac2 ); |
---|
1014 | fac2= temp; |
---|
1015 | p.nihilate( fac1, fac2, gauss[k].p ); |
---|
1016 | temp= nMult( pdenom, gauss[k].pdenom ); |
---|
1017 | nDelete( &pdenom ); |
---|
1018 | pdenom= temp; |
---|
1019 | |
---|
1020 | nDelete( & fac1 ); |
---|
1021 | nDelete( & fac2 ); |
---|
1022 | number gcd = v.gcd(); |
---|
1023 | if ( ! nIsZero( gcd ) && ! nIsOne( gcd ) ) |
---|
1024 | { |
---|
1025 | v /= gcd; |
---|
1026 | number temp= nMult( pdenom, gcd ); |
---|
1027 | nDelete( &pdenom ); |
---|
1028 | pdenom= temp; |
---|
1029 | } |
---|
1030 | nDelete( & gcd ); |
---|
1031 | gcd= p.gcd(); |
---|
1032 | temp= n_Gcd( pdenom, gcd, currRing->cf ); |
---|
1033 | nDelete( &gcd ); |
---|
1034 | gcd= temp; |
---|
1035 | if ( ! nIsZero( gcd ) && ! nIsOne( gcd ) ) |
---|
1036 | { |
---|
1037 | p /= gcd; |
---|
1038 | temp= nDiv( pdenom, gcd ); |
---|
1039 | nDelete( & pdenom ); |
---|
1040 | pdenom= temp; |
---|
1041 | nNormalize( pdenom ); |
---|
1042 | } |
---|
1043 | nDelete( & gcd ); |
---|
1044 | } |
---|
1045 | } |
---|
1046 | } |
---|
1047 | |
---|
1048 | static ideal |
---|
1049 | GroebnerViaFunctionals( const idealFunctionals & l, |
---|
1050 | fglmVector iv = fglmVector() ) |
---|
1051 | // If iv is zero, calculates the groebnerBasis for the ideal which is |
---|
1052 | // defined by l. |
---|
1053 | // If iv is not zero, then the groebnerBasis if i:p is calculated where |
---|
1054 | // i is defined by l and iv is the vector-representation of nf(p) wrt. i |
---|
1055 | // The dimension of l has to be finite. |
---|
1056 | // The result is in reduced form. |
---|
1057 | { |
---|
1058 | fglmDdata data( l.dimen() ); |
---|
1059 | |
---|
1060 | // insert pOne() and update workinglist according to iv: |
---|
1061 | fglmVector initv; |
---|
1062 | if ( iv.isZero() ) { |
---|
1063 | // STICKYPROT("initv is zero\n"); |
---|
1064 | initv = fglmVector( l.dimen(), 1 ); |
---|
1065 | } |
---|
1066 | else { |
---|
1067 | // STICKYPROT("initv is not zero\n"); |
---|
1068 | initv = iv; |
---|
1069 | } |
---|
1070 | |
---|
1071 | poly one = pOne(); |
---|
1072 | data.updateCandidates( one, initv ); |
---|
1073 | number nOne = nInit( 1 ); |
---|
1074 | data.newBasisElem( one, initv, fglmVector( 1, 1 ), nOne ); |
---|
1075 | STICKYPROT( "." ); |
---|
1076 | while ( data.candidatesLeft() == TRUE ) { |
---|
1077 | fglmDelem candidate = data.nextCandidate(); |
---|
1078 | if ( candidate.isBasisOrEdge() == TRUE ) { |
---|
1079 | // Now we have the chance to find a new groebner polynomial |
---|
1080 | |
---|
1081 | // v is the vector-representation of candidate.monom |
---|
1082 | // some elements of v are zeroed in data.gaussreduce(). Which |
---|
1083 | // ones and how this was done is stored in p. |
---|
1084 | // originalV containes the unchanged v, which is later inserted |
---|
1085 | // into the working list (via data.updateCandidates(). |
---|
1086 | fglmVector v = l.multiply( candidate.v, candidate.var ); |
---|
1087 | fglmVector originalV = v; |
---|
1088 | fglmVector p( data.getBasisSize()+1, data.getBasisSize()+1 ); |
---|
1089 | number pdenom = NULL; |
---|
1090 | data.gaussreduce( v, p, pdenom ); |
---|
1091 | if ( v.isZero() ) { |
---|
1092 | // Now v is linear dependend to the already found basis elements. |
---|
1093 | // This means that v (rsp. candidate.monom) is the leading |
---|
1094 | // monomial of the next groebner-basis polynomial. |
---|
1095 | data.newGroebnerPoly( p, candidate.monom ); |
---|
1096 | nDelete( & pdenom ); |
---|
1097 | STICKYPROT( "+" ); |
---|
1098 | } |
---|
1099 | else { |
---|
1100 | // no linear dependence could be found, so v ( rsp. monom ) |
---|
1101 | // is a basis monomial. We store the zeroed version ( i.e. v |
---|
1102 | // and not originalV ) as well as p, the denomiator and all |
---|
1103 | // the other stuff. |
---|
1104 | // erst updateCandidates, dann newBasisELem!!! |
---|
1105 | data.updateCandidates( candidate.monom, originalV ); |
---|
1106 | data.newBasisElem( candidate.monom, v, p, pdenom ); |
---|
1107 | STICKYPROT( "." ); |
---|
1108 | } |
---|
1109 | } |
---|
1110 | else { |
---|
1111 | STICKYPROT( "-" ); |
---|
1112 | candidate.cleanup(); |
---|
1113 | } |
---|
1114 | } //. while data.candidatesLeft() |
---|
1115 | STICKYPROT( "\n" ); |
---|
1116 | return ( data.buildIdeal() ); |
---|
1117 | } |
---|
1118 | //<- |
---|
1119 | |
---|
1120 | static ideal |
---|
1121 | FindUnivariatePolys( const idealFunctionals & l ) |
---|
1122 | { |
---|
1123 | fglmVector v; |
---|
1124 | fglmVector p; |
---|
1125 | ideal destIdeal = idInit( (currRing->N), 1 ); |
---|
1126 | |
---|
1127 | int i; |
---|
1128 | BOOLEAN isZero; |
---|
1129 | int *varpermutation = (int*)omAlloc( ((currRing->N)+1)*sizeof(int) ); |
---|
1130 | ideal perm = idMaxIdeal(1); |
---|
1131 | intvec *iv = idSort(perm,TRUE); |
---|
1132 | idDelete(&perm); |
---|
1133 | for(i = (currRing->N); i > 0; i--) varpermutation[(currRing->N)+1-i] = (*iv)[i-1]; |
---|
1134 | delete iv; |
---|
1135 | |
---|
1136 | for (i= 1; i <= (currRing->N); i++ ) |
---|
1137 | { |
---|
1138 | // main loop |
---|
1139 | STICKYPROT2( "(%i)", i /*varpermutation[i]*/); |
---|
1140 | gaussReducer gauss( l.dimen() ); |
---|
1141 | isZero= FALSE; |
---|
1142 | v= fglmVector( l.dimen(), 1 ); |
---|
1143 | while ( !isZero ) |
---|
1144 | { |
---|
1145 | if ( (isZero= gauss.reduce( v ))) |
---|
1146 | { |
---|
1147 | STICKYPROT( "+" ); |
---|
1148 | p= gauss.getDependence(); |
---|
1149 | number gcd= p.gcd(); |
---|
1150 | if ( ! nIsOne( gcd ) ) |
---|
1151 | { |
---|
1152 | p /= gcd; |
---|
1153 | } |
---|
1154 | nDelete( & gcd ); |
---|
1155 | int k; |
---|
1156 | poly temp = NULL; |
---|
1157 | poly result; |
---|
1158 | for ( k= p.size(); k > 0; k-- ) { |
---|
1159 | number n = nCopy( p.getconstelem( k ) ); |
---|
1160 | if ( ! nIsZero( n ) ) { |
---|
1161 | if ( temp == NULL ) { |
---|
1162 | result= pOne(); |
---|
1163 | temp= result; |
---|
1164 | } |
---|
1165 | else { |
---|
1166 | temp->next= pOne(); |
---|
1167 | pIter( temp ); |
---|
1168 | } |
---|
1169 | pSetCoeff( temp, n ); |
---|
1170 | pSetExp( temp, i /*varpermutation[i]*/, k-1 ); |
---|
1171 | pSetm( temp ); |
---|
1172 | } |
---|
1173 | } |
---|
1174 | if ( ! nGreaterZero( pGetCoeff( result ) ) ) result= pNeg( result ); |
---|
1175 | (destIdeal->m)[i-1]= result; |
---|
1176 | } |
---|
1177 | else { |
---|
1178 | STICKYPROT( "." ); |
---|
1179 | gauss.store(); |
---|
1180 | v= l.multiply( v, i /*varpermutation[i]*/ ); |
---|
1181 | } |
---|
1182 | } |
---|
1183 | } |
---|
1184 | STICKYPROT( "\n" ); |
---|
1185 | omFreeSize( (ADDRESS)varpermutation, ((currRing->N)+1)*sizeof(int) ); |
---|
1186 | return destIdeal; |
---|
1187 | } |
---|
1188 | |
---|
1189 | // for a descritption of the parameters see fglm.h |
---|
1190 | BOOLEAN |
---|
1191 | fglmzero( ring sourceRing, ideal & sourceIdeal, ring destRing, ideal & destIdeal, BOOLEAN switchBack, BOOLEAN deleteIdeal ) |
---|
1192 | { |
---|
1193 | ring initialRing = currRing; |
---|
1194 | BOOLEAN fglmok; |
---|
1195 | |
---|
1196 | if ( currRing != sourceRing ) |
---|
1197 | { |
---|
1198 | rChangeCurrRing( sourceRing ); |
---|
1199 | } |
---|
1200 | idealFunctionals L( 100, rVar(currRing) ); |
---|
1201 | fglmok = CalculateFunctionals( sourceIdeal, L ); |
---|
1202 | if ( deleteIdeal == TRUE ) |
---|
1203 | idDelete( & sourceIdeal ); |
---|
1204 | rChangeCurrRing( destRing ); |
---|
1205 | if ( fglmok == TRUE ) |
---|
1206 | { |
---|
1207 | L.map( sourceRing ); |
---|
1208 | destIdeal= GroebnerViaFunctionals( L ); |
---|
1209 | } |
---|
1210 | if ( (switchBack) && (currRing != initialRing) ) |
---|
1211 | rChangeCurrRing( initialRing ); |
---|
1212 | return fglmok; |
---|
1213 | } |
---|
1214 | |
---|
1215 | BOOLEAN |
---|
1216 | fglmquot( ideal sourceIdeal, poly quot, ideal & destIdeal) |
---|
1217 | { |
---|
1218 | BOOLEAN fglmok; |
---|
1219 | fglmVector v; |
---|
1220 | |
---|
1221 | idealFunctionals L( 100, (currRing->N) ); |
---|
1222 | // STICKYPROT("calculating normal form\n"); |
---|
1223 | // poly p = kNF( sourceIdeal, currRing->qideal, quot ); |
---|
1224 | // STICKYPROT("calculating functionals\n"); |
---|
1225 | fglmok = CalculateFunctionals( sourceIdeal, L, quot, v ); |
---|
1226 | if ( fglmok == TRUE ) { |
---|
1227 | // STICKYPROT("calculating groebner basis\n"); |
---|
1228 | destIdeal= GroebnerViaFunctionals( L, v ); |
---|
1229 | } |
---|
1230 | return fglmok; |
---|
1231 | } |
---|
1232 | |
---|
1233 | BOOLEAN |
---|
1234 | FindUnivariateWrapper( ideal source, ideal & destIdeal ) |
---|
1235 | { |
---|
1236 | BOOLEAN fglmok; |
---|
1237 | |
---|
1238 | idealFunctionals L( 100, (currRing->N) ); |
---|
1239 | fglmok = CalculateFunctionals( source, L ); |
---|
1240 | if ( fglmok == TRUE ) { |
---|
1241 | destIdeal= FindUnivariatePolys( L ); |
---|
1242 | return TRUE; |
---|
1243 | } |
---|
1244 | else |
---|
1245 | return FALSE; |
---|
1246 | } |
---|
1247 | |
---|
1248 | // ---------------------------------------------------------------------------- |
---|
1249 | // Local Variables: *** |
---|
1250 | // compile-command: "make Singular" *** |
---|
1251 | // page-delimiter: "^\\(\\|//!\\)" *** |
---|
1252 | // fold-internal-margins: nil *** |
---|
1253 | // End: *** |
---|