source: git/kernel/gfan.cc @ 61944d0

spielwiese
Last change on this file since 61944d0 was 8bdaab, checked in by Martin Monerjan, 15 years ago
First glimpse of class facet and class gcone git-svn-id: file:///usr/local/Singular/svn/trunk@11465 2c84dea3-7e68-4137-9b89-c4e89433aadc
  • Property mode set to 100644
File size: 6.0 KB
Line 
1/*
2Compute the Groebner fan of an ideal
3Author: $Author: monerjan $
4Date: $Date: 2009-02-25 14:30:25 $
5Header: $Header: /exports/cvsroot-2/cvsroot/kernel/gfan.cc,v 1.16 2009-02-25 14:30:25 monerjan Exp $
6Id: $Id: gfan.cc,v 1.16 2009-02-25 14:30:25 monerjan Exp $
7*/
8
9#include "mod2.h"
10
11#ifdef HAVE_GFAN
12
13#include "kstd1.h"
14#include "intvec.h"
15#include "polys.h"
16#include "ideals.h"
17#include "kmatrix.h"
18#include "/users/urmel/alggeom/monerjan/cddlib/include/setoper.h" //Support for cddlib. Dirty hack
19#include "/users/urmel/alggeom/monerjan/cddlib/include/cdd.h"
20
21#ifndef gfan_DEBUG
22#define gfan_DEBUG
23#endif
24
25class facet
26{
27        private:
28                intvec fnormal;         //inner normal, describing the facet uniquely
29        public:
30                facet();                //constructor
31                bool isflippable;       //flippable facet?
32};
33
34/*class gcone
35finally this should become s.th. like gconelib.{h,cc} to provide an API
36*/
37class gcone
38{
39public:
40        gcone(int);             //constructor with dimension
41        poly gc_marked_term;    //marked terms of the cone's Gröbner basis
42        ideal gc_basis;         //GB of the cone
43        gcone *next;            //Pointer to *previous* cone in search tree
44       
45        void flip();            //Compute "the other side"
46
47};//class gcone
48
49ideal getGB(ideal inputIdeal)
50{
51        #ifdef gfan_DEBUG
52        printf("Computing a groebner basis...\n");
53        #endif
54
55        ideal gb;
56        gb=kStd(inputIdeal,NULL,testHomog,NULL); //Possible to call without testHomog/isHomog?
57        idSkipZeroes(gb); //Get rid of zero entries
58
59        return gb;
60}
61
62/****** getWallIneq computes the inequalities ***/
63/*INPUT_TYPE: ideal                             */
64/*RETURN_TYPE: matrix                           */
65/************************************************/
66void getWallIneq(ideal I)
67{
68        #ifdef gfan_DEBUG
69        printf("*** Computing Inequalities... ***\n");
70        #endif
71
72        //All variables go here - except ineq matrix and *v, see below
73        int lengthGB=IDELEMS(I);        // # of polys in the groebner basis
74        int pCompCount;                 // # of terms in a poly
75        poly aktpoly;
76        int numvar = pVariables;        // # of variables in a polynomial (or ring?)
77        int leadexp[numvar];            // dirty hack of exp.vects
78        int aktexp[numvar];
79        int cols,rows;                  // will contain the dimensions of the ineq matrix - deprecated by
80        dd_rowrange ddrows;
81        dd_colrange ddcols;
82        dd_rowset ddredrows;            // # of redundant rows in ddineq
83        dd_rowset ddlinset;             // the opposite
84        dd_rowindex ddnewpos;           // all to make dd_Canonicalize happy
85        dd_NumberType ddnumb=dd_Real;   //Number type
86        dd_ErrorType dderr=dd_NoError;  //
87        // End of var declaration
88
89        printf("The Groebner basis has %i elements\n",lengthGB);
90        printf("The current ring has %i variables\n",numvar);
91        cols = numvar;
92
93        //Compute the # inequalities i.e. rows of the matrix
94        rows=0; //Initialization
95        for (int ii=0;ii<IDELEMS(I);ii++)
96        {
97                aktpoly=(poly)I->m[ii];
98                rows=rows+pLength(aktpoly)-1;
99        }
100        printf("rows=%i\n",rows);
101        printf("Will create a %i x %i - matrix to store inequalities\n",rows,cols);
102
103        dd_rowrange aktmatrixrow=0;     // needed to store the diffs of the expvects in the rows of ddineq
104        dd_set_global_constants();
105        ddrows=rows;
106        ddcols=cols;
107        dd_MatrixPtr ddineq;            //Matrix to store the inequalities
108        ddineq=dd_CreateMatrix(ddrows,ddcols+1); //The first col has to be 0 since cddlib checks for additive consts there
109
110        // We loop through each g\in GB and compute the resulting inequalities
111        for (int i=0; i<IDELEMS(I); i++)
112        {
113                aktpoly=(poly)I->m[i];          //get aktpoly as i-th component of I
114                pCompCount=pLength(aktpoly);    //How many terms does aktpoly consist of?
115                printf("Poly No. %i has %i components\n",i,pCompCount);
116
117                int *v=(int *)omAlloc((numvar+1)*sizeof(int));
118                pGetExpV(aktpoly,v);    //find the exp.vect in v[1],...,v[n], use pNext(p)
119               
120                //Store leadexp for aktpoly
121                for (int kk=0;kk<numvar;kk++)
122                {
123                        leadexp[kk]=v[kk+1];
124                        //printf("Leadexpcomp=%i\n",leadexp[kk]);
125                        //Since we need to know the difference of leadexp with the other expvects we do nothing here
126                        //but compute the diff below
127                }
128
129               
130                while (pNext(aktpoly)!=NULL) //move to next term until NULL
131                {
132                        aktpoly=pNext(aktpoly);
133                        pSetm(aktpoly);         //doesn't seem to help anything
134                        pGetExpV(aktpoly,v);
135                        for (int kk=0;kk<numvar;kk++)
136                        {
137//The ordering somehow gets lost here but this is acceptable, since we are only interested in the inequalities
138                                aktexp[kk]=v[kk+1];
139                                //printf("aktexpcomp=%i\n",aktexp[kk]);
140                                //ineq[aktmatrixrow][kk]=leadexp[kk]-aktexp[kk];        //dito
141                                dd_set_si(ddineq->matrix[(dd_rowrange)aktmatrixrow][kk+1],leadexp[kk]-aktexp[kk]); //because of the 1st col being const 0
142                        }
143                        aktmatrixrow=aktmatrixrow+1;
144                }//while
145
146        } //for
147
148        //Maybe add another row to contain the constraints of the standard simplex?
149
150        #ifdef gfan_DEBUG
151        printf("The inequality matrix is:\n");
152        dd_WriteMatrix(stdout, ddineq);
153        #endif
154
155        // The inequalities are now stored in ddineq
156        // Next we check for superflous rows
157        ddredrows = dd_RedundantRows(ddineq, &dderr);
158        if (dderr!=dd_NoError)                  // did an error occur?
159        {
160                 dd_WriteErrorMessages(stderr,dderr);   //if so tell us
161        } else
162        {
163                printf("Redundant rows: ");
164                set_fwrite(stdout, ddredrows);          //otherwise print the redundant rows
165        }//if dd_Error
166
167        //Remove reduntant rows here!
168        dd_MatrixCanonicalize(&ddineq, &ddlinset, &ddredrows, &ddnewpos, &dderr);
169        #ifdef gfan_DEBUG
170        printf("Having removed redundant rows, the inequalities now read:\n");
171        dd_WriteMatrix(stdout,ddineq);
172        #endif
173
174        dd_PolyhedraPtr ddpolyh;
175        dd_MatrixPtr G;
176        ddpolyh=dd_DDMatrix2Poly(ddineq, &dderr);
177        G=dd_CopyGenerators(ddpolyh);
178        printf("\nSpanning vectors = rows:\n");
179        dd_WriteMatrix(stdout, G);
180
181        //ddineq->representation=dd_Inequality;         //We want our LP to be Ax>=0
182
183        //Clean up but don't delete the return value! (Whatever it will turn out to be)
184        dd_FreeMatrix(ddineq);
185        //set_free(ddrows);
186        //set_free(ddcols);
187        set_free(ddredrows);
188        //set_free(ddnumb);
189        //set_free(dderr);
190        free(ddnewpos);
191        //set_free(ddlinset);
192        dd_free_global_constants();
193
194        //res=(ideal)aktpoly;
195        //return res;
196}
197
198ideal gfan(ideal inputIdeal)
199{
200        #ifdef gfan_DEBUG
201        printf("Now in subroutine gfan\n");
202        #endif
203        ideal res;
204        matrix ineq; //Matrix containing the boundary inequalities
205
206        res=getGB(inputIdeal);
207        getWallIneq(res);
208        return res;
209}
210#endif
Note: See TracBrowser for help on using the repository browser.