/* Compute the Groebner fan of an ideal $Author: monerjan $ $Date: 2009/11/03 06:57:32 $ $Header: /usr/local/Singular/cvsroot/kernel/gfan.cc,v 1.103 2009/11/03 06:57:32 monerjan Exp $ $Id$ */ #include #ifdef HAVE_FANS #include #include #include #include #include #include #include #include //apparently not needed #include lists.h #include #include #include //read-write cones to files #include #include #include #include #include /*DO NOT REMOVE THIS*/ #ifndef GMPRATIONAL #define GMPRATIONAL #endif //Hacks for different working places #define p800 #ifdef p800 #include <../cddlib-094f/lib-src-gmp/setoper.h> #include <../cddlib-094f/lib-src-gmp/cdd.h> #include <../cddlib-094f/lib-src-gmp/cddmp.h> #endif #ifndef gfan_DEBUG // #define gfan_DEBUG #ifndef gfan_DEBUGLEVEL #define gfan_DEBUGLEVEL 1 #endif #endif //NOTE Defining this will slow things down! //Only good for very coarse profiling // #define gfanp #ifdef gfanp #include #include #endif //NOTE DO NOT REMOVE THIS #ifndef SHALLOW #define SHALLOW #endif #ifndef USE_ZFAN #define USE_ZFAN #endif #include using namespace std; #define ivIsStrictlyPositive iv64isStrictlyPositive /** *\brief Class facet * Implements the facet structure as a linked list * */ /** \brief The default constructor for facets */ facet::facet() { // Pointer to next facet. */ /* Defaults to NULL. This way there is no need to check explicitly */ this->fNormal=NULL; this->interiorPoint=NULL; this->UCN=0; this->codim2Ptr=NULL; this->codim=1; //default for (codim-1)-facets this->numCodim2Facets=0; this->numRays=0; this->flipGB=NULL; this->next=NULL; this->prev=NULL; this->flipRing=NULL; //the ring on the other side this->isFlippable=FALSE; } /** \brief Constructor for facets of codim == 2 * Note that as of now the code of the constructors is only for facets and codim2-faces. One * could easily change that by renaming numCodim2Facets to numCodimNminusOneFacets or similar */ facet::facet(const int &n) { this->fNormal=NULL; this->interiorPoint=NULL; this->UCN=0; this->codim2Ptr=NULL; if(n==2) { this->codim=n; }//NOTE Handle exception here! this->numCodim2Facets=0; this->numRays=0; this->flipGB=NULL; this->next=NULL; this->prev=NULL; this->flipRing=NULL; this->isFlippable=FALSE; } /** \brief The copy constructor * By default only copies the fNormal, f2Normals and UCN */ facet::facet(const facet& f) { this->fNormal=iv64Copy(f.fNormal); this->UCN=f.UCN; this->isFlippable=f.isFlippable; //Needed for flip2 //NOTE ONLY REFERENCE this->interiorPoint=iv64Copy(f.interiorPoint);//only referencing is prolly not the best thing to do in a copy constructor facet* f2Copy; f2Copy=f.codim2Ptr; facet* f2Act; f2Act=this->codim2Ptr; while(f2Copy!=NULL) { if(f2Act==NULL #ifndef NDEBUG #if SIZEOF_LONG==8 || f2Act==(facet*)0xfefefefefefefefe #elif SIZEOF_LONG==4 || f2Act==(facet*)0xfefefefe #endif #endif ) { f2Act=new facet(2); this->codim2Ptr=f2Act; } else { facet* marker; marker = f2Act; f2Act->next = new facet(2); f2Act = f2Act->next; f2Act->prev = marker; } int64vec *f2Normal; f2Normal = f2Copy->getFacetNormal(); // f2Act->setFacetNormal(f2Copy->getFacetNormal()); f2Act->setFacetNormal(f2Normal); delete f2Normal; f2Act->setUCN(f2Copy->getUCN()); f2Copy = f2Copy->next; } } /** \brief Shallow copy constructor for facets * We only need the interior point for equality testing */ facet* facet::shallowCopy(const facet& f) { facet *res = new facet(); res->fNormal=(int64vec * const)f.fNormal; res->UCN=f.UCN; res->isFlippable=f.isFlippable; res->interiorPoint=(int64vec * const)f.interiorPoint; res->codim2Ptr=(facet * const)f.codim2Ptr; res->prev=NULL; res->next=NULL; res->flipGB=NULL; res->flipRing=NULL; return res; } void facet::shallowDelete() { #ifndef NDEBUG // printf("shallowdel@UCN %i\n", this->getUCN()); #endif this->fNormal=NULL; // this->UCN=0; this->interiorPoint=NULL; this->codim2Ptr=NULL; this->prev=NULL; this->next=NULL; this->flipGB=NULL; this->flipRing=NULL; assert(this->fNormal==NULL); // delete(this); } /** The default destructor */ facet::~facet() { #ifndef NDEBUG // printf("~facet@UCN %i\n",this->getUCN()); #endif if(this->fNormal!=NULL) delete this->fNormal; if(this->interiorPoint!=NULL) delete this->interiorPoint; /* Cleanup the codim2-structure */ // if(this->codim==2) // { // facet *codim2Ptr; // codim2Ptr = this->codim2Ptr; // while(codim2Ptr!=NULL) // { // if(codim2Ptr->fNormal!=NULL) // { // delete codim2Ptr->fNormal;//NOTE Do not want this anymore since the rays are now in gcone! // codim2Ptr = codim2Ptr->next; // } // } // } //The rays are stored in the cone! if(this->flipGB!=NULL) idDelete((ideal *)&this->flipGB); // if(this->flipRing!=NULL && this->flipRing->idroot!=(idhdl)0xfbfbfbfbfbfbfbfb) // rDelete(this->flipRing); //See vol II/134 // this->flipRing=NULL; this->prev=NULL; this->next=NULL; } inline const int64vec *facet::getRef2FacetNormal() const { return(this->fNormal); } /** Equality check for facets based on unique interior points*/ static bool areEqual2(facet* f, facet *g) { #ifdef gfanp gcone::numberOfFacetChecks++; timeval start, end; gettimeofday(&start, 0); #endif bool res = TRUE; const int64vec *fIntP = f->getRef2InteriorPoint(); const int64vec *gIntP = g->getRef2InteriorPoint(); for(int ii=0;iicompare(gIntP)!=0) res=FALSE; #ifdef gfanp gettimeofday(&end, 0); gcone::t_areEqual += (end.tv_sec - start.tv_sec + 1e-6*(end.tv_usec - start.tv_usec)); #endif return res; } /** \brief Comparison of facets * called from enqueueNewFacets * The facet normals are primitve vectors since we call gcone::normalize() on all cones. * Hence it should suffice to check whether facet normal f equals minus facet normal s. * If so we check the extremal rays * * BEWARE: It would be better to use const int64vec* but that will lead to call something like * int foo=((int64vec*)f2Normal)->compare((int64vec*)s2Normal) resulting in much higher memory usage */ static bool areEqual(facet *f, facet *s) { #ifdef gfanp gcone::numberOfFacetChecks++; timeval start, end; gettimeofday(&start, 0); #endif bool res = TRUE; int notParallelCtr=0; int ctr=0; const int64vec* fNormal; //No new since iv64Copy and therefore getFacetNormal return a new const int64vec* sNormal; fNormal = f->getRef2FacetNormal(); sNormal = s->getRef2FacetNormal(); #include //Do not need parallelity. Too time consuming // if(!isParallel(*fNormal,*sNormal)) // if(fNormal->compare(ivNeg(sNormal))!=0)//This results in a Mandelbug // notParallelCtr++; // else//parallelity, so we check the codim2-facets int64vec *fNRef=const_cast(fNormal); int64vec *sNRef=const_cast(sNormal); if(isParallel(*fNRef,*sNRef)) // if(fNormal->compare((sNormal))!=0)//Behold! Teh definitive Mandelbug { facet* f2Act; facet* s2Act; f2Act = f->codim2Ptr; ctr=0; while(f2Act!=NULL) { const int64vec* f2Normal; f2Normal = f2Act->getRef2FacetNormal(); // int64vec *f2Ref=const_cast(f2Normal); s2Act = s->codim2Ptr; while(s2Act!=NULL) { const int64vec* s2Normal; s2Normal = s2Act->getRef2FacetNormal(); // bool foo=areEqual(f2Normal,s2Normal); // int64vec *s2Ref=const_cast(s2Normal); int foo=f2Normal->compare(s2Normal); if(foo==0) ctr++; s2Act = s2Act->next; } f2Act = f2Act->next; } } if(ctr==f->numCodim2Facets) res=TRUE; else { #ifdef gfanp gcone::parallelButNotEqual++; #endif res=FALSE; } #ifdef gfanp gettimeofday(&end, 0); gcone::t_areEqual += (end.tv_sec - start.tv_sec + 1e-6*(end.tv_usec - start.tv_usec)); #endif return res; } /** Stores the facet normal \param int64vec*/ inline void facet::setFacetNormal(int64vec *iv) { if(this->fNormal!=NULL) delete this->fNormal; this->fNormal = iv64Copy(iv); } /** Hopefully returns the facet normal * Mind: iv64Copy returns a new int64vec, so use this in the following way: * int64vec *iv; * iv = this->getFacetNormal(); * [...] * delete(iv); */ inline int64vec *facet::getFacetNormal() const { return iv64Copy(this->fNormal); } /** Method to print the facet normal*/ inline void facet::printNormal() const { fNormal->show(); } /** Store the flipped GB*/ inline void facet::setFlipGB(ideal I) { this->flipGB=idCopy(I); } /** Returns a pointer to the flipped GB Seems not be used Anyhow idCopy would make sense here. */ inline ideal facet::getFlipGB() { return this->flipGB; } /** Print the flipped GB*/ inline void facet::printFlipGB() { #ifndef NDEBUG idShow(this->flipGB); #endif } /** Set the UCN */ inline void facet::setUCN(int n) { this->UCN=n; } /** \brief Get the UCN * Returns the UCN iff this != NULL, else -1 */ inline int facet::getUCN() { #ifndef NDEBUG #if SIZEOF_LONG==8 if((this!=NULL && this!=(facet * const)0xfbfbfbfbfbfbfbfb)) #elif SIZEOF_LONG==4 if((this!=NULL && this!=(facet * const)0xfbfbfbfb)) #endif #endif #ifdef NDEBUG if(this!=NULL) #endif return this->UCN; else return -1; } /** Store an interior point of the facet */ inline void facet::setInteriorPoint(int64vec *iv) { if(this->interiorPoint!=NULL) delete this->interiorPoint; this->interiorPoint = iv64Copy(iv); } /** Returns a pointer to this->interiorPoint * MIND: iv64Copy returns a new int64vec * @see facet::getFacetNormal */ inline int64vec *facet::getInteriorPoint() { return iv64Copy(this->interiorPoint); } inline const int64vec *facet::getRef2InteriorPoint() { return (this->interiorPoint); } /** \brief Debugging function * prints the facet normal an all (codim-2)-facets that belong to it */ volatile void facet::fDebugPrint() { #ifndef NDEBUG facet *codim2Act; codim2Act = this->codim2Ptr; int64vec *fNormal; fNormal = this->getFacetNormal(); printf("=======================\n"); printf("Facet normal = (");fNormal->show(1,1);printf(")\n"); printf("-----------------------\n"); printf("Codim2 facets:\n"); while(codim2Act!=NULL) { int64vec *f2Normal; f2Normal = codim2Act->getFacetNormal(); printf("(");f2Normal->show(1,0);printf(")\n"); codim2Act = codim2Act->next; delete f2Normal; } printf("=======================\n"); delete fNormal; #endif } /** *\brief Implements the cone structure * * A cone is represented by a linked list of facet normals * @see facet */ /** \brief Default constructor. * * Initialises this->next=NULL and this->facetPtr=NULL */ gcone::gcone() { this->next=NULL; this->prev=NULL; this->facetPtr=NULL; //maybe this->facetPtr = new facet(); this->baseRing=currRing; this->counter++; this->UCN=this->counter; this->numFacets=0; this->ivIntPt=NULL; this->gcRays=NULL; } /** \brief Constructor with ring and ideal * * This constructor takes the root ring and the root ideal as parameters and stores * them in the private members gcone::rootRing and gcone::inputIdeal * This constructor is only called once in the computation of the Gröbner fan, * namely for the very first cone. Therefore pred is set to 1. * Might set it to this->UCN though... * Since knowledge of the root ring is only needed when using reverse search, * this constructor is not needed when using the "second" method */ gcone::gcone(ring r, ideal I) { this->next=NULL; this->prev=NULL; this->facetPtr=NULL; this->inputIdeal=I; this->baseRing=currRing; this->counter++; this->UCN=this->counter; this->pred=1; this->numFacets=0; this->ivIntPt=NULL; this->gcRays=NULL; } /** \brief Copy constructor * * Copies a cone, sets this->gcBasis to the flipped GB * Call this only after a successful call to gcone::flip which sets facet::flipGB */ gcone::gcone(const gcone& gc, const facet &f) { this->next=NULL; // this->prev=(gcone *)&gc; //comment in to get a tree this->prev=NULL; this->numVars=gc.numVars; this->counter++; this->UCN=this->counter; this->pred=gc.UCN; this->facetPtr=NULL; this->gcBasis=idrCopyR(f.flipGB, f.flipRing); // this->inputIdeal=idCopy(this->gcBasis); this->baseRing=rCopy(f.flipRing); this->numFacets=0; this->ivIntPt=NULL; this->gcRays=NULL; } /** \brief Default destructor */ gcone::~gcone() { #ifndef NDEBUG #if SIZEOF_LONG==8 if( ( this->gcBasis!=(ideal)(0xfbfbfbfbfbfbfbfb) ) && (this->gcBasis!=NULL) ) idDelete((ideal*)&this->gcBasis); #elif SIZEOF_LONG!=8 if(this->gcBasis!=(ideal)0xfbfbfbfb) idDelete((ideal *)&this->gcBasis); #endif #else if(this->gcBasis!=NULL) idDelete((ideal *)&this->gcBasis); #endif // idDelete((ideal *)&this->gcBasis); // if(this->inputIdeal!=NULL) // idDelete((ideal *)&this->inputIdeal); // if (this->rootRing!=NULL && this->rootRing!=(ip_sring *)0xfefefefefefefefe) // rDelete(this->rootRing); if(this->UCN!=1 && this->baseRing!=NULL) rDelete(this->baseRing); facet *fAct; facet *fDel; /*Delete the facet structure*/ fAct=this->facetPtr; fDel=fAct; while(fAct!=NULL) { fDel=fAct; fAct=fAct->next; delete fDel; } this->counter--; //should be deleted in noRevS // dd_FreeMatrix(this->ddFacets); //dd_FreeMatrix(this->ddFacets); for(int ii=0;iinumRays;ii++) delete(gcRays[ii]); omFree(gcRays); } /** Returns the number of cones existing at the time*/ inline int gcone::getCounter() { return this->counter; } /** \brief Set the interior point of a cone */ inline void gcone::setIntPoint(int64vec *iv) { if(this->ivIntPt!=NULL) delete this->ivIntPt; this->ivIntPt=iv64Copy(iv); } /** \brief Returns either a physical copy the interior point of a cone or just a reference to it.*/ inline int64vec *gcone::getIntPoint(bool shallow) { if(shallow==TRUE) return this->ivIntPt; else return iv64Copy(this->ivIntPt); } /** \brief Print the interior point */ inline void gcone::showIntPoint() { ivIntPt->show(); } /** \brief Print facets * This is mainly for debugging purposes. Usually called from within gdb */ volatile void gcone::showFacets(const short codim) { #ifndef NDEBUG facet *f=this->facetPtr; facet *f2=NULL; if(codim==2) f2=this->facetPtr->codim2Ptr; while(f!=NULL) { int64vec *iv; iv = f->getFacetNormal(); printf("(");iv->show(1,0); if(f->isFlippable==FALSE) printf(")* "); else printf(") "); delete iv; if(codim==2) { f2=f->codim2Ptr; while(f2!=NULL) { printf("[");f2->getFacetNormal()->show(1,0);printf("]"); f2 = f2->next; } printf("\n"); } f=f->next; } printf("\n"); #endif } /** For debugging purposes only */ static volatile void showSLA(facet &f) { #ifndef NDEBUG facet *fAct; fAct = &f; if(fAct!=NULL) { facet *codim2Act; codim2Act = fAct->codim2Ptr; printf("\n"); while(fAct!=NULL) { int64vec *fNormal; fNormal=fAct->getFacetNormal(); printf("(");fNormal->show(1,0); if(fAct->isFlippable==TRUE) printf(") "); else printf(")* "); delete fNormal; codim2Act = fAct->codim2Ptr; printf(" Codim2: "); while(codim2Act!=NULL) { int64vec *f2Normal; f2Normal = codim2Act->getFacetNormal(); printf("(");f2Normal->show(1,0);printf(") "); delete f2Normal; codim2Act = codim2Act->next; } printf("UCN = %i\n",fAct->getUCN()); fAct = fAct->next; } } #endif } static void idDebugPrint(const ideal &I) { #ifndef NDEBUG int numElts=IDELEMS(I); printf("Ideal with %i generators\n", numElts); printf("Leading terms: "); for (int ii=0;iim[ii])); printf(","); } printf("\n"); #endif } static void invPrint(const ideal &I) { // int numElts=IDELEMS(I); // cout << "inv = "; // for(int ii=0;iim[ii])); // cout << ","; // } // cout << endl; } static bool isMonomial(const ideal &I) { bool res = TRUE; for(int ii=0;iim[ii])>1) { res = FALSE; break; } } return res; } /** \brief Set gcone::numFacets */ inline void gcone::setNumFacets() { } /** \brief Get gcone::numFacets */ inline int gcone::getNumFacets() { return this->numFacets; } inline int gcone::getUCN() { if( this!=NULL)// && ( this!=(gcone * const)0xfbfbfbfbfbfbfbfb && this!=(gcone * const)0xfbfbfbfb ) ) return this->UCN; else return -1; } inline int gcone::getPredUCN() { return this->pred; } /** Returns a copy of the this->baseRing */ inline ring gcone::getBaseRing() { return rCopy(this->baseRing); } inline void gcone::setBaseRing(ring r) { this->baseRing=rCopy(r); } inline ring gcone::getRef2BaseRing() { return this->baseRing; } /** \brief Compute the normals of the cone * * This method computes a representation of the cone in terms of facet normals. It takes an ideal * as its input. Redundancies are automatically removed using cddlib's dd_MatrixCanonicalize. * Other methods for redundancy checkings might be implemented later. See Anders' diss p.44. * Note that in order to use cddlib a 0-th column has to be added to the matrix since cddlib expects * each row to represent an inequality of type const+x1+...+xn <= 0. While computing the normals we come across * the set \f$ \partial\mathcal{G} \f$ which we might store for later use. C.f p71 of journal * As a result of this procedure the pointer facetPtr points to the first facet of the cone. * * Optionally, if the parameter bool compIntPoint is set to TRUE the method will also compute * an interior point of the cone. */ void gcone::getConeNormals(const ideal &I, bool compIntPoint) { #ifdef gfanp timeval start, end; gettimeofday(&start, 0); #endif poly aktpoly; int rows; // will contain the dimensions of the ineq matrix - deprecated by dd_rowrange ddrows; dd_colrange ddcols; dd_rowset ddredrows; // # of redundant rows in ddineq dd_rowset ddlinset; // the opposite dd_rowindex ddnewpos=NULL; // all to make dd_Canonicalize happy dd_NumberType ddnumb=dd_Integer; //Number type dd_ErrorType dderr=dd_NoError; //Compute the # inequalities i.e. rows of the matrix rows=0; //Initialization for (int ii=0;iim[ii]; // rows=rows+pLength(aktpoly)-1; rows=rows+pLength((poly)I->m[ii])-1; } dd_rowrange aktmatrixrow=0; // needed to store the diffs of the expvects in the rows of ddineq ddrows=rows; ddcols=this->numVars; dd_MatrixPtr ddineq; //Matrix to store the inequalities ddineq=dd_CreateMatrix(ddrows,ddcols+1); //The first col has to be 0 since cddlib checks for additive consts there // We loop through each g\in GB and compute the resulting inequalities for (int i=0; im[i]; //get aktpoly as i-th component of I //simpler version of storing expvect diffs int *leadexpv=(int*)omAlloc(((this->numVars)+1)*sizeof(int)); pGetExpV(aktpoly,leadexpv); poly pNextTerm=aktpoly; while(pNext(pNextTerm)/*pNext(aktpoly)*/!=NULL) { pNextTerm/*aktpoly*/=pNext(pNextTerm); int *tailexpv=(int*)omAlloc(((this->numVars)+1)*sizeof(int)); pGetExpV(pNextTerm,tailexpv); for(int kk=1;kk<=this->numVars;kk++) { dd_set_si(ddineq->matrix[(dd_rowrange)aktmatrixrow][kk],leadexpv[kk]-tailexpv[kk]); } aktmatrixrow += 1; omFree(tailexpv); } omFree(leadexpv); } //for #if true /*Let's make the preprocessing here. This could already be done in the above for-loop, * but for a start it is more convenient here. * We check the necessary condition of FJT p.18 * Quote: [...] every non-zero spoly should have at least one of its terms in inv(G) */ // ideal initialForm=idInit(IDELEMS(I),1); // int64vec *gamma=new int64vec(this->numVars); int falseGammaCounter=0; int *redRowsArray=NULL; int num_alloc=0; int num_elts=0; for(int ii=0;iirowsize;ii++) { ideal initialForm=idInit(IDELEMS(I),I->rank); //read row ii into gamma // int64 tmp; int64vec *gamma=new int64vec(this->numVars); for(int jj=1;jj<=this->numVars;jj++) { int64 tmp; tmp=(int64)mpq_get_d(ddineq->matrix[ii][jj]); (*gamma)[jj-1]=(int64)tmp; } computeInv((ideal&)I,initialForm,*gamma); delete gamma; //Create leading ideal ideal L=idInit(IDELEMS(initialForm),1); for(int jj=0;jjm[jj]); L->m[jj]=pCopy(/*pHead(initialForm->m[jj]))*/p); pDelete(&p); } LObject *P = new sLObject();//TODO What's the difference between sLObject and LObject? memset(P,0,sizeof(LObject)); for(int jj=0;jj<=IDELEMS(initialForm)-2;jj++) { bool isMaybeFacet=FALSE; P->p1=initialForm->m[jj]; //build spolys of initialForm in_v for(int kk=jj+1;kk<=IDELEMS(initialForm)-1;kk++) { P->p2=initialForm->m[kk]; ksCreateSpoly(P); if(P->p!=NULL) //spoly non zero=? { poly p;//NOTE Don't use pInit here. Evil memleak will follow poly q; poly pDel,qDel; p=pCopy(P->p); q=pHead(p); //Monomial q pDelete(&q); pDel=p; qDel=q; isMaybeFacet=FALSE; //TODO: Suffices to check LTs here while(p!=NULL) { q=pHead(p); for(int ll=0;llm[ll],q) || pDivisibleBy(L->m[ll],q)) { isMaybeFacet=TRUE; break;//for } } pDelete(&q); if(isMaybeFacet==TRUE) { break;//while(p!=NULL) } p=pNext(p); }//while // pDelete(&p);//NOTE Better to use pDel and qDel. Commenting in this line will not work! if(q!=NULL) pDelete(&q); pDelete(&pDel); pDelete(&qDel); if(isMaybeFacet==FALSE) { dd_set_si(ddineq->matrix[ii][0],1); // if(num_alloc==0) // num_alloc += 1; // else // num_alloc += 1; if(num_alloc==num_elts) num_alloc==0 ? num_alloc=1 : num_alloc*=2; void *tmp = realloc(redRowsArray,(num_alloc*sizeof(int))); if(!tmp) { WerrorS("Woah dude! Couldn't realloc memory\n"); exit(-1); } redRowsArray = (int*)tmp; redRowsArray[num_elts]=ii; num_elts++; //break;//for(int kk, since we have found one that is not in L goto _start; //mea culpa, mea culpa, mea maxima culpa } }//if(P->p!=NULL) pDelete(&(P->p)); }//for k }//for jj _start:; idDelete(&L); delete P; idDelete(&initialForm); }//for(iirowsize); #endif for( int ii=0;iirowsize;ii++) { int64vec *ivPos = new int64vec(this->numVars); for(int jj=0;jjnumVars;jj++) (*ivPos)[jj]=(int)mpq_get_d(ddineq->matrix[ii][jj+1]); bool isStrictlyPos=FALSE; int posCtr=0; for(int jj=0;jjnumVars;jj++) { int64vec *ivCanonical = new int64vec(this->numVars); jj==0 ? (*ivCanonical)[ivPos->length()-1]=1 : (*ivCanonical)[jj-1]=1; if(dotProduct(*ivCanonical,*ivPos)!=0) { if ((*ivPos)[jj]>=0) { posCtr++; } } delete ivCanonical; } if(posCtr==ivPos->length()) isStrictlyPos=TRUE; if(isStrictlyPos==TRUE) { if(num_alloc==0) num_alloc += 1; else num_alloc += 1; void *tmp = realloc(posRowsArray,(num_alloc*sizeof(int))); if(!tmp) { WerrorS("Woah dude! Couldn't realloc memory\n"); exit(-1); } posRowsArray = (int*)tmp; posRowsArray[num_elts]=ii; num_elts++; } delete ivPos; } offset=0; for(int ii=0;iirowsize; //Size of the matrix with redundancies removed ddcols = ddineq->colsize; this->ddFacets = dd_CopyMatrix(ddineq); /*Write the normals into class facet*/ facet *fAct; //pointer to active facet int numNonFlip=0; for (int kk = 0; kkmatrix[kk][1]) not work? int64vec *load = new int64vec(this->numVars);//int64vec to store a single facet normal that will then be stored via setFacetNormal for (int jj = 1; jj matrix[kk][jj]); (*load)[jj-1] = val; //store typecasted entry at pos jj-1 of load ggT = int64gcd(ggT,/*(int64&)foo*/val); }//for (int jj = 1; jj 1) { for(int ll=0;llnumVars;ll++) (*load)[ll] /= ggT;//make primitive vector } /*Quick'n'dirty hack for flippability. Executed only if gcone::hasHomInput==FALSE * Otherwise every facet intersects the positive orthant */ if(gcone::hasHomInput==FALSE) { //TODO: No dP needed bool isFlip=FALSE; for(int jj = 0; jjlength(); jj++) { // int64vec *ivCanonical = new int64vec(load->length()); // (*ivCanonical)[jj]=1; // if (dotProduct(*load,*ivCanonical)<0) // { // isFlip=TRUE; // break; //URGHS // } // delete ivCanonical; if((*load)[jj]<0) { isFlip=TRUE; break; } }/*End of check for flippability*/ // if(iv64isStrictlyPositive(load)) // isFlip=TRUE; if(isFlip==FALSE) { this->numFacets++; numNonFlip++; if(this->numFacets==1) { facet *fRoot = new facet(); this->facetPtr = fRoot; fAct = fRoot; } else { fAct->next = new facet(); fAct = fAct->next; } fAct->isFlippable=FALSE; fAct->setFacetNormal(load); fAct->setUCN(this->getUCN()); #ifndef NDEBUG printf("Marking facet (");load->show(1,0);printf(") as non flippable\n"); #endif } else { this->numFacets++; if(this->numFacets==1) { facet *fRoot = new facet(); this->facetPtr = fRoot; fAct = fRoot; } else { fAct->next = new facet(); fAct = fAct->next; } fAct->isFlippable=TRUE; fAct->setFacetNormal(load); fAct->setUCN(this->getUCN()); } }//hasHomInput==FALSE else //Every facet is flippable { /*Now load should be full and we can call setFacetNormal*/ this->numFacets++; if(this->numFacets==1) { facet *fRoot = new facet(); this->facetPtr = fRoot; fAct = fRoot; } else { fAct->next = new facet(); fAct = fAct->next; } fAct->isFlippable=TRUE; fAct->setFacetNormal(load); fAct->setUCN(this->getUCN()); }//if (isFlippable==FALSE) delete load; }//for (int kk = 0; kk there are only non-flippable facets... if(numNonFlip==this->numFacets) { WerrorS ("Only non-flippable facets. Terminating...\n"); // exit(-1);//Bit harsh maybe... } /* Now we should have a linked list containing the facet normals of those facets that are -irredundant -flipable Adressing is done via *facetPtr */ if (compIntPoint==TRUE) { int64vec *iv = new int64vec(this->numVars); dd_MatrixPtr posRestr=dd_CreateMatrix(this->numVars,this->numVars+1); int jj=1; for (int ii=0;ii<=this->numVars;ii++) { dd_set_si(posRestr->matrix[ii][jj],1); jj++; } dd_MatrixAppendTo(&ddineq,posRestr); interiorPoint(ddineq, *iv); //NOTE ddineq contains non-flippable facets this->setIntPoint(iv); //stores the interior point in gcone::ivIntPt delete iv; dd_FreeMatrix(posRestr); } //Clean up but don't delete the return value! //dd_FreeMatrix(ddineq); set_free(ddredrows);//check set_free(ddlinset);//check //free(ddnewpos);//<-- NOTE Here the crash occurs omAlloc issue? #ifdef gfanp gettimeofday(&end, 0); time_getConeNormals += (end.tv_sec - start.tv_sec + 1e-6*(end.tv_usec - start.tv_usec)); #endif }//gcone::getConeNormals(ideal I) /** \brief Compute the (codim-2)-facets of a given cone * This method is used during noRevS * Additionally we check whether the codim2-facet normal is strictly positive. Otherwise * the facet is marked as non-flippable. */ void gcone::getCodim2Normals(const gcone &gc) { #ifdef gfanp timeval start, end; gettimeofday(&start, 0); #endif //this->facetPtr->codim2Ptr = new facet(2); //instantiate a (codim-2)-facet facet *fAct; fAct = this->facetPtr; facet *codim2Act; //codim2Act = this->facetPtr->codim2Ptr; dd_MatrixPtr ddineq;//,P,ddakt; dd_ErrorType err; //ddineq = facets2Matrix(gc); //get a matrix representation of the cone ddineq = dd_CopyMatrix(gc.ddFacets); /*Now set appropriate linearity*/ for (int ii=0; iinumFacets; ii++) { dd_rowset impl_linset, redset; dd_rowindex newpos; dd_MatrixPtr ddakt; ddakt = dd_CopyMatrix(ddineq); // ddakt->representation=dd_Inequality; //Not using this makes it faster. But why does the quick check below still work? // ddakt->representation=dd_Generator; set_addelem(ddakt->linset,ii+1);/*Now set appropriate linearity*/ #ifdef gfanp timeval t_ddMC_start, t_ddMC_end; gettimeofday(&t_ddMC_start,0); #endif //dd_MatrixCanonicalize(&ddakt, &impl_linset, &redset, &newpos, &err); dd_PolyhedraPtr ddpolyh; ddpolyh=dd_DDMatrix2Poly(ddakt, &err); // ddpolyh=dd_DDMatrix2Poly2(ddakt, dd_MaxCutoff, &err); dd_MatrixPtr P; P=dd_CopyGenerators(ddpolyh); dd_FreePolyhedra(ddpolyh); //TODO Call for one cone , normalize - check equalities - plus lineality -done #ifdef gfanp gettimeofday(&t_ddMC_end,0); t_ddMC += (t_ddMC_end.tv_sec - t_ddMC_start.tv_sec + 1e-6*(t_ddMC_end.tv_usec - t_ddMC_start.tv_usec)); #endif /* We loop through each row of P normalize it by making all * entries integer ones and add the resulting vector to the * int matrix facet::codim2Facets */ for (int jj=1;jj<=/*ddakt*/P->rowsize;jj++) { fAct->numCodim2Facets++; if(fAct->numCodim2Facets==1) { fAct->codim2Ptr = new facet(2); codim2Act = fAct->codim2Ptr; } else { codim2Act->next = new facet(2); codim2Act = codim2Act->next; } int64vec *n = new int64vec(this->numVars); #ifdef gfanp timeval t_mI_start, t_mI_end; gettimeofday(&t_mI_start,0); #endif makeInt(P,jj,*n); /*for(int kk=0;kknumVars;kk++) { int foo; foo = (int)mpq_get_d(ddakt->matrix[ii][kk+1]); (*n)[kk]=foo; }*/ #ifdef gfanp gettimeofday(&t_mI_end,0); t_mI += (t_mI_end.tv_sec - t_mI_start.tv_sec + 1e-6*(t_mI_end.tv_usec - t_mI_start.tv_usec)); #endif codim2Act->setFacetNormal(n); delete n; } /*We check whether the facet spanned by the codim-2 facets * intersects with the positive orthant. Otherwise we define this * facet to be non-flippable. Works since we set the appropriate * linearity for ddakt above. */ //TODO It might be faster to compute jus the implied equations instead of a relative interior point // int64vec *iv_intPoint = new int64vec(this->numVars); // dd_MatrixPtr shiftMatrix; // dd_MatrixPtr intPointMatrix; // shiftMatrix = dd_CreateMatrix(this->numVars,this->numVars+1); // for(int kk=0;kknumVars;kk++) // { // dd_set_si(shiftMatrix->matrix[kk][0],1); // dd_set_si(shiftMatrix->matrix[kk][kk+1],1); // } // intPointMatrix=dd_MatrixAppend(ddakt,shiftMatrix); // #ifdef gfanp // timeval t_iP_start, t_iP_end; // gettimeofday(&t_iP_start, 0); // #endif // interiorPoint(intPointMatrix,*iv_intPoint); // // dd_rowset impl_linste,lbasis; // // dd_LPSolutionPtr lps=NULL; // // dd_ErrorType err; // // dd_FindRelativeInterior(intPointMatrix, &impl_linset, &lbasis, &lps, &err); // #ifdef gfanp // gettimeofday(&t_iP_end, 0); // t_iP += (t_iP_end.tv_sec - t_iP_start.tv_sec + 1e-6*(t_iP_end.tv_usec - t_iP_start.tv_usec)); // #endif // for(int ll=0;llnumVars;ll++) // { // if( (*iv_intPoint)[ll] < 0 ) // { // fAct->isFlippable=FALSE; // break; // } // } /*End of check*/ /*This test should be way less time consuming*/ #ifdef gfanp timeval t_iP_start, t_iP_end; gettimeofday(&t_iP_start, 0); #endif bool containsStrictlyPosRay=TRUE; for(int ii=0;iirowsize;ii++) { containsStrictlyPosRay=TRUE; for(int jj=1;jjnumVars;jj++) { if(ddakt->matrix[ii][jj]<=0) { containsStrictlyPosRay=FALSE; break; } } if(containsStrictlyPosRay==TRUE) break; } if(containsStrictlyPosRay==FALSE) //TODO Not sufficient. Intersect with pos orthant for pos int fAct->isFlippable=FALSE; #ifdef gfanp gettimeofday(&t_iP_end, 0); t_iP += (t_iP_end.tv_sec - t_iP_start.tv_sec + 1e-6*(t_iP_end.tv_usec - t_iP_start.tv_usec)); #endif /**/ fAct = fAct->next; dd_FreeMatrix(ddakt); dd_FreeMatrix(P); }//for dd_FreeMatrix(ddineq); #ifdef gfanp gettimeofday(&end, 0); time_getCodim2Normals += (end.tv_sec - start.tv_sec + 1e-6*(end.tv_usec - start.tv_usec)); #endif } /** Really extremal rays this time ;) * Extremal rays are unique modulo the homogeneity space. * Therefore we dd_MatrixAppend gc->ddFacets and gcone::dd_LinealitySpace * into ddineq. Next we compute the extremal rays of the so given subspace. * Figuring out whether a ray belongs to a given facet(normal) is done by * checking whether the inner product of the ray with the normal is zero. * We use ivAdd here which returns a new int64vec. Therefore we need to avoid * a memory leak which would be cause by the line * iv=ivAdd(iv,b) * So we keep pointer tmp to iv and delete(tmp), so there should not occur a * memleak * TODO normalization */ void gcone::getExtremalRays(const gcone &gc) { #ifdef gfanp timeval start, end; gettimeofday(&start, 0); timeval poly_start, poly_end; gettimeofday(&poly_start,0); #endif //Add lineality space - dd_LinealitySpace dd_MatrixPtr ddineq; dd_ErrorType err; ddineq = (dd_LinealitySpace->rowsize>0) ? dd_AppendMatrix(gc.ddFacets,gcone::dd_LinealitySpace) : dd_CopyMatrix(gc.ddFacets); /* In case the input is non-homogeneous we add constrains for the positive orthant. * This is justified by the fact that for non-homog ideals we only consider the * restricted fan. This way we can be sure to find strictly positive interior points. * This in turn makes life easy when checking for flippability! * Drawback: Makes the LP larger so probably slows down computations a wee bit. */ dd_MatrixPtr ddPosRestr; if(hasHomInput==FALSE) { dd_MatrixPtr tmp; ddPosRestr=dd_CreateMatrix(this->numVars,this->numVars+1); for(int ii=0;iinumVars;ii++) dd_set_si(ddPosRestr->matrix[ii][ii+1],1); dd_MatrixAppendTo(&ddineq,ddPosRestr); assert(ddineq); dd_FreeMatrix(ddPosRestr); } dd_PolyhedraPtr ddPolyh; ddPolyh = dd_DDMatrix2Poly(ddineq, &err); dd_MatrixPtr P; P=dd_CopyGenerators(ddPolyh);//Here we actually compute the rays! dd_FreePolyhedra(ddPolyh); dd_FreeMatrix(ddineq); #ifdef gfanp gettimeofday(&poly_end,0); t_ddPolyh += (poly_end.tv_sec - poly_start.tv_sec + 1e-6*(poly_end.tv_usec - poly_start.tv_usec)); #endif /* Compute interior point on the fly*/ int64vec *ivIntPointOfCone = new int64vec(this->numVars); int64vec *foo = new int64vec(this->numVars); for(int ii=0;iirowsize;ii++) { int64vec *tmp = ivIntPointOfCone; makeInt(P,ii+1,*foo); ivIntPointOfCone = iv64Add(ivIntPointOfCone,foo); delete tmp; } delete foo; int64 ggT=(*ivIntPointOfCone)[0]; for (int ii=0;ii<(this->numVars);ii++) { if( (*ivIntPointOfCone)[ii]>INT_MAX ) WarnS("Interior point exceeds INT_MAX!\n"); //Compute intgcd ggT=int64gcd(ggT,(*ivIntPointOfCone)[ii]); } //Divide out a common gcd > 1 if(ggT>1) { for(int ii=0;iinumVars;ii++) { (*ivIntPointOfCone)[ii] /= ggT; if( (*ivIntPointOfCone)[ii]>INT_MAX ) WarnS("Interior point still exceeds INT_MAX after GCD!\n"); } } /*For homogeneous input (like Det3,3,5) the int points may be negative. So add a suitable multiple of (1,_,1)*/ if(hasHomInput==TRUE && iv64isStrictlyPositive(ivIntPointOfCone)==FALSE) { int64vec *ivOne = new int64vec(this->numVars); int maxNegEntry=0; for(int ii=0;iinumVars;ii++) { // (*ivOne)[ii]=1; if ((*ivIntPointOfCone)[ii]numVars;ii++) (*ivOne)[ii]=maxNegEntry; int64vec *tmp=ivIntPointOfCone; ivIntPointOfCone=iv64Add(ivIntPointOfCone,ivOne); delete(tmp); // while( !iv64isStrictlyPositive(ivIntPointOfCone) ) // { // int64vec *tmp = ivIntPointOfCone; // for(int jj=0;jjnumVars;jj++) // (*ivOne)[jj] = (*ivOne)[jj] << 1; //times 2 // ivIntPointOfCone = ivAdd(ivIntPointOfCone,ivOne); // delete tmp; // } delete ivOne; int64 ggT=(*ivIntPointOfCone)[0]; for(int ii=0;iinumVars;ii++) ggT=int64gcd( ggT, (*ivIntPointOfCone)[ii]); if(ggT>1) { for(int jj=0;jjnumVars;jj++) (*ivIntPointOfCone)[jj] /= ggT; } } // assert(iv64isStrictlyPositive(ivIntPointOfCone)); this->setIntPoint(ivIntPointOfCone); delete(ivIntPointOfCone); /* end of interior point computation*/ //Loop through the rows of P and check whether fNormal*row[i]=0 => row[i] belongs to fNormal int rows=P->rowsize; facet *fAct=gc.facetPtr; //Construct an array to hold the extremal rays of the cone this->gcRays = (int64vec**)omAlloc0(sizeof(int64vec*)*P->rowsize); for(int ii=0;iirowsize;ii++) { int64vec *rowvec = new int64vec(this->numVars); makeInt(P,ii+1,*rowvec);//get an integer entry instead of rational, rowvec is primitve this->gcRays[ii] = iv64Copy(rowvec); delete rowvec; } this->numRays=P->rowsize; //Check which rays belong to which facet while(fAct!=NULL) { const int64vec *fNormal;// = new int64vec(this->numVars); fNormal = fAct->getRef2FacetNormal();//->getFacetNormal(); int64vec *ivIntPointOfFacet = new int64vec(this->numVars); for(int ii=0;iigcRays[ii])==0) { int64vec *tmp = ivIntPointOfFacet;//Prevent memleak fAct->numCodim2Facets++; facet *codim2Act; if(fAct->numCodim2Facets==1) { fAct->codim2Ptr = new facet(2); codim2Act = fAct->codim2Ptr; } else { codim2Act->next = new facet(2); codim2Act = codim2Act->next; } //codim2Act->setFacetNormal(rowvec); //Rather just let codim2Act point to the corresponding int64vec of gcRays codim2Act->fNormal=this->gcRays[ii]; fAct->numRays++; //Memleak avoided via tmp ivIntPointOfFacet=iv64Add(ivIntPointOfFacet,this->gcRays[ii]); //Now tmp still points to the OLD address of ivIntPointOfFacet delete(tmp); } }//For non-homog input ivIntPointOfFacet should already be >0 here // if(!hasHomInput) {assert(iv64isStrictlyPositive(ivIntPointOfFacet));} //if we have no strictly pos ray but the input is homogeneous //then add a suitable multiple of (1,...,1) if( !iv64isStrictlyPositive(ivIntPointOfFacet) && hasHomInput==TRUE) { int64vec *ivOne = new int64vec(this->numVars); for(int ii=0;iinumVars;ii++) (*ivOne)[ii]=1; while( !iv64isStrictlyPositive(ivIntPointOfFacet) ) { int64vec *tmp = ivIntPointOfFacet; for(int jj=0;jjnumVars;jj++) { (*ivOne)[jj] = (*ivOne)[jj] << 1; //times 2 } ivIntPointOfFacet = iv64Add(ivIntPointOfFacet/*diff*/,ivOne); delete tmp; } delete ivOne; } int64 ggT=(*ivIntPointOfFacet)[0]; for(int ii=0;iinumVars;ii++) ggT=int64gcd(ggT,(*ivIntPointOfFacet)[ii]); if(ggT>1) { for(int ii=0;iinumVars;ii++) (*ivIntPointOfFacet)[ii] /= ggT; } fAct->setInteriorPoint(ivIntPointOfFacet); delete(ivIntPointOfFacet); //Now (if we have at least 3 variables) do a bubblesort on the rays /*if(this->numVars>2) { facet *A[fAct->numRays-1]; facet *f2Act=fAct->codim2Ptr; for(unsigned ii=0;iinumRays;ii++) { A[ii]=f2Act; f2Act=f2Act->next; } bool exchanged=FALSE; unsigned n=fAct->numRays-1; do { exchanged=FALSE;//n=fAct->numRays-1; for(unsigned ii=0;ii<=n-1;ii++) { if((A[ii]->fNormal)->compare((A[ii+1]->fNormal))==1) { //Swap rays cout << "Swapping "; A[ii]->fNormal->show(1,0); cout << " with "; A[ii+1]->fNormal->show(1,0); cout << endl; A[ii]->next=A[ii+1]->next; if(ii>0) A[ii-1]->next=A[ii+1]; A[ii+1]->next=A[ii]; if(ii==0) fAct->codim2Ptr=A[ii+1]; //end swap facet *tmp=A[ii];//swap in list A[ii+1]=A[ii]; A[ii]=tmp; // tmp=NULL; } } n--; }while(exchanged==TRUE && n>=0); }*///if pVariables>2 // delete fNormal; fAct = fAct->next; }//end of facet checking dd_FreeMatrix(P); //Now all extremal rays should be set w.r.t their respective fNormal //TODO Not sufficient -> vol2 II/125&127 //NOTE Sufficient according to cddlibs doc. These ARE rays //What the hell... let's just take interior points if(gcone::hasHomInput==FALSE) { fAct=gc.facetPtr; while(fAct!=NULL) { // bool containsStrictlyPosRay=FALSE; // facet *codim2Act; // codim2Act = fAct->codim2Ptr; // while(codim2Act!=NULL) // { // int64vec *rayvec; // rayvec = codim2Act->getFacetNormal();//Mind this is no normal but a ray! // //int negCtr=0; // if(iv64isStrictlyPositive(rayvec)) // { // containsStrictlyPosRay=TRUE; // delete(rayvec); // break; // } // delete(rayvec); // codim2Act = codim2Act->next; // } // if(containsStrictlyPosRay==FALSE) // fAct->isFlippable=FALSE; if(!iv64isStrictlyPositive(fAct->interiorPoint)) fAct->isFlippable=FALSE; fAct = fAct->next; } }//hasHomInput? #ifdef gfanp gettimeofday(&end, 0); t_getExtremalRays += (end.tv_sec - start.tv_sec + 1e-6*(end.tv_usec - start.tv_usec)); #endif } /** Order the spanning rays in a lex way hopefully using qsort()*/ void gcone::orderRays() { // qsort(gcRays,sizeof(int64vec),int64vec::compare); } inline bool gcone::iv64isStrictlyPositive(const int64vec * iv64) { bool res=TRUE; for(int ii=0;iilength();ii++) { if((*iv64)[ii]<=0) { res=FALSE; break; } } return res; } /** \brief Compute the Groebner Basis on the other side of a shared facet * * Implements algorithm 4.3.2 from Anders' thesis. * As shown there it is not necessary to compute an interior point. The knowledge of the facet normal * suffices. A term \f$ x^\gamma \f$ of \f$ g \f$ is in \f$ in_\omega(g) \f$ iff \f$ \gamma - leadexp(g)\f$ * is parallel to \f$ leadexp(g) \f$ * Parallelity is checked using basic linear algebra. See gcone::isParallel. * Other possibilities include computing the rank of the matrix consisting of the vectors in question and * computing an interior point of the facet and taking all terms having the same weight with respect * to this interior point. *\param ideal, facet * Input: a marked,reduced Groebner basis and a facet */ inline void gcone::flip(ideal gb, facet *f) //Compute "the other side" { #ifdef gfanp timeval start, end; gettimeofday(&start, 0); #endif int64vec *fNormal;// = new int64vec(this->numVars); //facet normal, check for parallelity fNormal = f->getFacetNormal(); //read this->fNormal; #ifndef NDEBUG // std::cout << "running gcone::flip" << std::endl; printf("flipping UCN %i over facet",this->getUCN()); fNormal->show(1,0); printf(") with UCN %i\n",f->getUCN() ); #endif if(this->getUCN() != f->getUCN()) { WerrorS("Uh oh... Trying to flip over facet with incompatible UCN"); exit(-1); } /*1st step: Compute the initial ideal*/ /*poly initialFormElement[IDELEMS(gb)];*/ //array of #polys in GB to store initial form ideal initialForm=idInit(IDELEMS(gb),this->gcBasis->rank); computeInv(gb,initialForm,*fNormal); #ifndef NDEBUG /* cout << "Initial ideal is: " << endl; idShow(initialForm); //f->printFlipGB();*/ // cout << "===" << endl; #endif /*2nd step: lift initial ideal to a GB of the neighbouring cone using minus alpha as weight*/ /*Substep 2.1 compute $G_{-\alpha}(in_v(I)) see journal p. 66 NOTE Check for different rings. Prolly it will not always be necessary to add a weight, if the srcRing already has a weighted ordering */ ring srcRing=currRing; ring tmpRing; if( (srcRing->order[0]!=ringorder_a)) { int64vec *iv;// = new int64vec(this->numVars); iv = ivNeg(fNormal);//ivNeg uses iv64Copy -> new // tmpRing=rCopyAndAddWeight(srcRing,ivNeg(fNormal)); tmpRing=rCopyAndAddWeight(srcRing,iv); delete iv; } else { tmpRing=rCopy0(srcRing); int length=fNormal->length(); int *A=(int *)omAlloc0(length*sizeof(int)); for(int jj=0;jjwvhdl[0]); tmpRing->wvhdl[0]=(int*)A; tmpRing->block1[0]=length; rComplete(tmpRing); //omFree(A); } delete fNormal; rChangeCurrRing(tmpRing); ideal ina; ina=idrCopyR(initialForm,srcRing); idDelete(&initialForm); ideal H; // H=kStd(ina,NULL,isHomog,NULL); //we know it is homogeneous #ifdef gfanp timeval t_kStd_start, t_kStd_end; gettimeofday(&t_kStd_start,0); #endif if(gcone::hasHomInput==TRUE) H=kStd(ina,NULL,isHomog,NULL/*,gcone::hilbertFunction*/); else H=kStd(ina,NULL,isNotHomog,NULL); //This is \mathcal(G)_{>_-\alpha}(in_v(I)) #ifdef gfanp gettimeofday(&t_kStd_end, 0); t_kStd += (t_kStd_end.tv_sec - t_kStd_start.tv_sec + 1e-6*(t_kStd_end.tv_usec - t_kStd_start.tv_usec)); #endif idSkipZeroes(H); idDelete(&ina); /*Substep 2.2 do the lifting and mark according to H */ rChangeCurrRing(srcRing); ideal srcRing_H; ideal srcRing_HH; srcRing_H=idrCopyR(H,tmpRing); //H is needed further below, so don't idDelete here srcRing_HH=ffG(srcRing_H,this->gcBasis); idDelete(&srcRing_H); /*Substep 2.2.1 * Mark according to G_-\alpha * Here we have a minimal basis srcRing_HH. In order to turn this basis into a reduced basis * we have to compute an interior point of C(srcRing_HH). For this we need to know the cone * represented by srcRing_HH MARKED ACCORDING TO G_{-\alpha} * Thus we check whether the leading monomials of srcRing_HH and srcRing_H coincide. If not we * compute the difference accordingly */ #ifdef gfanp timeval t_markings_start, t_markings_end; gettimeofday(&t_markings_start, 0); #endif bool markingsAreCorrect=FALSE; dd_MatrixPtr intPointMatrix; int iPMatrixRows=0; dd_rowrange aktrow=0; for (int ii=0;iim[ii];//This is a pointer, so don't pDelete iPMatrixRows = iPMatrixRows+pLength(aktpoly); } /* additionally one row for the standard-simplex and another for a row that becomes 0 during * construction of the differences */ intPointMatrix = dd_CreateMatrix(iPMatrixRows+2,this->numVars+1); intPointMatrix->numbtype=dd_Integer; //NOTE: DO NOT REMOVE OR CHANGE TO dd_Rational for (int ii=0;iim[ii]; //Only a pointer, so don't pDelete /*Comparison of leading monomials is done via exponent vectors*/ for (int jj=0;jjnumVars+1)*sizeof(int)); int *dst_ExpV = (int *)omAlloc((this->numVars+1)*sizeof(int)); pGetExpV(aktpoly,src_ExpV); rChangeCurrRing(tmpRing); //this ring change is crucial! poly p=pCopy(H->m[ii]); pGetExpV(p/*pCopy(H->m[ii])*/,dst_ExpV); pDelete(&p); rChangeCurrRing(srcRing); bool expVAreEqual=TRUE; for (int kk=1;kk<=this->numVars;kk++) { #ifndef NDEBUG // cout << src_ExpV[kk] << "," << dst_ExpV[kk] << endl; #endif if (src_ExpV[kk]!=dst_ExpV[kk]) { expVAreEqual=FALSE; } } if (expVAreEqual==TRUE) { markingsAreCorrect=TRUE; //everything is fine #ifndef NDEBUG // cout << "correct markings" << endl; #endif }//if (pHead(aktpoly)==pHead(H->m[jj]) omFree(src_ExpV); omFree(dst_ExpV); }//for (int jj=0;jjnumVars+1)*sizeof(int)); if (markingsAreCorrect==TRUE) { pGetExpV(aktpoly,leadExpV); } else { rChangeCurrRing(tmpRing); pGetExpV(pHead(H->m[ii]),leadExpV); //We use H->m[ii] as leading monomial rChangeCurrRing(srcRing); } /*compute differences of the expvects*/ while (pNext(aktpoly)!=NULL) { int *v=(int *)omAlloc((this->numVars+1)*sizeof(int)); /*The following if-else-block makes sure the first term (i.e. the wrongly marked term) is not omitted when computing the differences*/ if(markingsAreCorrect==TRUE) { aktpoly=pNext(aktpoly); pGetExpV(aktpoly,v); } else { pGetExpV(pHead(aktpoly),v); markingsAreCorrect=TRUE; } int ctr=0; for (int jj=0;jjnumVars;jj++) { /*Store into ddMatrix*/ if(leadExpV[jj+1]-v[jj+1]) ctr++; dd_set_si(intPointMatrix->matrix[aktrow][jj+1],leadExpV[jj+1]-v[jj+1]); } /*It ought to be more sensible to avoid 0-rows in the first place*/ // if(ctr==this->numVars)//We have a 0-row // dd_MatrixRowRemove(&intPointMatrix,aktrow); // else aktrow +=1; omFree(v); } omFree(leadExpV); }//for (int ii=0;iimatrix[aktrow][0],-1); // for (int jj=1;jj<=this->numVars;jj++) // { // dd_set_si(intPointMatrix->matrix[aktrow][jj],1); // } //Let's make sure we compute interior points from the positive orthant // dd_MatrixPtr posRestr=dd_CreateMatrix(this->numVars,this->numVars+1); // // int jj=1; // for (int ii=0;iinumVars;ii++) // { // dd_set_si(posRestr->matrix[ii][jj],1); // jj++; // } /*We create a matrix containing the standard simplex * and constraints to assure a strictly positive point * is computed */ dd_MatrixPtr posRestr = dd_CreateMatrix(this->numVars+1, this->numVars+1); for(int ii=0;iirowsize;ii++) { if(ii==0) { dd_set_si(posRestr->matrix[ii][0],-1); for(int jj=1;jj<=this->numVars;jj++) dd_set_si(posRestr->matrix[ii][jj],1); } else { /** Set all variables to \geq 1/10. YMMV but this choice is pretty equal*/ dd_set_si2(posRestr->matrix[ii][0],-1,2); dd_set_si(posRestr->matrix[ii][ii],1); } } dd_MatrixAppendTo(&intPointMatrix,posRestr); dd_FreeMatrix(posRestr); int64vec *iv_weight = new int64vec(this->numVars); #ifdef gfanp timeval t_dd_start, t_dd_end; gettimeofday(&t_dd_start, 0); #endif dd_ErrorType err; dd_rowset implLin, redrows; dd_rowindex newpos; //NOTE Here we should remove interiorPoint and instead // create and ordering like (a(omega),a(fNormal),dp) // if(this->ivIntPt==NULL) interiorPoint(intPointMatrix, *iv_weight); //iv_weight now contains the interior point // else // iv_weight=this->getIntPoint(); dd_FreeMatrix(intPointMatrix); /*Crude attempt for interior point */ /*dd_PolyhedraPtr ddpolyh; dd_ErrorType err; dd_rowset impl_linset,redset; dd_rowindex newpos; dd_MatrixCanonicalize(&intPointMatrix, &impl_linset, &redset, &newpos, &err); ddpolyh=dd_DDMatrix2Poly(intPointMatrix, &err); dd_MatrixPtr P; P=dd_CopyGenerators(ddpolyh); dd_FreePolyhedra(ddpolyh); for(int ii=0;iirowsize;ii++) { int64vec *iv_row=new int64vec(this->numVars); makeInt(P,ii+1,*iv_row); iv_weight =ivAdd(iv_weight, iv_row); delete iv_row; } dd_FreeMatrix(P); dd_FreeMatrix(intPointMatrix);*/ #ifdef gfanp gettimeofday(&t_dd_end, 0); t_dd += (t_dd_end.tv_sec - t_dd_start.tv_sec + 1e-6*(t_dd_end.tv_usec - t_dd_start.tv_usec)); #endif /*Step 3 * turn the minimal basis into a reduced one */ // NOTE May assume that at this point srcRing already has 3 blocks of orderins, starting with a // Thus: //ring dstRing=rCopyAndChangeWeight(srcRing,iv_weight); ring dstRing=rCopy0(tmpRing); int length=iv_weight->length(); int *A=(int *)omAlloc0(length*sizeof(int)); for(int jj=0;jjwvhdl[0]=(int*)A; rComplete(dstRing); rChangeCurrRing(dstRing); rDelete(tmpRing); delete iv_weight; ideal dstRing_I; dstRing_I=idrCopyR(srcRing_HH,srcRing); idDelete(&srcRing_HH); //Hmm.... causes trouble - no more //dstRing_I=idrCopyR(inputIdeal,srcRing); BITSET save=test; test|=Sy_bit(OPT_REDSB); test|=Sy_bit(OPT_REDTAIL); #ifndef NDEBUG // test|=Sy_bit(6); //OPT_DEBUG #endif ideal tmpI; //NOTE Any of the two variants of tmpI={idrCopy(),dstRing_I} does the trick //tmpI = idrCopyR(this->inputIdeal,this->baseRing); tmpI = dstRing_I; #ifdef gfanp gettimeofday(&t_kStd_start,0); #endif if(gcone::hasHomInput==TRUE) dstRing_I=kStd(tmpI,NULL,isHomog,NULL/*,gcone::hilbertFunction*/); else dstRing_I=kStd(tmpI,NULL,isNotHomog,NULL); #ifdef gfanp gettimeofday(&t_kStd_end, 0); t_kStd += (t_kStd_end.tv_sec - t_kStd_start.tv_sec + 1e-6*(t_kStd_end.tv_usec - t_kStd_start.tv_usec)); #endif idDelete(&tmpI); idNorm(dstRing_I); // kInterRed(dstRing_I); idSkipZeroes(dstRing_I); test=save; /*End of step 3 - reduction*/ f->setFlipGB(dstRing_I);//store the flipped GB // idDelete(&dstRing_I); f->flipRing=rCopy(dstRing); //store the ring on the other side #ifndef NDEBUG printf("Flipped GB is UCN %i:\n",counter+1); idDebugPrint(dstRing_I); printf("\n"); #endif idDelete(&dstRing_I); rChangeCurrRing(srcRing); //return to the ring we started the computation of flipGB in rDelete(dstRing); #ifdef gfanp gettimeofday(&end, 0); time_flip += (end.tv_sec - start.tv_sec + 1e-6*(end.tv_usec - start.tv_usec)); #endif }//void flip(ideal gb, facet *f) /** \brief A slightly different approach to flipping * Here we use the fact that in_v(in_u(I))=in_(u+eps*v)(I). Therefore, we do no longer * need to compute an interior point and run BBA on the minimal basis but we can rather * use the ordering (a(omega),a(fNormal),dp) * The second parameter facet *f must not be const since we need to store f->flipGB * Problem: Assume we start in a cone with ordering (dp,C). Then \f$ in_\omega(I) \f$ * will be from a ring with (a(),dp,C) and our resulting cone from (a(),a(),dp,C). Hence a way * must be found to circumvent the sequence of a()'s growing to a ridiculous size. * Therefore: We use (a(),a(),dp,C) for the computation of the reduced basis. But then we * do have an interior point of the cone by adding the extremal rays. So we replace * the latter cone by a cone with (a(sum_of_rays),dp,C). * Con: It's incredibly ugly * Pro: No messing around with readConeFromFile() * Is there a way to construct a vector from \f$ \omega \f$ and the facet normal? */ inline void gcone::flip2(const ideal &gb, facet *f) { #ifdef gfanp timeval start, end; gettimeofday(&start, 0); #endif const int64vec *fNormal; fNormal = f->getRef2FacetNormal();/*->getFacetNormal();*/ //read this->fNormal; #ifndef NDEBUG // printf("flipping UCN %i over facet(",this->getUCN()); // fNormal->show(1,0); // printf(") with UCN %i\n",f->getUCN()); #endif if(this->getUCN() != f->getUCN()) { printf("%i vs %i\n",this->getUCN(), f->getUCN() ); WerrorS("Uh oh... Trying to flip over facet with incompatible UCN"); exit(-1); } /*1st step: Compute the initial ideal*/ ideal initialForm=idInit(IDELEMS(gb),this->gcBasis->rank); computeInv( gb, initialForm, *fNormal ); ring srcRing=currRing; ring tmpRing; const int64vec *intPointOfFacet; intPointOfFacet=f->getInteriorPoint(); //Now we need two blocks of ringorder_a! //May assume the same situation as in flip() here if( (srcRing->order[0]!=ringorder_a/*64*/) && (srcRing->order[1]!=ringorder_a/*64*/) ) { int64vec *iv = new int64vec(this->numVars);//init with 1s, since we do not need a 2nd block here but later // int64vec *iv_foo = new int64vec(this->numVars,1);//placeholder int64vec *ivw = ivNeg(const_cast(fNormal)); tmpRing=rCopyAndAddWeight2(srcRing,ivw/*intPointOfFacet*/,iv); delete iv;delete ivw; // delete iv_foo; } else { int64vec *iv=new int64vec(this->numVars); int64vec *ivw=ivNeg(const_cast(fNormal)); tmpRing=rCopyAndAddWeight2(srcRing,ivw,iv); delete iv; delete ivw; /*tmpRing=rCopy0(srcRing); int length=fNormal->length(); int *A1=(int *)omAlloc0(length*sizeof(int)); int *A2=(int *)omAlloc0(length*sizeof(int)); for(int jj=0;jjwvhdl[0]); if(tmpRing->wvhdl[1]!=NULL) omFree(tmpRing->wvhdl[1]); tmpRing->wvhdl[0]=(int*)A1; tmpRing->block1[0]=length; tmpRing->wvhdl[1]=(int*)A2; tmpRing->block1[1]=length; rComplete(tmpRing);*/ } // delete fNormal; //NOTE Do not delete when using getRef2FacetNormal(); rChangeCurrRing(tmpRing); //Now currRing should have (a(),a(),dp,C) ideal ina; ina=idrCopyR(initialForm,srcRing); idDelete(&initialForm); ideal H; #ifdef gfanp timeval t_kStd_start, t_kStd_end; gettimeofday(&t_kStd_start,0); #endif BITSET save=test; test|=Sy_bit(OPT_REDSB); test|=Sy_bit(OPT_REDTAIL); // if(gcone::hasHomInput==TRUE) H=kStd(ina,NULL,testHomog/*isHomog*/,NULL/*,gcone::hilbertFunction*/); // else // H=kStd(ina,NULL,isNotHomog,NULL); //This is \mathcal(G)_{>_-\alpha}(in_v(I)) test=save; #ifdef gfanp gettimeofday(&t_kStd_end, 0); t_kStd += (t_kStd_end.tv_sec - t_kStd_start.tv_sec + 1e-6*(t_kStd_end.tv_usec - t_kStd_start.tv_usec)); #endif idSkipZeroes(H); idDelete(&ina); rChangeCurrRing(srcRing); ideal srcRing_H; ideal srcRing_HH; srcRing_H=idrCopyR(H,tmpRing); //H is needed further below, so don't idDelete here srcRing_HH=ffG(srcRing_H,this->gcBasis); idDelete(&srcRing_H); //Now BBA(srcRing_HH) with (a(),a(),dp) /* Evil modification of currRing */ ring dstRing=rCopy0(tmpRing); int length=this->numVars; int *A1=(int *)omAlloc0(length*sizeof(int)); int *A2=(int *)omAlloc0(length*sizeof(int)); const int64vec *ivw=f->getRef2FacetNormal(); for(int jj=0;jjwvhdl[0]); if(dstRing->wvhdl[1]!=NULL) omFree(dstRing->wvhdl[1]); dstRing->wvhdl[0]=(int*)A1; dstRing->block1[0]=length; dstRing->wvhdl[1]=(int*)A2; dstRing->block1[1]=length; rComplete(dstRing); rChangeCurrRing(dstRing); ideal dstRing_I; dstRing_I=idrCopyR(srcRing_HH,srcRing); idDelete(&srcRing_HH); //Hmm.... causes trouble - no more save=test; test|=Sy_bit(OPT_REDSB); test|=Sy_bit(OPT_REDTAIL); ideal tmpI; tmpI = dstRing_I; #ifdef gfanp // timeval t_kStd_start, t_kStd_end; gettimeofday(&t_kStd_start,0); #endif // if(gcone::hasHomInput==TRUE) // dstRing_I=kStd(tmpI,NULL,isHomog,NULL/*,gcone::hilbertFunction*/); // else dstRing_I=kStd(tmpI,NULL,testHomog,NULL); #ifdef gfanp gettimeofday(&t_kStd_end, 0); t_kStd += (t_kStd_end.tv_sec - t_kStd_start.tv_sec + 1e-6*(t_kStd_end.tv_usec - t_kStd_start.tv_usec)); #endif idDelete(&tmpI); idNorm(dstRing_I); idSkipZeroes(dstRing_I); test=save; /*End of step 3 - reduction*/ f->setFlipGB(dstRing_I); f->flipRing=rCopy(dstRing); rDelete(tmpRing); rDelete(dstRing); //Now we should have dstRing with (a(),a(),dp,C) //This must be replaced with (a(),dp,C) BEFORE gcTmp is actually added to the list //of cones in noRevS rChangeCurrRing(srcRing); #ifdef gfanp gettimeofday(&end, 0); time_flip2 += (end.tv_sec - start.tv_sec + 1e-6*(end.tv_usec - start.tv_usec)); #endif }//flip2 /** \brief Compute initial ideal * Compute the initial ideal in_v(G) wrt a (possible) facet normal * used in gcone::getFacetNormal in order to preprocess possible facet normals * and in gcone::flip for obvious reasons. */ /*inline*/ void gcone::computeInv(const ideal &gb, ideal &initialForm, const int64vec &fNormal) { #ifdef gfanp timeval start, end; gettimeofday(&start, 0); #endif for (int ii=0;iim[ii];//Ptr, so don't pDelete(aktpoly) int *leadExpV=(int *)omAlloc((this->numVars+1)*sizeof(int)); pGetExpV(aktpoly,leadExpV); //find the leading exponent in leadExpV[1],...,leadExpV[n], use pNext(p) initialFormElement=pHead(aktpoly); // int *v=(int *)omAlloc((this->numVars+1)*sizeof(int)); while(pNext(aktpoly)!=NULL) /*loop trough terms and check for parallelity*/ { int64vec *check = new int64vec(this->numVars); aktpoly=pNext(aktpoly); //next term int *v=(int *)omAlloc((this->numVars+1)*sizeof(int)); pGetExpV(aktpoly,v); /* Convert (int)v into (int64vec)check */ // bool notPar=FALSE; for (int jj=0;jjnumVars;jj++) { (*check)[jj]=v[jj+1]-leadExpV[jj+1]; // register int64 foo=(fNormal)[jj]; // if( ( (*check)[jj] == /*fNormal[jj]*/foo ) // || ( (/*fNormal[jj]*/foo!=0) && ( ( (*check)[jj] % /*fNormal[jj]*/foo ) !=0 ) ) ) // { // notPar=TRUE; // break; // } } omFree(v); if (isParallel(*check,fNormal))//Found a parallel vector. Add it // if(notPar==FALSE) { initialFormElement = pAdd((initialFormElement),(poly)pHead(aktpoly));//pAdd = p_Add_q destroys args } delete check; }//while // omFree(v); #ifndef NDEBUG // cout << "Initial Form="; // pWrite(initialFormElement[ii]); // cout << "---" << endl; #endif /*Now initialFormElement must be added to (ideal)initialForm */ initialForm->m[ii]=pCopy(initialFormElement); pDelete(&initialFormElement); omFree(leadExpV); }//for #ifdef gfanp gettimeofday(&end, 0); time_computeInv += (end.tv_sec - start.tv_sec + 1e-6*(end.tv_usec - start.tv_usec)); #endif } /** \brief Compute the remainder of a polynomial by a given ideal * * Compute \f$ f^{\mathcal{G}} \f$ * Algorithm is taken from Cox, Little, O'Shea, IVA 2nd Ed. p 62 * However, since we are only interested in the remainder, there is no need to * compute the factors \f$ a_i \f$ */ //NOTE: Should be replaced by kNF or kNF2 //NOTE: Done //NOTE: removed with r12286 /** \brief Compute \f$ f-f^{\mathcal{G}} \f$ */ //NOTE: use kNF or kNF2 instead of restOfDivision inline ideal gcone::ffG(const ideal &H, const ideal &G) { int size=IDELEMS(H); ideal res=idInit(size,1); for (int ii=0;iim[ii]=pCopy(kNF(G, NULL,H->m[ii],0,0)); // temp1=pCopy(H->m[ii]);//TRY // temp2=pCopy(res->m[ii]); //NOTE if gfanHeuristic=0 (sic!) this results in dPolyErrors - mon from wrong ring // temp2=pCopy(kNF(G, NULL,H->m[ii],0,0));//TRY // temp3=pSub(temp1, temp2);//TRY temp3=pSub(pCopy(H->m[ii]),pCopy(kNF(G,NULL,H->m[ii],0,0)));//NOTRY res->m[ii]=pCopy(temp3); //res->m[ii]=pSub(temp1,temp2); //buggy //cout << "res->m["<m[ii]); // pDelete(&temp1);//TRY // pDelete(&temp2); pDelete(&temp3); } return res; } /** \brief Preprocessing of inequlities * Do some preprocessing on the matrix of inequalities * 1) Replace several constraints on the pos. orthants by just one for each orthant * 2) Remove duplicates of inequalities * 3) Remove inequalities that arise as sums of other inequalities */ void gcone::preprocessInequalities(dd_MatrixPtr &ddineq) { /* int *posRowsArray=NULL; int num_alloc=0; int num_elts=0; int offset=0;*/ //Remove zeroes (and strictly pos rows?) for(int ii=0;iirowsize;ii++) { int64vec *iv = new int64vec(this->numVars); int64vec *ivNull = new int64vec(this->numVars);//Needed for intvec64::compare(*int64vec) int posCtr=0; for(int jj=0;jjnumVars;jj++) { (*iv)[jj]=(int)mpq_get_d(ddineq->matrix[ii][jj+1]); if((*iv)[jj]>0)//check for strictly pos rows posCtr++; //Behold! This will delete the row for the standard simplex! } // if( (iv->compare(0)==0) || (posCtr==iv->length()) ) if( (posCtr==iv->length()) || (iv->compare(ivNull)==0) ) { dd_MatrixRowRemove(&ddineq,ii+1); ii--;//Yes. This is on purpose } delete iv; delete ivNull; } //Remove duplicates of rows // posRowsArray=NULL; // num_alloc=0; // num_elts=0; // offset=0; // int num_newRows = ddineq->rowsize; // for(int ii=0;iirowsize-1;ii++) // for(int ii=0;iinumVars);//1st vector to check against // for(int jj=0;jjnumVars;jj++) // (*iv)[jj]=(int)mpq_get_d(ddineq->matrix[ii][jj+1]); // for(int jj=ii+1;jjrowsize*/num_newRows;jj++) // { // int64vec *ivCheck = new int64vec(this->numVars);//Checked against iv // for(int kk=0;kknumVars;kk++) // (*ivCheck)[kk]=(int)mpq_get_d(ddineq->matrix[jj][kk+1]); // if (iv->compare(ivCheck)==0) // { // // cout << "=" << endl; // // num_alloc++; // // void *tmp=realloc(posRowsArray,(num_alloc*sizeof(int))); // // if(!tmp) // // { // // WerrorS("Woah dude! Couldn't realloc memory\n"); // // exit(-1); // // } // // posRowsArray = (int*)tmp; // // posRowsArray[num_elts]=jj; // // num_elts++; // dd_MatrixRowRemove(&ddineq,jj+1); // num_newRows = ddineq->rowsize; // } // delete ivCheck; // } // delete iv; // } // for(int ii=0;iigcBasis=gb; //write the GB into gcBasis test=save; }//void getGB /** \brief Compute the negative of a given int64vec */ static int64vec* ivNeg(/*const*/int64vec *iv) { //Hm, switching to int64vec const int64vec does no longer work int64vec *res;// = new int64vec(iv->length()); res=iv64Copy(iv); *res *= (int)-1; return res; } /** \brief Compute the dot product of two intvecs * */ static int dotProduct(const int64vec &iva, const int64vec &ivb) { int res=0; for (int i=0;i(&iva))->show(1,0); (const_cast(&ivb))->show(1,0); // #endif res = res+(iva[i]*ivb[i]); } return res; } /** \brief Check whether two intvecs are parallel * * \f$ \alpha\parallel\beta\Leftrightarrow\langle\alpha,\beta\rangle^2=\langle\alpha,\alpha\rangle\langle\beta,\beta\rangle \f$ */ static bool isParallel(const int64vec &a,const int64vec &b) { bool res; int lhs=dotProduct(a,b)*dotProduct(a,b); int rhs=dotProduct(a,a)*dotProduct(b,b); return res = (lhs==rhs)?TRUE:FALSE; } /** \brief Compute an interior point of a given cone * Result will be written into int64vec iv. * Any rational point is automatically converted into an integer. */ void gcone::interiorPoint( dd_MatrixPtr &M, int64vec &iv) //no const &M here since we want to remove redundant rows { dd_LPPtr lp,lpInt; dd_ErrorType err=dd_NoError; dd_LPSolverType solver=dd_DualSimplex; dd_LPSolutionPtr lpSol=NULL; // dd_rowset ddlinset,ddredrows; //needed for dd_FindRelativeInterior // dd_rowindex ddnewpos; dd_NumberType numb; //M->representation=dd_Inequality; //NOTE: Make this n-dimensional! //dd_set_si(M->rowvec[0],1);dd_set_si(M->rowvec[1],1);dd_set_si(M->rowvec[2],1); /*NOTE: Leave the following line commented out! * Otherwise it will slow down computations a great deal * */ // dd_MatrixCanonicalizeLinearity(&M, &ddlinset, &ddnewpos, &err); //if (err!=dd_NoError){cout << "Error during dd_MatrixCanonicalize" << endl;} dd_MatrixPtr posRestr=dd_CreateMatrix(this->numVars,this->numVars+1); int jj=1; for (int ii=0;iinumVars;ii++) { dd_set_si(posRestr->matrix[ii][jj],1); jj++; } dd_MatrixAppendTo(&M,posRestr); dd_FreeMatrix(posRestr); lp=dd_Matrix2LP(M, &err); if (err!=dd_NoError){WerrorS("Error during dd_Matrix2LP in gcone::interiorPoint");} if (lp==NULL){WerrorS("LP is NULL");} #ifndef NDEBUG // dd_WriteLP(stdout,lp); #endif lpInt=dd_MakeLPforInteriorFinding(lp); if (err!=dd_NoError){WerrorS("Error during dd_MakeLPForInteriorFinding in gcone::interiorPoint");} #ifndef NDEBUG // dd_WriteLP(stdout,lpInt); #endif // dd_FindRelativeInterior(M,&ddlinset,&ddredrows,&lpSol,&err); if (err!=dd_NoError) { WerrorS("Error during dd_FindRelativeInterior in gcone::interiorPoint"); dd_WriteErrorMessages(stdout, err); } dd_LPSolve(lpInt,solver,&err); //This will not result in a point from the relative interior // if (err!=dd_NoError){WerrorS("Error during dd_LPSolve");} lpSol=dd_CopyLPSolution(lpInt); // if (err!=dd_NoError){WerrorS("Error during dd_CopyLPSolution");} #ifndef NDEBUG printf("Interior point: "); for (int ii=1; ii<(lpSol->d)-1;ii++) { dd_WriteNumber(stdout,lpSol->sol[ii]); } printf("\n"); #endif //NOTE The following strongly resembles parts of makeInt. //Maybe merge sometimes mpz_t kgV; mpz_init(kgV); mpz_set_str(kgV,"1",10); mpz_t den; mpz_init(den); mpz_t tmp; mpz_init(tmp); mpq_get_den(tmp,lpSol->sol[1]); for (int ii=1;ii<(lpSol->d)-1;ii++) { mpq_get_den(den,lpSol->sol[ii+1]); mpz_lcm(kgV,tmp,den); mpz_set(tmp, kgV); } mpq_t qkgV; mpq_init(qkgV); mpq_set_z(qkgV,kgV); for (int ii=1;ii<(lpSol->d)-1;ii++) { mpq_t product; mpq_init(product); mpq_mul(product,qkgV,lpSol->sol[ii]); iv[ii-1]=(int)mpz_get_d(mpq_numref(product)); mpq_clear(product); } #ifndef NDEBUG // iv.show(); // cout << endl; #endif mpq_clear(qkgV); mpz_clear(tmp); mpz_clear(den); mpz_clear(kgV); dd_FreeLPSolution(lpSol); dd_FreeLPData(lpInt); dd_FreeLPData(lp); // set_free(ddlinset); // set_free(ddredrows); }//void interiorPoint(dd_MatrixPtr const &M) /** Computes an interior point of a cone by taking two interior points a,b from two different facets * and then computing b+(a-b)/2 * Of course this only works for flippable facets * Two cases may occur: * 1st: There are only two facets who share the only strictly positive ray * 2nd: There are at least two facets which have a distinct positive ray * In the former case we use linear algebra to determine an interior point, * in the latter case we simply add up the two rays * * Way too bad! The case may occur that the cone is spanned by three rays, of which only two are strictly * positive => these lie in a plane and thus their sum is not from relative interior. * So let's just sum up all rays, find one strictly positive and shift the point along that ray * * Used by noRevS *NOTE no longer used nor maintained. MM Mar 9, 2010 */ // void gcone::interiorPoint2() // {//idPrint(this->gcBasis); // #ifndef NDEBUG // if(this->ivIntPt!=NULL) // WarnS("Interior point already exists - ovrewriting!"); // #endif // facet *f1 = this->facetPtr; // facet *f2 = NULL; // int64vec *intF1=NULL; // while(f1!=NULL) // { // if(f1->isFlippable) // { // facet *f1Ray = f1->codim2Ptr; // while(f1Ray!=NULL) // { // const int64vec *check=f1Ray->getRef2FacetNormal(); // if(iv64isStrictlyPositive(check)) // { // intF1=iv64Copy(check); // break; // } // f1Ray=f1Ray->next; // } // } // if(intF1!=NULL) // break; // f1=f1->next; // } // if(f1!=NULL && f1->next!=NULL)//Choose another facet, different from f1 // f2=f1->next; // else // f2=this->facetPtr; // if(intF1==NULL && hasHomInput==TRUE) // { // intF1 = new int64vec(this->numVars); // for(int ii=0;iinumVars;ii++) // (*intF1)[ii]=1; // } // assert(f1); assert(f2); // int64vec *intF2=f2->getInteriorPoint(); // mpq_t *qPosRay = new mpq_t[this->numVars];//The positive ray from above // mpq_t *qIntPt = new mpq_t[this->numVars];//starting vector a+((b-a)/2) // mpq_t *qPosIntPt = new mpq_t[this->numVars];//This should be >0 eventually // for(int ii=0;iinumVars;ii++) // { // mpq_init(qPosRay[ii]); // mpq_init(qIntPt[ii]); // mpq_init(qPosIntPt[ii]); // } // //Compute a+((b-a)/2) && Convert intF1 to mpq // for(int ii=0;iinumVars;ii++) // { // mpq_t a,b; // mpq_init(a); mpq_init(b); // mpq_set_si(a,(*intF1)[ii],1); // mpq_set_si(b,(*intF2)[ii],1); // mpq_t diff; // mpq_init(diff); // mpq_sub(diff,b,a); //diff=b-a // mpq_t quot; // mpq_init(quot); // mpq_div_2exp(quot,diff,1); //quot=diff/2=(b-a)/2 // mpq_clear(diff); // //Don't be clever and reuse diff here // mpq_t sum; mpq_init(sum); // mpq_add(sum,b,quot); //sum=b+quot=a+(b-a)/2 // mpq_set(qIntPt[ii],sum); // mpq_clear(sum); // mpq_clear(quot); // mpq_clear(a); mpq_clear(b); // //Now for intF1 // mpq_set_si(qPosRay[ii],(*intF1)[ii],1); // } // //Now add: qPosIntPt=qPosRay+qIntPt until qPosIntPt >0 // while(TRUE) // { // bool success=FALSE; // int posCtr=0; // for(int ii=0;iinumVars;ii++) // { // mpq_t sum; mpq_init(sum); // mpq_add(sum,qPosRay[ii],qIntPt[ii]); // mpq_set(qPosIntPt[ii],sum); // mpq_clear(sum); // if(mpq_sgn(qPosIntPt[ii])==1) // posCtr++; // } // if(posCtr==this->numVars)//qPosIntPt > 0 // break; // else // { // mpq_t qTwo; mpq_init(qTwo); // mpq_set_ui(qTwo,2,1); // for(int jj=0;jjnumVars;jj++) // { // mpq_t tmp; mpq_init(tmp); // mpq_mul(tmp,qPosRay[jj],qTwo); // mpq_set( qPosRay[jj], tmp); // mpq_clear(tmp); // } // mpq_clear(qTwo); // } // }//while // //Now qPosIntPt ought to be >0, so convert back to int :D // /*Compute lcm of the denominators*/ // mpz_t *denom = new mpz_t[this->numVars]; // mpz_t tmp,kgV; // mpz_init(tmp); mpz_init(kgV); // for (int ii=0;iinumVars;ii++) // { // mpz_t z; // mpz_init(z); // mpq_get_den(z,qPosIntPt[ii]); // mpz_init(denom[ii]); // mpz_set( denom[ii], z); // mpz_clear(z); // } // // mpz_set(tmp,denom[0]); // for (int ii=0;iinumVars;ii++) // { // mpz_lcm(kgV,tmp,denom[ii]); // mpz_set(tmp,kgV); // } // mpz_clear(tmp); // /*Multiply the nominators by kgV*/ // mpq_t qkgV,res; // mpq_init(qkgV); // mpq_canonicalize(qkgV); // mpq_init(res); // mpq_canonicalize(res); // // mpq_set_num(qkgV,kgV); // int64vec *n=new int64vec(this->numVars); // for (int ii=0;iinumVars;ii++) // { // mpq_canonicalize(qPosIntPt[ii]); // mpq_mul(res,qkgV,qPosIntPt[ii]); // (*n)[ii]=(int)mpz_get_d(mpq_numref(res)); // } // this->setIntPoint(n); // delete n; // delete [] qPosIntPt; // delete [] denom; // delete [] qPosRay; // delete [] qIntPt; // mpz_clear(kgV); // mpq_clear(qkgV); mpq_clear(res); // } /** \brief Copy a ring and add a weighted ordering in first place * */ ring gcone::rCopyAndAddWeight(const ring &r, int64vec *ivw) { ring res=rCopy0(r); int jj; omFree(res->order); res->order =(int *)omAlloc0(4*sizeof(int/*64*/)); omFree(res->block0); res->block0=(int *)omAlloc0(4*sizeof(int/*64*/)); omFree(res->block1); res->block1=(int *)omAlloc0(4*sizeof(int/*64*/)); omfree(res->wvhdl); res->wvhdl =(int **)omAlloc0(4*sizeof(int/*64*/**)); res->order[0]=ringorder_a/*64*/; res->block0[0]=1; res->block1[0]=res->N; res->order[1]=ringorder_dp; //basically useless, since that should never be used res->block0[1]=1; res->block1[1]=res->N; res->order[2]=ringorder_C; int length=ivw->length(); int/*64*/ *A=(int/*64*/ *)omAlloc0(length*sizeof(int/*64*/)); for (jj=0;jj=INT_MAX) WarnS("A[jj] exceeds INT_MAX in gcone::rCopyAndAddWeight!\n"); } res->wvhdl[0]=(int *)A; res->block1[0]=length; rComplete(res); return res; }//rCopyAndAdd ring gcone::rCopyAndAddWeight2(const ring &r,const int64vec *ivw, const int64vec *fNormal) { ring res=rCopy0(r); omFree(res->order); res->order =(int *)omAlloc0(5*sizeof(int/*64*/)); omFree(res->block0); res->block0=(int *)omAlloc0(5*sizeof(int/*64*/)); omFree(res->block1); res->block1=(int *)omAlloc0(5*sizeof(int/*64*/)); omfree(res->wvhdl); res->wvhdl =(int **)omAlloc0(5*sizeof(int/*64*/**)); res->order[0]=ringorder_a/*64*/; res->block0[0]=1; res->block1[0]=res->N; res->order[1]=ringorder_a/*64*/; res->block0[1]=1; res->block1[1]=res->N; res->order[2]=ringorder_dp; res->block0[2]=1; res->block1[2]=res->N; res->order[3]=ringorder_C; int length=ivw->length(); int/*64*/ *A1=(int/*64*/ *)omAlloc0(length*sizeof(int/*64*/)); int/*64*/ *A2=(int/*64*/ *)omAlloc0(length*sizeof(int/*64*/)); for (int jj=0;jj=INT_MAX || (*fNormal)[jj]>=INT_MAX) WarnS("A[jj] exceeds INT_MAX in gcone::rCopyAndAddWeight2!\n"); } res->wvhdl[0]=(int *)A1; res->block1[0]=length; res->wvhdl[1]=(int *)A2; res->block1[1]=length; rComplete(res); return res; } //NOTE not needed anywhere // ring rCopyAndChangeWeight(ring const &r, int64vec *ivw) // { // ring res=rCopy0(currRing); // rComplete(res); // rSetWeightVec(res,(int64*)ivw); // //rChangeCurrRing(rnew); // return res; // } /** \brief Checks whether a given facet is a search facet * Determines whether a given facet of a cone is the search facet of a neighbouring cone * This is done in the following way: * We loop through all facets of the cone and find the "smallest" facet, i.e. the unique facet * that is first crossed during the generic walk. * We then check whether the fNormal of this facet is parallel to the fNormal of our testfacet. * If this is the case, then our facet is indeed a search facet and TRUE is retuned. */ //removed with r12286 /** \brief Check for equality of two intvecs */ static bool ivAreEqual(const int64vec &a, const int64vec &b) { bool res=TRUE; for(int ii=0;iiddFacets); //Add a row of 0s in 0th place dd_MatrixPtr ddAppendRowOfZeroes=dd_CreateMatrix(1,this->numVars+1); dd_MatrixPtr ddFoo=dd_AppendMatrix(ddAppendRowOfZeroes,ddineq); dd_FreeMatrix(ddAppendRowOfZeroes); dd_FreeMatrix(ddineq); ddineq=dd_CopyMatrix(ddFoo); dd_FreeMatrix(ddFoo); //Cohen starts here int dimKer=0;//Cohen calls this r int m=ddineq->rowsize;//Rows int n=ddineq->colsize;//Cols int c[m+1]; int d[n+1]; for(int ii=0;iimatrix[j][k])!=0 && c[j]==0) { mpq_t quot; mpq_init(quot); mpq_t one; mpq_init(one); mpq_set_str(one,"-1",10); mpq_t ratd; mpq_init(ratd); if((int)mpq_get_d(ddineq->matrix[j][k])!=0) mpq_div(quot,one,ddineq->matrix[j][k]); mpq_set(ratd,quot); mpq_canonicalize(ratd); mpq_set_str(ddineq->matrix[j][k],"-1",10); for(int ss=k+1;ssmatrix[j][ss]); mpq_set(ddineq->matrix[j][ss],prod); mpq_canonicalize(ddineq->matrix[j][ss]); mpq_clear(prod); } for(int ii=1;iimatrix[ii][k]); mpq_set_str(ddineq->matrix[ii][k],"0",10); for(int ss=k+1;ssmatrix[j][ss]); mpq_t sum; mpq_init(sum); mpq_add(sum, ddineq->matrix[ii][ss], prod); mpq_set(ddineq->matrix[ii][ss], sum); mpq_canonicalize(ddineq->matrix[ii][ss]); mpq_clear(prod); mpq_clear(sum); } } } c[j]=k; d[k]=j; mpq_clear(quot); mpq_clear(ratd); mpq_clear(one); } else condCtr++; } if(condCtr==m-1) //Why -1 ??? { dimKer++; d[k]=0; // break;//goto _4; }//else{ /*Eliminate*/ }//for(k /*Output kernel, i.e. set gcone::dd_LinealitySpace here*/ // gcone::dd_LinealitySpace = dd_CreateMatrix(dimKer,this->numVars+1); res = dd_CreateMatrix(dimKer,this->numVars+1); int row=-1; for(int kk=1;kk0) mpq_set(res->matrix[row][ii],ddineq->matrix[d[ii]][kk]); else if(ii==kk) mpq_set_str(res->matrix[row][ii],"1",10); mpq_canonicalize(res->matrix[row][ii]); } } } dd_FreeMatrix(ddineq); return(res); //Better safe than sorry: //NOTE dd_LinealitySpace contains RATIONAL ENTRIES //Therefore if you need integer ones: CALL gcone::makeInt(...) method } /** \brief The new method of Markwig and Jensen * Compute gcBasis and facets for the arbitrary starting cone. Store \f$(codim-1)\f$-facets as normals. * In order to represent a facet uniquely compute also the \f$(codim-2)\f$-facets and norm by the gcd of the components. * Keep a list of facets as a linked list containing an int64vec and an integer matrix. * Since a \f$(codim-1)\f$-facet belongs to exactly two full dimensional cones, we remove a facet from the list as * soon as we compute this facet again. Comparison of facets is done by... */ void gcone::noRevS(gcone &gcRoot, bool usingIntPoint) { facet *SearchListRoot = new facet(); //The list containing ALL facets we come across facet *SearchListAct; SearchListAct = NULL; //SearchListAct = SearchListRoot; gcone *gcAct; gcAct = &gcRoot; gcone *gcPtr; //Pointer to end of linked list of cones gcPtr = &gcRoot; gcone *gcNext; //Pointer to next cone to be visited gcNext = &gcRoot; gcone *gcHead; gcHead = &gcRoot; facet *fAct; fAct = gcAct->facetPtr; ring rAct; rAct = currRing; int UCNcounter=gcAct->getUCN(); #ifndef NDEBUG printf("NoRevs\n"); printf("Facets are:\n"); gcAct->showFacets(); #endif /*Compute lineality space here * Afterwards static dd_MatrixPtr gcone::dd_LinealitySpace is set*/ if(dd_LinealitySpace==NULL) dd_LinealitySpace = gcAct->computeLinealitySpace(); /*End of lineality space computation*/ //gcAct->getCodim2Normals(*gcAct); if(fAct->codim2Ptr==NULL) gcAct->getExtremalRays(*gcAct); /* Make a copy of the facet list of first cone Since the operations getCodim2Normals and normalize affect the facets we must not memcpy them before these ops! */ /*facet *codim2Act; codim2Act = NULL; facet *sl2Root; facet *sl2Act;*/ for(int ii=0;iinumFacets;ii++) { //only copy flippable facets! NOTE: We do not need flipRing or any such information. if(fAct->isFlippable==TRUE) { /*Using shallow copy here*/ #ifdef SHALLOW if( ii==0 || (ii>0 && SearchListAct==NULL) ) //1st facet may be non-flippable { if(SearchListRoot!=NULL) delete(SearchListRoot); SearchListRoot = fAct->shallowCopy(*fAct); SearchListAct = SearchListRoot; //SearchListRoot is already 'new'ed at beginning of method! } else { SearchListAct->next = fAct->shallowCopy(*fAct); SearchListAct = SearchListAct->next; } fAct=fAct->next; #else /*End of shallow copy*/ int64vec *fNormal; fNormal = fAct->getFacetNormal(); if( ii==0 || (ii>0 && SearchListAct==NULL) ) //1st facet may be non-flippable { SearchListAct = SearchListRoot; //SearchListRoot is already 'new'ed at beginning of method! } else { SearchListAct->next = new facet(); SearchListAct = SearchListAct->next; } SearchListAct->setFacetNormal(fNormal); SearchListAct->setUCN(this->getUCN()); SearchListAct->numCodim2Facets=fAct->numCodim2Facets; SearchListAct->isFlippable=TRUE; //Copy int point as well int64vec *ivIntPt; ivIntPt = fAct->getInteriorPoint(); SearchListAct->setInteriorPoint(ivIntPt); delete(ivIntPt); //Copy codim2-facets facet *codim2Act; codim2Act = NULL; facet *sl2Root; facet *sl2Act; codim2Act=fAct->codim2Ptr; SearchListAct->codim2Ptr = new facet(2); sl2Root = SearchListAct->codim2Ptr; sl2Act = sl2Root; for(int jj=0;jjnumCodim2Facets;jj++) // for(int jj=0;jjnumRays-1;jj++) { int64vec *f2Normal; f2Normal = codim2Act->getFacetNormal(); if(jj==0) { sl2Act = sl2Root; sl2Act->setFacetNormal(f2Normal); } else { sl2Act->next = new facet(2); sl2Act = sl2Act->next; sl2Act->setFacetNormal(f2Normal); } delete f2Normal; codim2Act = codim2Act->next; } fAct = fAct->next; delete fNormal; #endif }//if(fAct->isFlippable==TRUE) else {fAct = fAct->next;} }//End of copying facets into SLA SearchListAct = SearchListRoot; //Set to beginning of list /*Make SearchList doubly linked*/ #ifndef NDEBUG #if SIZEOF_LONG==8 while(SearchListAct!=(facet*)0xfefefefefefefefe && SearchListAct!=NULL) { if(SearchListAct->next!=(facet*)0xfefefefefefefefe && SearchListAct->next!=NULL){ #elif SIZEOF_LONG!=8 while(SearchListAct!=(facet*)0xfefefefe) { if(SearchListAct->next!=(facet*)0xfefefefe){ #endif #else while(SearchListAct!=NULL) { if(SearchListAct->next!=NULL){ #endif SearchListAct->next->prev = SearchListAct; } SearchListAct = SearchListAct->next; } SearchListAct = SearchListRoot; //Set to beginning of List // fAct = gcAct->facetPtr;//??? gcAct->writeConeToFile(*gcAct); /*End of initialisation*/ fAct = SearchListAct; /*2nd step Choose a facet from SearchList, flip it and forget the previous cone We always choose the first facet from SearchList as facet to be flipped */ while( (SearchListAct!=NULL))//&& counter<490) {//NOTE See to it that the cone is only changed after ALL facets have been flipped! fAct = SearchListAct; while(fAct!=NULL) // while( (fAct->getUCN() == fAct->next->getUCN()) ) { //Since SLA should only contain flippables there should be no need to check for that gcAct->flip2(gcAct->gcBasis,fAct); //NOTE rCopy needed? ring rTmp=rCopy(fAct->flipRing); rComplete(rTmp); rChangeCurrRing(rTmp); gcone *gcTmp = new gcone(*gcAct,*fAct);//copy constructor! /* Now gcTmp->gcBasis and gcTmp->baseRing are set from fAct->flipGB and fAct->flipRing. * Since we come at most once across a given facet from gcAct->facetPtr we can delete them. * NOTE: Can this cause trouble with the destructor? * Answer: Yes it bloody well does! * However I'd like to delete this data here, since if we have a cone with many many facets it * should pay to get rid of the flipGB as soon as possible. * Destructor must be equipped with necessary checks. */ idDelete((ideal *)&fAct->flipGB); rDelete(fAct->flipRing); gcTmp->getConeNormals(gcTmp->gcBasis/*, FALSE*/); // gcTmp->getCodim2Normals(*gcTmp); gcTmp->getExtremalRays(*gcTmp); //NOTE Order rays lex here gcTmp->orderRays(); // //NOTE If flip2 is used we need to get an interior point of gcTmp // // and replace gcTmp->baseRing with an appropriate ring with only // // one weight // gcTmp->interiorPoint2(); gcTmp->replaceDouble_ringorder_a_ByASingleOne(); //gcTmp->ddFacets should not be needed anymore, so dd_FreeMatrix(gcTmp->ddFacets); #ifndef NDEBUG // gcTmp->showFacets(1); #endif /*add facets to SLA here*/ #ifdef SHALLOW #ifndef NDEBUG printf("fActUCN before enq2: %i\n",fAct->getUCN()); #endif facet *tmp; tmp=gcTmp->enqueue2(SearchListRoot); #ifndef NDEBUG printf("\nheadUCN=%i\n",tmp->getUCN()); printf("fActUCN after enq2: %i\n",fAct->getUCN()); #endif SearchListRoot=tmp; //SearchListRoot=gcTmp->enqueue2/*NewFacets*/(SearchListRoot); #else SearchListRoot=gcTmp->enqueueNewFacets(SearchListRoot); #endif //ifdef SHALLOW // gcTmp->writeConeToFile(*gcTmp); if(gfanHeuristic==1) { gcTmp->writeConeToFile(*gcTmp); idDelete((ideal*)&gcTmp->gcBasis);//Whonder why? rDelete(gcTmp->baseRing); } #ifndef NDEBUG if(SearchListRoot!=NULL) showSLA(*SearchListRoot); #endif rChangeCurrRing(gcAct->baseRing); rDelete(rTmp); //doubly linked for easier removal gcTmp->prev = gcPtr; gcPtr->next=gcTmp; gcPtr=gcPtr->next; //Cleverly disguised exit condition follows if(fAct->getUCN() == fAct->next->getUCN()) { printf("Switching UCN from %i to %i\n",fAct->getUCN(),fAct->next->getUCN()); fAct=fAct->next; } else { //rDelete(gcAct->baseRing); // printf("break\n"); break; } // fAct=fAct->next; }//while( ( (fAct->next!=NULL) && (fAct->getUCN()==fAct->next->getUCN() ) ) ); //Search for cone with smallest UCN #ifndef NDEBUG #if SIZEOF_LONG==8 //64 bit while(gcNext!=(gcone * const)0xfbfbfbfbfbfbfbfb && SearchListRoot!=NULL) #elif SIZEOF_LONG == 4 while(gcNext!=(gcone * const)0xfbfbfbfb && SearchListRoot!=NULL) #endif #endif #ifdef NDEBUG while(gcNext!=NULL && SearchListRoot!=NULL) #endif { if( gcNext->getUCN() == SearchListRoot->getUCN() ) { if(gfanHeuristic==0) { gcAct = gcNext; //Seems better to not to use rCopy here // rAct=rCopy(gcAct->baseRing); rAct=gcAct->baseRing; rComplete(rAct); rChangeCurrRing(rAct); break; } else if(gfanHeuristic==1) { gcone *gcDel; gcDel = gcAct; gcAct = gcNext; //Read st00f from file & //implant the GB into gcAct readConeFromFile(gcAct->getUCN(), gcAct); //Kill the baseRing but ONLY if it is not the ring the computation started in! // if(gcDel->getUCN()!=1)//WTF!? This causes the Mandelbug in gcone::areEqual(facet, facet) // rDelete(gcDel->baseRing); // rAct=rCopy(gcAct->baseRing); /*The ring change occurs in readConeFromFile, so as to assure that gcAct->gcBasis belongs to the right ring*/ rAct=gcAct->baseRing; rComplete(rAct); rChangeCurrRing(rAct); break; } } else if(gcNext->getUCN() < SearchListRoot->getUCN() ) { idDelete( (ideal*)&gcNext->gcBasis ); // rDelete(gcNext->baseRing);//TODO Why does this crash? } /*else { if(gfanHeuristic==1) { gcone *gcDel; gcDel = gcNext; if(gcDel->getUCN()!=1) rDelete(gcDel->baseRing); } }*/ gcNext = gcNext->next; } UCNcounter++; SearchListAct = SearchListRoot; } printf("\nFound %i cones - terminating\n", counter); }//void noRevS(gcone &gc) /** \brief Make a set of rational vectors into integers * * We compute the lcm of the denominators and multiply with this to get integer values. * If the gcd of the nominators > 1 we divide by the gcd => primitive vector. * Expects a new int64vec as 3rd parameter * \param dd_MatrixPtr,int64vec */ void gcone::makeInt(const dd_MatrixPtr &M, const int line, int64vec &n) { mpz_t *denom = new mpz_t[this->numVars]; for(int ii=0;iinumVars;ii++) { mpz_init_set_str(denom[ii],"0",10); } mpz_t kgV,tmp; mpz_init(kgV); mpz_init(tmp); for (int ii=0;ii<(M->colsize)-1;ii++) { mpz_t z; mpz_init(z); mpq_get_den(z,M->matrix[line-1][ii+1]); mpz_set( denom[ii], z); mpz_clear(z); } /*Compute lcm of the denominators*/ mpz_set(tmp,denom[0]); for (int ii=0;ii<(M->colsize)-1;ii++) { mpz_lcm(kgV,tmp,denom[ii]); mpz_set(tmp,kgV); } mpz_clear(tmp); /*Multiply the nominators by kgV*/ mpq_t qkgV,res; mpq_init(qkgV); mpq_set_str(qkgV,"1",10); mpq_canonicalize(qkgV); mpq_init(res); mpq_set_str(res,"1",10); mpq_canonicalize(res); mpq_set_num(qkgV,kgV); // mpq_canonicalize(qkgV); // int ggT=1; for (int ii=0;ii<(M->colsize)-1;ii++) { mpq_mul(res,qkgV,M->matrix[line-1][ii+1]); n[ii]=(int64)mpz_get_d(mpq_numref(res)); // ggT=int64gcd(ggT,n[ii]); } int64 ggT=n[0]; for(int ii=0;iinumVars;ii++) ggT=int64gcd(ggT,n[ii]); //Normalisation if(ggT>1) { for(int ii=0;iinumVars;ii++) n[ii] /= ggT; } delete [] denom; mpz_clear(kgV); mpq_clear(qkgV); mpq_clear(res); } /** * For all codim-2-facets we compute the gcd of the components of the facet normal and * divide it out. Thus we get a normalized representation of each * (codim-2)-facet normal, i.e. a primitive vector * Actually we now also normalize the facet normals. */ // void gcone::normalize() // { // int *ggT = new int; // *ggT=1; // facet *fAct; // facet *codim2Act; // fAct = this->facetPtr; // codim2Act = fAct->codim2Ptr; // while(fAct!=NULL) // { // int64vec *fNormal; // fNormal = fAct->getFacetNormal(); // int *ggT = new int; // *ggT=1; // for(int ii=0;iinumVars;ii++) // { // *ggT=intgcd((*ggT),(*fNormal)[ii]); // } // if(*ggT>1)//We only need to do this if the ggT is non-trivial // { // // int64vec *fCopy = fAct->getFacetNormal(); // for(int ii=0;iinumVars;ii++) // (*fNormal)[ii] = ((*fNormal)[ii])/(*ggT); // fAct->setFacetNormal(fNormal); // } // delete fNormal; // delete ggT; // /*And now for the codim2*/ // while(codim2Act!=NULL) // { // int64vec *n; // n=codim2Act->getFacetNormal(); // int *ggT=new int; // *ggT=1; // for(int ii=0;iinumVars;ii++) // { // *ggT = intgcd((*ggT),(*n)[ii]); // } // if(*ggT>1) // { // for(int ii=0;iinumVars;ii++) // { // (*n)[ii] = ((*n)[ii])/(*ggT); // } // codim2Act->setFacetNormal(n); // } // codim2Act = codim2Act->next; // delete n; // delete ggT; // } // fAct = fAct->next; // } // } /** \brief Enqueue new facets into the searchlist * The searchlist (SLA for short) is implemented as a FIFO * Checks are done as follows: * 1) Check facet fAct against all facets in SLA for parallelity. If it is not parallel to any one add it. * 2) If it is parallel compare the codim2 facets. If they coincide the facets are equal and we delete the * facet from SLA and do not add fAct. * It may very well happen, that SLA=\f$ \emptyset \f$ but we do not have checked all fActs yet. In this case we * can be sure, that none of the facets that are still there already were in SLA once, so we just dump them into SLA. * Takes ptr to search list root * Returns a pointer to new first element of Searchlist */ facet * gcone::enqueueNewFacets(facet *f) { #ifdef gfanp timeval start, end; gettimeofday(&start, 0); #endif facet *slHead; slHead = f; facet *slAct; //called with f=SearchListRoot slAct = f; facet *slEnd; //Pointer to end of SLA slEnd = f; // facet *slEndStatic; //marks the end before a new facet is added facet *fAct; fAct = this->facetPtr; facet *codim2Act; codim2Act = this->facetPtr->codim2Ptr; facet *sl2Act; sl2Act = f->codim2Ptr; /** Pointer to a facet that will be deleted */ volatile facet *deleteMarker; deleteMarker = NULL; /** \brief Flag to mark a facet that might be added * The following case may occur: * A facet fAct is found to be parallel but not equal to the current facet slAct from SLA. * This does however not mean that there does not exist a facet behind the current slAct that is actually equal * to fAct. In this case we set the boolean flag maybe to TRUE. If we encounter an equality lateron, it is reset to * FALSE and the according slAct is deleted. * If slAct->next==NULL AND maybe==TRUE we know, that fAct must be added */ /**A facet was removed, lengthOfSearchlist-- thus we must not rely on * if(notParallelCtr==lengthOfSearchList) but rather * if( (notParallelCtr==lengthOfSearchList && removalOccured==FALSE) */ volatile bool removalOccured=FALSE; while(slEnd->next!=NULL) { slEnd=slEnd->next; } /*1st step: compare facetNormals*/ while(fAct!=NULL) { if(fAct->isFlippable==TRUE) { int64vec *fNormal=NULL; fNormal=fAct->getFacetNormal(); slAct = slHead; /*If slAct==NULL and fAct!=NULL we just copy all remaining facets into SLA*/ if(slAct==NULL) { facet *fCopy; fCopy = fAct; while(fCopy!=NULL) { if(fCopy->isFlippable==TRUE)//We must assure fCopy is also flippable { if(slAct==NULL) { slAct = new facet(*fCopy/*,TRUE*/);//copy constructor slHead = slAct; } else { slAct->next = new facet(*fCopy/*,TRUE*/); slAct = slAct->next; } } fCopy = fCopy->next; } break;//Where does this lead to? } /*End of dumping into SLA*/ while(slAct!=NULL) { int64vec *slNormal=NULL; removalOccured=FALSE; slNormal = slAct->getFacetNormal(); #ifndef NDEBUG printf("Checking facet (");fNormal->show(1,1);printf(") against (");slNormal->show(1,1);printf(")\n"); #endif // if( (areEqual(fAct,slAct) && (!areEqual2(fAct,slAct)) )) // exit(-1); if(areEqual2(fAct,slAct)) { deleteMarker = slAct; if(slAct==slHead) { slHead = slAct->next; if(slHead!=NULL) slHead->prev = NULL; } else if (slAct==slEnd) { slEnd=slEnd->prev; slEnd->next = NULL; } else { slAct->prev->next = slAct->next; slAct->next->prev = slAct->prev; } removalOccured=TRUE; gcone::lengthOfSearchList--; if(deleteMarker!=NULL) { // delete deleteMarker; // deleteMarker=NULL; } #ifndef NDEBUG printf("Removing (");fNormal->show(1,1);printf(") from list\n"); #endif delete slNormal; break;//leave the while loop, since we found fAct=slAct thus delete slAct and do not add fAct } slAct = slAct->next; /* NOTE The following lines must not be here but rather called inside the if-block above. Otherwise results get crappy. Unfortunately there are two slAct=slAct->next calls now, (not nice!) but since they are in seperate branches of the if-statement there should not be a way it gets called twice thus ommiting one facet: slAct = slAct->next;*/ if(deleteMarker!=NULL) { // delete deleteMarker; // deleteMarker=NULL; } delete slNormal; //if slAct was marked as to be deleted, delete it here! }//while(slAct!=NULL) if(removalOccured==FALSE) { #ifndef NDEBUG // cout << "Adding facet (";fNormal->show(1,0);cout << ") to SLA " << endl; #endif //Add fAct to SLA facet *marker; marker = slEnd; facet *f2Act; f2Act = fAct->codim2Ptr; slEnd->next = new facet(); slEnd = slEnd->next;//Update slEnd facet *slEndCodim2Root; facet *slEndCodim2Act; slEndCodim2Root = slEnd->codim2Ptr; slEndCodim2Act = slEndCodim2Root; slEnd->setUCN(this->getUCN()); slEnd->isFlippable = TRUE; slEnd->setFacetNormal(fNormal); //NOTE Add interior point here //This is ugly but needed for flip2 //Better: have slEnd->interiorPoint point to fAct->interiorPoint //NOTE Only reference -> c.f. copy constructor //slEnd->setInteriorPoint(fAct->getInteriorPoint()); slEnd->interiorPoint = fAct->interiorPoint; slEnd->prev = marker; //Copy codim2-facets //int64vec *f2Normal=new int64vec(this->numVars); while(f2Act!=NULL) { int64vec *f2Normal; f2Normal=f2Act->getFacetNormal(); if(slEndCodim2Root==NULL) { slEndCodim2Root = new facet(2); slEnd->codim2Ptr = slEndCodim2Root; slEndCodim2Root->setFacetNormal(f2Normal); slEndCodim2Act = slEndCodim2Root; } else { slEndCodim2Act->next = new facet(2); slEndCodim2Act = slEndCodim2Act->next; slEndCodim2Act->setFacetNormal(f2Normal); } f2Act = f2Act->next; delete f2Normal; } gcone::lengthOfSearchList++; }//if( (notParallelCtr==lengthOfSearchList && removalOccured==FALSE) || fAct = fAct->next; delete fNormal; // delete slNormal; }//if(fAct->isFlippable==TRUE) else { fAct = fAct->next; } if(gcone::maxSizefacetPtr;//New facets to compare facet *codim2Act; codim2Act = this->facetPtr->codim2Ptr; volatile bool removalOccured=FALSE; while(slEnd->next!=NULL) { slEnd=slEnd->next; } while(fAct!=NULL) { if(fAct->isFlippable) { facet *fDeleteMarker=NULL; slAct = slHead; if(slAct==NULL) { printf("Zero length SLA\n"); facet *fCopy; fCopy = fAct; while(fCopy!=NULL) { if(fCopy->isFlippable==TRUE)//We must assure fCopy is also flippable { if(slAct==NULL) { slAct = slAct->shallowCopy(*fCopy);//shallow copy constructor slHead = slAct; } else { slAct->next = slAct->shallowCopy(*fCopy); slAct = slAct->next; } } fCopy = fCopy->next; } break; //WTF? } /*Comparison starts here*/ while(slAct!=NULL) { removalOccured=FALSE; #ifndef NDEBUG printf("Checking facet (");fAct->fNormal->show(1,1);printf(") against (");slAct->fNormal->show(1,1);printf(")\n"); #endif if(areEqual2(fAct,slAct)) { fDeleteMarker=slAct; if(slAct==slHead) { // fDeleteMarker=slHead; // printf("headUCN@enq=%i\n",slHead->getUCN()); slHead = slAct->next; // printf("headUCN@enq=%i\n",slHead->getUCN()); if(slHead!=NULL) { slHead->prev = NULL; } fDeleteMarker->shallowDelete(); //delete fDeleteMarker;//NOTE this messes up fAct in noRevS! // printf("headUCN@enq=%i\n",slHead->getUCN()); } else if (slAct==slEnd) { slEnd=slEnd->prev; slEnd->next = NULL; fDeleteMarker->shallowDelete(); delete(fDeleteMarker); } else { slAct->prev->next = slAct->next; slAct->next->prev = slAct->prev; fDeleteMarker->shallowDelete(); delete(fDeleteMarker); } removalOccured=TRUE; gcone::lengthOfSearchList--; #ifndef NDEBUG printf("Removing (");fAct->fNormal->show(1,1);printf(") from list\n"); #endif break;//leave the while loop, since we found fAct=slAct thus delete slAct and do not add fAct } slAct = slAct->next; }//while(slAct!=NULL) if(removalOccured==FALSE) { facet *marker=slEnd; slEnd->next = fAct->shallowCopy(*fAct); slEnd = slEnd->next; slEnd->prev=marker; gcone::lengthOfSearchList++; } fAct = fAct->next; // if(fDeleteMarker!=NULL) // { // fDeleteMarker->shallowDelete(); // delete(fDeleteMarker); // fDeleteMarker=NULL; // } } else fAct = fAct->next; }//while(fAct!=NULL) #ifdef gfanp gettimeofday(&end, 0); time_enqueue += (end.tv_sec - start.tv_sec + 1e-6*(end.tv_usec - start.tv_usec)); #endif // printf("headUCN@enq=%i\n",slHead->getUCN()); return slHead; } /** * During flip2 every gc->baseRing gets two ringorder_a * To avoid having an awful lot of those in the end we endow * gc->baseRing by a suitable ring with (a,dp,C) and copy all * necessary stuff over * But first we will try to just do an inplace exchange and copying only the * gc->gcBasis */ void gcone::replaceDouble_ringorder_a_ByASingleOne() { ring srcRing=currRing; ring replacementRing=rCopy0((ring)this->baseRing); /*We assume we have (a(),a(),dp) here*/ omFree(replacementRing->order); replacementRing->order =(int *)omAlloc0(4*sizeof(int/*64*/)); omFree(replacementRing->block0); replacementRing->block0=(int *)omAlloc0(4*sizeof(int/*64*/)); omFree(replacementRing->block1); replacementRing->block1=(int *)omAlloc0(4*sizeof(int/*64*/)); omfree(replacementRing->wvhdl); replacementRing->wvhdl =(int **)omAlloc0(4*sizeof(int/*64*/**)); replacementRing->order[0]=ringorder_a/*64*/; replacementRing->block0[0]=1; replacementRing->block1[0]=replacementRing->N; replacementRing->order[1]=ringorder_dp; replacementRing->block0[1]=1; replacementRing->block1[1]=replacementRing->N; replacementRing->order[2]=ringorder_C; int64vec *ivw = this->getIntPoint(TRUE);//returns a reference // assert(this->ivIntPt); int length=ivw->length(); int/*64*/ *A=(int/*64*/ *)omAlloc0(length*sizeof(int/*64*/)); for (int jj=0;jj=INT_MAX) WarnS("A[jj] exceeds INT_MAX in gcone::replaceDouble_ringorder_a_ByASingleOne!\n"); } //delete ivw; //Not needed if this->getIntPoint(TRUE) replacementRing->wvhdl[0]=(int *)A; replacementRing->block1[0]=length; /*Finish*/ rComplete(replacementRing); rChangeCurrRing(replacementRing); ideal temporaryGroebnerBasis=idrCopyR(this->gcBasis,this->baseRing); rDelete(this->baseRing); this->baseRing=rCopy(replacementRing); this->gcBasis=idCopy(temporaryGroebnerBasis); /*And back to where we came from*/ rChangeCurrRing(srcRing); idDelete( (ideal*)&temporaryGroebnerBasis ); rDelete(replacementRing); } /** \brief Compute the gcd of two ints */ static int64 int64gcd(const int64 &a, const int64 &b) { int64 r, p=a, q=b; if(p < 0) p = -p; if(q < 0) q = -q; while(q != 0) { r = p % q; p = q; q = r; } return p; } static int intgcd(const int &a, const int &b) { int r, p=a, q=b; if(p < 0) p = -p; if(q < 0) q = -q; while(q != 0) { r = p % q; p = q; q = r; } return p; } /** \brief Construct a dd_MatrixPtr from a cone's list of facets * NO LONGER USED */ // inline dd_MatrixPtr gcone::facets2Matrix(const gcone &gc) // { // facet *fAct; // fAct = gc.facetPtr; // // dd_MatrixPtr M; // dd_rowrange ddrows; // dd_colrange ddcols; // ddcols=(this->numVars)+1; // ddrows=this->numFacets; // dd_NumberType numb = dd_Integer; // M=dd_CreateMatrix(ddrows,ddcols); // // int jj=0; // // while(fAct!=NULL) // { // int64vec *comp; // comp = fAct->getFacetNormal(); // for(int ii=0;iinumVars;ii++) // { // dd_set_si(M->matrix[jj][ii+1],(*comp)[ii]); // } // jj++; // delete comp; // fAct=fAct->next; // } // return M; // } /** \brief Write information about a cone into a file on disk * * This methods writes the information needed for the "second" method into a file. * The file's is divided in sections containing information on * 1) the ring * 2) the cone's Groebner Basis * 3) the cone's facets * Each line contains exactly one date * Each section starts with its name in CAPITALS */ void gcone::writeConeToFile(const gcone &gc, bool usingIntPoints) { int UCN=gc.UCN; stringstream ss; ss << UCN; string UCNstr = ss.str(); string prefix="/tmp/Singular/cone"; // string prefix="./"; //crude hack -> run tests in separate directories string suffix=".sg"; string filename; filename.append(prefix); filename.append(UCNstr); filename.append(suffix); // int thisPID = getpid(); // ss << thisPID; // string strPID = ss.str(); // string prefix="./"; ofstream gcOutputFile(filename.c_str()); assert(gcOutputFile); facet *fAct; fAct = gc.facetPtr; facet *f2Act; f2Act=fAct->codim2Ptr; char *ringString = rString(gc.baseRing); if (!gcOutputFile) { WerrorS("Error opening file for writing in writeConeToFile\n"); } else { gcOutputFile << "UCN" << endl; gcOutputFile << this->UCN << endl; gcOutputFile << "RING" << endl; gcOutputFile << ringString << endl; gcOutputFile << "GCBASISLENGTH" << endl; gcOutputFile << IDELEMS(gc.gcBasis) << endl; //Write this->gcBasis into file gcOutputFile << "GCBASIS" << endl; for (int ii=0;iim[ii],gc.baseRing) << endl; } gcOutputFile << "FACETS" << endl; while(fAct!=NULL) { const int64vec *iv=fAct->getRef2FacetNormal(); // iv=fAct->getRef2FacetNormal();//->getFacetNormal(); f2Act=fAct->codim2Ptr; for (int ii=0;iilength();ii++) { // if (iilength()-1) // gcOutputFile << (*iv)[ii] << ","; // else // gcOutputFile << (*iv)[ii] << " "; gcOutputFile << (*iv)[ii]; (iilength()-1) ? gcOutputFile << "," : gcOutputFile << " "; } //delete iv; while(f2Act!=NULL) { const int64vec *iv2; iv2=f2Act->getRef2FacetNormal(); for(int jj=0;jjlength();jj++) { // if (jjlength()-1) // gcOutputFile << (*iv2)[jj] << ","; // else // gcOutputFile << (*iv2)[jj] << " "; gcOutputFile << (*iv2)[jj]; (jjlength()-1) ? gcOutputFile << "," : gcOutputFile << " "; } f2Act = f2Act->next; } gcOutputFile << endl; fAct=fAct->next; } gcOutputFile.close(); } delete [] ringString; }//writeConeToFile(gcone const &gc) /** \brief Reads a cone from a file identified by its number * ||depending on whether flip or flip2 is used, switch the flag flipFlag * ||defaults to 0 => flip * ||1 => flip2 */ void gcone::readConeFromFile(int UCN, gcone *gc) { //int UCN=gc.UCN; stringstream ss; ss << UCN; string UCNstr = ss.str(); int gcBasisLength=0; size_t found; //used for find_first_(not)_of string prefix="/tmp/Singular/cone"; string suffix=".sg"; string filename; filename.append(prefix); filename.append(UCNstr); filename.append(suffix); ifstream gcInputFile(filename.c_str(), ifstream::in); ring saveRing=currRing; //Comment the following if you uncomment the if(line=="RING") part below // rChangeCurrRing(gc->baseRing); while( !gcInputFile.eof() ) { string line; getline(gcInputFile,line); if(line=="RING") { getline(gcInputFile,line); found = line.find("a("); line.erase(0,found+2); string strweight; strweight=line.substr(0,line.find_first_of(")")); int64vec *iv=new int64vec(this->numVars);// for(int ii=0;iinumVars;ii++) { string weight; weight=line.substr(0,line.find_first_of(",)")); char *w=new char[weight.size()+1]; strcpy(w,weight.c_str()); (*iv)[ii]=atol(w/*weight.c_str()*/);//Better to long. Weight bound in Singular:2147483647 delete[] w; line.erase(0,line.find_first_of(",)")+1); } found = line.find("a("); ring newRing; if(currRing->order[0]!=ringorder_a/*64*/) { newRing=rCopyAndAddWeight(currRing,iv); } else { newRing=rCopy0(currRing); int length=this->numVars; int *A=(int *)omAlloc0(length*sizeof(int)); for(int jj=0;jjwvhdl[0]); newRing->wvhdl[0]=(int*)A; newRing->block1[0]=length; } delete iv; rComplete(newRing); gc->baseRing=rCopy(newRing); rDelete(newRing); rComplete(gc->baseRing); if(currRing!=gc->baseRing) rChangeCurrRing(gc->baseRing); } if(line=="GCBASISLENGTH") { string strGcBasisLength; getline(gcInputFile, line); strGcBasisLength = line; char *s=new char[strGcBasisLength.size()+1]; strcpy(s,strGcBasisLength.c_str()); int size=atoi(s/*strGcBasisLength.c_str()*/); delete[] s; gcBasisLength=size; gc->gcBasis=idInit(size,1); } if(line=="GCBASIS") { for(int jj=0;jjgcBasis->m[jj]=pCopy(resPoly); pDelete(&resPoly); //reset } // break; }//if(line=="GCBASIS") if(line=="FACETS") { facet *fAct=gc->facetPtr; while(fAct!=NULL) { getline(gcInputFile,line); found = line.find("\t"); string normalString=line.substr(0,found); int64vec *fN = new int64vec(this->numVars); for(int ii=0;iinumVars;ii++) { string component; found = normalString.find(","); component=normalString.substr(0,found); char *sComp = new char[component.size()+1]; strcpy(sComp,component.c_str()); (*fN)[ii]=atol(sComp/*component.c_str()*/); delete[] sComp; normalString.erase(0,found+1); } /*Only the following line needs to be commented out if you decide not to delete fNormals*/ // fAct->setFacetNormal(fN); delete(fN); fAct = fAct->next; //Booh, this is ugly } break; //NOTE Must always be in the last if-block! } }//while(!gcInputFile.eof()) gcInputFile.close(); rChangeCurrRing(saveRing); } /** \brief Sort the rays of a facet lexicographically */ // void gcone::sortRays(gcone *gc) // { // facet *fAct; // fAct = this->facetPtr->codim2Ptr; // while(fAct->next!=NULL) // { // if(fAct->fNormal->compare(fAct->fNormal->next)==-1 // } // } /** \brief Gather the output * List of lists * If heuristic==1 readConeFromFile() is called once more on every cone. This may slow down the computation but it also * allows us to rDelete(gcDel->baseRing) and the such in gcone::noRevS. *\param *gc Pointer to gcone, preferably gcRoot ;-) *\param n the number of cones as determined by gcRoot->getCounter() * */ lists lprepareResult(gcone *gc, const int n) { gcone *gcAct; gcAct = gc; facet *fAct; fAct = gc->facetPtr; lists res=(lists)omAllocBin(slists_bin); res->Init(n); //initialize to store n cones for(int ii=0;iigetUCN()>1) { gcAct->readConeFromFile(gcAct->getUCN(),gcAct); // rChangeCurrRing(gcAct->getBaseRing());//NOTE memleak? } rChangeCurrRing(gcAct->getRef2BaseRing()); res->m[ii].rtyp=LIST_CMD; lists l=(lists)omAllocBin(slists_bin); l->Init(6); l->m[0].rtyp=INT_CMD; l->m[0].data=(void*)gcAct->getUCN(); l->m[1].rtyp=IDEAL_CMD; /*The following is necessary for leaves in the tree of cones * Since we don't use them in the computation and gcBasis is * set to (poly)NULL in noRevS we need to get this back here. */ // if(gcAct->gcBasis->m[0]==(poly)NULL) // if(gfanHeuristic==1 && gcAct->getUCN()>1) // gcAct->readConeFromFile(gcAct->getUCN(),gcAct); // ring saveRing=currRing; // ring tmpRing=gcAct->getBaseRing; // rChangeCurrRing(tmpRing); // l->m[1].data=(void*)idrCopyR_NoSort(gcAct->gcBasis,gcAct->getBaseRing()); // l->m[1].data=(void*)idrCopyR(gcAct->gcBasis,gcAct->getBaseRing());//NOTE memleak? l->m[1].data=(void*)idrCopyR(gcAct->gcBasis,gcAct->getRef2BaseRing()); // rChangeCurrRing(saveRing); l->m[2].rtyp=INTVEC_CMD; int64vec iv=(gcAct->f2M(gcAct,gcAct->facetPtr));//NOTE memleak? l->m[2].data=(void*)iv64Copy(&iv); l->m[3].rtyp=LIST_CMD; lists lCodim2List = (lists)omAllocBin(slists_bin); lCodim2List->Init(gcAct->numFacets); fAct = gcAct->facetPtr;//fAct->codim2Ptr; int jj=0; while(fAct!=NULL && jjnumFacets) { lCodim2List->m[jj].rtyp=INTVEC_CMD; int64vec ivC2=(gcAct->f2M(gcAct,fAct,2)); lCodim2List->m[jj].data=(void*)iv64Copy(&ivC2); jj++; fAct = fAct->next; } l->m[3].data=(void*)lCodim2List; l->m[4].rtyp=INTVEC_CMD/*RING_CMD*/; l->m[4].data=(void*)(gcAct->getIntPoint/*BaseRing*/()); l->m[5].rtyp=INT_CMD; l->m[5].data=(void*)gcAct->getPredUCN(); res->m[ii].data=(void*)l; gcAct = gcAct->next; } return res; } /** Convert gc->gcRays into an intvec in order to be used with bbcone stuff*/ intvec *gcRays2Intmat(gcone *gc) { int r = gc->numRays; int c = gc->numVars; //Spalten intvec *res = new intvec(r,c,(int)0); int offset=0; for(int ii=0;iinumRays;ii++) { int64vec *ivTmp=iv64Copy(gc->gcRays[ii]); for(int jj=0;jjnumVars; gcone *gcAct; gcAct = gc; //Iterate over all cones and adjoin to PolyhedralFan while(gcAct!=NULL) { intvec *rays=gcRays2Intmat(gcAct); ZMatrix zm = intmat2ZMatrix(rays); delete rays; ZCone *zc = new ZCone(); *zc = ZCone::givenByRays(zm, gfan::ZMatrix(0, zm.getWidth())); // delete &zm; zc->canonicalize();//As per Anders' hint fan->insert(*zc); // delete zc; gcAct=gcAct->next; } } /** \brief Write facets of a cone into a matrix * Takes a pointer to a facet as 2nd arg * f should always point to gc->facetPtr * param n is used to determine whether it operates in codim 1 or 2 * We have to cast the int64vecs to int64vec due to issues with list structure */ inline int64vec gcone::f2M(gcone *gc, facet *f, int n) { facet *fAct; int64vec *res;//=new int64vec(this->numVars); // int codim=n; // int bound; // if(f==gc->facetPtr) if(n==1) { int64vec *m1Res=new int64vec(gc->numFacets,gc->numVars,0); res = iv64Copy(m1Res); fAct = gc->facetPtr; delete m1Res; // bound = gc->numFacets*(this->numVars); } else { fAct = f->codim2Ptr; int64vec *m2Res = new int64vec(f->numCodim2Facets,gc->numVars,0); res = iv64Copy(m2Res); delete m2Res; // bound = fAct->numCodim2Facets*(this->numVars); } int ii=0; while(fAct!=NULL )//&& ii < bound ) { const int64vec *fNormal; fNormal = fAct->getRef2FacetNormal();//->getFacetNormal(); for(int jj=0;jjnumVars;jj++) { (*res)[ii]=(int)(*fNormal)[jj];//This is ugly and prone to overflow ii++; } fAct = fAct->next; } return *res; } int gcone::counter=0; int gfanHeuristic; int gcone::lengthOfSearchList; int gcone::maxSize; dd_MatrixPtr gcone::dd_LinealitySpace; int64vec *gcone::hilbertFunction; #ifdef gfanp // int gcone::lengthOfSearchList=0; float gcone::time_getConeNormals; float gcone::time_getCodim2Normals; float gcone::t_getExtremalRays; float gcone::t_ddPolyh; float gcone::time_flip; float gcone::time_flip2; float gcone::t_areEqual; float gcone::t_markings; float gcone::t_dd; float gcone::t_kStd=0; float gcone::time_enqueue; float gcone::time_computeInv; float gcone::t_ddMC; float gcone::t_mI; float gcone::t_iP; float gcone::t_isParallel; unsigned gcone::parallelButNotEqual=0; unsigned gcone::numberOfFacetChecks=0; #endif int gcone::numVars; bool gcone::hasHomInput=FALSE; int64vec *gcone::ivZeroVector; // ideal gfan(ideal inputIdeal, int h) /** Main routine * The first and second parameter are mandatory. The third (and maybe fourth) parameter is for Janko :) */ #ifndef USE_ZFAN lists grfan(ideal inputIdeal, int h, bool singleCone=FALSE) #else gfan::ZFan* grfan(ideal inputIdeal, int h, bool singleCone=FALSE) #endif { lists lResList; //this is the object we return gfan::ZFan *zResFan = new gfan::ZFan(pVariables); if(rHasGlobalOrdering(currRing)) { // int numvar = pVariables; gfanHeuristic = h; enum searchMethod { reverseSearch, noRevS }; searchMethod method; method = noRevS; ring inputRing=currRing; // The ring the user entered // ring rootRing; // The ring associated to the target ordering dd_set_global_constants(); if(method==noRevS) { gcone *gcRoot = new gcone(currRing,inputIdeal); gcone *gcAct; gcAct = gcRoot; gcone::numVars=pVariables; //gcAct->numVars=pVariables;//NOTE is now static gcAct->getGB(inputIdeal); /*Check whether input is homogeneous if TRUE each facet intersects the positive orthant, so we don't need the flippability test in getConeNormals & getExtremalRays */ if(idHomIdeal(gcAct->gcBasis,NULL))//disabled for tests { gcone::hasHomInput=TRUE; // gcone::hilbertFunction=hHstdSeries(inputIdeal,NULL,NULL,NULL,currRing); } else { gcone::ivZeroVector = new int64vec(pVariables); for(int ii=0;iigcBasis)) {//FIXME WerrorS("Monomial input - terminating"); dd_free_global_constants(); //This is filthy goto pointOfNoReturn; } gcAct->getConeNormals(gcAct->gcBasis); gcone::dd_LinealitySpace = gcAct->computeLinealitySpace(); gcAct->getExtremalRays(*gcAct); if(singleCone==FALSE)//Is Janko here? {//Compute the whole fan gcAct->noRevS(*gcAct); //Here we go! } //Switch back to the ring the computation was started in rChangeCurrRing(inputRing); //res=gcAct->gcBasis; //Below is a workaround, since gcAct->gcBasis gets deleted in noRevS #ifndef USE_ZFAN lResList=lprepareResult(gcRoot,gcRoot->getCounter()); #else prepareGfanLib(gcRoot,zResFan); #endif /*Cleanup*/ gcone *gcDel; gcDel = gcRoot; gcAct = gcRoot; while(gcAct!=NULL) { gcDel = gcAct; gcAct = gcAct->next; // delete gcDel; } }//method==noRevS dd_FreeMatrix(gcone::dd_LinealitySpace); dd_free_global_constants(); }//rHasGlobalOrdering else { //Simply return an empty list WerrorS("Ring has non-global ordering.\nThis function requires your current ring to be endowed with a global ordering.\n Now terminating!"); // gcone *gcRoot=new gcone(); // gcone *gcPtr = gcRoot; // for(int ii=0;ii<10000;ii++) // { // gcPtr->setBaseRing(currRing); // facet *fPtr=gcPtr->facetPtr=new facet(); // for(int jj=0;jj<5;jj++) // { // int64vec *iv=new int64vec(pVariables); // fPtr->setFacetNormal(iv); // delete(iv); // fPtr->next=new facet(); // fPtr=fPtr->next; // } // gcPtr->next=new gcone(); // gcPtr->next->prev=gcPtr; // gcPtr=gcPtr->next; // } // gcPtr=gcRoot; // while(gcPtr!=NULL) // { // gcPtr=gcPtr->next; // // delete(gcPtr->prev); // } goto pointOfNoReturn; } /*Return result*/ #ifdef gfanp cout << endl << "t_getConeNormals:" << gcone::time_getConeNormals << endl; /*cout << "t_getCodim2Normals:" << gcone::time_getCodim2Normals << endl; cout << " t_ddMC:" << gcone::t_ddMC << endl; cout << " t_mI:" << gcone::t_mI << endl; cout << " t_iP:" << gcone::t_iP << endl;*/ cout << "t_getExtremalRays:" << gcone::t_getExtremalRays << endl; cout << " t_ddPolyh:" << gcone::t_ddPolyh << endl; cout << "t_Flip:" << gcone::time_flip << endl; cout << " t_markings:" << gcone::t_markings << endl; cout << " t_dd:" << gcone::t_dd << endl; cout << " t_kStd:" << gcone::t_kStd << endl; cout << "t_Flip2:" << gcone::time_flip2 << endl; cout << " t_dd:" << gcone::t_dd << endl; cout << " t_kStd:" << gcone::t_kStd << endl; cout << "t_computeInv:" << gcone::time_computeInv << endl; cout << "t_enqueue:" << gcone::time_enqueue << endl; cout << " t_areEqual:" <order[0] == ringorder_wp) // { // lists lResList; // lResList=grfan(inputIdeal, 0, TRUE); // } // else // WerrorS("Need wp ordering"); // } #endif