1 | /* |
---|
2 | Compute the Groebner fan of an ideal |
---|
3 | $Author: monerjan $ |
---|
4 | $Date: 2009-04-06 14:57:18 $ |
---|
5 | $Header: /exports/cvsroot-2/cvsroot/kernel/gfan.cc,v 1.29 2009-04-06 14:57:18 monerjan Exp $ |
---|
6 | $Id: gfan.cc,v 1.29 2009-04-06 14:57:18 monerjan Exp $ |
---|
7 | */ |
---|
8 | |
---|
9 | #include "mod2.h" |
---|
10 | |
---|
11 | #ifdef HAVE_GFAN |
---|
12 | |
---|
13 | #include "kstd1.h" |
---|
14 | #include "intvec.h" |
---|
15 | #include "polys.h" |
---|
16 | #include "ideals.h" |
---|
17 | #include "kmatrix.h" |
---|
18 | #include "fast_maps.h" //Mapping of ideals |
---|
19 | #include "maps.h" |
---|
20 | #include "iostream.h" //deprecated |
---|
21 | |
---|
22 | //Hacks for different working places |
---|
23 | #define ITWM |
---|
24 | |
---|
25 | #ifdef UNI |
---|
26 | #include "/users/urmel/alggeom/monerjan/cddlib/include/setoper.h" //Support for cddlib. Dirty hack |
---|
27 | #include "/users/urmel/alggeom/monerjan/cddlib/include/cdd.h" |
---|
28 | #endif |
---|
29 | |
---|
30 | #ifdef HOME |
---|
31 | #include "/home/momo/studium/diplomarbeit/cddlib/include/setoper.h" |
---|
32 | #include "/home/momo/studium/diplomarbeit/cddlib/include/cdd.h" |
---|
33 | #endif |
---|
34 | |
---|
35 | #ifdef ITWM |
---|
36 | #include "/u/slg/monerjan/cddlib/include/setoper.h" |
---|
37 | #include "/u/slg/monerjan/cddlib/include/cdd.h" |
---|
38 | #endif |
---|
39 | |
---|
40 | #ifndef gfan_DEBUG |
---|
41 | #define gfan_DEBUG |
---|
42 | #endif |
---|
43 | |
---|
44 | //#include gcone.h |
---|
45 | |
---|
46 | /** |
---|
47 | *\brief Class facet |
---|
48 | * Implements the facet structure as a linked list |
---|
49 | * |
---|
50 | */ |
---|
51 | class facet |
---|
52 | { |
---|
53 | private: |
---|
54 | /** \brief Inner normal of the facet, describing it uniquely up to isomorphism */ |
---|
55 | intvec *fNormal; |
---|
56 | |
---|
57 | /** \brief The Groebner basis on the other side of a shared facet |
---|
58 | * |
---|
59 | * In order not to have to compute the flipped GB twice we store the basis we already get |
---|
60 | * when identifying search facets. Thus in the next step of the reverse search we can |
---|
61 | * just copy the old cone and update the facet and the gcBasis. |
---|
62 | * facet::flibGB is set via facet::setFlipGB() and printed via facet::printFlipGB |
---|
63 | */ |
---|
64 | ideal flipGB; //The Groebner Basis on the other side, computed via gcone::flip |
---|
65 | |
---|
66 | |
---|
67 | public: |
---|
68 | /** The default constructor. Do I need a constructor of type facet(intvec)? */ |
---|
69 | facet() |
---|
70 | { |
---|
71 | // Pointer to next facet. */ |
---|
72 | /* Defaults to NULL. This way there is no need to check explicitly */ |
---|
73 | this->next=NULL; |
---|
74 | } |
---|
75 | |
---|
76 | /** The default destructor */ |
---|
77 | ~facet(){;} |
---|
78 | |
---|
79 | /** Stores the facet normal \param intvec*/ |
---|
80 | void setFacetNormal(intvec *iv){ |
---|
81 | this->fNormal = ivCopy(iv); |
---|
82 | //return; |
---|
83 | } |
---|
84 | |
---|
85 | /** Hopefully returns the facet normal */ |
---|
86 | intvec *getFacetNormal() |
---|
87 | { |
---|
88 | //this->fNormal->show(); cout << endl; |
---|
89 | return this->fNormal; |
---|
90 | } |
---|
91 | |
---|
92 | /** Method to print the facet normal*/ |
---|
93 | void printNormal() |
---|
94 | { |
---|
95 | fNormal->show(); |
---|
96 | } |
---|
97 | |
---|
98 | /** Store the flipped GB*/ |
---|
99 | void setFlipGB(ideal I) |
---|
100 | { |
---|
101 | this->flipGB=I; |
---|
102 | } |
---|
103 | |
---|
104 | /** Print the flipped GB*/ |
---|
105 | void printFlipGB() |
---|
106 | { |
---|
107 | idShow(this->flipGB); |
---|
108 | } |
---|
109 | |
---|
110 | bool isFlippable; //flippable facet? Want to have cone->isflippable.facet[i] |
---|
111 | bool isIncoming; //Is the facet incoming or outgoing? |
---|
112 | facet *next; //Pointer to next facet |
---|
113 | }; |
---|
114 | |
---|
115 | /** |
---|
116 | *\brief Implements the cone structure |
---|
117 | * |
---|
118 | * A cone is represented by a linked list of facet normals |
---|
119 | * @see facet |
---|
120 | */ |
---|
121 | /*class gcone |
---|
122 | finally this should become s.th. like gconelib.{h,cc} to provide an API |
---|
123 | */ |
---|
124 | class gcone |
---|
125 | { |
---|
126 | private: |
---|
127 | int numFacets; //#of facets of the cone |
---|
128 | |
---|
129 | public: |
---|
130 | /** \brief Default constructor. |
---|
131 | * |
---|
132 | * Initialises this->next=NULL and this->facetPtr=NULL |
---|
133 | */ |
---|
134 | gcone() |
---|
135 | { |
---|
136 | this->next=NULL; |
---|
137 | this->facetPtr=NULL; |
---|
138 | } |
---|
139 | ~gcone(); //destructor |
---|
140 | |
---|
141 | /** Pointer to the first facet */ |
---|
142 | facet *facetPtr; //Will hold the adress of the first facet; set by gcone::getConeNormals |
---|
143 | poly gcMarkedTerm; //marked terms of the cone's Groebner basis |
---|
144 | int numVars; //#of variables in the ring |
---|
145 | |
---|
146 | /** Contains the Groebner basis of the cone. Is set by gcone::getGB(ideal I)*/ |
---|
147 | ideal gcBasis; //GB of the cone, set by gcone::getGB(); |
---|
148 | gcone *next; //Pointer to *previous* cone in search tree |
---|
149 | |
---|
150 | /** \brief Compute the normals of the cone |
---|
151 | * |
---|
152 | * This method computes a representation of the cone in terms of facet normals. It takes an ideal |
---|
153 | * as its input. Redundancies are automatically removed using cddlib's dd_MatrixCanonicalize. |
---|
154 | * Other methods for redundancy checkings might be implemented later. See Anders' diss p.44. |
---|
155 | * Note that in order to use cddlib a 0-th column has to be added to the matrix since cddlib expects |
---|
156 | * each row to represent an inequality of type const+x1+...+xn <= 0. While computing the normals we come across |
---|
157 | * the set \f$ \partial\mathcal{G} \f$ which we might store for later use. C.f p71 of journal |
---|
158 | * As a result of this procedure the pointer facetPtr points to the first facet of the cone. |
---|
159 | */ |
---|
160 | void getConeNormals(const ideal &I) |
---|
161 | { |
---|
162 | #ifdef gfan_DEBUG |
---|
163 | cout << "*** Computing Inequalities... ***" << endl; |
---|
164 | #endif |
---|
165 | //All variables go here - except ineq matrix and *v, see below |
---|
166 | int lengthGB=IDELEMS(I); // # of polys in the groebner basis |
---|
167 | int pCompCount; // # of terms in a poly |
---|
168 | poly aktpoly; |
---|
169 | int numvar = pVariables; // # of variables in a polynomial (or ring?) |
---|
170 | int leadexp[numvar]; // dirty hack of exp.vects |
---|
171 | int aktexp[numvar]; |
---|
172 | int cols,rows; // will contain the dimensions of the ineq matrix - deprecated by |
---|
173 | dd_rowrange ddrows; |
---|
174 | dd_colrange ddcols; |
---|
175 | dd_rowset ddredrows; // # of redundant rows in ddineq |
---|
176 | dd_rowset ddlinset; // the opposite |
---|
177 | dd_rowindex ddnewpos; // all to make dd_Canonicalize happy |
---|
178 | dd_NumberType ddnumb=dd_Real; //Number type |
---|
179 | dd_ErrorType dderr=dd_NoError; // |
---|
180 | // End of var declaration |
---|
181 | #ifdef gfan_DEBUG |
---|
182 | cout << "The Groebner basis has " << lengthGB << " elements" << endl; |
---|
183 | cout << "The current ring has " << numvar << " variables" << endl; |
---|
184 | #endif |
---|
185 | cols = numvar; |
---|
186 | |
---|
187 | //Compute the # inequalities i.e. rows of the matrix |
---|
188 | rows=0; //Initialization |
---|
189 | for (int ii=0;ii<IDELEMS(I);ii++) |
---|
190 | { |
---|
191 | aktpoly=(poly)I->m[ii]; |
---|
192 | rows=rows+pLength(aktpoly)-1; |
---|
193 | } |
---|
194 | #ifdef gfan_DEBUG |
---|
195 | cout << "rows=" << rows << endl; |
---|
196 | cout << "Will create a " << rows << " x " << cols << " matrix to store inequalities" << endl; |
---|
197 | #endif |
---|
198 | dd_rowrange aktmatrixrow=0; // needed to store the diffs of the expvects in the rows of ddineq |
---|
199 | dd_set_global_constants(); |
---|
200 | ddrows=rows; |
---|
201 | ddcols=cols; |
---|
202 | dd_MatrixPtr ddineq; //Matrix to store the inequalities |
---|
203 | ddineq=dd_CreateMatrix(ddrows,ddcols+1); //The first col has to be 0 since cddlib checks for additive consts there |
---|
204 | |
---|
205 | // We loop through each g\in GB and compute the resulting inequalities |
---|
206 | for (int i=0; i<IDELEMS(I); i++) |
---|
207 | { |
---|
208 | aktpoly=(poly)I->m[i]; //get aktpoly as i-th component of I |
---|
209 | pCompCount=pLength(aktpoly); //How many terms does aktpoly consist of? |
---|
210 | cout << "Poly No. " << i << " has " << pCompCount << " components" << endl; |
---|
211 | |
---|
212 | int *v=(int *)omAlloc((numvar+1)*sizeof(int)); |
---|
213 | pGetExpV(aktpoly,v); //find the exp.vect in v[1],...,v[n], use pNext(p) |
---|
214 | |
---|
215 | //Store leadexp for aktpoly |
---|
216 | for (int kk=0;kk<numvar;kk++) |
---|
217 | { |
---|
218 | leadexp[kk]=v[kk+1]; |
---|
219 | //Since we need to know the difference of leadexp with the other expvects we do nothing here |
---|
220 | //but compute the diff below |
---|
221 | } |
---|
222 | |
---|
223 | |
---|
224 | while (pNext(aktpoly)!=NULL) //move to next term until NULL |
---|
225 | { |
---|
226 | aktpoly=pNext(aktpoly); |
---|
227 | pSetm(aktpoly); //doesn't seem to help anything |
---|
228 | pGetExpV(aktpoly,v); |
---|
229 | for (int kk=0;kk<numvar;kk++) |
---|
230 | { |
---|
231 | aktexp[kk]=v[kk+1]; |
---|
232 | //ineq[aktmatrixrow][kk]=leadexp[kk]-aktexp[kk]; //dito |
---|
233 | dd_set_si(ddineq->matrix[(dd_rowrange)aktmatrixrow][kk+1],leadexp[kk]-aktexp[kk]); //because of the 1st col being const 0 |
---|
234 | } |
---|
235 | aktmatrixrow=aktmatrixrow+1; |
---|
236 | }//while |
---|
237 | |
---|
238 | } //for |
---|
239 | |
---|
240 | //Maybe add another row to contain the constraints of the standard simplex? |
---|
241 | |
---|
242 | #ifdef gfan_DEBUG |
---|
243 | cout << "The inequality matrix is" << endl; |
---|
244 | dd_WriteMatrix(stdout, ddineq); |
---|
245 | #endif |
---|
246 | |
---|
247 | // The inequalities are now stored in ddineq |
---|
248 | // Next we check for superflous rows |
---|
249 | ddredrows = dd_RedundantRows(ddineq, &dderr); |
---|
250 | if (dderr!=dd_NoError) // did an error occur? |
---|
251 | { |
---|
252 | dd_WriteErrorMessages(stderr,dderr); //if so tell us |
---|
253 | } else |
---|
254 | { |
---|
255 | cout << "Redundant rows: "; |
---|
256 | set_fwrite(stdout, ddredrows); //otherwise print the redundant rows |
---|
257 | }//if dd_Error |
---|
258 | |
---|
259 | //Remove reduntant rows here! |
---|
260 | dd_MatrixCanonicalize(&ddineq, &ddlinset, &ddredrows, &ddnewpos, &dderr); |
---|
261 | ddrows = ddineq->rowsize; //Size of the matrix with redundancies removed |
---|
262 | ddcols = ddineq->colsize; |
---|
263 | #ifdef gfan_DEBUG |
---|
264 | cout << "Having removed redundancies, the normals now read:" << endl; |
---|
265 | dd_WriteMatrix(stdout,ddineq); |
---|
266 | cout << "Rows = " << ddrows << endl; |
---|
267 | cout << "Cols = " << ddcols << endl; |
---|
268 | #endif |
---|
269 | /*Write the normals into class facet*/ |
---|
270 | #ifdef gfan_DEBUG |
---|
271 | cout << "Creating list of normals" << endl; |
---|
272 | #endif |
---|
273 | /*The pointer *fRoot should be the return value of this function*/ |
---|
274 | facet *fRoot = new facet(); //instantiate new facet |
---|
275 | this->facetPtr = fRoot; //set variable facetPtr of class gcone to first facet |
---|
276 | facet *fAct; //instantiate pointer to active facet |
---|
277 | fAct = fRoot; //This does not seem to do the trick. fRoot and fAct have to point to the same adress! |
---|
278 | std::cout << "fRoot = " << fRoot << ", fAct = " << fAct << endl; |
---|
279 | for (int kk = 0; kk<ddrows; kk++) |
---|
280 | { |
---|
281 | intvec *load = new intvec(numvar); //intvec to store a single facet normal that will then be stored via setFacetNormal |
---|
282 | for (int jj = 1; jj <ddcols; jj++) |
---|
283 | { |
---|
284 | double *foo; |
---|
285 | foo = (double*)ddineq->matrix[kk][jj]; //get entry from actual position |
---|
286 | #ifdef gfan_DEBUG |
---|
287 | std::cout << "fAct is " << *foo << " at " << fAct << std::endl; |
---|
288 | #endif |
---|
289 | (*load)[jj-1] = (int)*foo; //store typecasted entry at pos jj-1 of load |
---|
290 | //check for flipability here |
---|
291 | if (jj<ddcols) //Is this facet NOT the last facet? Writing while instead of if is a really bad idea :) |
---|
292 | { |
---|
293 | fAct->next = new facet(); //If so: instantiate new facet. Otherwise this->next=NULL due to the constructor |
---|
294 | } |
---|
295 | }//for jj<ddcols |
---|
296 | /*Now load should be full and we can call setFacetNormal*/ |
---|
297 | fAct->setFacetNormal(load); |
---|
298 | //fAct->printNormal(); |
---|
299 | fAct=fAct->next; //this should definitely not be called in the above while-loop :D |
---|
300 | delete load; |
---|
301 | } |
---|
302 | /* |
---|
303 | Now we should have a linked list containing the facet normals of those facets that are |
---|
304 | -irredundant |
---|
305 | -flipable |
---|
306 | Adressing is done via *facetPtr |
---|
307 | */ |
---|
308 | |
---|
309 | //Clean up but don't delete the return value! (Whatever it will turn out to be) |
---|
310 | dd_FreeMatrix(ddineq); |
---|
311 | set_free(ddredrows); |
---|
312 | free(ddnewpos); |
---|
313 | set_free(ddlinset); |
---|
314 | dd_free_global_constants(); |
---|
315 | |
---|
316 | }//method getConeNormals(ideal I) |
---|
317 | |
---|
318 | /*bool isParallel(int v[], intvec iv) |
---|
319 | { |
---|
320 | }*/ |
---|
321 | |
---|
322 | /** \brief Compute the Groebner Basis on the other side of a shared facet |
---|
323 | * |
---|
324 | * Implements algorithm 4.3.2 from Anders' thesis. |
---|
325 | * As shown there it is not necessary to compute an interior point. The knowledge of the facet normal |
---|
326 | * suffices. A term \f$ x^\gamma \f$ of \f$ g \f$ is in \f$ in_\omega(g) \f$ iff \f$ \gamma - leadexp(g)\f$ |
---|
327 | * is parallel to \f$ leadexp(g) \f$ |
---|
328 | * Parallelity is checked using basic linear algebra. See gcone::isParallel. |
---|
329 | * Other possibilities includes computing the rank of the matrix consisting of the vectors in question and |
---|
330 | * computing an interior point of the facet and taking all terms having the same weight with respect |
---|
331 | * to this interior point. |
---|
332 | *\param ideal, facet |
---|
333 | * Input: a marked,reduced Groebner basis and a facet |
---|
334 | */ |
---|
335 | void flip(ideal gb, facet *f) //Compute "the other side" |
---|
336 | { |
---|
337 | |
---|
338 | intvec *fNormal = new intvec(this->numVars); //facet normal, check for parallelity |
---|
339 | fNormal = f->getFacetNormal(); //read this->fNormal; |
---|
340 | #ifdef gfan_DEBUG |
---|
341 | cout << "fNormal="; |
---|
342 | fNormal->show(); |
---|
343 | cout << endl; |
---|
344 | #endif |
---|
345 | /*1st step: Compute the initial ideal*/ |
---|
346 | poly initialFormElement[IDELEMS(gb)]; //array of #polys in GB to store initial form |
---|
347 | ideal initialForm=idInit(IDELEMS(gb),this->gcBasis->rank); |
---|
348 | poly aktpoly; |
---|
349 | intvec *check = new intvec(this->numVars); //array to store the difference of LE and v |
---|
350 | |
---|
351 | for (int ii=0;ii<IDELEMS(gb);ii++) |
---|
352 | { |
---|
353 | aktpoly = (poly)gb->m[ii]; |
---|
354 | int *v=(int *)omAlloc((this->numVars+1)*sizeof(int)); |
---|
355 | int *leadExpV=(int *)omAlloc((this->numVars+1)*sizeof(int)); |
---|
356 | pGetExpV(aktpoly,leadExpV); //find the leading exponent in leadExpV[1],...,leadExpV[n], use pNext(p) |
---|
357 | initialFormElement[ii]=pHead(aktpoly); |
---|
358 | |
---|
359 | while(pNext(aktpoly)!=NULL) /*loop trough terms and check for parallelity*/ |
---|
360 | { |
---|
361 | aktpoly=pNext(aktpoly); //next term |
---|
362 | pSetm(aktpoly); |
---|
363 | pGetExpV(aktpoly,v); |
---|
364 | /* Convert (int)v into (intvec)check */ |
---|
365 | for (int jj=0;jj<this->numVars;jj++) |
---|
366 | { |
---|
367 | //cout << "v["<<jj+1<<"]="<<v[jj+1]<<endl; |
---|
368 | //cout << "leadExpV["<<jj+1<<"]="<<leadExpV[jj+1]<<endl; |
---|
369 | (*check)[jj]=v[jj+1]-leadExpV[jj+1]; |
---|
370 | } |
---|
371 | #ifdef gfan_DEBUG |
---|
372 | cout << "check="; |
---|
373 | check->show(); |
---|
374 | cout << endl; |
---|
375 | #endif |
---|
376 | if (isParallel(check,fNormal)) //pass *check when |
---|
377 | { |
---|
378 | cout << "Parallel vector found, adding to initialFormElement" << endl; |
---|
379 | initialFormElement[ii] = pAdd(initialFormElement[ii],(poly)pHead(aktpoly)); |
---|
380 | } |
---|
381 | }//while |
---|
382 | cout << "Initial Form="; |
---|
383 | pWrite(initialFormElement[ii]); |
---|
384 | cout << "---" << endl; |
---|
385 | /*Now initialFormElement must be added to (ideal)initialForm */ |
---|
386 | //f->flibGB->m[ii]=(poly)initialFormElement[ii]; |
---|
387 | //(poly)initialForm->m[ii]=pAdd(initialForm[ii],initialFormElement[ii]); |
---|
388 | initialForm->m[ii]=initialFormElement[ii]; |
---|
389 | }//for |
---|
390 | f->setFlipGB(initialForm); |
---|
391 | #ifdef gfan_DEBUG |
---|
392 | cout << "Initial ideal is: " << endl; |
---|
393 | //idShow(initialForm); |
---|
394 | f->printFlipGB(); |
---|
395 | cout << "===" << endl; |
---|
396 | #endif |
---|
397 | delete check; |
---|
398 | |
---|
399 | /*2nd step: lift initial ideal to a GB of the neighbouring cone*/ |
---|
400 | ring tmpring=rCopy0(currRing); |
---|
401 | tmpring->order[0]=ringorder_a; |
---|
402 | tmpring->order[1]=ringorder_dp; |
---|
403 | tmpring->order[2]=ringorder_C; |
---|
404 | //rWrite(tmpring); |
---|
405 | tmpring->wvhdl[0] =( int *)omAlloc((fNormal->length())*sizeof(int)); //found in Singular/ipshell.cc |
---|
406 | |
---|
407 | for (int ii=0;ii<this->numVars;ii++) |
---|
408 | { |
---|
409 | cout << "ping" << endl; |
---|
410 | tmpring->wvhdl[0][ii]=(*fNormal)[ii]; //What exactly am I doing here? |
---|
411 | cout << "pong" << endl; |
---|
412 | cout << *tmpring->wvhdl[ii] << endl; |
---|
413 | } |
---|
414 | //tmpring->wvhdl=(int**)(fNormal); |
---|
415 | rComplete(tmpring); |
---|
416 | rWrite(tmpring); |
---|
417 | /*setring(tmpring); |
---|
418 | ideal ina=initialForm; |
---|
419 | ideal H; |
---|
420 | H=kstd(ina,NULL,testHomog,NULL); |
---|
421 | idShow(H);*/ |
---|
422 | |
---|
423 | }//void flip(ideal gb, facet *f) |
---|
424 | |
---|
425 | /** \brief Compute a Groebner Basis |
---|
426 | * |
---|
427 | * Computes the Groebner basis and stores the result in gcone::gcBasis |
---|
428 | *\param ideal |
---|
429 | *\return void |
---|
430 | */ |
---|
431 | void getGB(const ideal &inputIdeal) |
---|
432 | { |
---|
433 | ideal gb; |
---|
434 | gb=kStd(inputIdeal,NULL,testHomog,NULL); |
---|
435 | idSkipZeroes(gb); |
---|
436 | this->gcBasis=gb; //write the GB into gcBasis |
---|
437 | } |
---|
438 | |
---|
439 | ideal GenGrbWlk(ideal, ideal); //Implementation of the Generic Groebner Walk. Needed for a) Computing the sink and b) finding search facets |
---|
440 | |
---|
441 | |
---|
442 | /** \brief Compute the dot product of two intvecs |
---|
443 | * |
---|
444 | * THIS IS WEIRD - BUT WORKS |
---|
445 | */ |
---|
446 | int dotProduct(intvec **a, intvec **b) |
---|
447 | { |
---|
448 | intvec iva=*a; |
---|
449 | intvec ivb=*b; |
---|
450 | int res=0; |
---|
451 | for (int i=0;i<this->numVars;i++) |
---|
452 | { |
---|
453 | res = res+(iva[i]*ivb[i]); |
---|
454 | } |
---|
455 | return res; |
---|
456 | } |
---|
457 | |
---|
458 | /** \brief Check whether two intvecs are parallel |
---|
459 | * |
---|
460 | * \f$ \alpha\parallel\beta\Leftrightarrow\langle\alpha,\beta\rangle^2=\langle\alpha,\alpha\rangle\langle\beta,\beta\rangle \f$ |
---|
461 | */ |
---|
462 | bool isParallel(intvec *a, intvec *b) |
---|
463 | { |
---|
464 | int lhs,rhs; |
---|
465 | lhs=dotProduct(&a,&b)*dotProduct(&a,&b); |
---|
466 | rhs=dotProduct(&a,&a)*dotProduct(&b,&b); |
---|
467 | cout << "LHS="<<lhs<<", RHS="<<rhs<<endl; |
---|
468 | if (lhs==rhs) |
---|
469 | { |
---|
470 | return TRUE; |
---|
471 | } |
---|
472 | else |
---|
473 | { |
---|
474 | return FALSE; |
---|
475 | } |
---|
476 | }//bool isParallel |
---|
477 | |
---|
478 | /** \brief Check two intvecs for equality --- PROBABLY NOT NEEDED |
---|
479 | * |
---|
480 | * \f$ \alpha=\beta\Leftrightarrow\langle\alpha-\beta,\alpha-\beta\rangle=0 \f$ |
---|
481 | */ |
---|
482 | bool isEqual(intvec a, intvec b) |
---|
483 | { |
---|
484 | intvec *ivdiff; |
---|
485 | int res; |
---|
486 | |
---|
487 | ivdiff=ivSub(&a,&b); |
---|
488 | cout << "ivdiff="; |
---|
489 | ivdiff->show(); |
---|
490 | cout << endl; |
---|
491 | //res=dotProduct(ivdiff,ivdiff); |
---|
492 | if (res==0) |
---|
493 | { |
---|
494 | return TRUE; |
---|
495 | } |
---|
496 | else |
---|
497 | { |
---|
498 | return FALSE; |
---|
499 | } |
---|
500 | }//bool isEqual |
---|
501 | };//class gcone |
---|
502 | |
---|
503 | ideal gfan(ideal inputIdeal) |
---|
504 | { |
---|
505 | int numvar = pVariables; |
---|
506 | |
---|
507 | #ifdef gfan_DEBUG |
---|
508 | cout << "Now in subroutine gfan" << endl; |
---|
509 | #endif |
---|
510 | ring inputRing=currRing; // The ring the user entered |
---|
511 | ring rootRing; // The ring associated to the target ordering |
---|
512 | ideal res; |
---|
513 | //matrix ineq; //Matrix containing the boundary inequalities |
---|
514 | facet *fRoot; |
---|
515 | |
---|
516 | /* |
---|
517 | 1. Select target order, say dp. |
---|
518 | 2. Compute GB of inputIdeal wrt target order -> newRing, setCurrRing etc... |
---|
519 | 3. getConeNormals |
---|
520 | */ |
---|
521 | |
---|
522 | /* Construct a new ring which will serve as our root |
---|
523 | Does not yet work as expected. Will work fine with order dp,Dp but otherwise hangs in getGB |
---|
524 | */ |
---|
525 | rootRing=rCopy0(currRing); |
---|
526 | rootRing->order[0]=ringorder_lp; |
---|
527 | rComplete(rootRing); |
---|
528 | rChangeCurrRing(rootRing); |
---|
529 | |
---|
530 | /* Fetch the inputIdeal into our rootRing */ |
---|
531 | map theMap=(map)idMaxIdeal(1); //evil hack! |
---|
532 | //idShow(idMaxIdeal(1)); |
---|
533 | /*for (int ii=0;ii<pVariables;ii++) |
---|
534 | { |
---|
535 | theMap->m[ii]=inputIdeal->m[ii]; |
---|
536 | }*/ |
---|
537 | theMap->preimage=NULL; |
---|
538 | ideal rootIdeal; |
---|
539 | rootIdeal=fast_map(inputIdeal,inputRing,(ideal)theMap, currRing); |
---|
540 | #ifdef gfan_DEBUG |
---|
541 | cout << "Root ideal is " << endl; |
---|
542 | idShow(rootIdeal); |
---|
543 | cout << "The root ring is " << endl; |
---|
544 | rWrite(rootRing); |
---|
545 | cout << endl; |
---|
546 | #endif |
---|
547 | |
---|
548 | gcone *gcRoot = new gcone(); //Instantiate the sink |
---|
549 | gcone *gcAct; |
---|
550 | gcAct = gcRoot; |
---|
551 | gcAct->numVars=pVariables; |
---|
552 | gcAct->getGB(rootIdeal); //sets gcone::gcBasis |
---|
553 | idShow(gcAct->gcBasis); |
---|
554 | gcAct->getConeNormals(gcAct->gcBasis); //hopefully compute the normals |
---|
555 | gcAct->flip(gcAct->gcBasis,gcAct->facetPtr); |
---|
556 | /*Now it is time to compute the search facets, respectively start the reverse search. |
---|
557 | But since we are in the root all facets should be search facets. IS THIS TRUE? |
---|
558 | MIND: AS OF NOW, THE LIST OF FACETS IS NOT PURGED OF NON-FLIPPAPLE FACETS |
---|
559 | */ |
---|
560 | |
---|
561 | /*As of now extra.cc expects gfan to return type ideal. Probably this will change in near future. |
---|
562 | The return type will then be of type LIST_CMD |
---|
563 | Assume gfan has finished, thus we have enumerated all the cones |
---|
564 | Create an array of size of #cones. Let each entry in the array contain a pointer to the respective |
---|
565 | Groebner Basis and merge this somehow with LIST_CMD |
---|
566 | => Count the cones! |
---|
567 | */ |
---|
568 | |
---|
569 | res=gcAct->gcBasis; |
---|
570 | //cout << fRoot << endl; |
---|
571 | return res; |
---|
572 | //return GBlist; |
---|
573 | } |
---|
574 | /* |
---|
575 | Since gfan.cc is #included from extra.cc there must not be a int main(){} here |
---|
576 | */ |
---|
577 | #endif |
---|