source: git/kernel/gring.h @ cf315c

spielwiese
Last change on this file since cf315c was cf315c, checked in by Motsak Oleksandr <motsak@…>, 15 years ago
*motsak: bugfixes/enhancements git-svn-id: file:///usr/local/Singular/svn/trunk@10828 2c84dea3-7e68-4137-9b89-c4e89433aadc
  • Property mode set to 100644
File size: 6.9 KB
Line 
1#ifndef GRING_H
2#define GRING_H
3/****************************************
4*  Computer Algebra System SINGULAR     *
5****************************************/
6/* $Id: gring.h,v 1.24 2008-07-02 18:07:10 motsak Exp $ */
7/*
8* ABSTRACT additional defines etc for --with-plural
9*/
10
11#ifdef HAVE_PLURAL
12
13
14#include <structs.h>
15#include <ring.h>
16
17// the part, related to the interface
18// Changes r, Assumes that all other input belongs to currRing
19BOOLEAN nc_CallPlural(matrix CC, matrix DD, poly CN, poly DN, ring r,
20                      bool bSetupQuotient = false,
21                      bool bCopyInput = true,
22                      bool bBeQuiet = false,
23                      ring curr = currRing);
24
25// BOOLEAN nc_CheckOrdCondition(matrix D, ring r);
26// BOOLEAN nc_CheckOrdCondition(ring r); // with D == r->GetNC()->D
27
28BOOLEAN nc_CheckSubalgebra(poly PolyVar, ring r);
29
30// BOOLEAN nc_InitMultiplication(ring r); // should call nc_p_ProcsSet!
31// NOTE: instead of constructing nc_struct and calling nc_InitMultiplication yourself - just create C, D and call nc_CallPlural!!!
32
33
34BOOLEAN rIsLikeOpposite(ring rBase, ring rCandidate);
35
36
37// set pProcs table for rGR and global variable p_Procs
38// this should be used by p_ProcsSet in p_Procs_Set.h
39void nc_p_ProcsSet(ring rGR, p_Procs_s* p_Procs);
40
41// this function should be used inside QRing definition!
42// we go from rG into factor ring rGR with factor ideal rGR->qideal.
43bool nc_SetupQuotient(ring rGR, const ring rG = NULL, bool bCopy = false); // rG == NULL means that there is no base G-algebra
44
45
46// used by "rSum" from ring.cc only!
47// purpose init nc structure for initially commutative ring:
48// "creates a commutative nc extension; "converts" comm.ring to a Plural ring"
49ring nc_rCreateNCcomm(ring r); 
50
51void nc_rKill(ring r); // complete destructor
52
53BOOLEAN nc_rComplete(const ring src, ring dest, bool bSetupQuotient = true); // in ring.cc
54
55bool nc_rCopy(ring res, const ring r, bool bSetupQuotient);
56
57// for p_Minus_mm_Mult_qq in pInline2.h
58poly nc_p_Minus_mm_Mult_qq(poly p, const poly m, const poly q, int &lp,
59                                    const int, const poly, const ring r);
60
61// // for p_Plus_mm_Mult_qq in pInline2.h
62// returns p + m*q destroys p, const: q, m
63poly nc_p_Plus_mm_Mult_qq(poly p, const poly m, const poly q, int &lp,
64                              const int, const ring r);
65
66
67// poly _gnc_p_Mult_q(poly p, poly q, const int copy, const ring r);
68
69// general multiplication:
70poly _nc_p_Mult_q(poly p, poly q, const ring r);
71poly _nc_pp_Mult_qq(const poly p, const poly q, const ring r);
72
73
74/* subst: */
75poly nc_pSubst(poly p, int n, poly e);
76
77/* copy : */
78poly nc_p_CopyGet(poly a, const ring r);
79poly nc_p_CopyPut(poly a, const ring r);
80
81void nc_PolyPolyRed(poly &b, poly p, number *c);
82
83
84
85poly nc_CreateShortSpoly(poly p1, poly p2, const ring r=currRing);
86
87
88/* brackets: */
89poly nc_p_Bracket_qq(poly p, poly q);
90
91/* twostd: */
92ideal twostd(ideal I);
93/* Ann: */
94ideal Approx_Step(ideal L);
95
96/* complete reduction routines */
97
98matrix nc_PrintMat(int a, int b, ring r, int metric);
99
100poly p_CopyEmbed(poly p, ring srcRing, int shift, int par_shift);
101poly pOppose(ring Rop, poly p);
102ideal idOppose(ring Rop, ideal I);
103
104
105
106
107// returns the LCM of the head terms of a and b with the given component
108// NOTE: coeff will be created but remains undefined(zero?)
109poly p_Lcm(const poly a, const poly b, const long lCompM, const ring r);
110
111// returns the LCM of the head terms of a and b with component = max comp. of a & b
112// NOTE: coeff will be created but remains undefined(zero?)
113poly p_Lcm(const poly a, const poly b, const ring r);
114
115
116
117// //////////////////////////////////////////////////////////////////////// //
118// NC inlines
119
120inline nc_struct*& GetNC(ring r)
121{
122  return r->GetNC();
123}; 
124
125inline nc_type& ncRingType(nc_struct* p)
126{
127  assume(p!=NULL);
128  return (p->ncRingType());
129};
130
131inline nc_type ncRingType(ring r) // Get
132{
133  if(rIsPluralRing(r))
134    return (ncRingType(r->GetNC()));
135  else
136    return (nc_error);
137};
138
139inline void ncRingType(ring r, nc_type t) // Set
140{
141  assume((r != NULL) && (r->GetNC() != NULL));
142  ncRingType(r->GetNC()) = t;
143};
144
145
146inline void ncRingType(nc_struct* p, nc_type t) // Set
147{
148  assume(p!=NULL);
149  ncRingType(p) = t;
150};
151
152
153
154
155
156// //////////////////////////////////////////////////////
157
158// returns m*p, does neither destroy p nor m
159inline poly nc_mm_Mult_pp(const poly m, const poly p, const ring r)
160{
161  assume(rIsPluralRing(r));
162  assume(r->GetNC()->p_Procs.mm_Mult_pp!=NULL);
163  return r->GetNC()->p_Procs.mm_Mult_pp(m, p, r);
164//  return pp_Mult_mm( p, m, r);
165}
166
167
168// returns m*p, does destroy p, preserves m
169inline poly nc_mm_Mult_p(const poly m, poly p, const ring r)
170{
171  assume(rIsPluralRing(r));
172  assume(r->GetNC()->p_Procs.mm_Mult_p!=NULL);
173  return r->GetNC()->p_Procs.mm_Mult_p(m, p, r);
174//   return p_Mult_mm( p, m, r);
175}
176
177inline poly nc_CreateSpoly(const poly p1, const poly p2, const ring r)
178{
179  assume(rIsPluralRing(r));
180  assume(r->GetNC()->p_Procs.SPoly!=NULL);
181  return r->GetNC()->p_Procs.SPoly(p1, p2, r);
182}
183
184inline poly nc_ReduceSpoly(const poly p1, poly p2, const ring r)
185{
186  assume(rIsPluralRing(r));
187  assume(r->GetNC()->p_Procs.ReduceSPoly!=NULL);
188#ifdef PDEBUG
189//  assume(p_LmDivisibleBy(p1, p2, r));
190#endif
191  return r->GetNC()->p_Procs.ReduceSPoly(p1, p2, r);
192}
193
194/*
195inline void nc_PolyReduce(poly &b, const poly p, number *c, const ring r) // nc_PolyPolyRed
196{
197  assume(rIsPluralRing(r));
198//  assume(r->GetNC()->p_Procs.PolyReduce!=NULL);
199//  r->GetNC()->p_Procs.PolyReduce(b, p, c, r);
200}
201*/
202
203inline void nc_kBucketPolyRed(kBucket_pt b, poly p, number *c)
204{
205  assume(rIsPluralRing(currRing));
206
207//   return gnc_kBucketPolyRedNew(b, p, c);
208
209  assume(currRing->GetNC()->p_Procs.BucketPolyRed!=NULL);
210  return currRing->GetNC()->p_Procs.BucketPolyRed(b, p, c);
211}
212
213inline void nc_BucketPolyRed_Z(kBucket_pt b, poly p, number *c)
214{
215  assume(rIsPluralRing(currRing));
216
217//   return gnc_kBucketPolyRed_ZNew(b, p, c);
218
219  assume(currRing->GetNC()->p_Procs.BucketPolyRed_Z!=NULL);
220  return currRing->GetNC()->p_Procs.BucketPolyRed_Z(b, p, c);
221
222}
223
224inline ideal nc_GB(const ideal F, const ideal Q, const intvec *w, const intvec *hilb, kStrategy strat)
225{
226  assume(rIsPluralRing(currRing));
227
228  assume(currRing->GetNC()->p_Procs.GB!=NULL);
229  return currRing->GetNC()->p_Procs.GB(F, Q, w, hilb, strat);
230
231/*
232  if (pOrdSgn==-1)
233  {
234    assume(currRing->GetNC()->p_Procs.LocalGB!=NULL);
235    return currRing->GetNC()->p_Procs.LocalGB(F, Q, w, hilb, strat);
236  } else
237  {
238    assume(currRing->GetNC()->p_Procs.GlobalGB!=NULL);
239    return currRing->GetNC()->p_Procs.GlobalGB(F, Q, w, hilb, strat);
240  }
241*/
242}
243
244
245// Macros used to access upper triangle matrices C,D... (which are actually ideals) // afaik
246#define UPMATELEM(i,j,nVar) ( (nVar * ((i)-1) - ((i) * ((i)-1))/2 + (j)-1)-(i) )
247
248
249#ifdef PLURAL_INTERNAL_DECLARATIONS
250
251// we need nc_gr_initBba for sca_gr_bba and gr_bba.
252void nc_gr_initBba(ideal F,kStrategy strat); 
253BOOLEAN gnc_InitMultiplication(ring r, bool bSetupQuotient = false); // just for a moment
254
255#endif // PLURAL_INTERNAL_DECLARATIONS
256
257#endif // HAVE_PLURAL :(
258#endif //
Note: See TracBrowser for help on using the repository browser.