1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* $Id$ */ |
---|
5 | /* |
---|
6 | * ABSTRACT - all basic methods to manipulate ideals |
---|
7 | */ |
---|
8 | |
---|
9 | /* includes */ |
---|
10 | #include "mod2.h" |
---|
11 | |
---|
12 | #ifndef NDEBUG |
---|
13 | # define MYTEST 0 |
---|
14 | #else /* ifndef NDEBUG */ |
---|
15 | # define MYTEST 0 |
---|
16 | #endif /* ifndef NDEBUG */ |
---|
17 | |
---|
18 | #include "structs.h" |
---|
19 | #include "omalloc.h" |
---|
20 | #include "febase.h" |
---|
21 | #include "numbers.h" |
---|
22 | #include "longrat.h" |
---|
23 | #include "polys.h" |
---|
24 | #include "ring.h" |
---|
25 | #include "kstd1.h" |
---|
26 | #include "matpol.h" |
---|
27 | #include "weight.h" |
---|
28 | #include "intvec.h" |
---|
29 | #include "syz.h" |
---|
30 | #include "sparsmat.h" |
---|
31 | #include "ideals.h" |
---|
32 | #include "prCopy.h" |
---|
33 | |
---|
34 | |
---|
35 | |
---|
36 | |
---|
37 | /* #define WITH_OLD_MINOR */ |
---|
38 | #define pCopy_noCheck(p) pCopy(p) |
---|
39 | |
---|
40 | static poly * idpower; |
---|
41 | /*collects the monomials in makemonoms, must be allocated befor*/ |
---|
42 | static int idpowerpoint; |
---|
43 | /*index of the actual monomial in idpower*/ |
---|
44 | static poly * givenideal; |
---|
45 | /*the ideal from which a power is computed*/ |
---|
46 | |
---|
47 | /*0 implementation*/ |
---|
48 | |
---|
49 | /*2 |
---|
50 | * initialise an ideal |
---|
51 | */ |
---|
52 | #ifdef PDEBUG |
---|
53 | ideal idDBInit(int idsize, int rank, const char *f, int l) |
---|
54 | #else |
---|
55 | ideal idInit(int idsize, int rank) |
---|
56 | #endif |
---|
57 | { |
---|
58 | /*- initialise an ideal -*/ |
---|
59 | ideal hh = (ideal )omAllocBin(sip_sideal_bin); |
---|
60 | hh->nrows = 1; |
---|
61 | hh->rank = rank; |
---|
62 | IDELEMS(hh) = idsize; |
---|
63 | if (idsize>0) |
---|
64 | { |
---|
65 | hh->m = (poly *)omAlloc0(idsize*sizeof(poly)); |
---|
66 | } |
---|
67 | else |
---|
68 | hh->m=NULL; |
---|
69 | return hh; |
---|
70 | } |
---|
71 | |
---|
72 | #ifndef __OPTIMIZE__ |
---|
73 | // this is only for outputting an ideal within the debugger |
---|
74 | void idShow(const ideal id, const ring lmRing, const ring tailRing, const int debugPrint) |
---|
75 | { |
---|
76 | assume( debugPrint >= 0 ); |
---|
77 | |
---|
78 | if( id == NULL ) |
---|
79 | PrintS("(NULL)"); |
---|
80 | else |
---|
81 | { |
---|
82 | Print("Module of rank %ld,real rank %ld and %d generators.\n", |
---|
83 | id->rank,idRankFreeModule(id, lmRing, tailRing),IDELEMS(id)); |
---|
84 | |
---|
85 | int j = (id->ncols*id->nrows) - 1; |
---|
86 | while ((j > 0) && (id->m[j]==NULL)) j--; |
---|
87 | for (int i = 0; i <= j; i++) |
---|
88 | { |
---|
89 | Print("generator %d: ",i); p_DebugPrint(id->m[i], lmRing, tailRing, debugPrint); |
---|
90 | } |
---|
91 | } |
---|
92 | } |
---|
93 | #endif |
---|
94 | |
---|
95 | /*2 |
---|
96 | * initialise the maximal ideal (at 0) |
---|
97 | */ |
---|
98 | ideal idMaxIdeal (void) |
---|
99 | { |
---|
100 | int l; |
---|
101 | ideal hh=NULL; |
---|
102 | |
---|
103 | hh=idInit(pVariables,1); |
---|
104 | for (l=0; l<pVariables; l++) |
---|
105 | { |
---|
106 | hh->m[l] = pOne(); |
---|
107 | pSetExp(hh->m[l],l+1,1); |
---|
108 | pSetm(hh->m[l]); |
---|
109 | } |
---|
110 | return hh; |
---|
111 | } |
---|
112 | |
---|
113 | /*2 |
---|
114 | * deletes an ideal/matrix |
---|
115 | */ |
---|
116 | void id_Delete (ideal * h, ring r) |
---|
117 | { |
---|
118 | int j,elems; |
---|
119 | if (*h == NULL) |
---|
120 | return; |
---|
121 | elems=j=(*h)->nrows*(*h)->ncols; |
---|
122 | if (j>0) |
---|
123 | { |
---|
124 | do |
---|
125 | { |
---|
126 | p_Delete(&((*h)->m[--j]), r); |
---|
127 | } |
---|
128 | while (j>0); |
---|
129 | omFreeSize((ADDRESS)((*h)->m),sizeof(poly)*elems); |
---|
130 | } |
---|
131 | omFreeBin((ADDRESS)*h, sip_sideal_bin); |
---|
132 | *h=NULL; |
---|
133 | } |
---|
134 | |
---|
135 | |
---|
136 | /*2 |
---|
137 | * Shallowdeletes an ideal/matrix |
---|
138 | */ |
---|
139 | void id_ShallowDelete (ideal *h, ring r) |
---|
140 | { |
---|
141 | int j,elems; |
---|
142 | if (*h == NULL) |
---|
143 | return; |
---|
144 | elems=j=(*h)->nrows*(*h)->ncols; |
---|
145 | if (j>0) |
---|
146 | { |
---|
147 | do |
---|
148 | { |
---|
149 | p_ShallowDelete(&((*h)->m[--j]), r); |
---|
150 | } |
---|
151 | while (j>0); |
---|
152 | omFreeSize((ADDRESS)((*h)->m),sizeof(poly)*elems); |
---|
153 | } |
---|
154 | omFreeBin((ADDRESS)*h, sip_sideal_bin); |
---|
155 | *h=NULL; |
---|
156 | } |
---|
157 | |
---|
158 | /*2 |
---|
159 | *gives an ideal the minimal possible size |
---|
160 | */ |
---|
161 | void idSkipZeroes (ideal ide) |
---|
162 | { |
---|
163 | int k; |
---|
164 | int j = -1; |
---|
165 | BOOLEAN change=FALSE; |
---|
166 | for (k=0; k<IDELEMS(ide); k++) |
---|
167 | { |
---|
168 | if (ide->m[k] != NULL) |
---|
169 | { |
---|
170 | j++; |
---|
171 | if (change) |
---|
172 | { |
---|
173 | ide->m[j] = ide->m[k]; |
---|
174 | } |
---|
175 | } |
---|
176 | else |
---|
177 | { |
---|
178 | change=TRUE; |
---|
179 | } |
---|
180 | } |
---|
181 | if (change) |
---|
182 | { |
---|
183 | if (j == -1) |
---|
184 | j = 0; |
---|
185 | else |
---|
186 | { |
---|
187 | for (k=j+1; k<IDELEMS(ide); k++) |
---|
188 | ide->m[k] = NULL; |
---|
189 | } |
---|
190 | pEnlargeSet(&(ide->m),IDELEMS(ide),j+1-IDELEMS(ide)); |
---|
191 | IDELEMS(ide) = j+1; |
---|
192 | } |
---|
193 | } |
---|
194 | |
---|
195 | /*2 |
---|
196 | * ideal id = (id[i]) |
---|
197 | * result is leadcoeff(id[i]) = 1 |
---|
198 | */ |
---|
199 | void idNorm(ideal id) |
---|
200 | { |
---|
201 | for (int i=IDELEMS(id)-1; i>=0; i--) |
---|
202 | { |
---|
203 | if (id->m[i] != NULL) |
---|
204 | { |
---|
205 | pNorm(id->m[i]); |
---|
206 | } |
---|
207 | } |
---|
208 | } |
---|
209 | |
---|
210 | /*2 |
---|
211 | * ideal id = (id[i]), c any number |
---|
212 | * if id[i] = c*id[j] then id[j] is deleted for j > i |
---|
213 | */ |
---|
214 | void idDelMultiples(ideal id) |
---|
215 | { |
---|
216 | int i, j; |
---|
217 | int k = IDELEMS(id)-1; |
---|
218 | for (i=k; i>=0; i--) |
---|
219 | { |
---|
220 | if (id->m[i]!=NULL) |
---|
221 | { |
---|
222 | for (j=k; j>i; j--) |
---|
223 | { |
---|
224 | if ((id->m[j]!=NULL) |
---|
225 | && (pComparePolys(id->m[i], id->m[j]))) |
---|
226 | { |
---|
227 | pDelete(&id->m[j]); |
---|
228 | } |
---|
229 | } |
---|
230 | } |
---|
231 | } |
---|
232 | } |
---|
233 | |
---|
234 | /*2 |
---|
235 | * ideal id = (id[i]) |
---|
236 | * if id[i] = id[j] then id[j] is deleted for j > i |
---|
237 | */ |
---|
238 | void idDelEquals(ideal id) |
---|
239 | { |
---|
240 | int i, j; |
---|
241 | int k = IDELEMS(id)-1; |
---|
242 | for (i=k; i>=0; i--) |
---|
243 | { |
---|
244 | if (id->m[i]!=NULL) |
---|
245 | { |
---|
246 | for (j=k; j>i; j--) |
---|
247 | { |
---|
248 | if ((id->m[j]!=NULL) |
---|
249 | && (pEqualPolys(id->m[i], id->m[j]))) |
---|
250 | { |
---|
251 | pDelete(&id->m[j]); |
---|
252 | } |
---|
253 | } |
---|
254 | } |
---|
255 | } |
---|
256 | } |
---|
257 | |
---|
258 | // |
---|
259 | // Delete id[j], if Lm(j) == Lm(i) and j > i |
---|
260 | // |
---|
261 | void idDelLmEquals(ideal id) |
---|
262 | { |
---|
263 | int i, j; |
---|
264 | int k = IDELEMS(id)-1; |
---|
265 | for (i=k; i>=0; i--) |
---|
266 | { |
---|
267 | if (id->m[i] != NULL) |
---|
268 | { |
---|
269 | for (j=k; j>i; j--) |
---|
270 | { |
---|
271 | if ((id->m[j] != NULL) |
---|
272 | && pLmEqual(id->m[i], id->m[j])) |
---|
273 | { |
---|
274 | pDelete(&id->m[j]); |
---|
275 | } |
---|
276 | } |
---|
277 | } |
---|
278 | } |
---|
279 | } |
---|
280 | |
---|
281 | void idDelDiv(ideal id) |
---|
282 | { |
---|
283 | int i, j; |
---|
284 | int k = IDELEMS(id)-1; |
---|
285 | for (i=k; i>=0; i--) |
---|
286 | { |
---|
287 | if (id->m[i] != NULL) |
---|
288 | { |
---|
289 | for (j=k; j>i; j--) |
---|
290 | { |
---|
291 | if (id->m[j]!=NULL) |
---|
292 | { |
---|
293 | if(pDivisibleBy(id->m[i], id->m[j])) |
---|
294 | { |
---|
295 | pDelete(&id->m[j]); |
---|
296 | } |
---|
297 | else if(pDivisibleBy(id->m[j], id->m[i])) |
---|
298 | { |
---|
299 | pDelete(&id->m[i]); |
---|
300 | break; |
---|
301 | } |
---|
302 | } |
---|
303 | } |
---|
304 | } |
---|
305 | } |
---|
306 | } |
---|
307 | |
---|
308 | /*2 |
---|
309 | *test if the ideal has only constant polynomials |
---|
310 | */ |
---|
311 | BOOLEAN idIsConstant(ideal id) |
---|
312 | { |
---|
313 | int k; |
---|
314 | for (k = IDELEMS(id)-1; k>=0; k--) |
---|
315 | { |
---|
316 | if (pIsConstantPoly(id->m[k]) == FALSE) |
---|
317 | return FALSE; |
---|
318 | } |
---|
319 | return TRUE; |
---|
320 | } |
---|
321 | |
---|
322 | /*2 |
---|
323 | * copy an ideal |
---|
324 | */ |
---|
325 | #ifdef PDEBUG |
---|
326 | ideal idDBCopy(ideal h1,const char *f,int l) |
---|
327 | { |
---|
328 | int i; |
---|
329 | ideal h2; |
---|
330 | |
---|
331 | idDBTest(h1,PDEBUG,f,l); |
---|
332 | //#ifdef TEST |
---|
333 | if (h1 == NULL) |
---|
334 | { |
---|
335 | h2=idDBInit(1,1,f,l); |
---|
336 | } |
---|
337 | else |
---|
338 | //#endif |
---|
339 | { |
---|
340 | h2=idDBInit(IDELEMS(h1),h1->rank,f,l); |
---|
341 | for (i=IDELEMS(h1)-1; i>=0; i--) |
---|
342 | h2->m[i] = pCopy(h1->m[i]); |
---|
343 | } |
---|
344 | return h2; |
---|
345 | } |
---|
346 | #endif |
---|
347 | |
---|
348 | ideal id_Copy (ideal h1, const ring r) |
---|
349 | { |
---|
350 | int i; |
---|
351 | ideal h2; |
---|
352 | |
---|
353 | //#ifdef TEST |
---|
354 | if (h1 == NULL) |
---|
355 | { |
---|
356 | h2=idInit(1,1); |
---|
357 | } |
---|
358 | else |
---|
359 | //#endif |
---|
360 | { |
---|
361 | h2=idInit(IDELEMS(h1),h1->rank); |
---|
362 | for (i=IDELEMS(h1)-1; i>=0; i--) |
---|
363 | h2->m[i] = p_Copy(h1->m[i],r); |
---|
364 | } |
---|
365 | return h2; |
---|
366 | } |
---|
367 | |
---|
368 | #ifdef PDEBUG |
---|
369 | void idDBTest(ideal h1, int level, const char *f,const int l) |
---|
370 | { |
---|
371 | int i; |
---|
372 | |
---|
373 | if (h1 != NULL) |
---|
374 | { |
---|
375 | // assume(IDELEMS(h1) > 0); for ideal/module, does not apply to matrix |
---|
376 | omCheckAddrSize(h1,sizeof(*h1)); |
---|
377 | omdebugAddrSize(h1->m,h1->ncols*h1->nrows*sizeof(poly)); |
---|
378 | /* to be able to test matrices: */ |
---|
379 | for (i=(h1->ncols*h1->nrows)-1; i>=0; i--) |
---|
380 | _p_Test(h1->m[i], currRing, level); |
---|
381 | int new_rk=idRankFreeModule(h1); |
---|
382 | if(new_rk > h1->rank) |
---|
383 | { |
---|
384 | dReportError("wrong rank %d (should be %d) in %s:%d\n", |
---|
385 | h1->rank, new_rk, f,l); |
---|
386 | omPrintAddrInfo(stderr, h1, " for ideal"); |
---|
387 | h1->rank=new_rk; |
---|
388 | } |
---|
389 | } |
---|
390 | } |
---|
391 | #endif |
---|
392 | |
---|
393 | /*3 |
---|
394 | * for idSort: compare a and b revlex inclusive module comp. |
---|
395 | */ |
---|
396 | static int pComp_RevLex(poly a, poly b,BOOLEAN nolex) |
---|
397 | { |
---|
398 | if (b==NULL) return 1; |
---|
399 | if (a==NULL) return -1; |
---|
400 | |
---|
401 | if (nolex) return pLmCmp(a,b); |
---|
402 | int l=pVariables; |
---|
403 | while ((l>0) && (pGetExp(a,l)==pGetExp(b,l))) l--; |
---|
404 | if (l==0) |
---|
405 | { |
---|
406 | if (pGetComp(a)==pGetComp(b)) return 0; |
---|
407 | if (pGetComp(a)>pGetComp(b)) return 1; |
---|
408 | } |
---|
409 | else if (pGetExp(a,l)>pGetExp(b,l)) |
---|
410 | return 1; |
---|
411 | return -1; |
---|
412 | } |
---|
413 | |
---|
414 | /*2 |
---|
415 | *sorts the ideal w.r.t. the actual ringordering |
---|
416 | *uses lex-ordering when nolex = FALSE |
---|
417 | */ |
---|
418 | intvec *idSort(ideal id,BOOLEAN nolex) |
---|
419 | { |
---|
420 | poly p,q; |
---|
421 | intvec * result = new intvec(IDELEMS(id)); |
---|
422 | int i, j, actpos=0, newpos, l; |
---|
423 | int diff, olddiff, lastcomp, newcomp; |
---|
424 | BOOLEAN notFound; |
---|
425 | |
---|
426 | for (i=0;i<IDELEMS(id);i++) |
---|
427 | { |
---|
428 | if (id->m[i]!=NULL) |
---|
429 | { |
---|
430 | notFound = TRUE; |
---|
431 | newpos = actpos / 2; |
---|
432 | diff = (actpos+1) / 2; |
---|
433 | diff = (diff+1) / 2; |
---|
434 | lastcomp = pComp_RevLex(id->m[i],id->m[(*result)[newpos]],nolex); |
---|
435 | if (lastcomp<0) |
---|
436 | { |
---|
437 | newpos -= diff; |
---|
438 | } |
---|
439 | else if (lastcomp>0) |
---|
440 | { |
---|
441 | newpos += diff; |
---|
442 | } |
---|
443 | else |
---|
444 | { |
---|
445 | notFound = FALSE; |
---|
446 | } |
---|
447 | //while ((newpos>=0) && (newpos<actpos) && (notFound)) |
---|
448 | while (notFound && (newpos>=0) && (newpos<actpos)) |
---|
449 | { |
---|
450 | newcomp = pComp_RevLex(id->m[i],id->m[(*result)[newpos]],nolex); |
---|
451 | olddiff = diff; |
---|
452 | if (diff>1) |
---|
453 | { |
---|
454 | diff = (diff+1) / 2; |
---|
455 | if ((newcomp==1) |
---|
456 | && (actpos-newpos>1) |
---|
457 | && (diff>1) |
---|
458 | && (newpos+diff>=actpos)) |
---|
459 | { |
---|
460 | diff = actpos-newpos-1; |
---|
461 | } |
---|
462 | else if ((newcomp==-1) |
---|
463 | && (diff>1) |
---|
464 | && (newpos<diff)) |
---|
465 | { |
---|
466 | diff = newpos; |
---|
467 | } |
---|
468 | } |
---|
469 | if (newcomp<0) |
---|
470 | { |
---|
471 | if ((olddiff==1) && (lastcomp>0)) |
---|
472 | notFound = FALSE; |
---|
473 | else |
---|
474 | newpos -= diff; |
---|
475 | } |
---|
476 | else if (newcomp>0) |
---|
477 | { |
---|
478 | if ((olddiff==1) && (lastcomp<0)) |
---|
479 | { |
---|
480 | notFound = FALSE; |
---|
481 | newpos++; |
---|
482 | } |
---|
483 | else |
---|
484 | { |
---|
485 | newpos += diff; |
---|
486 | } |
---|
487 | } |
---|
488 | else |
---|
489 | { |
---|
490 | notFound = FALSE; |
---|
491 | } |
---|
492 | lastcomp = newcomp; |
---|
493 | if (diff==0) notFound=FALSE; /*hs*/ |
---|
494 | } |
---|
495 | if (newpos<0) newpos = 0; |
---|
496 | if (newpos>actpos) newpos = actpos; |
---|
497 | while ((newpos<actpos) && (pComp_RevLex(id->m[i],id->m[(*result)[newpos]],nolex)==0)) |
---|
498 | newpos++; |
---|
499 | for (j=actpos;j>newpos;j--) |
---|
500 | { |
---|
501 | (*result)[j] = (*result)[j-1]; |
---|
502 | } |
---|
503 | (*result)[newpos] = i; |
---|
504 | actpos++; |
---|
505 | } |
---|
506 | } |
---|
507 | for (j=0;j<actpos;j++) (*result)[j]++; |
---|
508 | return result; |
---|
509 | } |
---|
510 | |
---|
511 | /*2 |
---|
512 | * concat the lists h1 and h2 without zeros |
---|
513 | */ |
---|
514 | ideal idSimpleAdd (ideal h1,ideal h2) |
---|
515 | { |
---|
516 | int i,j,r,l; |
---|
517 | ideal result; |
---|
518 | |
---|
519 | if (h1==NULL) return idCopy(h2); |
---|
520 | if (h2==NULL) return idCopy(h1); |
---|
521 | j = IDELEMS(h1)-1; |
---|
522 | while ((j >= 0) && (h1->m[j] == NULL)) j--; |
---|
523 | i = IDELEMS(h2)-1; |
---|
524 | while ((i >= 0) && (h2->m[i] == NULL)) i--; |
---|
525 | r = si_max(h1->rank,h2->rank); |
---|
526 | if (i+j==(-2)) |
---|
527 | return idInit(1,r); |
---|
528 | else |
---|
529 | result=idInit(i+j+2,r); |
---|
530 | for (l=j; l>=0; l--) |
---|
531 | { |
---|
532 | result->m[l] = pCopy(h1->m[l]); |
---|
533 | } |
---|
534 | r = i+j+1; |
---|
535 | for (l=i; l>=0; l--, r--) |
---|
536 | { |
---|
537 | result->m[r] = pCopy(h2->m[l]); |
---|
538 | } |
---|
539 | return result; |
---|
540 | } |
---|
541 | |
---|
542 | /*2 |
---|
543 | * concat h1 and h2 |
---|
544 | */ |
---|
545 | void idInsertPoly (ideal h1,poly h2) |
---|
546 | { |
---|
547 | if (h2==NULL) return; |
---|
548 | int j = IDELEMS(h1)-1; |
---|
549 | while ((j >= 0) && (h1->m[j] == NULL)) j--; |
---|
550 | j++; |
---|
551 | if (j==IDELEMS(h1)) |
---|
552 | { |
---|
553 | pEnlargeSet(&(h1->m),IDELEMS(h1),16); |
---|
554 | IDELEMS(h1)+=16; |
---|
555 | } |
---|
556 | h1->m[j]=h2; |
---|
557 | } |
---|
558 | |
---|
559 | /*2 |
---|
560 | * h1 + h2 |
---|
561 | */ |
---|
562 | ideal idAdd (ideal h1,ideal h2) |
---|
563 | { |
---|
564 | ideal result = idSimpleAdd(h1,h2); |
---|
565 | idCompactify(result); |
---|
566 | return result; |
---|
567 | } |
---|
568 | |
---|
569 | /*2 |
---|
570 | * h1 * h2 |
---|
571 | */ |
---|
572 | ideal idMult (ideal h1,ideal h2) |
---|
573 | { |
---|
574 | int i,j,k; |
---|
575 | ideal hh; |
---|
576 | |
---|
577 | j = IDELEMS(h1); |
---|
578 | while ((j > 0) && (h1->m[j-1] == NULL)) j--; |
---|
579 | i = IDELEMS(h2); |
---|
580 | while ((i > 0) && (h2->m[i-1] == NULL)) i--; |
---|
581 | j = j * i; |
---|
582 | if (j == 0) |
---|
583 | hh = idInit(1,1); |
---|
584 | else |
---|
585 | hh=idInit(j,1); |
---|
586 | if (h1->rank<h2->rank) |
---|
587 | hh->rank = h2->rank; |
---|
588 | else |
---|
589 | hh->rank = h1->rank; |
---|
590 | if (j==0) return hh; |
---|
591 | k = 0; |
---|
592 | for (i=0; i<IDELEMS(h1); i++) |
---|
593 | { |
---|
594 | if (h1->m[i] != NULL) |
---|
595 | { |
---|
596 | for (j=0; j<IDELEMS(h2); j++) |
---|
597 | { |
---|
598 | if (h2->m[j] != NULL) |
---|
599 | { |
---|
600 | hh->m[k] = ppMult_qq(h1->m[i],h2->m[j]); |
---|
601 | k++; |
---|
602 | } |
---|
603 | } |
---|
604 | } |
---|
605 | } |
---|
606 | { |
---|
607 | idCompactify(hh); |
---|
608 | return hh; |
---|
609 | } |
---|
610 | } |
---|
611 | |
---|
612 | /*2 |
---|
613 | *returns true if h is the zero ideal |
---|
614 | */ |
---|
615 | BOOLEAN idIs0 (ideal h) |
---|
616 | { |
---|
617 | int i; |
---|
618 | |
---|
619 | if (h == NULL) return TRUE; |
---|
620 | i = IDELEMS(h)-1; |
---|
621 | while ((i >= 0) && (h->m[i] == NULL)) |
---|
622 | { |
---|
623 | i--; |
---|
624 | } |
---|
625 | if (i < 0) |
---|
626 | return TRUE; |
---|
627 | else |
---|
628 | return FALSE; |
---|
629 | } |
---|
630 | |
---|
631 | /*2 |
---|
632 | * return the maximal component number found in any polynomial in s |
---|
633 | */ |
---|
634 | long idRankFreeModule (ideal s, ring lmRing, ring tailRing) |
---|
635 | { |
---|
636 | if (s!=NULL) |
---|
637 | { |
---|
638 | int j=0; |
---|
639 | |
---|
640 | if (rRing_has_Comp(tailRing) && rRing_has_Comp(lmRing)) |
---|
641 | { |
---|
642 | int l=IDELEMS(s); |
---|
643 | poly *p=s->m; |
---|
644 | int k; |
---|
645 | for (; l != 0; l--) |
---|
646 | { |
---|
647 | if (*p!=NULL) |
---|
648 | { |
---|
649 | pp_Test(*p, lmRing, tailRing); |
---|
650 | k = p_MaxComp(*p, lmRing, tailRing); |
---|
651 | if (k>j) j = k; |
---|
652 | } |
---|
653 | p++; |
---|
654 | } |
---|
655 | } |
---|
656 | return j; |
---|
657 | } |
---|
658 | return -1; |
---|
659 | } |
---|
660 | |
---|
661 | BOOLEAN idIsModule(ideal id, ring r) |
---|
662 | { |
---|
663 | if (id != NULL && rRing_has_Comp(r)) |
---|
664 | { |
---|
665 | int j, l = IDELEMS(id); |
---|
666 | for (j=0; j<l; j++) |
---|
667 | { |
---|
668 | if (id->m[j] != NULL && p_GetComp(id->m[j], r) > 0) return TRUE; |
---|
669 | } |
---|
670 | } |
---|
671 | return FALSE; |
---|
672 | } |
---|
673 | |
---|
674 | |
---|
675 | /*2 |
---|
676 | *returns true if id is homogenous with respect to the aktual weights |
---|
677 | */ |
---|
678 | BOOLEAN idHomIdeal (ideal id, ideal Q) |
---|
679 | { |
---|
680 | int i; |
---|
681 | BOOLEAN b; |
---|
682 | if ((id == NULL) || (IDELEMS(id) == 0)) return TRUE; |
---|
683 | i = 0; |
---|
684 | b = TRUE; |
---|
685 | while ((i < IDELEMS(id)) && b) |
---|
686 | { |
---|
687 | b = pIsHomogeneous(id->m[i]); |
---|
688 | i++; |
---|
689 | } |
---|
690 | if ((b) && (Q!=NULL) && (IDELEMS(Q)>0)) |
---|
691 | { |
---|
692 | i=0; |
---|
693 | while ((i < IDELEMS(Q)) && b) |
---|
694 | { |
---|
695 | b = pIsHomogeneous(Q->m[i]); |
---|
696 | i++; |
---|
697 | } |
---|
698 | } |
---|
699 | return b; |
---|
700 | } |
---|
701 | |
---|
702 | /*2 |
---|
703 | *returns a minimized set of generators of h1 |
---|
704 | */ |
---|
705 | ideal idMinBase (ideal h1) |
---|
706 | { |
---|
707 | ideal h2, h3,h4,e; |
---|
708 | int j,k; |
---|
709 | int i,l,ll; |
---|
710 | intvec * wth; |
---|
711 | BOOLEAN homog; |
---|
712 | |
---|
713 | homog = idHomModule(h1,currQuotient,&wth); |
---|
714 | if (rHasGlobalOrdering_currRing()) |
---|
715 | { |
---|
716 | if(!homog) |
---|
717 | { |
---|
718 | WarnS("minbase applies only to the local or homogeneous case"); |
---|
719 | e=idCopy(h1); |
---|
720 | return e; |
---|
721 | } |
---|
722 | else |
---|
723 | { |
---|
724 | ideal re=kMin_std(h1,currQuotient,(tHomog)homog,&wth,h2,NULL,0,3); |
---|
725 | idDelete(&re); |
---|
726 | return h2; |
---|
727 | } |
---|
728 | } |
---|
729 | e=idInit(1,h1->rank); |
---|
730 | if (idIs0(h1)) |
---|
731 | { |
---|
732 | return e; |
---|
733 | } |
---|
734 | pEnlargeSet(&(e->m),IDELEMS(e),15); |
---|
735 | IDELEMS(e) = 16; |
---|
736 | h2 = kStd(h1,currQuotient,isNotHomog,NULL); |
---|
737 | h3 = idMaxIdeal(); |
---|
738 | h4=idMult(h2,h3); |
---|
739 | idDelete(&h3); |
---|
740 | h3=kStd(h4,currQuotient,isNotHomog,NULL); |
---|
741 | k = IDELEMS(h3); |
---|
742 | while ((k > 0) && (h3->m[k-1] == NULL)) k--; |
---|
743 | j = -1; |
---|
744 | l = IDELEMS(h2); |
---|
745 | while ((l > 0) && (h2->m[l-1] == NULL)) l--; |
---|
746 | for (i=l-1; i>=0; i--) |
---|
747 | { |
---|
748 | if (h2->m[i] != NULL) |
---|
749 | { |
---|
750 | ll = 0; |
---|
751 | while ((ll < k) && ((h3->m[ll] == NULL) |
---|
752 | || !pDivisibleBy(h3->m[ll],h2->m[i]))) |
---|
753 | ll++; |
---|
754 | if (ll >= k) |
---|
755 | { |
---|
756 | j++; |
---|
757 | if (j > IDELEMS(e)-1) |
---|
758 | { |
---|
759 | pEnlargeSet(&(e->m),IDELEMS(e),16); |
---|
760 | IDELEMS(e) += 16; |
---|
761 | } |
---|
762 | e->m[j] = pCopy(h2->m[i]); |
---|
763 | } |
---|
764 | } |
---|
765 | } |
---|
766 | idDelete(&h2); |
---|
767 | idDelete(&h3); |
---|
768 | idDelete(&h4); |
---|
769 | if (currQuotient!=NULL) |
---|
770 | { |
---|
771 | h3=idInit(1,e->rank); |
---|
772 | h2=kNF(h3,currQuotient,e); |
---|
773 | idDelete(&h3); |
---|
774 | idDelete(&e); |
---|
775 | e=h2; |
---|
776 | } |
---|
777 | idSkipZeroes(e); |
---|
778 | return e; |
---|
779 | } |
---|
780 | |
---|
781 | /*2 |
---|
782 | *the minimal index of used variables - 1 |
---|
783 | */ |
---|
784 | int pLowVar (poly p) |
---|
785 | { |
---|
786 | int k,l,lex; |
---|
787 | |
---|
788 | if (p == NULL) return -1; |
---|
789 | |
---|
790 | k = 32000;/*a very large dummy value*/ |
---|
791 | while (p != NULL) |
---|
792 | { |
---|
793 | l = 1; |
---|
794 | lex = pGetExp(p,l); |
---|
795 | while ((l < pVariables) && (lex == 0)) |
---|
796 | { |
---|
797 | l++; |
---|
798 | lex = pGetExp(p,l); |
---|
799 | } |
---|
800 | l--; |
---|
801 | if (l < k) k = l; |
---|
802 | pIter(p); |
---|
803 | } |
---|
804 | return k; |
---|
805 | } |
---|
806 | |
---|
807 | /*3 |
---|
808 | *multiplies p with t (!cas) or (t-1) |
---|
809 | *the index of t is:1, so we have to shift all variables |
---|
810 | *p is NOT in the actual ring, it has no t |
---|
811 | */ |
---|
812 | static poly pMultWithT (poly p,BOOLEAN cas) |
---|
813 | { |
---|
814 | /*qp is the working pointer in p*/ |
---|
815 | /*result is the result, qresult is the working pointer*/ |
---|
816 | /*pp is p in the actual ring(shifted), qpp the working pointer*/ |
---|
817 | poly result,qp,pp; |
---|
818 | poly qresult=NULL; |
---|
819 | poly qpp=NULL; |
---|
820 | int i,j,lex; |
---|
821 | number n; |
---|
822 | |
---|
823 | pp = NULL; |
---|
824 | result = NULL; |
---|
825 | qp = p; |
---|
826 | while (qp != NULL) |
---|
827 | { |
---|
828 | i = 0; |
---|
829 | if (result == NULL) |
---|
830 | {/*first monomial*/ |
---|
831 | result = pInit(); |
---|
832 | qresult = result; |
---|
833 | } |
---|
834 | else |
---|
835 | { |
---|
836 | qresult->next = pInit(); |
---|
837 | pIter(qresult); |
---|
838 | } |
---|
839 | for (j=pVariables-1; j>0; j--) |
---|
840 | { |
---|
841 | lex = pGetExp(qp,j); |
---|
842 | pSetExp(qresult,j+1,lex);/*copy all variables*/ |
---|
843 | } |
---|
844 | lex = pGetComp(qp); |
---|
845 | pSetComp(qresult,lex); |
---|
846 | n=nCopy(pGetCoeff(qp)); |
---|
847 | pSetCoeff0(qresult,n); |
---|
848 | qresult->next = NULL; |
---|
849 | pSetm(qresult); |
---|
850 | /*qresult is now qp brought into the actual ring*/ |
---|
851 | if (cas) |
---|
852 | { /*case: mult with t-1*/ |
---|
853 | pSetExp(qresult,1,0); |
---|
854 | pSetm(qresult); |
---|
855 | if (pp == NULL) |
---|
856 | { /*first monomial*/ |
---|
857 | pp = pCopy(qresult); |
---|
858 | qpp = pp; |
---|
859 | } |
---|
860 | else |
---|
861 | { |
---|
862 | qpp->next = pCopy(qresult); |
---|
863 | pIter(qpp); |
---|
864 | } |
---|
865 | pGetCoeff(qpp)=nNeg(pGetCoeff(qpp)); |
---|
866 | /*now qpp contains -1*qp*/ |
---|
867 | } |
---|
868 | pSetExp(qresult,1,1);/*this is mult. by t*/ |
---|
869 | pSetm(qresult); |
---|
870 | pIter(qp); |
---|
871 | } |
---|
872 | /* |
---|
873 | *now p is processed: |
---|
874 | *result contains t*p |
---|
875 | * if cas: pp contains -1*p (in the new ring) |
---|
876 | */ |
---|
877 | if (cas) qresult->next = pp; |
---|
878 | /* else qresult->next = NULL;*/ |
---|
879 | return result; |
---|
880 | } |
---|
881 | |
---|
882 | /*2 |
---|
883 | *dehomogenized the generators of the ideal id1 with the leading |
---|
884 | *monomial of p replaced by n |
---|
885 | */ |
---|
886 | ideal idDehomogen (ideal id1,poly p,number n) |
---|
887 | { |
---|
888 | int i; |
---|
889 | ideal result; |
---|
890 | |
---|
891 | if (idIs0(id1)) |
---|
892 | { |
---|
893 | return idInit(1,id1->rank); |
---|
894 | } |
---|
895 | result=idInit(IDELEMS(id1),id1->rank); |
---|
896 | for (i=0; i<IDELEMS(id1); i++) |
---|
897 | { |
---|
898 | result->m[i] = pDehomogen(id1->m[i],p,n); |
---|
899 | } |
---|
900 | return result; |
---|
901 | } |
---|
902 | |
---|
903 | /*2 |
---|
904 | * verschiebt die Indizees der Modulerzeugenden um i |
---|
905 | */ |
---|
906 | void pShift (poly * p,int i) |
---|
907 | { |
---|
908 | poly qp1 = *p,qp2 = *p;/*working pointers*/ |
---|
909 | int j = pMaxComp(*p),k = pMinComp(*p); |
---|
910 | |
---|
911 | if (j+i < 0) return ; |
---|
912 | while (qp1 != NULL) |
---|
913 | { |
---|
914 | if ((pGetComp(qp1)+i > 0) || ((j == -i) && (j == k))) |
---|
915 | { |
---|
916 | pSetComp(qp1,pGetComp(qp1)+i); |
---|
917 | pSetmComp(qp1); |
---|
918 | qp2 = qp1; |
---|
919 | pIter(qp1); |
---|
920 | } |
---|
921 | else |
---|
922 | { |
---|
923 | if (qp2 == *p) |
---|
924 | { |
---|
925 | pIter(*p); |
---|
926 | pDeleteLm(&qp2); |
---|
927 | qp2 = *p; |
---|
928 | qp1 = *p; |
---|
929 | } |
---|
930 | else |
---|
931 | { |
---|
932 | qp2->next = qp1->next; |
---|
933 | pDeleteLm(&qp1); |
---|
934 | qp1 = qp2->next; |
---|
935 | } |
---|
936 | } |
---|
937 | } |
---|
938 | } |
---|
939 | |
---|
940 | /*2 |
---|
941 | *initialized a field with r numbers between beg and end for the |
---|
942 | *procedure idNextChoise |
---|
943 | */ |
---|
944 | void idInitChoise (int r,int beg,int end,BOOLEAN *endch,int * choise) |
---|
945 | { |
---|
946 | /*returns the first choise of r numbers between beg and end*/ |
---|
947 | int i; |
---|
948 | for (i=0; i<r; i++) |
---|
949 | { |
---|
950 | choise[i] = 0; |
---|
951 | } |
---|
952 | if (r <= end-beg+1) |
---|
953 | for (i=0; i<r; i++) |
---|
954 | { |
---|
955 | choise[i] = beg+i; |
---|
956 | } |
---|
957 | if (r > end-beg+1) |
---|
958 | *endch = TRUE; |
---|
959 | else |
---|
960 | *endch = FALSE; |
---|
961 | } |
---|
962 | |
---|
963 | /*2 |
---|
964 | *returns the next choise of r numbers between beg and end |
---|
965 | */ |
---|
966 | void idGetNextChoise (int r,int end,BOOLEAN *endch,int * choise) |
---|
967 | { |
---|
968 | int i = r-1,j; |
---|
969 | while ((i >= 0) && (choise[i] == end)) |
---|
970 | { |
---|
971 | i--; |
---|
972 | end--; |
---|
973 | } |
---|
974 | if (i == -1) |
---|
975 | *endch = TRUE; |
---|
976 | else |
---|
977 | { |
---|
978 | choise[i]++; |
---|
979 | for (j=i+1; j<r; j++) |
---|
980 | { |
---|
981 | choise[j] = choise[i]+j-i; |
---|
982 | } |
---|
983 | *endch = FALSE; |
---|
984 | } |
---|
985 | } |
---|
986 | |
---|
987 | /*2 |
---|
988 | *takes the field choise of d numbers between beg and end, cancels the t-th |
---|
989 | *entree and searches for the ordinal number of that d-1 dimensional field |
---|
990 | * w.r.t. the algorithm of construction |
---|
991 | */ |
---|
992 | int idGetNumberOfChoise(int t, int d, int begin, int end, int * choise) |
---|
993 | { |
---|
994 | int * localchoise,i,result=0; |
---|
995 | BOOLEAN b=FALSE; |
---|
996 | |
---|
997 | if (d<=1) return 1; |
---|
998 | localchoise=(int*)omAlloc((d-1)*sizeof(int)); |
---|
999 | idInitChoise(d-1,begin,end,&b,localchoise); |
---|
1000 | while (!b) |
---|
1001 | { |
---|
1002 | result++; |
---|
1003 | i = 0; |
---|
1004 | while ((i<t) && (localchoise[i]==choise[i])) i++; |
---|
1005 | if (i>=t) |
---|
1006 | { |
---|
1007 | i = t+1; |
---|
1008 | while ((i<d) && (localchoise[i-1]==choise[i])) i++; |
---|
1009 | if (i>=d) |
---|
1010 | { |
---|
1011 | omFreeSize((ADDRESS)localchoise,(d-1)*sizeof(int)); |
---|
1012 | return result; |
---|
1013 | } |
---|
1014 | } |
---|
1015 | idGetNextChoise(d-1,end,&b,localchoise); |
---|
1016 | } |
---|
1017 | omFreeSize((ADDRESS)localchoise,(d-1)*sizeof(int)); |
---|
1018 | return 0; |
---|
1019 | } |
---|
1020 | |
---|
1021 | /*2 |
---|
1022 | *computes the binomial coefficient |
---|
1023 | */ |
---|
1024 | int binom (int n,int r) |
---|
1025 | { |
---|
1026 | int i,result; |
---|
1027 | |
---|
1028 | if (r==0) return 1; |
---|
1029 | if (n-r<r) return binom(n,n-r); |
---|
1030 | result = n-r+1; |
---|
1031 | for (i=2;i<=r;i++) |
---|
1032 | { |
---|
1033 | result *= n-r+i; |
---|
1034 | if (result<0) |
---|
1035 | { |
---|
1036 | WarnS("overflow in binomials"); |
---|
1037 | return 0; |
---|
1038 | } |
---|
1039 | result /= i; |
---|
1040 | } |
---|
1041 | return result; |
---|
1042 | } |
---|
1043 | |
---|
1044 | /*2 |
---|
1045 | *the free module of rank i |
---|
1046 | */ |
---|
1047 | ideal idFreeModule (int i) |
---|
1048 | { |
---|
1049 | int j; |
---|
1050 | ideal h; |
---|
1051 | |
---|
1052 | h=idInit(i,i); |
---|
1053 | for (j=0; j<i; j++) |
---|
1054 | { |
---|
1055 | h->m[j] = pOne(); |
---|
1056 | pSetComp(h->m[j],j+1); |
---|
1057 | pSetmComp(h->m[j]); |
---|
1058 | } |
---|
1059 | return h; |
---|
1060 | } |
---|
1061 | |
---|
1062 | /*2 |
---|
1063 | * h3 := h1 intersect h2 |
---|
1064 | */ |
---|
1065 | ideal idSect (ideal h1,ideal h2) |
---|
1066 | { |
---|
1067 | int i,j,k,length; |
---|
1068 | int flength = idRankFreeModule(h1); |
---|
1069 | int slength = idRankFreeModule(h2); |
---|
1070 | int rank=si_min(flength,slength); |
---|
1071 | if ((idIs0(h1)) || (idIs0(h2))) return idInit(1,rank); |
---|
1072 | |
---|
1073 | ideal first,second,temp,temp1,result; |
---|
1074 | poly p,q; |
---|
1075 | |
---|
1076 | if (IDELEMS(h1)<IDELEMS(h2)) |
---|
1077 | { |
---|
1078 | first = h1; |
---|
1079 | second = h2; |
---|
1080 | } |
---|
1081 | else |
---|
1082 | { |
---|
1083 | first = h2; |
---|
1084 | second = h1; |
---|
1085 | int t=flength; flength=slength; slength=t; |
---|
1086 | } |
---|
1087 | length = si_max(flength,slength); |
---|
1088 | if (length==0) |
---|
1089 | { |
---|
1090 | length = 1; |
---|
1091 | } |
---|
1092 | j = IDELEMS(first); |
---|
1093 | |
---|
1094 | ring orig_ring=currRing; |
---|
1095 | ring syz_ring=rCurrRingAssure_SyzComp(); |
---|
1096 | rSetSyzComp(length); |
---|
1097 | |
---|
1098 | while ((j>0) && (first->m[j-1]==NULL)) j--; |
---|
1099 | temp = idInit(j /*IDELEMS(first)*/+IDELEMS(second),length+j); |
---|
1100 | k = 0; |
---|
1101 | for (i=0;i<j;i++) |
---|
1102 | { |
---|
1103 | if (first->m[i]!=NULL) |
---|
1104 | { |
---|
1105 | if (syz_ring==orig_ring) |
---|
1106 | temp->m[k] = pCopy(first->m[i]); |
---|
1107 | else |
---|
1108 | temp->m[k] = prCopyR(first->m[i], orig_ring); |
---|
1109 | q = pOne(); |
---|
1110 | pSetComp(q,i+1+length); |
---|
1111 | pSetmComp(q); |
---|
1112 | if (flength==0) pShift(&(temp->m[k]),1); |
---|
1113 | p = temp->m[k]; |
---|
1114 | while (pNext(p)!=NULL) pIter(p); |
---|
1115 | pNext(p) = q; |
---|
1116 | k++; |
---|
1117 | } |
---|
1118 | } |
---|
1119 | for (i=0;i<IDELEMS(second);i++) |
---|
1120 | { |
---|
1121 | if (second->m[i]!=NULL) |
---|
1122 | { |
---|
1123 | if (syz_ring==orig_ring) |
---|
1124 | temp->m[k] = pCopy(second->m[i]); |
---|
1125 | else |
---|
1126 | temp->m[k] = prCopyR(second->m[i], orig_ring); |
---|
1127 | if (slength==0) pShift(&(temp->m[k]),1); |
---|
1128 | k++; |
---|
1129 | } |
---|
1130 | } |
---|
1131 | intvec *w=NULL; |
---|
1132 | temp1 = kStd(temp,currQuotient,testHomog,&w,NULL,length); |
---|
1133 | if (w!=NULL) delete w; |
---|
1134 | idDelete(&temp); |
---|
1135 | |
---|
1136 | if(syz_ring!=orig_ring) |
---|
1137 | rChangeCurrRing(orig_ring); |
---|
1138 | |
---|
1139 | result = idInit(IDELEMS(temp1),rank); |
---|
1140 | j = 0; |
---|
1141 | for (i=0;i<IDELEMS(temp1);i++) |
---|
1142 | { |
---|
1143 | if ((temp1->m[i]!=NULL) |
---|
1144 | && (p_GetComp(temp1->m[i],syz_ring)>length)) |
---|
1145 | { |
---|
1146 | if(syz_ring==orig_ring) |
---|
1147 | { |
---|
1148 | p = temp1->m[i]; |
---|
1149 | } |
---|
1150 | else |
---|
1151 | { |
---|
1152 | p = prMoveR(temp1->m[i], syz_ring); |
---|
1153 | } |
---|
1154 | temp1->m[i]=NULL; |
---|
1155 | while (p!=NULL) |
---|
1156 | { |
---|
1157 | q = pNext(p); |
---|
1158 | pNext(p) = NULL; |
---|
1159 | k = pGetComp(p)-1-length; |
---|
1160 | pSetComp(p,0); |
---|
1161 | pSetmComp(p); |
---|
1162 | /* Warning! multiply only from the left! it's very important for Plural */ |
---|
1163 | result->m[j] = pAdd(result->m[j],pMult(p,pCopy(first->m[k]))); |
---|
1164 | p = q; |
---|
1165 | } |
---|
1166 | j++; |
---|
1167 | } |
---|
1168 | } |
---|
1169 | if(syz_ring!=orig_ring) |
---|
1170 | { |
---|
1171 | rChangeCurrRing(syz_ring); |
---|
1172 | idDelete(&temp1); |
---|
1173 | rChangeCurrRing(orig_ring); |
---|
1174 | rKill(syz_ring); |
---|
1175 | } |
---|
1176 | else |
---|
1177 | { |
---|
1178 | idDelete(&temp1); |
---|
1179 | } |
---|
1180 | |
---|
1181 | idSkipZeroes(result); |
---|
1182 | if (TEST_OPT_RETURN_SB) |
---|
1183 | { |
---|
1184 | w=NULL; |
---|
1185 | temp1=kStd(result,currQuotient,testHomog,&w); |
---|
1186 | if (w!=NULL) delete w; |
---|
1187 | idDelete(&result); |
---|
1188 | idSkipZeroes(temp1); |
---|
1189 | return temp1; |
---|
1190 | } |
---|
1191 | else //temp1=kInterRed(result,currQuotient); |
---|
1192 | return result; |
---|
1193 | } |
---|
1194 | |
---|
1195 | /*2 |
---|
1196 | * ideal/module intersection for a list of objects |
---|
1197 | * given as 'resolvente' |
---|
1198 | */ |
---|
1199 | ideal idMultSect(resolvente arg, int length) |
---|
1200 | { |
---|
1201 | int i,j=0,k=0,syzComp,l,maxrk=-1,realrki; |
---|
1202 | ideal bigmat,tempstd,result; |
---|
1203 | poly p; |
---|
1204 | int isIdeal=0; |
---|
1205 | intvec * w=NULL; |
---|
1206 | |
---|
1207 | /* find 0-ideals and max rank -----------------------------------*/ |
---|
1208 | for (i=0;i<length;i++) |
---|
1209 | { |
---|
1210 | if (!idIs0(arg[i])) |
---|
1211 | { |
---|
1212 | realrki=idRankFreeModule(arg[i]); |
---|
1213 | k++; |
---|
1214 | j += IDELEMS(arg[i]); |
---|
1215 | if (realrki>maxrk) maxrk = realrki; |
---|
1216 | } |
---|
1217 | else |
---|
1218 | { |
---|
1219 | if (arg[i]!=NULL) |
---|
1220 | { |
---|
1221 | return idInit(1,arg[i]->rank); |
---|
1222 | } |
---|
1223 | } |
---|
1224 | } |
---|
1225 | if (maxrk == 0) |
---|
1226 | { |
---|
1227 | isIdeal = 1; |
---|
1228 | maxrk = 1; |
---|
1229 | } |
---|
1230 | /* init -----------------------------------------------------------*/ |
---|
1231 | j += maxrk; |
---|
1232 | syzComp = k*maxrk; |
---|
1233 | |
---|
1234 | ring orig_ring=currRing; |
---|
1235 | ring syz_ring=rCurrRingAssure_SyzComp(); |
---|
1236 | rSetSyzComp(syzComp); |
---|
1237 | |
---|
1238 | bigmat = idInit(j,(k+1)*maxrk); |
---|
1239 | /* create unit matrices ------------------------------------------*/ |
---|
1240 | for (i=0;i<maxrk;i++) |
---|
1241 | { |
---|
1242 | for (j=0;j<=k;j++) |
---|
1243 | { |
---|
1244 | p = pOne(); |
---|
1245 | pSetComp(p,i+1+j*maxrk); |
---|
1246 | pSetmComp(p); |
---|
1247 | bigmat->m[i] = pAdd(bigmat->m[i],p); |
---|
1248 | } |
---|
1249 | } |
---|
1250 | /* enter given ideals ------------------------------------------*/ |
---|
1251 | i = maxrk; |
---|
1252 | k = 0; |
---|
1253 | for (j=0;j<length;j++) |
---|
1254 | { |
---|
1255 | if (arg[j]!=NULL) |
---|
1256 | { |
---|
1257 | for (l=0;l<IDELEMS(arg[j]);l++) |
---|
1258 | { |
---|
1259 | if (arg[j]->m[l]!=NULL) |
---|
1260 | { |
---|
1261 | if (syz_ring==orig_ring) |
---|
1262 | bigmat->m[i] = pCopy(arg[j]->m[l]); |
---|
1263 | else |
---|
1264 | bigmat->m[i] = prCopyR(arg[j]->m[l], orig_ring); |
---|
1265 | pShift(&(bigmat->m[i]),k*maxrk+isIdeal); |
---|
1266 | i++; |
---|
1267 | } |
---|
1268 | } |
---|
1269 | k++; |
---|
1270 | } |
---|
1271 | } |
---|
1272 | /* std computation --------------------------------------------*/ |
---|
1273 | tempstd = kStd(bigmat,currQuotient,testHomog,&w,NULL,syzComp); |
---|
1274 | if (w!=NULL) delete w; |
---|
1275 | idDelete(&bigmat); |
---|
1276 | |
---|
1277 | if(syz_ring!=orig_ring) |
---|
1278 | rChangeCurrRing(orig_ring); |
---|
1279 | |
---|
1280 | /* interprete result ----------------------------------------*/ |
---|
1281 | result = idInit(IDELEMS(tempstd),maxrk); |
---|
1282 | k = 0; |
---|
1283 | for (j=0;j<IDELEMS(tempstd);j++) |
---|
1284 | { |
---|
1285 | if ((tempstd->m[j]!=NULL) && (p_GetComp(tempstd->m[j],syz_ring)>syzComp)) |
---|
1286 | { |
---|
1287 | if (syz_ring==orig_ring) |
---|
1288 | p = pCopy(tempstd->m[j]); |
---|
1289 | else |
---|
1290 | p = prCopyR(tempstd->m[j], syz_ring); |
---|
1291 | pShift(&p,-syzComp-isIdeal); |
---|
1292 | result->m[k] = p; |
---|
1293 | k++; |
---|
1294 | } |
---|
1295 | } |
---|
1296 | /* clean up ----------------------------------------------------*/ |
---|
1297 | if(syz_ring!=orig_ring) |
---|
1298 | rChangeCurrRing(syz_ring); |
---|
1299 | idDelete(&tempstd); |
---|
1300 | if(syz_ring!=orig_ring) |
---|
1301 | { |
---|
1302 | rChangeCurrRing(orig_ring); |
---|
1303 | rKill(syz_ring); |
---|
1304 | } |
---|
1305 | idSkipZeroes(result); |
---|
1306 | return result; |
---|
1307 | } |
---|
1308 | |
---|
1309 | /*2 |
---|
1310 | *computes syzygies of h1, |
---|
1311 | *if quot != NULL it computes in the quotient ring modulo "quot" |
---|
1312 | *works always in a ring with ringorder_s |
---|
1313 | */ |
---|
1314 | static ideal idPrepare (ideal h1, tHomog hom, int syzcomp, intvec **w) |
---|
1315 | { |
---|
1316 | ideal h2, h3; |
---|
1317 | int i; |
---|
1318 | int j,jj=0,k; |
---|
1319 | poly p,q; |
---|
1320 | |
---|
1321 | if (idIs0(h1)) return NULL; |
---|
1322 | k = idRankFreeModule(h1); |
---|
1323 | h2=idCopy(h1); |
---|
1324 | i = IDELEMS(h2)-1; |
---|
1325 | if (k == 0) |
---|
1326 | { |
---|
1327 | for (j=0; j<=i; j++) pShift(&(h2->m[j]),1); |
---|
1328 | k = 1; |
---|
1329 | } |
---|
1330 | if (syzcomp<k) |
---|
1331 | { |
---|
1332 | Warn("syzcomp too low, should be %d instead of %d",k,syzcomp); |
---|
1333 | syzcomp = k; |
---|
1334 | rSetSyzComp(k); |
---|
1335 | } |
---|
1336 | h2->rank = syzcomp+i+1; |
---|
1337 | |
---|
1338 | //if (hom==testHomog) |
---|
1339 | //{ |
---|
1340 | // if(idHomIdeal(h1,currQuotient)) |
---|
1341 | // { |
---|
1342 | // hom=TRUE; |
---|
1343 | // } |
---|
1344 | //} |
---|
1345 | |
---|
1346 | #if MYTEST |
---|
1347 | #ifdef RDEBUG |
---|
1348 | Print("Prepare::h2: "); |
---|
1349 | idPrint(h2); |
---|
1350 | |
---|
1351 | for(j=0;j<IDELEMS(h2);j++) pTest(h2->m[j]); |
---|
1352 | |
---|
1353 | #endif |
---|
1354 | #endif |
---|
1355 | |
---|
1356 | for (j=0; j<=i; j++) |
---|
1357 | { |
---|
1358 | p = h2->m[j]; |
---|
1359 | q = pOne(); |
---|
1360 | pSetComp(q,syzcomp+1+j); |
---|
1361 | pSetmComp(q); |
---|
1362 | if (p!=NULL) |
---|
1363 | { |
---|
1364 | while (pNext(p)) pIter(p); |
---|
1365 | p->next = q; |
---|
1366 | } |
---|
1367 | else |
---|
1368 | h2->m[j]=q; |
---|
1369 | } |
---|
1370 | |
---|
1371 | #ifdef PDEBUG |
---|
1372 | for(j=0;j<IDELEMS(h2);j++) pTest(h2->m[j]); |
---|
1373 | |
---|
1374 | #if MYTEST |
---|
1375 | #ifdef RDEBUG |
---|
1376 | Print("Prepare::Input: "); |
---|
1377 | idPrint(h2); |
---|
1378 | |
---|
1379 | Print("Prepare::currQuotient: "); |
---|
1380 | idPrint(currQuotient); |
---|
1381 | #endif |
---|
1382 | #endif |
---|
1383 | |
---|
1384 | #endif |
---|
1385 | |
---|
1386 | idTest(h2); |
---|
1387 | |
---|
1388 | h3 = kStd(h2,currQuotient,hom,w,NULL,syzcomp); |
---|
1389 | |
---|
1390 | #if MYTEST |
---|
1391 | #ifdef RDEBUG |
---|
1392 | Print("Prepare::Output: "); |
---|
1393 | idPrint(h3); |
---|
1394 | for(j=0;j<IDELEMS(h2);j++) pTest(h3->m[j]); |
---|
1395 | #endif |
---|
1396 | #endif |
---|
1397 | |
---|
1398 | |
---|
1399 | idDelete(&h2); |
---|
1400 | return h3; |
---|
1401 | } |
---|
1402 | |
---|
1403 | /*2 |
---|
1404 | * compute the syzygies of h1 in R/quot, |
---|
1405 | * weights of components are in w |
---|
1406 | * if setRegularity, return the regularity in deg |
---|
1407 | * do not change h1, w |
---|
1408 | */ |
---|
1409 | ideal idSyzygies (ideal h1, tHomog h,intvec **w, BOOLEAN setSyzComp, |
---|
1410 | BOOLEAN setRegularity, int *deg) |
---|
1411 | { |
---|
1412 | ideal s_h1; |
---|
1413 | poly p; |
---|
1414 | int j, k, length=0,reg; |
---|
1415 | BOOLEAN isMonomial=TRUE; |
---|
1416 | int ii, idElemens_h1; |
---|
1417 | |
---|
1418 | assume(h1 != NULL); |
---|
1419 | |
---|
1420 | idElemens_h1=IDELEMS(h1); |
---|
1421 | #ifdef PDEBUG |
---|
1422 | for(ii=0;ii<idElemens_h1 /*IDELEMS(h1)*/;ii++) pTest(h1->m[ii]); |
---|
1423 | #endif |
---|
1424 | if (idIs0(h1)) |
---|
1425 | { |
---|
1426 | ideal result=idFreeModule(idElemens_h1/*IDELEMS(h1)*/); |
---|
1427 | int curr_syz_limit=rGetCurrSyzLimit(); |
---|
1428 | if (curr_syz_limit>0) |
---|
1429 | for (ii=0;ii<idElemens_h1/*IDELEMS(h1)*/;ii++) |
---|
1430 | { |
---|
1431 | if (h1->m[ii]!=NULL) |
---|
1432 | pShift(&h1->m[ii],curr_syz_limit); |
---|
1433 | } |
---|
1434 | return result; |
---|
1435 | } |
---|
1436 | int slength=(int)idRankFreeModule(h1); |
---|
1437 | k=si_max(1,slength /*idRankFreeModule(h1)*/); |
---|
1438 | |
---|
1439 | assume(currRing != NULL); |
---|
1440 | ring orig_ring=currRing; |
---|
1441 | ring syz_ring=rCurrRingAssure_SyzComp(); |
---|
1442 | |
---|
1443 | if (setSyzComp) |
---|
1444 | rSetSyzComp(k); |
---|
1445 | |
---|
1446 | if (orig_ring != syz_ring) |
---|
1447 | { |
---|
1448 | s_h1=idrCopyR_NoSort(h1,orig_ring); |
---|
1449 | } |
---|
1450 | else |
---|
1451 | { |
---|
1452 | s_h1 = h1; |
---|
1453 | } |
---|
1454 | |
---|
1455 | idTest(s_h1); |
---|
1456 | |
---|
1457 | ideal s_h3=idPrepare(s_h1,h,k,w); // main (syz) GB computation |
---|
1458 | |
---|
1459 | if (s_h3==NULL) |
---|
1460 | { |
---|
1461 | return idFreeModule( idElemens_h1 /*IDELEMS(h1)*/); |
---|
1462 | } |
---|
1463 | |
---|
1464 | if (orig_ring != syz_ring) |
---|
1465 | { |
---|
1466 | idDelete(&s_h1); |
---|
1467 | for (j=0; j<IDELEMS(s_h3); j++) |
---|
1468 | { |
---|
1469 | if (s_h3->m[j] != NULL) |
---|
1470 | { |
---|
1471 | if (p_MinComp(s_h3->m[j],syz_ring) > k) |
---|
1472 | pShift(&s_h3->m[j], -k); |
---|
1473 | else |
---|
1474 | pDelete(&s_h3->m[j]); |
---|
1475 | } |
---|
1476 | } |
---|
1477 | idSkipZeroes(s_h3); |
---|
1478 | s_h3->rank -= k; |
---|
1479 | rChangeCurrRing(orig_ring); |
---|
1480 | s_h3 = idrMoveR_NoSort(s_h3, syz_ring); |
---|
1481 | rKill(syz_ring); |
---|
1482 | idTest(s_h3); |
---|
1483 | return s_h3; |
---|
1484 | } |
---|
1485 | |
---|
1486 | ideal e = idInit(IDELEMS(s_h3), s_h3->rank); |
---|
1487 | |
---|
1488 | for (j=IDELEMS(s_h3)-1; j>=0; j--) |
---|
1489 | { |
---|
1490 | if (s_h3->m[j] != NULL) |
---|
1491 | { |
---|
1492 | if (p_MinComp(s_h3->m[j],syz_ring) <= k) |
---|
1493 | { |
---|
1494 | e->m[j] = s_h3->m[j]; |
---|
1495 | isMonomial=isMonomial && (pNext(s_h3->m[j])==NULL); |
---|
1496 | pDelete(&pNext(s_h3->m[j])); |
---|
1497 | s_h3->m[j] = NULL; |
---|
1498 | } |
---|
1499 | } |
---|
1500 | } |
---|
1501 | |
---|
1502 | idSkipZeroes(s_h3); |
---|
1503 | idSkipZeroes(e); |
---|
1504 | |
---|
1505 | if ((deg != NULL) |
---|
1506 | && (!isMonomial) |
---|
1507 | && (!TEST_OPT_NOTREGULARITY) |
---|
1508 | && (setRegularity) |
---|
1509 | && (h==isHomog) |
---|
1510 | && (!rIsPluralRing(currRing)) |
---|
1511 | ) |
---|
1512 | { |
---|
1513 | ring dp_C_ring = rCurrRingAssure_dp_C(); |
---|
1514 | if (dp_C_ring != syz_ring) |
---|
1515 | e = idrMoveR_NoSort(e, syz_ring); |
---|
1516 | resolvente res = sySchreyerResolvente(e,-1,&length,TRUE, TRUE); |
---|
1517 | intvec * dummy = syBetti(res,length,®, *w); |
---|
1518 | *deg = reg+2; |
---|
1519 | delete dummy; |
---|
1520 | for (j=0;j<length;j++) |
---|
1521 | { |
---|
1522 | if (res[j]!=NULL) idDelete(&(res[j])); |
---|
1523 | } |
---|
1524 | omFreeSize((ADDRESS)res,length*sizeof(ideal)); |
---|
1525 | idDelete(&e); |
---|
1526 | if (dp_C_ring != syz_ring) |
---|
1527 | { |
---|
1528 | rChangeCurrRing(syz_ring); |
---|
1529 | rKill(dp_C_ring); |
---|
1530 | } |
---|
1531 | } |
---|
1532 | else |
---|
1533 | { |
---|
1534 | idDelete(&e); |
---|
1535 | } |
---|
1536 | idTest(s_h3); |
---|
1537 | if (currQuotient != NULL) |
---|
1538 | { |
---|
1539 | ideal ts_h3=kStd(s_h3,currQuotient,h,w); |
---|
1540 | idDelete(&s_h3); |
---|
1541 | s_h3 = ts_h3; |
---|
1542 | } |
---|
1543 | return s_h3; |
---|
1544 | } |
---|
1545 | |
---|
1546 | /*2 |
---|
1547 | */ |
---|
1548 | ideal idXXX (ideal h1, int k) |
---|
1549 | { |
---|
1550 | ideal s_h1; |
---|
1551 | int j; |
---|
1552 | intvec *w=NULL; |
---|
1553 | |
---|
1554 | assume(currRing != NULL); |
---|
1555 | ring orig_ring=currRing; |
---|
1556 | ring syz_ring=rCurrRingAssure_SyzComp(); |
---|
1557 | |
---|
1558 | rSetSyzComp(k); |
---|
1559 | |
---|
1560 | if (orig_ring != syz_ring) |
---|
1561 | { |
---|
1562 | s_h1=idrCopyR_NoSort(h1,orig_ring); |
---|
1563 | } |
---|
1564 | else |
---|
1565 | { |
---|
1566 | s_h1 = h1; |
---|
1567 | } |
---|
1568 | |
---|
1569 | ideal s_h3=kStd(s_h1,NULL,testHomog,&w,NULL,k); |
---|
1570 | |
---|
1571 | if (s_h3==NULL) |
---|
1572 | { |
---|
1573 | return idFreeModule(IDELEMS(h1)); |
---|
1574 | } |
---|
1575 | |
---|
1576 | if (orig_ring != syz_ring) |
---|
1577 | { |
---|
1578 | idDelete(&s_h1); |
---|
1579 | idSkipZeroes(s_h3); |
---|
1580 | rChangeCurrRing(orig_ring); |
---|
1581 | s_h3 = idrMoveR_NoSort(s_h3, syz_ring); |
---|
1582 | rKill(syz_ring); |
---|
1583 | idTest(s_h3); |
---|
1584 | return s_h3; |
---|
1585 | } |
---|
1586 | |
---|
1587 | idSkipZeroes(s_h3); |
---|
1588 | idTest(s_h3); |
---|
1589 | return s_h3; |
---|
1590 | } |
---|
1591 | |
---|
1592 | /* |
---|
1593 | *computes a standard basis for h1 and stores the transformation matrix |
---|
1594 | * in ma |
---|
1595 | */ |
---|
1596 | ideal idLiftStd (ideal h1, matrix* ma, tHomog h) |
---|
1597 | { |
---|
1598 | int i, j, k, t, inputIsIdeal=idRankFreeModule(h1); |
---|
1599 | poly p=NULL, q, qq; |
---|
1600 | intvec *w=NULL; |
---|
1601 | |
---|
1602 | idDelete((ideal*)ma); |
---|
1603 | *ma=mpNew(1,0); |
---|
1604 | if (idIs0(h1)) |
---|
1605 | return idInit(1,h1->rank); |
---|
1606 | |
---|
1607 | BITSET save_verbose=verbose; |
---|
1608 | |
---|
1609 | k=si_max(1,(int)idRankFreeModule(h1)); |
---|
1610 | |
---|
1611 | if (k==1) verbose |=Sy_bit(V_IDLIFT); |
---|
1612 | |
---|
1613 | ring orig_ring = currRing; |
---|
1614 | ring syz_ring = rCurrRingAssure_SyzComp(); |
---|
1615 | rSetSyzComp(k); |
---|
1616 | |
---|
1617 | |
---|
1618 | #if MYTEST |
---|
1619 | #ifdef RDEBUG |
---|
1620 | rWrite(syz_ring); |
---|
1621 | rDebugPrint(syz_ring); |
---|
1622 | #endif |
---|
1623 | #endif |
---|
1624 | |
---|
1625 | ideal s_h1=h1; |
---|
1626 | |
---|
1627 | if (orig_ring != syz_ring) |
---|
1628 | s_h1 = idrCopyR_NoSort(h1,orig_ring); |
---|
1629 | else |
---|
1630 | s_h1 = h1; |
---|
1631 | |
---|
1632 | #if MYTEST |
---|
1633 | #ifdef RDEBUG |
---|
1634 | Print("idLiftStd Input: "); |
---|
1635 | idPrint(s_h1); |
---|
1636 | #endif |
---|
1637 | #endif |
---|
1638 | |
---|
1639 | |
---|
1640 | ideal s_h3=idPrepare(s_h1,h,k,&w); |
---|
1641 | |
---|
1642 | #if MYTEST |
---|
1643 | #ifdef RDEBUG |
---|
1644 | Print("idLiftStd Prepare: "); |
---|
1645 | idPrint(s_h3); |
---|
1646 | #endif |
---|
1647 | #endif |
---|
1648 | |
---|
1649 | ideal s_h2 = idInit(IDELEMS(s_h3), s_h3->rank); |
---|
1650 | |
---|
1651 | #if MYTEST |
---|
1652 | #ifdef RDEBUG |
---|
1653 | Print("idLiftStd Temp: "); |
---|
1654 | idPrint(s_h2); |
---|
1655 | #endif |
---|
1656 | #endif |
---|
1657 | |
---|
1658 | if (w!=NULL) delete w; |
---|
1659 | i = 0; |
---|
1660 | |
---|
1661 | for (j=0; j<IDELEMS(s_h3); j++) |
---|
1662 | { |
---|
1663 | if ((s_h3->m[j] != NULL) && (p_MinComp(s_h3->m[j],syz_ring) <= k)) |
---|
1664 | { |
---|
1665 | i++; |
---|
1666 | q = s_h3->m[j]; |
---|
1667 | while (pNext(q) != NULL) |
---|
1668 | { |
---|
1669 | if (pGetComp(pNext(q)) > k) |
---|
1670 | { |
---|
1671 | s_h2->m[j] = pNext(q); |
---|
1672 | pNext(q) = NULL; |
---|
1673 | } |
---|
1674 | else |
---|
1675 | { |
---|
1676 | pIter(q); |
---|
1677 | } |
---|
1678 | } |
---|
1679 | if (!inputIsIdeal) pShift(&(s_h3->m[j]), -1); |
---|
1680 | } |
---|
1681 | else |
---|
1682 | { |
---|
1683 | pDelete(&(s_h3->m[j])); |
---|
1684 | } |
---|
1685 | } |
---|
1686 | |
---|
1687 | idSkipZeroes(s_h3); |
---|
1688 | |
---|
1689 | #if MYTEST |
---|
1690 | #ifdef RDEBUG |
---|
1691 | Print("idLiftStd Input'': "); |
---|
1692 | idPrint(s_h3); |
---|
1693 | #endif |
---|
1694 | #endif |
---|
1695 | |
---|
1696 | j = IDELEMS(s_h1); |
---|
1697 | |
---|
1698 | |
---|
1699 | #if MYTEST |
---|
1700 | #ifdef RDEBUG |
---|
1701 | Print("idLiftStd Temp Result: "); |
---|
1702 | idPrint(s_h2); |
---|
1703 | #endif |
---|
1704 | #endif |
---|
1705 | |
---|
1706 | |
---|
1707 | if (syz_ring!=orig_ring) |
---|
1708 | { |
---|
1709 | idDelete(&s_h1); |
---|
1710 | rChangeCurrRing(orig_ring); |
---|
1711 | } |
---|
1712 | |
---|
1713 | idDelete((ideal*)ma); |
---|
1714 | *ma = mpNew(j,i); |
---|
1715 | |
---|
1716 | i = 1; |
---|
1717 | for (j=0; j<IDELEMS(s_h2); j++) |
---|
1718 | { |
---|
1719 | if (s_h2->m[j] != NULL) |
---|
1720 | { |
---|
1721 | q = prMoveR( s_h2->m[j], syz_ring); |
---|
1722 | s_h2->m[j] = NULL; |
---|
1723 | |
---|
1724 | while (q != NULL) |
---|
1725 | { |
---|
1726 | p = q; |
---|
1727 | pIter(q); |
---|
1728 | pNext(p) = NULL; |
---|
1729 | t=pGetComp(p); |
---|
1730 | pSetComp(p,0); |
---|
1731 | pSetmComp(p); |
---|
1732 | MATELEM(*ma,t-k,i) = pAdd(MATELEM(*ma,t-k,i),p); |
---|
1733 | } |
---|
1734 | i++; |
---|
1735 | } |
---|
1736 | } |
---|
1737 | idDelete(&s_h2); |
---|
1738 | |
---|
1739 | for (i=0; i<IDELEMS(s_h3); i++) |
---|
1740 | { |
---|
1741 | s_h3->m[i] = prMoveR_NoSort(s_h3->m[i], syz_ring); |
---|
1742 | } |
---|
1743 | |
---|
1744 | #if MYTEST |
---|
1745 | #ifdef RDEBUG |
---|
1746 | Print("idLiftStd Output STD Ideal: "); |
---|
1747 | idPrint(s_h3); |
---|
1748 | |
---|
1749 | Print("idLiftStd Output Matrix: "); |
---|
1750 | iiWriteMatrix(*ma, "ma", 2, 4); |
---|
1751 | #endif |
---|
1752 | #endif |
---|
1753 | |
---|
1754 | |
---|
1755 | if (syz_ring!=orig_ring) rKill(syz_ring); |
---|
1756 | verbose = save_verbose; |
---|
1757 | return s_h3; |
---|
1758 | } |
---|
1759 | |
---|
1760 | static void idPrepareStd(ideal s_temp, int k) |
---|
1761 | { |
---|
1762 | int j,rk=idRankFreeModule(s_temp); |
---|
1763 | poly p,q; |
---|
1764 | |
---|
1765 | if (rk == 0) |
---|
1766 | { |
---|
1767 | for (j=0; j<IDELEMS(s_temp); j++) |
---|
1768 | { |
---|
1769 | if (s_temp->m[j]!=NULL) pSetCompP(s_temp->m[j],1); |
---|
1770 | } |
---|
1771 | k = si_max(k,1); |
---|
1772 | } |
---|
1773 | for (j=0; j<IDELEMS(s_temp); j++) |
---|
1774 | { |
---|
1775 | if (s_temp->m[j]!=NULL) |
---|
1776 | { |
---|
1777 | p = s_temp->m[j]; |
---|
1778 | q = pOne(); |
---|
1779 | //pGetCoeff(q)=nNeg(pGetCoeff(q)); //set q to -1 |
---|
1780 | pSetComp(q,k+1+j); |
---|
1781 | pSetmComp(q); |
---|
1782 | while (pNext(p)) pIter(p); |
---|
1783 | pNext(p) = q; |
---|
1784 | } |
---|
1785 | } |
---|
1786 | } |
---|
1787 | |
---|
1788 | /*2 |
---|
1789 | *computes a representation of the generators of submod with respect to those |
---|
1790 | * of mod |
---|
1791 | */ |
---|
1792 | |
---|
1793 | ideal idLift(ideal mod, ideal submod,ideal *rest, BOOLEAN goodShape, |
---|
1794 | BOOLEAN isSB, BOOLEAN divide, matrix *unit) |
---|
1795 | { |
---|
1796 | int lsmod =idRankFreeModule(submod), i, j, k; |
---|
1797 | int comps_to_add=0; |
---|
1798 | poly p; |
---|
1799 | |
---|
1800 | if (idIs0(submod)) |
---|
1801 | { |
---|
1802 | if (unit!=NULL) |
---|
1803 | { |
---|
1804 | *unit=mpNew(1,1); |
---|
1805 | MATELEM(*unit,1,1)=pOne(); |
---|
1806 | } |
---|
1807 | if (rest!=NULL) |
---|
1808 | { |
---|
1809 | *rest=idInit(1,mod->rank); |
---|
1810 | } |
---|
1811 | return idInit(1,mod->rank); |
---|
1812 | } |
---|
1813 | if (idIs0(mod)) |
---|
1814 | { |
---|
1815 | if (unit!=NULL) |
---|
1816 | { |
---|
1817 | i=IDELEMS(submod); |
---|
1818 | *unit=mpNew(i,i); |
---|
1819 | for (j=i;j>0;j--) |
---|
1820 | { |
---|
1821 | MATELEM(*unit,j,j)=pOne(); |
---|
1822 | } |
---|
1823 | } |
---|
1824 | if (rest!=NULL) |
---|
1825 | { |
---|
1826 | *rest=idCopy(submod); |
---|
1827 | } |
---|
1828 | return idInit(1,mod->rank); |
---|
1829 | } |
---|
1830 | if (unit!=NULL) |
---|
1831 | { |
---|
1832 | comps_to_add = IDELEMS(submod); |
---|
1833 | while ((comps_to_add>0) && (submod->m[comps_to_add-1]==NULL)) |
---|
1834 | comps_to_add--; |
---|
1835 | } |
---|
1836 | k=idRankFreeModule(mod); |
---|
1837 | if ((k!=0) && (lsmod==0)) lsmod=1; |
---|
1838 | k=si_max(k,(int)mod->rank); |
---|
1839 | |
---|
1840 | ring orig_ring=currRing; |
---|
1841 | ring syz_ring=rCurrRingAssure_SyzComp(); |
---|
1842 | rSetSyzComp(k); |
---|
1843 | |
---|
1844 | ideal s_mod, s_temp; |
---|
1845 | if (orig_ring != syz_ring) |
---|
1846 | { |
---|
1847 | s_mod = idrCopyR_NoSort(mod,orig_ring); |
---|
1848 | s_temp = idrCopyR_NoSort(submod,orig_ring); |
---|
1849 | } |
---|
1850 | else |
---|
1851 | { |
---|
1852 | s_mod = mod; |
---|
1853 | s_temp = idCopy(submod); |
---|
1854 | } |
---|
1855 | ideal s_h3; |
---|
1856 | if (isSB) |
---|
1857 | { |
---|
1858 | s_h3 = idCopy(s_mod); |
---|
1859 | idPrepareStd(s_h3, k+comps_to_add); |
---|
1860 | } |
---|
1861 | else |
---|
1862 | { |
---|
1863 | s_h3 = idPrepare(s_mod,(tHomog)FALSE,k+comps_to_add,NULL); |
---|
1864 | } |
---|
1865 | if (!goodShape) |
---|
1866 | { |
---|
1867 | for (j=0;j<IDELEMS(s_h3);j++) |
---|
1868 | { |
---|
1869 | if ((s_h3->m[j] != NULL) && (pMinComp(s_h3->m[j]) > k)) |
---|
1870 | pDelete(&(s_h3->m[j])); |
---|
1871 | } |
---|
1872 | } |
---|
1873 | idSkipZeroes(s_h3); |
---|
1874 | if (lsmod==0) |
---|
1875 | { |
---|
1876 | for (j=IDELEMS(s_temp);j>0;j--) |
---|
1877 | { |
---|
1878 | if (s_temp->m[j-1]!=NULL) |
---|
1879 | pShift(&(s_temp->m[j-1]),1); |
---|
1880 | } |
---|
1881 | } |
---|
1882 | if (unit!=NULL) |
---|
1883 | { |
---|
1884 | for(j = 0;j<comps_to_add;j++) |
---|
1885 | { |
---|
1886 | p = s_temp->m[j]; |
---|
1887 | if (p!=NULL) |
---|
1888 | { |
---|
1889 | while (pNext(p)!=NULL) pIter(p); |
---|
1890 | pNext(p) = pOne(); |
---|
1891 | pIter(p); |
---|
1892 | pSetComp(p,1+j+k); |
---|
1893 | pSetmComp(p); |
---|
1894 | p = pNeg(p); |
---|
1895 | } |
---|
1896 | } |
---|
1897 | } |
---|
1898 | ideal s_result = kNF(s_h3,currQuotient,s_temp,k); |
---|
1899 | s_result->rank = s_h3->rank; |
---|
1900 | ideal s_rest = idInit(IDELEMS(s_result),k); |
---|
1901 | idDelete(&s_h3); |
---|
1902 | idDelete(&s_temp); |
---|
1903 | |
---|
1904 | for (j=0;j<IDELEMS(s_result);j++) |
---|
1905 | { |
---|
1906 | if (s_result->m[j]!=NULL) |
---|
1907 | { |
---|
1908 | if (pGetComp(s_result->m[j])<=k) |
---|
1909 | { |
---|
1910 | if (!divide) |
---|
1911 | { |
---|
1912 | if (isSB) |
---|
1913 | { |
---|
1914 | WarnS("first module not a standardbasis\n" |
---|
1915 | "// ** or second not a proper submodule"); |
---|
1916 | } |
---|
1917 | else |
---|
1918 | WerrorS("2nd module does not lie in the first"); |
---|
1919 | idDelete(&s_result); |
---|
1920 | idDelete(&s_rest); |
---|
1921 | s_result=idInit(IDELEMS(submod),submod->rank); |
---|
1922 | break; |
---|
1923 | } |
---|
1924 | else |
---|
1925 | { |
---|
1926 | p = s_rest->m[j] = s_result->m[j]; |
---|
1927 | while ((pNext(p)!=NULL) && (pGetComp(pNext(p))<=k)) pIter(p); |
---|
1928 | s_result->m[j] = pNext(p); |
---|
1929 | pNext(p) = NULL; |
---|
1930 | } |
---|
1931 | } |
---|
1932 | pShift(&(s_result->m[j]),-k); |
---|
1933 | pNeg(s_result->m[j]); |
---|
1934 | } |
---|
1935 | } |
---|
1936 | if ((lsmod==0) && (!idIs0(s_rest))) |
---|
1937 | { |
---|
1938 | for (j=IDELEMS(s_rest);j>0;j--) |
---|
1939 | { |
---|
1940 | if (s_rest->m[j-1]!=NULL) |
---|
1941 | { |
---|
1942 | pShift(&(s_rest->m[j-1]),-1); |
---|
1943 | s_rest->m[j-1] = s_rest->m[j-1]; |
---|
1944 | } |
---|
1945 | } |
---|
1946 | } |
---|
1947 | if(syz_ring!=orig_ring) |
---|
1948 | { |
---|
1949 | idDelete(&s_mod); |
---|
1950 | rChangeCurrRing(orig_ring); |
---|
1951 | s_result = idrMoveR_NoSort(s_result, syz_ring); |
---|
1952 | s_rest = idrMoveR_NoSort(s_rest, syz_ring); |
---|
1953 | rKill(syz_ring); |
---|
1954 | } |
---|
1955 | if (rest!=NULL) |
---|
1956 | *rest = s_rest; |
---|
1957 | else |
---|
1958 | idDelete(&s_rest); |
---|
1959 | //idPrint(s_result); |
---|
1960 | if (unit!=NULL) |
---|
1961 | { |
---|
1962 | *unit=mpNew(comps_to_add,comps_to_add); |
---|
1963 | int i; |
---|
1964 | for(i=0;i<IDELEMS(s_result);i++) |
---|
1965 | { |
---|
1966 | poly p=s_result->m[i]; |
---|
1967 | poly q=NULL; |
---|
1968 | while(p!=NULL) |
---|
1969 | { |
---|
1970 | if(pGetComp(p)<=comps_to_add) |
---|
1971 | { |
---|
1972 | pSetComp(p,0); |
---|
1973 | if (q!=NULL) |
---|
1974 | { |
---|
1975 | pNext(q)=pNext(p); |
---|
1976 | } |
---|
1977 | else |
---|
1978 | { |
---|
1979 | pIter(s_result->m[i]); |
---|
1980 | } |
---|
1981 | pNext(p)=NULL; |
---|
1982 | MATELEM(*unit,i+1,i+1)=pAdd(MATELEM(*unit,i+1,i+1),p); |
---|
1983 | if(q!=NULL) p=pNext(q); |
---|
1984 | else p=s_result->m[i]; |
---|
1985 | } |
---|
1986 | else |
---|
1987 | { |
---|
1988 | q=p; |
---|
1989 | pIter(p); |
---|
1990 | } |
---|
1991 | } |
---|
1992 | pShift(&s_result->m[i],-comps_to_add); |
---|
1993 | } |
---|
1994 | } |
---|
1995 | return s_result; |
---|
1996 | } |
---|
1997 | |
---|
1998 | /*2 |
---|
1999 | *computes division of P by Q with remainder up to (w-weighted) degree n |
---|
2000 | *P, Q, and w are not changed |
---|
2001 | */ |
---|
2002 | void idLiftW(ideal P,ideal Q,int n,matrix &T, ideal &R,short *w) |
---|
2003 | { |
---|
2004 | long N=0; |
---|
2005 | int i; |
---|
2006 | for(i=IDELEMS(Q)-1;i>=0;i--) |
---|
2007 | if(w==NULL) |
---|
2008 | N=si_max(N,pDeg(Q->m[i])); |
---|
2009 | else |
---|
2010 | N=si_max(N,pDegW(Q->m[i],w)); |
---|
2011 | N+=n; |
---|
2012 | |
---|
2013 | T=mpNew(IDELEMS(Q),IDELEMS(P)); |
---|
2014 | R=idInit(IDELEMS(P),P->rank); |
---|
2015 | |
---|
2016 | for(i=IDELEMS(P)-1;i>=0;i--) |
---|
2017 | { |
---|
2018 | poly p; |
---|
2019 | if(w==NULL) |
---|
2020 | p=ppJet(P->m[i],N); |
---|
2021 | else |
---|
2022 | p=ppJetW(P->m[i],N,w); |
---|
2023 | |
---|
2024 | int j=IDELEMS(Q)-1; |
---|
2025 | while(p!=NULL) |
---|
2026 | { |
---|
2027 | if(pDivisibleBy(Q->m[j],p)) |
---|
2028 | { |
---|
2029 | poly p0=pDivideM(pHead(p),pHead(Q->m[j])); |
---|
2030 | if(w==NULL) |
---|
2031 | p=pJet(pSub(p,ppMult_mm(Q->m[j],p0)),N); |
---|
2032 | else |
---|
2033 | p=pJetW(pSub(p,ppMult_mm(Q->m[j],p0)),N,w); |
---|
2034 | pNormalize(p); |
---|
2035 | if((w==NULL)&&(pDeg(p0)>n)||(w!=NULL)&&(pDegW(p0,w)>n)) |
---|
2036 | pDelete(&p0); |
---|
2037 | else |
---|
2038 | MATELEM(T,j+1,i+1)=pAdd(MATELEM(T,j+1,i+1),p0); |
---|
2039 | j=IDELEMS(Q)-1; |
---|
2040 | } |
---|
2041 | else |
---|
2042 | { |
---|
2043 | if(j==0) |
---|
2044 | { |
---|
2045 | poly p0=p; |
---|
2046 | pIter(p); |
---|
2047 | pNext(p0)=NULL; |
---|
2048 | if(((w==NULL)&&(pDeg(p0)>n)) |
---|
2049 | ||((w!=NULL)&&(pDegW(p0,w)>n))) |
---|
2050 | pDelete(&p0); |
---|
2051 | else |
---|
2052 | R->m[i]=pAdd(R->m[i],p0); |
---|
2053 | j=IDELEMS(Q)-1; |
---|
2054 | } |
---|
2055 | else |
---|
2056 | j--; |
---|
2057 | } |
---|
2058 | } |
---|
2059 | } |
---|
2060 | } |
---|
2061 | |
---|
2062 | /*2 |
---|
2063 | *computes the quotient of h1,h2 : internal routine for idQuot |
---|
2064 | *BEWARE: the returned ideals may contain incorrectly ordered polys ! |
---|
2065 | * |
---|
2066 | */ |
---|
2067 | static ideal idInitializeQuot (ideal h1, ideal h2, BOOLEAN h1IsStb, |
---|
2068 | BOOLEAN *addOnlyOne, int *kkmax) |
---|
2069 | { |
---|
2070 | ideal temph1; |
---|
2071 | poly p,q = NULL; |
---|
2072 | int i,l,ll,k,kkk,kmax; |
---|
2073 | int j = 0; |
---|
2074 | int k1 = idRankFreeModule(h1); |
---|
2075 | int k2 = idRankFreeModule(h2); |
---|
2076 | tHomog hom=isNotHomog; |
---|
2077 | |
---|
2078 | k=si_max(k1,k2); |
---|
2079 | if (k==0) |
---|
2080 | k = 1; |
---|
2081 | if ((k2==0) && (k>1)) *addOnlyOne = FALSE; |
---|
2082 | |
---|
2083 | intvec * weights; |
---|
2084 | hom = (tHomog)idHomModule(h1,currQuotient,&weights); |
---|
2085 | if (addOnlyOne && (!h1IsStb)) |
---|
2086 | temph1 = kStd(h1,currQuotient,hom,&weights,NULL); |
---|
2087 | else |
---|
2088 | temph1 = idCopy(h1); |
---|
2089 | if (weights!=NULL) delete weights; |
---|
2090 | idTest(temph1); |
---|
2091 | /*--- making a single vector from h2 ---------------------*/ |
---|
2092 | for (i=0; i<IDELEMS(h2); i++) |
---|
2093 | { |
---|
2094 | if (h2->m[i] != NULL) |
---|
2095 | { |
---|
2096 | p = pCopy(h2->m[i]); |
---|
2097 | if (k2 == 0) |
---|
2098 | pShift(&p,j*k+1); |
---|
2099 | else |
---|
2100 | pShift(&p,j*k); |
---|
2101 | q = pAdd(q,p); |
---|
2102 | j++; |
---|
2103 | } |
---|
2104 | } |
---|
2105 | *kkmax = kmax = j*k+1; |
---|
2106 | /*--- adding a monomial for the result (syzygy) ----------*/ |
---|
2107 | p = q; |
---|
2108 | while (pNext(p)!=NULL) pIter(p); |
---|
2109 | pNext(p) = pOne(); |
---|
2110 | pIter(p); |
---|
2111 | pSetComp(p,kmax); |
---|
2112 | pSetmComp(p); |
---|
2113 | /*--- constructing the big matrix ------------------------*/ |
---|
2114 | ideal h4 = idInit(16,kmax+k-1); |
---|
2115 | h4->m[0] = q; |
---|
2116 | if (k2 == 0) |
---|
2117 | { |
---|
2118 | if (k > IDELEMS(h4)) |
---|
2119 | { |
---|
2120 | pEnlargeSet(&(h4->m),IDELEMS(h4),k-IDELEMS(h4)); |
---|
2121 | IDELEMS(h4) = k; |
---|
2122 | } |
---|
2123 | for (i=1; i<k; i++) |
---|
2124 | { |
---|
2125 | p = pCopy_noCheck(h4->m[i-1]); |
---|
2126 | pShift(&p,1); |
---|
2127 | h4->m[i] = p; |
---|
2128 | } |
---|
2129 | } |
---|
2130 | |
---|
2131 | kkk = IDELEMS(h4); |
---|
2132 | i = IDELEMS(temph1); |
---|
2133 | while ((i>0) && (temph1->m[i-1]==NULL)) i--; |
---|
2134 | for (l=0; l<i; l++) |
---|
2135 | { |
---|
2136 | if(temph1->m[l]!=NULL) |
---|
2137 | { |
---|
2138 | for (ll=0; ll<j; ll++) |
---|
2139 | { |
---|
2140 | p = pCopy(temph1->m[l]); |
---|
2141 | if (k1 == 0) |
---|
2142 | pShift(&p,ll*k+1); |
---|
2143 | else |
---|
2144 | pShift(&p,ll*k); |
---|
2145 | if (kkk >= IDELEMS(h4)) |
---|
2146 | { |
---|
2147 | pEnlargeSet(&(h4->m),IDELEMS(h4),16); |
---|
2148 | IDELEMS(h4) += 16; |
---|
2149 | } |
---|
2150 | h4->m[kkk] = p; |
---|
2151 | kkk++; |
---|
2152 | } |
---|
2153 | } |
---|
2154 | } |
---|
2155 | /*--- if h2 goes in as single vector - the h1-part is just SB ---*/ |
---|
2156 | if (*addOnlyOne) |
---|
2157 | { |
---|
2158 | p = h4->m[0]; |
---|
2159 | for (i=0;i<IDELEMS(h4)-1;i++) |
---|
2160 | { |
---|
2161 | h4->m[i] = h4->m[i+1]; |
---|
2162 | } |
---|
2163 | h4->m[IDELEMS(h4)-1] = p; |
---|
2164 | idSkipZeroes(h4); |
---|
2165 | test |= Sy_bit(OPT_SB_1); |
---|
2166 | } |
---|
2167 | idDelete(&temph1); |
---|
2168 | return h4; |
---|
2169 | } |
---|
2170 | /*2 |
---|
2171 | *computes the quotient of h1,h2 |
---|
2172 | */ |
---|
2173 | ideal idQuot (ideal h1, ideal h2, BOOLEAN h1IsStb, BOOLEAN resultIsIdeal) |
---|
2174 | { |
---|
2175 | // first check for special case h1:(0) |
---|
2176 | if (idIs0(h2)) |
---|
2177 | { |
---|
2178 | ideal res; |
---|
2179 | if (resultIsIdeal) |
---|
2180 | { |
---|
2181 | res = idInit(1,1); |
---|
2182 | res->m[0] = pOne(); |
---|
2183 | } |
---|
2184 | else |
---|
2185 | res = idFreeModule(h1->rank); |
---|
2186 | return res; |
---|
2187 | } |
---|
2188 | BITSET old_test=test; |
---|
2189 | poly p,q = NULL; |
---|
2190 | int i,l,ll,k,kkk,kmax; |
---|
2191 | BOOLEAN addOnlyOne=TRUE; |
---|
2192 | tHomog hom=isNotHomog; |
---|
2193 | intvec * weights1; |
---|
2194 | |
---|
2195 | ideal s_h4 = idInitializeQuot (h1,h2,h1IsStb,&addOnlyOne,&kmax); |
---|
2196 | |
---|
2197 | hom = (tHomog)idHomModule(s_h4,currQuotient,&weights1); |
---|
2198 | |
---|
2199 | ring orig_ring=currRing; |
---|
2200 | ring syz_ring=rCurrRingAssure_SyzComp(); |
---|
2201 | rSetSyzComp(kmax-1); |
---|
2202 | if (orig_ring!=syz_ring) |
---|
2203 | // s_h4 = idrMoveR_NoSort(s_h4,orig_ring); |
---|
2204 | s_h4 = idrMoveR(s_h4,orig_ring); |
---|
2205 | idTest(s_h4); |
---|
2206 | ideal s_h3; |
---|
2207 | if (addOnlyOne) |
---|
2208 | { |
---|
2209 | s_h3 = kStd(s_h4,currQuotient,hom,&weights1,NULL,kmax-1,IDELEMS(s_h4)-1); |
---|
2210 | } |
---|
2211 | else |
---|
2212 | { |
---|
2213 | s_h3 = kStd(s_h4,currQuotient,hom,&weights1,NULL,kmax-1); |
---|
2214 | } |
---|
2215 | idTest(s_h3); |
---|
2216 | if (weights1!=NULL) delete weights1; |
---|
2217 | idDelete(&s_h4); |
---|
2218 | |
---|
2219 | |
---|
2220 | for (i=0;i<IDELEMS(s_h3);i++) |
---|
2221 | { |
---|
2222 | if ((s_h3->m[i]!=NULL) && (pGetComp(s_h3->m[i])>=kmax)) |
---|
2223 | { |
---|
2224 | if (resultIsIdeal) |
---|
2225 | pShift(&s_h3->m[i],-kmax); |
---|
2226 | else |
---|
2227 | pShift(&s_h3->m[i],-kmax+1); |
---|
2228 | } |
---|
2229 | else |
---|
2230 | pDelete(&s_h3->m[i]); |
---|
2231 | } |
---|
2232 | if (resultIsIdeal) |
---|
2233 | s_h3->rank = 1; |
---|
2234 | else |
---|
2235 | s_h3->rank = h1->rank; |
---|
2236 | if(syz_ring!=orig_ring) |
---|
2237 | { |
---|
2238 | // pDelete(&q); |
---|
2239 | rChangeCurrRing(orig_ring); |
---|
2240 | s_h3 = idrMoveR_NoSort(s_h3, syz_ring); |
---|
2241 | rKill(syz_ring); |
---|
2242 | } |
---|
2243 | idSkipZeroes(s_h3); |
---|
2244 | test = old_test; |
---|
2245 | idTest(s_h3); |
---|
2246 | return s_h3; |
---|
2247 | } |
---|
2248 | |
---|
2249 | /*2 |
---|
2250 | *computes recursively all monomials of a certain degree |
---|
2251 | *in every step the actvar-th entry in the exponential |
---|
2252 | *vector is incremented and the other variables are |
---|
2253 | *computed by recursive calls of makemonoms |
---|
2254 | *if the last variable is reached, the difference to the |
---|
2255 | *degree is computed directly |
---|
2256 | *vars is the number variables |
---|
2257 | *actvar is the actual variable to handle |
---|
2258 | *deg is the degree of the monomials to compute |
---|
2259 | *monomdeg is the actual degree of the monomial in consideration |
---|
2260 | */ |
---|
2261 | static void makemonoms(int vars,int actvar,int deg,int monomdeg) |
---|
2262 | { |
---|
2263 | poly p; |
---|
2264 | int i=0; |
---|
2265 | |
---|
2266 | if ((idpowerpoint == 0) && (actvar ==1)) |
---|
2267 | { |
---|
2268 | idpower[idpowerpoint] = pOne(); |
---|
2269 | monomdeg = 0; |
---|
2270 | } |
---|
2271 | while (i<=deg) |
---|
2272 | { |
---|
2273 | if (deg == monomdeg) |
---|
2274 | { |
---|
2275 | pSetm(idpower[idpowerpoint]); |
---|
2276 | idpowerpoint++; |
---|
2277 | return; |
---|
2278 | } |
---|
2279 | if (actvar == vars) |
---|
2280 | { |
---|
2281 | pSetExp(idpower[idpowerpoint],actvar,deg-monomdeg); |
---|
2282 | pSetm(idpower[idpowerpoint]); |
---|
2283 | pTest(idpower[idpowerpoint]); |
---|
2284 | idpowerpoint++; |
---|
2285 | return; |
---|
2286 | } |
---|
2287 | else |
---|
2288 | { |
---|
2289 | p = pCopy(idpower[idpowerpoint]); |
---|
2290 | makemonoms(vars,actvar+1,deg,monomdeg); |
---|
2291 | idpower[idpowerpoint] = p; |
---|
2292 | } |
---|
2293 | monomdeg++; |
---|
2294 | pSetExp(idpower[idpowerpoint],actvar,pGetExp(idpower[idpowerpoint],actvar)+1); |
---|
2295 | pSetm(idpower[idpowerpoint]); |
---|
2296 | pTest(idpower[idpowerpoint]); |
---|
2297 | i++; |
---|
2298 | } |
---|
2299 | } |
---|
2300 | |
---|
2301 | /*2 |
---|
2302 | *returns the deg-th power of the maximal ideal of 0 |
---|
2303 | */ |
---|
2304 | ideal idMaxIdeal(int deg) |
---|
2305 | { |
---|
2306 | if (deg < 0) |
---|
2307 | { |
---|
2308 | WarnS("maxideal: power must be non-negative"); |
---|
2309 | } |
---|
2310 | if (deg < 1) |
---|
2311 | { |
---|
2312 | ideal I=idInit(1,1); |
---|
2313 | I->m[0]=pOne(); |
---|
2314 | return I; |
---|
2315 | } |
---|
2316 | if (deg == 1) |
---|
2317 | { |
---|
2318 | return idMaxIdeal(); |
---|
2319 | } |
---|
2320 | |
---|
2321 | int vars = currRing->N; |
---|
2322 | int i = binom(vars+deg-1,deg); |
---|
2323 | if (i<=0) return idInit(1,1); |
---|
2324 | ideal id=idInit(i,1); |
---|
2325 | idpower = id->m; |
---|
2326 | idpowerpoint = 0; |
---|
2327 | makemonoms(vars,1,deg,0); |
---|
2328 | idpower = NULL; |
---|
2329 | idpowerpoint = 0; |
---|
2330 | return id; |
---|
2331 | } |
---|
2332 | |
---|
2333 | /*2 |
---|
2334 | *computes recursively all generators of a certain degree |
---|
2335 | *of the ideal "givenideal" |
---|
2336 | *elms is the number elements in the given ideal |
---|
2337 | *actelm is the actual element to handle |
---|
2338 | *deg is the degree of the power to compute |
---|
2339 | *gendeg is the actual degree of the generator in consideration |
---|
2340 | */ |
---|
2341 | static void makepotence(int elms,int actelm,int deg,int gendeg) |
---|
2342 | { |
---|
2343 | poly p; |
---|
2344 | int i=0; |
---|
2345 | |
---|
2346 | if ((idpowerpoint == 0) && (actelm ==1)) |
---|
2347 | { |
---|
2348 | idpower[idpowerpoint] = pOne(); |
---|
2349 | gendeg = 0; |
---|
2350 | } |
---|
2351 | while (i<=deg) |
---|
2352 | { |
---|
2353 | if (deg == gendeg) |
---|
2354 | { |
---|
2355 | idpowerpoint++; |
---|
2356 | return; |
---|
2357 | } |
---|
2358 | if (actelm == elms) |
---|
2359 | { |
---|
2360 | p=pPower(pCopy(givenideal[actelm-1]),deg-gendeg); |
---|
2361 | idpower[idpowerpoint]=pMult(idpower[idpowerpoint],p); |
---|
2362 | idpowerpoint++; |
---|
2363 | return; |
---|
2364 | } |
---|
2365 | else |
---|
2366 | { |
---|
2367 | p = pCopy(idpower[idpowerpoint]); |
---|
2368 | makepotence(elms,actelm+1,deg,gendeg); |
---|
2369 | idpower[idpowerpoint] = p; |
---|
2370 | } |
---|
2371 | gendeg++; |
---|
2372 | idpower[idpowerpoint]=pMult(idpower[idpowerpoint],pCopy(givenideal[actelm-1])); |
---|
2373 | i++; |
---|
2374 | } |
---|
2375 | } |
---|
2376 | |
---|
2377 | /*2 |
---|
2378 | *returns the deg-th power of the ideal gid |
---|
2379 | */ |
---|
2380 | //ideal idPower(ideal gid,int deg) |
---|
2381 | //{ |
---|
2382 | // int i; |
---|
2383 | // ideal id; |
---|
2384 | // |
---|
2385 | // if (deg < 1) deg = 1; |
---|
2386 | // i = binom(IDELEMS(gid)+deg-1,deg); |
---|
2387 | // id=idInit(i,1); |
---|
2388 | // idpower = id->m; |
---|
2389 | // givenideal = gid->m; |
---|
2390 | // idpowerpoint = 0; |
---|
2391 | // makepotence(IDELEMS(gid),1,deg,0); |
---|
2392 | // idpower = NULL; |
---|
2393 | // givenideal = NULL; |
---|
2394 | // idpowerpoint = 0; |
---|
2395 | // return id; |
---|
2396 | //} |
---|
2397 | static void idNextPotence(ideal given, ideal result, |
---|
2398 | int begin, int end, int deg, int restdeg, poly ap) |
---|
2399 | { |
---|
2400 | poly p; |
---|
2401 | int i; |
---|
2402 | |
---|
2403 | p = pPower(pCopy(given->m[begin]),restdeg); |
---|
2404 | i = result->nrows; |
---|
2405 | result->m[i] = pMult(pCopy(ap),p); |
---|
2406 | //PrintS("."); |
---|
2407 | (result->nrows)++; |
---|
2408 | if (result->nrows >= IDELEMS(result)) |
---|
2409 | { |
---|
2410 | pEnlargeSet(&(result->m),IDELEMS(result),16); |
---|
2411 | IDELEMS(result) += 16; |
---|
2412 | } |
---|
2413 | if (begin == end) return; |
---|
2414 | for (i=restdeg-1;i>0;i--) |
---|
2415 | { |
---|
2416 | p = pPower(pCopy(given->m[begin]),i); |
---|
2417 | p = pMult(pCopy(ap),p); |
---|
2418 | idNextPotence(given, result, begin+1, end, deg, restdeg-i, p); |
---|
2419 | pDelete(&p); |
---|
2420 | } |
---|
2421 | idNextPotence(given, result, begin+1, end, deg, restdeg, ap); |
---|
2422 | } |
---|
2423 | |
---|
2424 | ideal idPower(ideal given,int exp) |
---|
2425 | { |
---|
2426 | ideal result,temp; |
---|
2427 | poly p1; |
---|
2428 | int i; |
---|
2429 | |
---|
2430 | if (idIs0(given)) return idInit(1,1); |
---|
2431 | temp = idCopy(given); |
---|
2432 | idSkipZeroes(temp); |
---|
2433 | i = binom(IDELEMS(temp)+exp-1,exp); |
---|
2434 | result = idInit(i,1); |
---|
2435 | result->nrows = 0; |
---|
2436 | //Print("ideal contains %d elements\n",i); |
---|
2437 | p1=pOne(); |
---|
2438 | idNextPotence(temp,result,0,IDELEMS(temp)-1,exp,exp,p1); |
---|
2439 | pDelete(&p1); |
---|
2440 | idDelete(&temp); |
---|
2441 | result->nrows = 1; |
---|
2442 | idDelEquals(result); |
---|
2443 | idSkipZeroes(result); |
---|
2444 | return result; |
---|
2445 | } |
---|
2446 | |
---|
2447 | /*2 |
---|
2448 | * eliminate delVar (product of vars) in h1 |
---|
2449 | */ |
---|
2450 | ideal idElimination (ideal h1,poly delVar,intvec *hilb) |
---|
2451 | { |
---|
2452 | int i,j=0,k,l; |
---|
2453 | ideal h,hh, h3; |
---|
2454 | int *ord,*block0,*block1; |
---|
2455 | int ordersize=2; |
---|
2456 | int **wv; |
---|
2457 | tHomog hom; |
---|
2458 | intvec * w; |
---|
2459 | ring tmpR; |
---|
2460 | ring origR = currRing; |
---|
2461 | |
---|
2462 | if (delVar==NULL) |
---|
2463 | { |
---|
2464 | return idCopy(h1); |
---|
2465 | } |
---|
2466 | if (currQuotient!=NULL) |
---|
2467 | { |
---|
2468 | WerrorS("cannot eliminate in a qring"); |
---|
2469 | return idCopy(h1); |
---|
2470 | } |
---|
2471 | if (idIs0(h1)) return idInit(1,h1->rank); |
---|
2472 | #ifdef HAVE_PLURAL |
---|
2473 | if (rIsPluralRing(origR)) |
---|
2474 | /* in the NC case, we have to check the admissibility of */ |
---|
2475 | /* the subalgebra to be intersected with */ |
---|
2476 | { |
---|
2477 | if ((ncRingType(origR) != nc_skew) && (ncRingType(origR) != nc_exterior)) /* in (quasi)-commutative algebras every subalgebra is admissible */ |
---|
2478 | { |
---|
2479 | if (nc_CheckSubalgebra(delVar,origR)) |
---|
2480 | { |
---|
2481 | WerrorS("no elimination is possible: subalgebra is not admissible"); |
---|
2482 | return idCopy(h1); |
---|
2483 | } |
---|
2484 | } |
---|
2485 | } |
---|
2486 | #endif |
---|
2487 | hom=(tHomog)idHomModule(h1,NULL,&w); //sets w to weight vector or NULL |
---|
2488 | h3=idInit(16,h1->rank); |
---|
2489 | for (k=0;; k++) |
---|
2490 | { |
---|
2491 | if (origR->order[k]!=0) ordersize++; |
---|
2492 | else break; |
---|
2493 | } |
---|
2494 | ord=(int*)omAlloc0(ordersize*sizeof(int)); |
---|
2495 | block0=(int*)omAlloc0(ordersize*sizeof(int)); |
---|
2496 | block1=(int*)omAlloc0(ordersize*sizeof(int)); |
---|
2497 | wv=(int**) omAlloc0(ordersize*sizeof(int**)); |
---|
2498 | #if 0 |
---|
2499 | if (rIsPluralRing(origR)) // we have too keep the odering: it may be needed |
---|
2500 | // for G-algebra |
---|
2501 | { |
---|
2502 | for (k=0;k<ordersize-1; k++) |
---|
2503 | { |
---|
2504 | block0[k+1] = origR->block0[k]; |
---|
2505 | block1[k+1] = origR->block1[k]; |
---|
2506 | ord[k+1] = origR->order[k]; |
---|
2507 | if (origR->wvhdl[k]!=NULL) wv[k+1] = (int*) omMemDup(origR->wvhdl[k]); |
---|
2508 | } |
---|
2509 | } |
---|
2510 | else |
---|
2511 | { |
---|
2512 | block0[1] = 1; |
---|
2513 | block1[1] = pVariables; |
---|
2514 | if (origR->OrdSgn==1) ord[1] = ringorder_wp; |
---|
2515 | else ord[1] = ringorder_ws; |
---|
2516 | wv[1]=(int*)omAlloc0(pVariables*sizeof(int)); |
---|
2517 | double wNsqr = (double)2.0 / (double)pVariables; |
---|
2518 | wFunctional = wFunctionalBuch; |
---|
2519 | int *x= (int * )omAlloc(2 * (pVariables + 1) * sizeof(int)); |
---|
2520 | int sl=IDELEMS(h1) - 1; |
---|
2521 | wCall(h1->m, sl, x, wNsqr); |
---|
2522 | for (sl = pVariables; sl!=0; sl--) |
---|
2523 | wv[1][sl-1] = x[sl + pVariables + 1]; |
---|
2524 | omFreeSize((ADDRESS)x, 2 * (pVariables + 1) * sizeof(int)); |
---|
2525 | |
---|
2526 | ord[2]=ringorder_C; |
---|
2527 | ord[3]=0; |
---|
2528 | } |
---|
2529 | #else |
---|
2530 | for (k=0;k<ordersize-1; k++) |
---|
2531 | { |
---|
2532 | block0[k+1] = origR->block0[k]; |
---|
2533 | block1[k+1] = origR->block1[k]; |
---|
2534 | ord[k+1] = origR->order[k]; |
---|
2535 | if (origR->wvhdl[k]!=NULL) wv[k+1] = (int*) omMemDup(origR->wvhdl[k]); |
---|
2536 | } |
---|
2537 | #endif |
---|
2538 | block0[0] = 1; |
---|
2539 | block1[0] = rVar(origR); |
---|
2540 | wv[0]=(int*)omAlloc((rVar(origR) + 1)*sizeof(int)); |
---|
2541 | memset(wv[0],0,(rVar(origR) + 1)*sizeof(int)); |
---|
2542 | for (j=0;j<rVar(origR);j++) |
---|
2543 | if (pGetExp(delVar,j+1)!=0) wv[0][j]=1; |
---|
2544 | // use this special ordering: like ringorder_a, except that pFDeg, pWeights |
---|
2545 | // ignore it |
---|
2546 | ord[0] = ringorder_aa; |
---|
2547 | // fill in tmp ring to get back the data later on |
---|
2548 | tmpR = rCopy0(origR,FALSE,FALSE); // qring==NULL |
---|
2549 | //rUnComplete(tmpR); |
---|
2550 | tmpR->p_Procs=NULL; |
---|
2551 | tmpR->order = ord; |
---|
2552 | tmpR->block0 = block0; |
---|
2553 | tmpR->block1 = block1; |
---|
2554 | tmpR->wvhdl = wv; |
---|
2555 | rComplete(tmpR, 1); |
---|
2556 | |
---|
2557 | #ifdef HAVE_PLURAL |
---|
2558 | /* update nc structure on tmpR */ |
---|
2559 | if (rIsPluralRing(origR)) |
---|
2560 | { |
---|
2561 | if ( nc_rComplete(origR, tmpR, false) ) // no quotient ideal! |
---|
2562 | { |
---|
2563 | Werror("no elimination is possible: ordering condition is violated"); |
---|
2564 | // cleanup |
---|
2565 | rDelete(tmpR); |
---|
2566 | if (w!=NULL) |
---|
2567 | delete w; |
---|
2568 | return idCopy(h1); |
---|
2569 | } |
---|
2570 | } |
---|
2571 | #endif |
---|
2572 | // change into the new ring |
---|
2573 | //pChangeRing(pVariables,currRing->OrdSgn,ord,block0,block1,wv); |
---|
2574 | rChangeCurrRing(tmpR); |
---|
2575 | |
---|
2576 | //h = idInit(IDELEMS(h1),h1->rank); |
---|
2577 | // fetch data from the old ring |
---|
2578 | //for (k=0;k<IDELEMS(h1);k++) h->m[k] = prCopyR( h1->m[k], origR); |
---|
2579 | h=idrCopyR(h1,origR,currRing); |
---|
2580 | // compute kStd |
---|
2581 | #if 1 |
---|
2582 | //rWrite(tmpR);PrintLn(); |
---|
2583 | BITSET save=test; |
---|
2584 | //test |=1; |
---|
2585 | //Print("h: %d gen, rk=%d\n",IDELEMS(h),h->rank); |
---|
2586 | //extern char * showOption(); |
---|
2587 | //Print("%s\n",showOption()); |
---|
2588 | hh = kStd(h,NULL,hom,&w,hilb); |
---|
2589 | test=save; |
---|
2590 | idDelete(&h); |
---|
2591 | #else |
---|
2592 | extern ideal kGroebner(ideal F, ideal Q); |
---|
2593 | hh=kGroebner(h,NULL); |
---|
2594 | #endif |
---|
2595 | // go back to the original ring |
---|
2596 | rChangeCurrRing(origR); |
---|
2597 | i = IDELEMS(hh)-1; |
---|
2598 | while ((i >= 0) && (hh->m[i] == NULL)) i--; |
---|
2599 | j = -1; |
---|
2600 | // fetch data from temp ring |
---|
2601 | for (k=0; k<=i; k++) |
---|
2602 | { |
---|
2603 | l=pVariables; |
---|
2604 | while ((l>0) && (p_GetExp( hh->m[k],l,tmpR)*pGetExp(delVar,l)==0)) l--; |
---|
2605 | if (l==0) |
---|
2606 | { |
---|
2607 | j++; |
---|
2608 | if (j >= IDELEMS(h3)) |
---|
2609 | { |
---|
2610 | pEnlargeSet(&(h3->m),IDELEMS(h3),16); |
---|
2611 | IDELEMS(h3) += 16; |
---|
2612 | } |
---|
2613 | h3->m[j] = prMoveR( hh->m[k], tmpR); |
---|
2614 | hh->m[k] = NULL; |
---|
2615 | } |
---|
2616 | } |
---|
2617 | id_Delete(&hh, tmpR); |
---|
2618 | idSkipZeroes(h3); |
---|
2619 | rDelete(tmpR); |
---|
2620 | if (w!=NULL) |
---|
2621 | delete w; |
---|
2622 | return h3; |
---|
2623 | } |
---|
2624 | |
---|
2625 | /*2 |
---|
2626 | * compute the which-th ar-minor of the matrix a |
---|
2627 | */ |
---|
2628 | poly idMinor(matrix a, int ar, unsigned long which, ideal R) |
---|
2629 | { |
---|
2630 | int i,j,k,size; |
---|
2631 | unsigned long curr; |
---|
2632 | int *rowchoise,*colchoise; |
---|
2633 | BOOLEAN rowch,colch; |
---|
2634 | ideal result; |
---|
2635 | matrix tmp; |
---|
2636 | poly p,q; |
---|
2637 | |
---|
2638 | i = binom(a->rows(),ar); |
---|
2639 | j = binom(a->cols(),ar); |
---|
2640 | |
---|
2641 | rowchoise=(int *)omAlloc(ar*sizeof(int)); |
---|
2642 | colchoise=(int *)omAlloc(ar*sizeof(int)); |
---|
2643 | if ((i>512) || (j>512) || (i*j >512)) size=512; |
---|
2644 | else size=i*j; |
---|
2645 | result=idInit(size,1); |
---|
2646 | tmp=mpNew(ar,ar); |
---|
2647 | k = 0; /* the index in result*/ |
---|
2648 | curr = 0; /* index of current minor */ |
---|
2649 | idInitChoise(ar,1,a->rows(),&rowch,rowchoise); |
---|
2650 | while (!rowch) |
---|
2651 | { |
---|
2652 | idInitChoise(ar,1,a->cols(),&colch,colchoise); |
---|
2653 | while (!colch) |
---|
2654 | { |
---|
2655 | if (curr == which) |
---|
2656 | { |
---|
2657 | for (i=1; i<=ar; i++) |
---|
2658 | { |
---|
2659 | for (j=1; j<=ar; j++) |
---|
2660 | { |
---|
2661 | MATELEM(tmp,i,j) = MATELEM(a,rowchoise[i-1],colchoise[j-1]); |
---|
2662 | } |
---|
2663 | } |
---|
2664 | p = mpDetBareiss(tmp); |
---|
2665 | if (p!=NULL) |
---|
2666 | { |
---|
2667 | if (R!=NULL) |
---|
2668 | { |
---|
2669 | q = p; |
---|
2670 | p = kNF(R,currQuotient,q); |
---|
2671 | pDelete(&q); |
---|
2672 | } |
---|
2673 | /*delete the matrix tmp*/ |
---|
2674 | for (i=1; i<=ar; i++) |
---|
2675 | { |
---|
2676 | for (j=1; j<=ar; j++) MATELEM(tmp,i,j) = NULL; |
---|
2677 | } |
---|
2678 | idDelete((ideal*)&tmp); |
---|
2679 | omFreeSize((ADDRESS)rowchoise,ar*sizeof(int)); |
---|
2680 | omFreeSize((ADDRESS)colchoise,ar*sizeof(int)); |
---|
2681 | return (p); |
---|
2682 | } |
---|
2683 | } |
---|
2684 | curr++; |
---|
2685 | idGetNextChoise(ar,a->cols(),&colch,colchoise); |
---|
2686 | } |
---|
2687 | idGetNextChoise(ar,a->rows(),&rowch,rowchoise); |
---|
2688 | } |
---|
2689 | return (poly) 1; |
---|
2690 | } |
---|
2691 | |
---|
2692 | #ifdef WITH_OLD_MINOR |
---|
2693 | /*2 |
---|
2694 | * compute all ar-minors of the matrix a |
---|
2695 | */ |
---|
2696 | ideal idMinors(matrix a, int ar, ideal R) |
---|
2697 | { |
---|
2698 | int i,j,k,size; |
---|
2699 | int *rowchoise,*colchoise; |
---|
2700 | BOOLEAN rowch,colch; |
---|
2701 | ideal result; |
---|
2702 | matrix tmp; |
---|
2703 | poly p,q; |
---|
2704 | |
---|
2705 | i = binom(a->rows(),ar); |
---|
2706 | j = binom(a->cols(),ar); |
---|
2707 | |
---|
2708 | rowchoise=(int *)omAlloc(ar*sizeof(int)); |
---|
2709 | colchoise=(int *)omAlloc(ar*sizeof(int)); |
---|
2710 | if ((i>512) || (j>512) || (i*j >512)) size=512; |
---|
2711 | else size=i*j; |
---|
2712 | result=idInit(size,1); |
---|
2713 | tmp=mpNew(ar,ar); |
---|
2714 | k = 0; /* the index in result*/ |
---|
2715 | idInitChoise(ar,1,a->rows(),&rowch,rowchoise); |
---|
2716 | while (!rowch) |
---|
2717 | { |
---|
2718 | idInitChoise(ar,1,a->cols(),&colch,colchoise); |
---|
2719 | while (!colch) |
---|
2720 | { |
---|
2721 | for (i=1; i<=ar; i++) |
---|
2722 | { |
---|
2723 | for (j=1; j<=ar; j++) |
---|
2724 | { |
---|
2725 | MATELEM(tmp,i,j) = MATELEM(a,rowchoise[i-1],colchoise[j-1]); |
---|
2726 | } |
---|
2727 | } |
---|
2728 | p = mpDetBareiss(tmp); |
---|
2729 | if (p!=NULL) |
---|
2730 | { |
---|
2731 | if (R!=NULL) |
---|
2732 | { |
---|
2733 | q = p; |
---|
2734 | p = kNF(R,currQuotient,q); |
---|
2735 | pDelete(&q); |
---|
2736 | } |
---|
2737 | if (p!=NULL) |
---|
2738 | { |
---|
2739 | if (k>=size) |
---|
2740 | { |
---|
2741 | pEnlargeSet(&result->m,size,32); |
---|
2742 | size += 32; |
---|
2743 | } |
---|
2744 | result->m[k] = p; |
---|
2745 | k++; |
---|
2746 | } |
---|
2747 | } |
---|
2748 | idGetNextChoise(ar,a->cols(),&colch,colchoise); |
---|
2749 | } |
---|
2750 | idGetNextChoise(ar,a->rows(),&rowch,rowchoise); |
---|
2751 | } |
---|
2752 | /*delete the matrix tmp*/ |
---|
2753 | for (i=1; i<=ar; i++) |
---|
2754 | { |
---|
2755 | for (j=1; j<=ar; j++) MATELEM(tmp,i,j) = NULL; |
---|
2756 | } |
---|
2757 | idDelete((ideal*)&tmp); |
---|
2758 | if (k==0) |
---|
2759 | { |
---|
2760 | k=1; |
---|
2761 | result->m[0]=NULL; |
---|
2762 | } |
---|
2763 | omFreeSize((ADDRESS)rowchoise,ar*sizeof(int)); |
---|
2764 | omFreeSize((ADDRESS)colchoise,ar*sizeof(int)); |
---|
2765 | pEnlargeSet(&result->m,size,k-size); |
---|
2766 | IDELEMS(result) = k; |
---|
2767 | return (result); |
---|
2768 | } |
---|
2769 | #else |
---|
2770 | /*2 |
---|
2771 | * compute all ar-minors of the matrix a |
---|
2772 | * the caller of mpRecMin |
---|
2773 | * the elements of the result are not in R (if R!=NULL) |
---|
2774 | */ |
---|
2775 | ideal idMinors(matrix a, int ar, ideal R) |
---|
2776 | { |
---|
2777 | int elems=0; |
---|
2778 | int r=a->nrows,c=a->ncols; |
---|
2779 | int i; |
---|
2780 | matrix b; |
---|
2781 | ideal result,h; |
---|
2782 | ring origR; |
---|
2783 | sip_sring tmpR; |
---|
2784 | Exponent_t bound; |
---|
2785 | |
---|
2786 | if((ar<=0) || (ar>r) || (ar>c)) |
---|
2787 | { |
---|
2788 | Werror("%d-th minor, matrix is %dx%d",ar,r,c); |
---|
2789 | return NULL; |
---|
2790 | } |
---|
2791 | h = idMatrix2Module(mpCopy(a)); |
---|
2792 | bound = smExpBound(h,c,r,ar); |
---|
2793 | idDelete(&h); |
---|
2794 | smRingChange(&origR,tmpR,bound); |
---|
2795 | b = mpNew(r,c); |
---|
2796 | for (i=r*c-1;i>=0;i--) |
---|
2797 | { |
---|
2798 | if (a->m[i]) |
---|
2799 | b->m[i] = prCopyR(a->m[i],origR); |
---|
2800 | } |
---|
2801 | if (R!=NULL) |
---|
2802 | { |
---|
2803 | R = idrCopyR(R,origR); |
---|
2804 | //if (ar>1) // otherwise done in mpMinorToResult |
---|
2805 | //{ |
---|
2806 | // matrix bb=(matrix)kNF(R,currQuotient,(ideal)b); |
---|
2807 | // bb->rank=b->rank; bb->nrows=b->nrows; bb->ncols=b->ncols; |
---|
2808 | // idDelete((ideal*)&b); b=bb; |
---|
2809 | //} |
---|
2810 | } |
---|
2811 | result=idInit(32,1); |
---|
2812 | if(ar>1) mpRecMin(ar-1,result,elems,b,r,c,NULL,R); |
---|
2813 | else mpMinorToResult(result,elems,b,r,c,R); |
---|
2814 | idDelete((ideal *)&b); |
---|
2815 | if (R!=NULL) idDelete(&R); |
---|
2816 | idSkipZeroes(result); |
---|
2817 | rChangeCurrRing(origR); |
---|
2818 | result = idrMoveR(result,&tmpR); |
---|
2819 | smRingClean(origR,tmpR); |
---|
2820 | idTest(result); |
---|
2821 | return result; |
---|
2822 | } |
---|
2823 | #endif |
---|
2824 | |
---|
2825 | /*2 |
---|
2826 | *skips all zeroes and double elements, searches also for units |
---|
2827 | */ |
---|
2828 | void idCompactify(ideal id) |
---|
2829 | { |
---|
2830 | int i,j; |
---|
2831 | BOOLEAN b=FALSE; |
---|
2832 | |
---|
2833 | i = IDELEMS(id)-1; |
---|
2834 | while ((! b) && (i>=0)) |
---|
2835 | { |
---|
2836 | b=pIsUnit(id->m[i]); |
---|
2837 | i--; |
---|
2838 | } |
---|
2839 | if (b) |
---|
2840 | { |
---|
2841 | for(i=IDELEMS(id)-1;i>=0;i--) pDelete(&id->m[i]); |
---|
2842 | id->m[0]=pOne(); |
---|
2843 | } |
---|
2844 | else |
---|
2845 | { |
---|
2846 | idDelMultiples(id); |
---|
2847 | } |
---|
2848 | idSkipZeroes(id); |
---|
2849 | } |
---|
2850 | |
---|
2851 | /*2 |
---|
2852 | *returns TRUE if id1 is a submodule of id2 |
---|
2853 | */ |
---|
2854 | BOOLEAN idIsSubModule(ideal id1,ideal id2) |
---|
2855 | { |
---|
2856 | int i; |
---|
2857 | poly p; |
---|
2858 | |
---|
2859 | if (idIs0(id1)) return TRUE; |
---|
2860 | for (i=0;i<IDELEMS(id1);i++) |
---|
2861 | { |
---|
2862 | if (id1->m[i] != NULL) |
---|
2863 | { |
---|
2864 | p = kNF(id2,currQuotient,id1->m[i]); |
---|
2865 | if (p != NULL) |
---|
2866 | { |
---|
2867 | pDelete(&p); |
---|
2868 | return FALSE; |
---|
2869 | } |
---|
2870 | } |
---|
2871 | } |
---|
2872 | return TRUE; |
---|
2873 | } |
---|
2874 | |
---|
2875 | /*2 |
---|
2876 | * returns the ideals of initial terms |
---|
2877 | */ |
---|
2878 | ideal idHead(ideal h) |
---|
2879 | { |
---|
2880 | ideal m = idInit(IDELEMS(h),h->rank); |
---|
2881 | int i; |
---|
2882 | |
---|
2883 | for (i=IDELEMS(h)-1;i>=0; i--) |
---|
2884 | { |
---|
2885 | if (h->m[i]!=NULL) m->m[i]=pHead(h->m[i]); |
---|
2886 | } |
---|
2887 | return m; |
---|
2888 | } |
---|
2889 | |
---|
2890 | ideal idHomogen(ideal h, int varnum) |
---|
2891 | { |
---|
2892 | ideal m = idInit(IDELEMS(h),h->rank); |
---|
2893 | int i; |
---|
2894 | |
---|
2895 | for (i=IDELEMS(h)-1;i>=0; i--) |
---|
2896 | { |
---|
2897 | m->m[i]=pHomogen(h->m[i],varnum); |
---|
2898 | } |
---|
2899 | return m; |
---|
2900 | } |
---|
2901 | |
---|
2902 | /*------------------type conversions----------------*/ |
---|
2903 | ideal idVec2Ideal(poly vec) |
---|
2904 | { |
---|
2905 | ideal result=idInit(1,1); |
---|
2906 | omFree((ADDRESS)result->m); |
---|
2907 | result->m=NULL; // remove later |
---|
2908 | pVec2Polys(vec, &(result->m), &(IDELEMS(result))); |
---|
2909 | return result; |
---|
2910 | } |
---|
2911 | |
---|
2912 | #define NEW_STUFF |
---|
2913 | #ifndef NEW_STUFF |
---|
2914 | // converts mat to module, destroys mat |
---|
2915 | ideal idMatrix2Module(matrix mat) |
---|
2916 | { |
---|
2917 | int mc=MATCOLS(mat); |
---|
2918 | int mr=MATROWS(mat); |
---|
2919 | ideal result = idInit(si_max(mc,1),si_max(mr,1)); |
---|
2920 | int i,j; |
---|
2921 | poly h; |
---|
2922 | |
---|
2923 | for(j=0;j<mc /*MATCOLS(mat)*/;j++) /* j is also index in result->m */ |
---|
2924 | { |
---|
2925 | for (i=1;i<=mr /*MATROWS(mat)*/;i++) |
---|
2926 | { |
---|
2927 | h = MATELEM(mat,i,j+1); |
---|
2928 | if (h!=NULL) |
---|
2929 | { |
---|
2930 | MATELEM(mat,i,j+1)=NULL; |
---|
2931 | pSetCompP(h,i); |
---|
2932 | result->m[j] = pAdd(result->m[j],h); |
---|
2933 | } |
---|
2934 | } |
---|
2935 | } |
---|
2936 | // obachman: need to clean this up |
---|
2937 | idDelete((ideal*) &mat); |
---|
2938 | return result; |
---|
2939 | } |
---|
2940 | #else |
---|
2941 | |
---|
2942 | #include "sbuckets.h" |
---|
2943 | |
---|
2944 | // converts mat to module, destroys mat |
---|
2945 | ideal idMatrix2Module(matrix mat) |
---|
2946 | { |
---|
2947 | int mc=MATCOLS(mat); |
---|
2948 | int mr=MATROWS(mat); |
---|
2949 | ideal result = idInit(si_max(mc,1),si_max(mr,1)); |
---|
2950 | int i,j, l; |
---|
2951 | poly h; |
---|
2952 | poly p; |
---|
2953 | sBucket_pt bucket = sBucketCreate(currRing); |
---|
2954 | |
---|
2955 | for(j=0;j<mc /*MATCOLS(mat)*/;j++) /* j is also index in result->m */ |
---|
2956 | { |
---|
2957 | for (i=1;i<=mr /*MATROWS(mat)*/;i++) |
---|
2958 | { |
---|
2959 | h = MATELEM(mat,i,j+1); |
---|
2960 | if (h!=NULL) |
---|
2961 | { |
---|
2962 | l=pLength(h); |
---|
2963 | MATELEM(mat,i,j+1)=NULL; |
---|
2964 | p_SetCompP(h,i, currRing); |
---|
2965 | sBucket_Merge_p(bucket, h, l); |
---|
2966 | } |
---|
2967 | } |
---|
2968 | sBucketClearMerge(bucket, &(result->m[j]), &l); |
---|
2969 | } |
---|
2970 | sBucketDestroy(&bucket); |
---|
2971 | |
---|
2972 | // obachman: need to clean this up |
---|
2973 | idDelete((ideal*) &mat); |
---|
2974 | return result; |
---|
2975 | } |
---|
2976 | #endif |
---|
2977 | |
---|
2978 | /*2 |
---|
2979 | * converts a module into a matrix, destroyes the input |
---|
2980 | */ |
---|
2981 | matrix idModule2Matrix(ideal mod) |
---|
2982 | { |
---|
2983 | matrix result = mpNew(mod->rank,IDELEMS(mod)); |
---|
2984 | int i,cp; |
---|
2985 | poly p,h; |
---|
2986 | |
---|
2987 | for(i=0;i<IDELEMS(mod);i++) |
---|
2988 | { |
---|
2989 | p=mod->m[i]; |
---|
2990 | mod->m[i]=NULL; |
---|
2991 | while (p!=NULL) |
---|
2992 | { |
---|
2993 | h=p; |
---|
2994 | pIter(p); |
---|
2995 | pNext(h)=NULL; |
---|
2996 | // cp = si_max(1,pGetComp(h)); // if used for ideals too |
---|
2997 | cp = pGetComp(h); |
---|
2998 | pSetComp(h,0); |
---|
2999 | pSetmComp(h); |
---|
3000 | #ifdef TEST |
---|
3001 | if (cp>mod->rank) |
---|
3002 | { |
---|
3003 | Print("## inv. rank %ld -> %d\n",mod->rank,cp); |
---|
3004 | int k,l,o=mod->rank; |
---|
3005 | mod->rank=cp; |
---|
3006 | matrix d=mpNew(mod->rank,IDELEMS(mod)); |
---|
3007 | for (l=1; l<=o; l++) |
---|
3008 | { |
---|
3009 | for (k=1; k<=IDELEMS(mod); k++) |
---|
3010 | { |
---|
3011 | MATELEM(d,l,k)=MATELEM(result,l,k); |
---|
3012 | MATELEM(result,l,k)=NULL; |
---|
3013 | } |
---|
3014 | } |
---|
3015 | idDelete((ideal *)&result); |
---|
3016 | result=d; |
---|
3017 | } |
---|
3018 | #endif |
---|
3019 | MATELEM(result,cp,i+1) = pAdd(MATELEM(result,cp,i+1),h); |
---|
3020 | } |
---|
3021 | } |
---|
3022 | // obachman 10/99: added the following line, otherwise memory leack! |
---|
3023 | idDelete(&mod); |
---|
3024 | return result; |
---|
3025 | } |
---|
3026 | |
---|
3027 | matrix idModule2formatedMatrix(ideal mod,int rows, int cols) |
---|
3028 | { |
---|
3029 | matrix result = mpNew(rows,cols); |
---|
3030 | int i,cp,r=idRankFreeModule(mod),c=IDELEMS(mod); |
---|
3031 | poly p,h; |
---|
3032 | |
---|
3033 | if (r>rows) r = rows; |
---|
3034 | if (c>cols) c = cols; |
---|
3035 | for(i=0;i<c;i++) |
---|
3036 | { |
---|
3037 | p=mod->m[i]; |
---|
3038 | mod->m[i]=NULL; |
---|
3039 | while (p!=NULL) |
---|
3040 | { |
---|
3041 | h=p; |
---|
3042 | pIter(p); |
---|
3043 | pNext(h)=NULL; |
---|
3044 | cp = pGetComp(h); |
---|
3045 | if (cp<=r) |
---|
3046 | { |
---|
3047 | pSetComp(h,0); |
---|
3048 | pSetmComp(h); |
---|
3049 | MATELEM(result,cp,i+1) = pAdd(MATELEM(result,cp,i+1),h); |
---|
3050 | } |
---|
3051 | else |
---|
3052 | pDelete(&h); |
---|
3053 | } |
---|
3054 | } |
---|
3055 | idDelete(&mod); |
---|
3056 | return result; |
---|
3057 | } |
---|
3058 | |
---|
3059 | /*2 |
---|
3060 | * substitute the n-th variable by the monomial e in id |
---|
3061 | * destroy id |
---|
3062 | */ |
---|
3063 | ideal idSubst(ideal id, int n, poly e) |
---|
3064 | { |
---|
3065 | int k=MATROWS((matrix)id)*MATCOLS((matrix)id); |
---|
3066 | ideal res=(ideal)mpNew(MATROWS((matrix)id),MATCOLS((matrix)id)); |
---|
3067 | |
---|
3068 | res->rank = id->rank; |
---|
3069 | for(k--;k>=0;k--) |
---|
3070 | { |
---|
3071 | res->m[k]=pSubst(id->m[k],n,e); |
---|
3072 | id->m[k]=NULL; |
---|
3073 | } |
---|
3074 | idDelete(&id); |
---|
3075 | return res; |
---|
3076 | } |
---|
3077 | |
---|
3078 | BOOLEAN idHomModule(ideal m, ideal Q, intvec **w) |
---|
3079 | { |
---|
3080 | if (w!=NULL) *w=NULL; |
---|
3081 | if ((Q!=NULL) && (!idHomIdeal(Q,NULL))) return FALSE; |
---|
3082 | if (idIs0(m)) |
---|
3083 | { |
---|
3084 | if (w!=NULL) (*w)=new intvec(m->rank); |
---|
3085 | return TRUE; |
---|
3086 | } |
---|
3087 | |
---|
3088 | long cmax=1,order=0,ord,* diff,diffmin=32000; |
---|
3089 | int *iscom; |
---|
3090 | int i,j; |
---|
3091 | poly p=NULL; |
---|
3092 | pFDegProc d; |
---|
3093 | if (pLexOrder && (currRing->order[0]==ringorder_lp)) |
---|
3094 | d=pTotaldegree; |
---|
3095 | else |
---|
3096 | d=pFDeg; |
---|
3097 | int length=IDELEMS(m); |
---|
3098 | polyset P=m->m; |
---|
3099 | polyset F=(polyset)omAlloc(length*sizeof(poly)); |
---|
3100 | for (i=length-1;i>=0;i--) |
---|
3101 | { |
---|
3102 | p=F[i]=P[i]; |
---|
3103 | cmax=si_max(cmax,(long)pMaxComp(p)); |
---|
3104 | } |
---|
3105 | cmax++; |
---|
3106 | diff = (long *)omAlloc0(cmax*sizeof(long)); |
---|
3107 | if (w!=NULL) *w=new intvec(cmax-1); |
---|
3108 | iscom = (int *)omAlloc0(cmax*sizeof(int)); |
---|
3109 | i=0; |
---|
3110 | while (i<=length) |
---|
3111 | { |
---|
3112 | if (i<length) |
---|
3113 | { |
---|
3114 | p=F[i]; |
---|
3115 | while ((p!=NULL) && (iscom[pGetComp(p)]==0)) pIter(p); |
---|
3116 | } |
---|
3117 | if ((p==NULL) && (i<length)) |
---|
3118 | { |
---|
3119 | i++; |
---|
3120 | } |
---|
3121 | else |
---|
3122 | { |
---|
3123 | if (p==NULL) /* && (i==length) */ |
---|
3124 | { |
---|
3125 | i=0; |
---|
3126 | while ((i<length) && (F[i]==NULL)) i++; |
---|
3127 | if (i>=length) break; |
---|
3128 | p = F[i]; |
---|
3129 | } |
---|
3130 | //if (pLexOrder && (currRing->order[0]==ringorder_lp)) |
---|
3131 | // order=pTotaldegree(p); |
---|
3132 | //else |
---|
3133 | // order = p->order; |
---|
3134 | // order = pFDeg(p,currRing); |
---|
3135 | order = d(p,currRing) +diff[pGetComp(p)]; |
---|
3136 | //order += diff[pGetComp(p)]; |
---|
3137 | p = F[i]; |
---|
3138 | //Print("Actual p=F[%d]: ",i);pWrite(p); |
---|
3139 | F[i] = NULL; |
---|
3140 | i=0; |
---|
3141 | } |
---|
3142 | while (p!=NULL) |
---|
3143 | { |
---|
3144 | if (pLexOrder && (currRing->order[0]==ringorder_lp)) |
---|
3145 | ord=pTotaldegree(p); |
---|
3146 | else |
---|
3147 | // ord = p->order; |
---|
3148 | ord = pFDeg(p,currRing); |
---|
3149 | if (iscom[pGetComp(p)]==0) |
---|
3150 | { |
---|
3151 | diff[pGetComp(p)] = order-ord; |
---|
3152 | iscom[pGetComp(p)] = 1; |
---|
3153 | /* |
---|
3154 | *PrintS("new diff: "); |
---|
3155 | *for (j=0;j<cmax;j++) Print("%d ",diff[j]); |
---|
3156 | *PrintLn(); |
---|
3157 | *PrintS("new iscom: "); |
---|
3158 | *for (j=0;j<cmax;j++) Print("%d ",iscom[j]); |
---|
3159 | *PrintLn(); |
---|
3160 | *Print("new set %d, order %d, ord %d, diff %d\n",pGetComp(p),order,ord,diff[pGetComp(p)]); |
---|
3161 | */ |
---|
3162 | } |
---|
3163 | else |
---|
3164 | { |
---|
3165 | /* |
---|
3166 | *PrintS("new diff: "); |
---|
3167 | *for (j=0;j<cmax;j++) Print("%d ",diff[j]); |
---|
3168 | *PrintLn(); |
---|
3169 | *Print("order %d, ord %d, diff %d\n",order,ord,diff[pGetComp(p)]); |
---|
3170 | */ |
---|
3171 | if (order != (ord+diff[pGetComp(p)])) |
---|
3172 | { |
---|
3173 | omFreeSize((ADDRESS) iscom,cmax*sizeof(int)); |
---|
3174 | omFreeSize((ADDRESS) diff,cmax*sizeof(long)); |
---|
3175 | omFreeSize((ADDRESS) F,length*sizeof(poly)); |
---|
3176 | delete *w;*w=NULL; |
---|
3177 | return FALSE; |
---|
3178 | } |
---|
3179 | } |
---|
3180 | pIter(p); |
---|
3181 | } |
---|
3182 | } |
---|
3183 | omFreeSize((ADDRESS) iscom,cmax*sizeof(int)); |
---|
3184 | omFreeSize((ADDRESS) F,length*sizeof(poly)); |
---|
3185 | for (i=1;i<cmax;i++) (**w)[i-1]=(int)(diff[i]); |
---|
3186 | for (i=1;i<cmax;i++) |
---|
3187 | { |
---|
3188 | if (diff[i]<diffmin) diffmin=diff[i]; |
---|
3189 | } |
---|
3190 | if (w!=NULL) |
---|
3191 | { |
---|
3192 | for (i=1;i<cmax;i++) |
---|
3193 | { |
---|
3194 | (**w)[i-1]=(int)(diff[i]-diffmin); |
---|
3195 | } |
---|
3196 | } |
---|
3197 | omFreeSize((ADDRESS) diff,cmax*sizeof(long)); |
---|
3198 | return TRUE; |
---|
3199 | } |
---|
3200 | |
---|
3201 | BOOLEAN idTestHomModule(ideal m, ideal Q, intvec *w) |
---|
3202 | { |
---|
3203 | if ((Q!=NULL) && (!idHomIdeal(Q,NULL))) { PrintS(" Q not hom\n"); return FALSE;} |
---|
3204 | if (idIs0(m)) return TRUE; |
---|
3205 | |
---|
3206 | int cmax=-1; |
---|
3207 | int i; |
---|
3208 | poly p=NULL; |
---|
3209 | int length=IDELEMS(m); |
---|
3210 | polyset P=m->m; |
---|
3211 | for (i=length-1;i>=0;i--) |
---|
3212 | { |
---|
3213 | p=P[i]; |
---|
3214 | if (p!=NULL) cmax=si_max(cmax,(int)pMaxComp(p)+1); |
---|
3215 | } |
---|
3216 | if (w != NULL) |
---|
3217 | if (w->length()+1 < cmax) |
---|
3218 | { |
---|
3219 | // Print("length: %d - %d \n", w->length(),cmax); |
---|
3220 | return FALSE; |
---|
3221 | } |
---|
3222 | |
---|
3223 | if(w!=NULL) |
---|
3224 | pSetModDeg(w); |
---|
3225 | |
---|
3226 | for (i=length-1;i>=0;i--) |
---|
3227 | { |
---|
3228 | p=P[i]; |
---|
3229 | poly q=p; |
---|
3230 | if (p!=NULL) |
---|
3231 | { |
---|
3232 | int d=pFDeg(p,currRing); |
---|
3233 | loop |
---|
3234 | { |
---|
3235 | pIter(p); |
---|
3236 | if (p==NULL) break; |
---|
3237 | if (d!=pFDeg(p,currRing)) |
---|
3238 | { |
---|
3239 | //pWrite(q); wrp(p); Print(" -> %d - %d\n",d,pFDeg(p,currRing)); |
---|
3240 | if(w!=NULL) |
---|
3241 | pSetModDeg(NULL); |
---|
3242 | return FALSE; |
---|
3243 | } |
---|
3244 | } |
---|
3245 | } |
---|
3246 | } |
---|
3247 | |
---|
3248 | if(w!=NULL) |
---|
3249 | pSetModDeg(NULL); |
---|
3250 | |
---|
3251 | return TRUE; |
---|
3252 | } |
---|
3253 | |
---|
3254 | ideal idJet(ideal i,int d) |
---|
3255 | { |
---|
3256 | ideal r=idInit((i->nrows)*(i->ncols),i->rank); |
---|
3257 | r->nrows = i-> nrows; |
---|
3258 | r->ncols = i-> ncols; |
---|
3259 | //r->rank = i-> rank; |
---|
3260 | int k; |
---|
3261 | for(k=(i->nrows)*(i->ncols)-1;k>=0; k--) |
---|
3262 | { |
---|
3263 | r->m[k]=ppJet(i->m[k],d); |
---|
3264 | } |
---|
3265 | return r; |
---|
3266 | } |
---|
3267 | |
---|
3268 | ideal idJetW(ideal i,int d, intvec * iv) |
---|
3269 | { |
---|
3270 | ideal r=idInit(IDELEMS(i),i->rank); |
---|
3271 | if (ecartWeights!=NULL) |
---|
3272 | { |
---|
3273 | WerrorS("cannot compute weighted jets now"); |
---|
3274 | } |
---|
3275 | else |
---|
3276 | { |
---|
3277 | short *w=iv2array(iv); |
---|
3278 | int k; |
---|
3279 | for(k=0; k<IDELEMS(i); k++) |
---|
3280 | { |
---|
3281 | r->m[k]=ppJetW(i->m[k],d,w); |
---|
3282 | } |
---|
3283 | omFreeSize((ADDRESS)w,(pVariables+1)*sizeof(short)); |
---|
3284 | } |
---|
3285 | return r; |
---|
3286 | } |
---|
3287 | |
---|
3288 | int idMinDegW(ideal M,intvec *w) |
---|
3289 | { |
---|
3290 | int d=-1; |
---|
3291 | for(int i=0;i<IDELEMS(M);i++) |
---|
3292 | { |
---|
3293 | int d0=pMinDeg(M->m[i],w); |
---|
3294 | if(-1<d0&&(d0<d||d==-1)) |
---|
3295 | d=d0; |
---|
3296 | } |
---|
3297 | return d; |
---|
3298 | } |
---|
3299 | |
---|
3300 | ideal idSeries(int n,ideal M,matrix U,intvec *w) |
---|
3301 | { |
---|
3302 | for(int i=IDELEMS(M)-1;i>=0;i--) |
---|
3303 | { |
---|
3304 | if(U==NULL) |
---|
3305 | M->m[i]=pSeries(n,M->m[i],NULL,w); |
---|
3306 | else |
---|
3307 | { |
---|
3308 | M->m[i]=pSeries(n,M->m[i],MATELEM(U,i+1,i+1),w); |
---|
3309 | MATELEM(U,i+1,i+1)=NULL; |
---|
3310 | } |
---|
3311 | } |
---|
3312 | if(U!=NULL) |
---|
3313 | idDelete((ideal*)&U); |
---|
3314 | return M; |
---|
3315 | } |
---|
3316 | |
---|
3317 | matrix idDiff(matrix i, int k) |
---|
3318 | { |
---|
3319 | int e=MATCOLS(i)*MATROWS(i); |
---|
3320 | matrix r=mpNew(MATROWS(i),MATCOLS(i)); |
---|
3321 | r->rank=i->rank; |
---|
3322 | int j; |
---|
3323 | for(j=0; j<e; j++) |
---|
3324 | { |
---|
3325 | r->m[j]=pDiff(i->m[j],k); |
---|
3326 | } |
---|
3327 | return r; |
---|
3328 | } |
---|
3329 | |
---|
3330 | matrix idDiffOp(ideal I, ideal J,BOOLEAN multiply) |
---|
3331 | { |
---|
3332 | matrix r=mpNew(IDELEMS(I),IDELEMS(J)); |
---|
3333 | int i,j; |
---|
3334 | for(i=0; i<IDELEMS(I); i++) |
---|
3335 | { |
---|
3336 | for(j=0; j<IDELEMS(J); j++) |
---|
3337 | { |
---|
3338 | MATELEM(r,i+1,j+1)=pDiffOp(I->m[i],J->m[j],multiply); |
---|
3339 | } |
---|
3340 | } |
---|
3341 | return r; |
---|
3342 | } |
---|
3343 | |
---|
3344 | /*3 |
---|
3345 | *handles for some ideal operations the ring/syzcomp managment |
---|
3346 | *returns all syzygies (componentwise-)shifted by -syzcomp |
---|
3347 | *or -syzcomp-1 (in case of ideals as input) |
---|
3348 | static ideal idHandleIdealOp(ideal arg,int syzcomp,int isIdeal=FALSE) |
---|
3349 | { |
---|
3350 | ring orig_ring=currRing; |
---|
3351 | ring syz_ring=rCurrRingAssure_SyzComp(); |
---|
3352 | rSetSyzComp(length); |
---|
3353 | |
---|
3354 | ideal s_temp; |
---|
3355 | if (orig_ring!=syz_ring) |
---|
3356 | s_temp=idrMoveR_NoSort(arg,orig_ring); |
---|
3357 | else |
---|
3358 | s_temp=arg; |
---|
3359 | |
---|
3360 | ideal s_temp1 = kStd(s_temp,currQuotient,testHomog,&w,NULL,length); |
---|
3361 | if (w!=NULL) delete w; |
---|
3362 | |
---|
3363 | if (syz_ring!=orig_ring) |
---|
3364 | { |
---|
3365 | idDelete(&s_temp); |
---|
3366 | rChangeCurrRing(orig_ring); |
---|
3367 | } |
---|
3368 | |
---|
3369 | idDelete(&temp); |
---|
3370 | ideal temp1=idRingCopy(s_temp1,syz_ring); |
---|
3371 | |
---|
3372 | if (syz_ring!=orig_ring) |
---|
3373 | { |
---|
3374 | rChangeCurrRing(syz_ring); |
---|
3375 | idDelete(&s_temp1); |
---|
3376 | rChangeCurrRing(orig_ring); |
---|
3377 | rKill(syz_ring); |
---|
3378 | } |
---|
3379 | |
---|
3380 | for (i=0;i<IDELEMS(temp1);i++) |
---|
3381 | { |
---|
3382 | if ((temp1->m[i]!=NULL) |
---|
3383 | && (pGetComp(temp1->m[i])<=length)) |
---|
3384 | { |
---|
3385 | pDelete(&(temp1->m[i])); |
---|
3386 | } |
---|
3387 | else |
---|
3388 | { |
---|
3389 | pShift(&(temp1->m[i]),-length); |
---|
3390 | } |
---|
3391 | } |
---|
3392 | temp1->rank = rk; |
---|
3393 | idSkipZeroes(temp1); |
---|
3394 | |
---|
3395 | return temp1; |
---|
3396 | } |
---|
3397 | */ |
---|
3398 | /*2 |
---|
3399 | * represents (h1+h2)/h2=h1/(h1 intersect h2) |
---|
3400 | */ |
---|
3401 | //ideal idModulo (ideal h2,ideal h1) |
---|
3402 | ideal idModulo (ideal h2,ideal h1, tHomog hom, intvec ** w) |
---|
3403 | { |
---|
3404 | intvec *wtmp=NULL; |
---|
3405 | |
---|
3406 | int i,j,k,rk,flength=0,slength,length; |
---|
3407 | poly p,q; |
---|
3408 | |
---|
3409 | if (idIs0(h2)) |
---|
3410 | return idFreeModule(si_max(1,h2->ncols)); |
---|
3411 | if (!idIs0(h1)) |
---|
3412 | flength = idRankFreeModule(h1); |
---|
3413 | slength = idRankFreeModule(h2); |
---|
3414 | length = si_max(flength,slength); |
---|
3415 | if (length==0) |
---|
3416 | { |
---|
3417 | length = 1; |
---|
3418 | } |
---|
3419 | ideal temp = idInit(IDELEMS(h2),length+IDELEMS(h2)); |
---|
3420 | if ((w!=NULL)&&((*w)!=NULL)) |
---|
3421 | { |
---|
3422 | //Print("input weights:");(*w)->show(1);PrintLn(); |
---|
3423 | int d; |
---|
3424 | int k; |
---|
3425 | wtmp=new intvec(length+IDELEMS(h2)); |
---|
3426 | for (i=0;i<length;i++) |
---|
3427 | ((*wtmp)[i])=(**w)[i]; |
---|
3428 | for (i=0;i<IDELEMS(h2);i++) |
---|
3429 | { |
---|
3430 | poly p=h2->m[i]; |
---|
3431 | if (p!=NULL) |
---|
3432 | { |
---|
3433 | d = pDeg(p); |
---|
3434 | k= pGetComp(p); |
---|
3435 | if (slength>0) k--; |
---|
3436 | d +=((**w)[k]); |
---|
3437 | ((*wtmp)[i+length]) = d; |
---|
3438 | } |
---|
3439 | } |
---|
3440 | //Print("weights:");wtmp->show(1);PrintLn(); |
---|
3441 | } |
---|
3442 | for (i=0;i<IDELEMS(h2);i++) |
---|
3443 | { |
---|
3444 | temp->m[i] = pCopy(h2->m[i]); |
---|
3445 | q = pOne(); |
---|
3446 | pSetComp(q,i+1+length); |
---|
3447 | pSetmComp(q); |
---|
3448 | if(temp->m[i]!=NULL) |
---|
3449 | { |
---|
3450 | if (slength==0) pShift(&(temp->m[i]),1); |
---|
3451 | p = temp->m[i]; |
---|
3452 | while (pNext(p)!=NULL) pIter(p); |
---|
3453 | pNext(p) = q; |
---|
3454 | } |
---|
3455 | else |
---|
3456 | temp->m[i]=q; |
---|
3457 | } |
---|
3458 | rk = k = IDELEMS(h2); |
---|
3459 | if (!idIs0(h1)) |
---|
3460 | { |
---|
3461 | pEnlargeSet(&(temp->m),IDELEMS(temp),IDELEMS(h1)); |
---|
3462 | IDELEMS(temp) += IDELEMS(h1); |
---|
3463 | for (i=0;i<IDELEMS(h1);i++) |
---|
3464 | { |
---|
3465 | if (h1->m[i]!=NULL) |
---|
3466 | { |
---|
3467 | temp->m[k] = pCopy(h1->m[i]); |
---|
3468 | if (flength==0) pShift(&(temp->m[k]),1); |
---|
3469 | k++; |
---|
3470 | } |
---|
3471 | } |
---|
3472 | } |
---|
3473 | |
---|
3474 | ring orig_ring=currRing; |
---|
3475 | ring syz_ring=rCurrRingAssure_SyzComp(); |
---|
3476 | rSetSyzComp(length); |
---|
3477 | ideal s_temp; |
---|
3478 | |
---|
3479 | if (syz_ring != orig_ring) |
---|
3480 | { |
---|
3481 | s_temp = idrMoveR_NoSort(temp, orig_ring); |
---|
3482 | } |
---|
3483 | else |
---|
3484 | { |
---|
3485 | s_temp = temp; |
---|
3486 | } |
---|
3487 | |
---|
3488 | idTest(s_temp); |
---|
3489 | ideal s_temp1 = kStd(s_temp,currQuotient,hom,&wtmp,NULL,length); |
---|
3490 | |
---|
3491 | //if (wtmp!=NULL) Print("output weights:");wtmp->show(1);PrintLn(); |
---|
3492 | if ((w!=NULL) && (*w !=NULL) && (wtmp!=NULL)) |
---|
3493 | { |
---|
3494 | delete *w; |
---|
3495 | *w=new intvec(IDELEMS(h2)); |
---|
3496 | for (i=0;i<IDELEMS(h2);i++) |
---|
3497 | ((**w)[i])=(*wtmp)[i+length]; |
---|
3498 | } |
---|
3499 | if (wtmp!=NULL) delete wtmp; |
---|
3500 | |
---|
3501 | for (i=0;i<IDELEMS(s_temp1);i++) |
---|
3502 | { |
---|
3503 | if ((s_temp1->m[i]!=NULL) |
---|
3504 | && (pGetComp(s_temp1->m[i])<=length)) |
---|
3505 | { |
---|
3506 | pDelete(&(s_temp1->m[i])); |
---|
3507 | } |
---|
3508 | else |
---|
3509 | { |
---|
3510 | pShift(&(s_temp1->m[i]),-length); |
---|
3511 | } |
---|
3512 | } |
---|
3513 | s_temp1->rank = rk; |
---|
3514 | idSkipZeroes(s_temp1); |
---|
3515 | |
---|
3516 | if (syz_ring!=orig_ring) |
---|
3517 | { |
---|
3518 | rChangeCurrRing(orig_ring); |
---|
3519 | s_temp1 = idrMoveR_NoSort(s_temp1, syz_ring); |
---|
3520 | rKill(syz_ring); |
---|
3521 | // Hmm ... here seems to be a memory leak |
---|
3522 | // However, simply deleting it causes memory trouble |
---|
3523 | // idDelete(&s_temp); |
---|
3524 | } |
---|
3525 | else |
---|
3526 | { |
---|
3527 | idDelete(&temp); |
---|
3528 | } |
---|
3529 | idTest(s_temp1); |
---|
3530 | return s_temp1; |
---|
3531 | } |
---|
3532 | |
---|
3533 | int idElem(const ideal F) |
---|
3534 | { |
---|
3535 | int i=0,j=IDELEMS(F)-1; |
---|
3536 | |
---|
3537 | while(j>=0) |
---|
3538 | { |
---|
3539 | if ((F->m)[j]!=NULL) i++; |
---|
3540 | j--; |
---|
3541 | } |
---|
3542 | return i; |
---|
3543 | } |
---|
3544 | |
---|
3545 | /* |
---|
3546 | *computes module-weights for liftings of homogeneous modules |
---|
3547 | */ |
---|
3548 | intvec * idMWLift(ideal mod,intvec * weights) |
---|
3549 | { |
---|
3550 | if (idIs0(mod)) return new intvec(2); |
---|
3551 | int i=IDELEMS(mod); |
---|
3552 | while ((i>0) && (mod->m[i-1]==NULL)) i--; |
---|
3553 | intvec *result = new intvec(i+1); |
---|
3554 | while (i>0) |
---|
3555 | { |
---|
3556 | (*result)[i]=pFDeg(mod->m[i],currRing)+(*weights)[pGetComp(mod->m[i])]; |
---|
3557 | } |
---|
3558 | return result; |
---|
3559 | } |
---|
3560 | |
---|
3561 | /*2 |
---|
3562 | *sorts the kbase for idCoef* in a special way (lexicographically |
---|
3563 | *with x_max,...,x_1) |
---|
3564 | */ |
---|
3565 | ideal idCreateSpecialKbase(ideal kBase,intvec ** convert) |
---|
3566 | { |
---|
3567 | int i; |
---|
3568 | ideal result; |
---|
3569 | |
---|
3570 | if (idIs0(kBase)) return NULL; |
---|
3571 | result = idInit(IDELEMS(kBase),kBase->rank); |
---|
3572 | *convert = idSort(kBase,FALSE); |
---|
3573 | for (i=0;i<(*convert)->length();i++) |
---|
3574 | { |
---|
3575 | result->m[i] = pCopy(kBase->m[(**convert)[i]-1]); |
---|
3576 | } |
---|
3577 | return result; |
---|
3578 | } |
---|
3579 | |
---|
3580 | /*2 |
---|
3581 | *returns the index of a given monom in the list of the special kbase |
---|
3582 | */ |
---|
3583 | int idIndexOfKBase(poly monom, ideal kbase) |
---|
3584 | { |
---|
3585 | int j=IDELEMS(kbase); |
---|
3586 | |
---|
3587 | while ((j>0) && (kbase->m[j-1]==NULL)) j--; |
---|
3588 | if (j==0) return -1; |
---|
3589 | int i=pVariables; |
---|
3590 | while (i>0) |
---|
3591 | { |
---|
3592 | loop |
---|
3593 | { |
---|
3594 | if (pGetExp(monom,i)>pGetExp(kbase->m[j-1],i)) return -1; |
---|
3595 | if (pGetExp(monom,i)==pGetExp(kbase->m[j-1],i)) break; |
---|
3596 | j--; |
---|
3597 | if (j==0) return -1; |
---|
3598 | } |
---|
3599 | if (i==1) |
---|
3600 | { |
---|
3601 | while(j>0) |
---|
3602 | { |
---|
3603 | if (pGetComp(monom)==pGetComp(kbase->m[j-1])) return j-1; |
---|
3604 | if (pGetComp(monom)>pGetComp(kbase->m[j-1])) return -1; |
---|
3605 | j--; |
---|
3606 | } |
---|
3607 | } |
---|
3608 | i--; |
---|
3609 | } |
---|
3610 | return -1; |
---|
3611 | } |
---|
3612 | |
---|
3613 | /*2 |
---|
3614 | *decomposes the monom in a part of coefficients described by the |
---|
3615 | *complement of how and a monom in variables occuring in how, the |
---|
3616 | *index of which in kbase is returned as integer pos (-1 if it don't |
---|
3617 | *exists) |
---|
3618 | */ |
---|
3619 | poly idDecompose(poly monom, poly how, ideal kbase, int * pos) |
---|
3620 | { |
---|
3621 | int i; |
---|
3622 | poly coeff=pOne(), base=pOne(); |
---|
3623 | |
---|
3624 | for (i=1;i<=pVariables;i++) |
---|
3625 | { |
---|
3626 | if (pGetExp(how,i)>0) |
---|
3627 | { |
---|
3628 | pSetExp(base,i,pGetExp(monom,i)); |
---|
3629 | } |
---|
3630 | else |
---|
3631 | { |
---|
3632 | pSetExp(coeff,i,pGetExp(monom,i)); |
---|
3633 | } |
---|
3634 | } |
---|
3635 | pSetComp(base,pGetComp(monom)); |
---|
3636 | pSetm(base); |
---|
3637 | pSetCoeff(coeff,nCopy(pGetCoeff(monom))); |
---|
3638 | pSetm(coeff); |
---|
3639 | *pos = idIndexOfKBase(base,kbase); |
---|
3640 | if (*pos<0) |
---|
3641 | pDelete(&coeff); |
---|
3642 | pDelete(&base); |
---|
3643 | return coeff; |
---|
3644 | } |
---|
3645 | |
---|
3646 | /*2 |
---|
3647 | *returns a matrix A of coefficients with kbase*A=arg |
---|
3648 | *if all monomials in variables of how occur in kbase |
---|
3649 | *the other are deleted |
---|
3650 | */ |
---|
3651 | matrix idCoeffOfKBase(ideal arg, ideal kbase, poly how) |
---|
3652 | { |
---|
3653 | matrix result; |
---|
3654 | ideal tempKbase; |
---|
3655 | poly p,q; |
---|
3656 | intvec * convert; |
---|
3657 | int i=IDELEMS(kbase),j=IDELEMS(arg),k,pos; |
---|
3658 | #if 0 |
---|
3659 | while ((i>0) && (kbase->m[i-1]==NULL)) i--; |
---|
3660 | if (idIs0(arg)) |
---|
3661 | return mpNew(i,1); |
---|
3662 | while ((j>0) && (arg->m[j-1]==NULL)) j--; |
---|
3663 | result = mpNew(i,j); |
---|
3664 | #else |
---|
3665 | result = mpNew(i, j); |
---|
3666 | while ((j>0) && (arg->m[j-1]==NULL)) j--; |
---|
3667 | #endif |
---|
3668 | |
---|
3669 | tempKbase = idCreateSpecialKbase(kbase,&convert); |
---|
3670 | for (k=0;k<j;k++) |
---|
3671 | { |
---|
3672 | p = arg->m[k]; |
---|
3673 | while (p!=NULL) |
---|
3674 | { |
---|
3675 | q = idDecompose(p,how,tempKbase,&pos); |
---|
3676 | if (pos>=0) |
---|
3677 | { |
---|
3678 | MATELEM(result,(*convert)[pos],k+1) = |
---|
3679 | pAdd(MATELEM(result,(*convert)[pos],k+1),q); |
---|
3680 | } |
---|
3681 | else |
---|
3682 | pDelete(&q); |
---|
3683 | pIter(p); |
---|
3684 | } |
---|
3685 | } |
---|
3686 | idDelete(&tempKbase); |
---|
3687 | return result; |
---|
3688 | } |
---|
3689 | |
---|
3690 | /*3 |
---|
3691 | * searches for units in the components of the module arg and |
---|
3692 | * returns the first one |
---|
3693 | */ |
---|
3694 | static int idReadOutUnits(ideal arg,int* comp) |
---|
3695 | { |
---|
3696 | if (idIs0(arg)) return -1; |
---|
3697 | int i=0,j, generator=-1; |
---|
3698 | int rk_arg=arg->rank; //idRankFreeModule(arg); |
---|
3699 | int * componentIsUsed =(int *)omAlloc((rk_arg+1)*sizeof(int)); |
---|
3700 | poly p,q; |
---|
3701 | |
---|
3702 | while ((generator<0) && (i<IDELEMS(arg))) |
---|
3703 | { |
---|
3704 | memset(componentIsUsed,0,(rk_arg+1)*sizeof(int)); |
---|
3705 | p = arg->m[i]; |
---|
3706 | while (p!=NULL) |
---|
3707 | { |
---|
3708 | j = pGetComp(p); |
---|
3709 | if (componentIsUsed[j]==0) |
---|
3710 | { |
---|
3711 | if (pLmIsConstantComp(p)) |
---|
3712 | { |
---|
3713 | generator = i; |
---|
3714 | componentIsUsed[j] = 1; |
---|
3715 | } |
---|
3716 | else |
---|
3717 | { |
---|
3718 | componentIsUsed[j] = -1; |
---|
3719 | } |
---|
3720 | } |
---|
3721 | else if (componentIsUsed[j]>0) |
---|
3722 | { |
---|
3723 | (componentIsUsed[j])++; |
---|
3724 | } |
---|
3725 | pIter(p); |
---|
3726 | } |
---|
3727 | i++; |
---|
3728 | } |
---|
3729 | i = 0; |
---|
3730 | *comp = -1; |
---|
3731 | for (j=0;j<=rk_arg;j++) |
---|
3732 | { |
---|
3733 | if (componentIsUsed[j]>0) |
---|
3734 | { |
---|
3735 | if ((*comp==-1) || (componentIsUsed[j]<i)) |
---|
3736 | { |
---|
3737 | *comp = j; |
---|
3738 | i= componentIsUsed[j]; |
---|
3739 | } |
---|
3740 | } |
---|
3741 | } |
---|
3742 | omFree(componentIsUsed); |
---|
3743 | return generator; |
---|
3744 | } |
---|
3745 | |
---|
3746 | #if 0 |
---|
3747 | static void idDeleteComp(ideal arg,int red_comp) |
---|
3748 | { |
---|
3749 | int i,j; |
---|
3750 | poly p; |
---|
3751 | |
---|
3752 | for (i=IDELEMS(arg)-1;i>=0;i--) |
---|
3753 | { |
---|
3754 | p = arg->m[i]; |
---|
3755 | while (p!=NULL) |
---|
3756 | { |
---|
3757 | j = pGetComp(p); |
---|
3758 | if (j>red_comp) |
---|
3759 | { |
---|
3760 | pSetComp(p,j-1); |
---|
3761 | pSetm(p); |
---|
3762 | } |
---|
3763 | pIter(p); |
---|
3764 | } |
---|
3765 | } |
---|
3766 | (arg->rank)--; |
---|
3767 | } |
---|
3768 | #endif |
---|
3769 | |
---|
3770 | static void idDeleteComps(ideal arg,int* red_comp,int del) |
---|
3771 | // red_comp is an array [0..args->rank] |
---|
3772 | { |
---|
3773 | int i,j; |
---|
3774 | poly p; |
---|
3775 | |
---|
3776 | for (i=IDELEMS(arg)-1;i>=0;i--) |
---|
3777 | { |
---|
3778 | p = arg->m[i]; |
---|
3779 | while (p!=NULL) |
---|
3780 | { |
---|
3781 | j = pGetComp(p); |
---|
3782 | if (red_comp[j]!=j) |
---|
3783 | { |
---|
3784 | pSetComp(p,red_comp[j]); |
---|
3785 | pSetmComp(p); |
---|
3786 | } |
---|
3787 | pIter(p); |
---|
3788 | } |
---|
3789 | } |
---|
3790 | (arg->rank) -= del; |
---|
3791 | } |
---|
3792 | |
---|
3793 | /*2 |
---|
3794 | * returns the presentation of an isomorphic, minimally |
---|
3795 | * embedded module (arg represents the quotient!) |
---|
3796 | */ |
---|
3797 | ideal idMinEmbedding(ideal arg,BOOLEAN inPlace, intvec **w) |
---|
3798 | { |
---|
3799 | if (idIs0(arg)) return idInit(1,arg->rank); |
---|
3800 | int i,next_gen,next_comp; |
---|
3801 | ideal res=arg; |
---|
3802 | |
---|
3803 | if (!inPlace) res = idCopy(arg); |
---|
3804 | res->rank=si_max(res->rank,idRankFreeModule(res)); |
---|
3805 | int *red_comp=(int*)omAlloc((res->rank+1)*sizeof(int)); |
---|
3806 | for (i=res->rank;i>=0;i--) red_comp[i]=i; |
---|
3807 | |
---|
3808 | int del=0; |
---|
3809 | loop |
---|
3810 | { |
---|
3811 | next_gen = idReadOutUnits(res,&next_comp); |
---|
3812 | if (next_gen<0) break; |
---|
3813 | del++; |
---|
3814 | syGaussForOne(res,next_gen,next_comp,0,IDELEMS(res)); |
---|
3815 | for(i=next_comp+1;i<=arg->rank;i++) red_comp[i]--; |
---|
3816 | if ((w !=NULL)&&(*w!=NULL)) |
---|
3817 | { |
---|
3818 | for(i=next_comp;i<(*w)->length();i++) (**w)[i-1]=(**w)[i]; |
---|
3819 | } |
---|
3820 | } |
---|
3821 | |
---|
3822 | idDeleteComps(res,red_comp,del); |
---|
3823 | idSkipZeroes(res); |
---|
3824 | omFree(red_comp); |
---|
3825 | |
---|
3826 | if ((w !=NULL)&&(*w!=NULL) &&(del>0)) |
---|
3827 | { |
---|
3828 | intvec *wtmp=new intvec((*w)->length()-del); |
---|
3829 | for(i=0;i<res->rank;i++) (*wtmp)[i]=(**w)[i]; |
---|
3830 | delete *w; |
---|
3831 | *w=wtmp; |
---|
3832 | } |
---|
3833 | return res; |
---|
3834 | } |
---|
3835 | |
---|
3836 | /*2 |
---|
3837 | * transpose a module |
---|
3838 | */ |
---|
3839 | ideal idTransp(ideal a) |
---|
3840 | { |
---|
3841 | int r = a->rank, c = IDELEMS(a); |
---|
3842 | ideal b = idInit(r,c); |
---|
3843 | |
---|
3844 | for (int i=c; i>0; i--) |
---|
3845 | { |
---|
3846 | poly p=a->m[i-1]; |
---|
3847 | while(p!=NULL) |
---|
3848 | { |
---|
3849 | poly h=pHead(p); |
---|
3850 | int co=pGetComp(h)-1; |
---|
3851 | pSetComp(h,i); |
---|
3852 | pSetmComp(h); |
---|
3853 | b->m[co]=pAdd(b->m[co],h); |
---|
3854 | pIter(p); |
---|
3855 | } |
---|
3856 | } |
---|
3857 | return b; |
---|
3858 | } |
---|
3859 | |
---|
3860 | intvec * idQHomWeight(ideal id) |
---|
3861 | { |
---|
3862 | poly head, tail; |
---|
3863 | int k; |
---|
3864 | int in=IDELEMS(id)-1, ready=0, all=0, |
---|
3865 | coldim=pVariables, rowmax=2*coldim; |
---|
3866 | if (in<0) return NULL; |
---|
3867 | intvec *imat=new intvec(rowmax+1,coldim,0); |
---|
3868 | |
---|
3869 | do |
---|
3870 | { |
---|
3871 | head = id->m[in--]; |
---|
3872 | if (head!=NULL) |
---|
3873 | { |
---|
3874 | tail = pNext(head); |
---|
3875 | while (tail!=NULL) |
---|
3876 | { |
---|
3877 | all++; |
---|
3878 | for (k=1;k<=coldim;k++) |
---|
3879 | IMATELEM(*imat,all,k) = pGetExpDiff(head,tail,k); |
---|
3880 | if (all==rowmax) |
---|
3881 | { |
---|
3882 | ivTriangIntern(imat, ready, all); |
---|
3883 | if (ready==coldim) |
---|
3884 | { |
---|
3885 | delete imat; |
---|
3886 | return NULL; |
---|
3887 | } |
---|
3888 | } |
---|
3889 | pIter(tail); |
---|
3890 | } |
---|
3891 | } |
---|
3892 | } while (in>=0); |
---|
3893 | if (all>ready) |
---|
3894 | { |
---|
3895 | ivTriangIntern(imat, ready, all); |
---|
3896 | if (ready==coldim) |
---|
3897 | { |
---|
3898 | delete imat; |
---|
3899 | return NULL; |
---|
3900 | } |
---|
3901 | } |
---|
3902 | intvec *result = ivSolveKern(imat, ready); |
---|
3903 | delete imat; |
---|
3904 | return result; |
---|
3905 | } |
---|
3906 | |
---|
3907 | BOOLEAN idIsZeroDim(ideal I) |
---|
3908 | { |
---|
3909 | BOOLEAN *UsedAxis=(BOOLEAN *)omAlloc0(pVariables*sizeof(BOOLEAN)); |
---|
3910 | int i,n; |
---|
3911 | poly po; |
---|
3912 | BOOLEAN res=TRUE; |
---|
3913 | for(i=IDELEMS(I)-1;i>=0;i--) |
---|
3914 | { |
---|
3915 | po=I->m[i]; |
---|
3916 | if ((po!=NULL) &&((n=pIsPurePower(po))!=0)) UsedAxis[n-1]=TRUE; |
---|
3917 | } |
---|
3918 | for(i=pVariables-1;i>=0;i--) |
---|
3919 | { |
---|
3920 | if(UsedAxis[i]==FALSE) {res=FALSE; break;} // not zero-dim. |
---|
3921 | } |
---|
3922 | omFreeSize(UsedAxis,pVariables*sizeof(BOOLEAN)); |
---|
3923 | return res; |
---|
3924 | } |
---|
3925 | |
---|
3926 | void idNormalize(ideal I) |
---|
3927 | { |
---|
3928 | if (rField_has_simple_inverse()) return; /* Z/p, GF(p,n), R, long R/C */ |
---|
3929 | int i; |
---|
3930 | poly p; |
---|
3931 | for(i=IDELEMS(I)-1;i>=0;i--) |
---|
3932 | { |
---|
3933 | p=I->m[i] ; |
---|
3934 | while(p!=NULL) |
---|
3935 | { |
---|
3936 | nNormalize(pGetCoeff(p)); |
---|
3937 | pIter(p); |
---|
3938 | } |
---|
3939 | } |
---|
3940 | } |
---|
3941 | |
---|
3942 | #include "clapsing.h" |
---|
3943 | |
---|
3944 | poly id_GCD(poly f, poly g, const ring r) |
---|
3945 | { |
---|
3946 | ring save_r=currRing; |
---|
3947 | rChangeCurrRing(r); |
---|
3948 | ideal I=idInit(2,1); I->m[0]=f; I->m[1]=g; |
---|
3949 | intvec *w = NULL; |
---|
3950 | ideal S=idSyzygies(I,testHomog,&w); |
---|
3951 | if (w!=NULL) delete w; |
---|
3952 | poly gg=pTakeOutComp(&(S->m[0]),2); |
---|
3953 | idDelete(&S); |
---|
3954 | poly gcd_p=singclap_pdivide(f,gg); |
---|
3955 | pDelete(&gg); |
---|
3956 | rChangeCurrRing(save_r); |
---|
3957 | return gcd_p; |
---|
3958 | } |
---|
3959 | |
---|
3960 | /*2 |
---|
3961 | * xx,q: arrays of length 0..rl-1 |
---|
3962 | * xx[i]: SB mod q[i] |
---|
3963 | * assume: char=0 |
---|
3964 | * assume: q[i]!=0 |
---|
3965 | * destroys xx |
---|
3966 | */ |
---|
3967 | ideal idChineseRemainder(ideal *xx, number *q, int rl) |
---|
3968 | { |
---|
3969 | ideal result=idInit(IDELEMS(xx[0]),1); |
---|
3970 | int i,j; |
---|
3971 | poly r,h,hh,res_p; |
---|
3972 | number *x=(number *)omAlloc(rl*sizeof(number)); |
---|
3973 | for(i=IDELEMS(result)-1;i>=0;i--) |
---|
3974 | { |
---|
3975 | res_p=NULL; |
---|
3976 | loop |
---|
3977 | { |
---|
3978 | r=NULL; |
---|
3979 | for(j=rl-1;j>=0;j--) |
---|
3980 | { |
---|
3981 | h=xx[j]->m[i]; |
---|
3982 | if ((h!=NULL) |
---|
3983 | &&((r==NULL)||(pLmCmp(r,h)==-1))) |
---|
3984 | r=h; |
---|
3985 | } |
---|
3986 | if (r==NULL) break; |
---|
3987 | h=pHead(r); |
---|
3988 | for(j=rl-1;j>=0;j--) |
---|
3989 | { |
---|
3990 | hh=xx[j]->m[i]; |
---|
3991 | if ((hh!=NULL) && (pLmCmp(r,hh)==0)) |
---|
3992 | { |
---|
3993 | x[j]=pGetCoeff(hh); |
---|
3994 | hh=pLmFreeAndNext(hh); |
---|
3995 | xx[j]->m[i]=hh; |
---|
3996 | } |
---|
3997 | else |
---|
3998 | x[j]=nlInit(0, currRing); |
---|
3999 | } |
---|
4000 | number n=nlChineseRemainder(x,q,rl); |
---|
4001 | for(j=rl-1;j>=0;j--) |
---|
4002 | { |
---|
4003 | nlDelete(&(x[j]),currRing); |
---|
4004 | } |
---|
4005 | pSetCoeff(h,n); |
---|
4006 | //Print("new mon:");pWrite(h); |
---|
4007 | res_p=pAdd(res_p,h); |
---|
4008 | } |
---|
4009 | result->m[i]=res_p; |
---|
4010 | } |
---|
4011 | omFree(x); |
---|
4012 | for(i=rl-1;i>=0;i--) idDelete(&(xx[i])); |
---|
4013 | omFree(xx); |
---|
4014 | return result; |
---|
4015 | } |
---|
4016 | ideal idChineseRemainder(ideal *xx, intvec *iv) |
---|
4017 | { |
---|
4018 | int rl=iv->length(); |
---|
4019 | number *q=(number *)omAlloc(rl*sizeof(number)); |
---|
4020 | int i; |
---|
4021 | for(i=0; i<rl; i++) |
---|
4022 | { |
---|
4023 | q[i]=nInit((*iv)[i]); |
---|
4024 | } |
---|
4025 | return idChineseRemainder(xx,q,rl); |
---|
4026 | } |
---|
4027 | |
---|
4028 | |
---|
4029 | |
---|
4030 | |
---|
4031 | /*2 |
---|
4032 | * transpose a module |
---|
4033 | * NOTE: just a version of "ideal idTransp(ideal)" which works within specified ring. |
---|
4034 | */ |
---|
4035 | ideal id_Transp(ideal a, const ring rRing) |
---|
4036 | { |
---|
4037 | int r = a->rank, c = IDELEMS(a); |
---|
4038 | ideal b = idInit(r,c); |
---|
4039 | |
---|
4040 | for (int i=c; i>0; i--) |
---|
4041 | { |
---|
4042 | poly p=a->m[i-1]; |
---|
4043 | while(p!=NULL) |
---|
4044 | { |
---|
4045 | poly h=p_Head(p, rRing); |
---|
4046 | int co=p_GetComp(h, rRing)-1; |
---|
4047 | p_SetComp(h, i, rRing); |
---|
4048 | p_Setm(h, rRing); |
---|
4049 | b->m[co] = p_Add_q(b->m[co], h, rRing); |
---|
4050 | pIter(p); |
---|
4051 | } |
---|
4052 | } |
---|
4053 | return b; |
---|
4054 | } |
---|
4055 | |
---|
4056 | |
---|
4057 | |
---|
4058 | /*2 |
---|
4059 | * The following is needed to compute the image of certain map used in |
---|
4060 | * the computation of cohomologies via BGG |
---|
4061 | * let M = { w_1, ..., w_k }, k = size(M) == ncols(M), n = nvars(currRing). |
---|
4062 | * assuming that nrows(M) <= m*n; the procedure computes: |
---|
4063 | * transpose(M) * transpose( var(1) I_m | ... | var(n) I_m ) :== transpose(module{f_1, ... f_k}), |
---|
4064 | * where f_i = \sum_{j=1}^{m} (w_i, v_j) gen(j), (w_i, v_j) is a `scalar` multiplication. |
---|
4065 | * that is, if w_i = (a^1_1, ... a^1_m) | (a^2_1, ..., a^2_m) | ... | (a^n_1, ..., a^n_m) then |
---|
4066 | |
---|
4067 | (a^1_1, ... a^1_m) | (a^2_1, ..., a^2_m) | ... | (a^n_1, ..., a^n_m) |
---|
4068 | * var_1 ... var_1 | var_2 ... var_2 | ... | var_n ... var(n) |
---|
4069 | * gen_1 ... gen_m | gen_1 ... gen_m | ... | gen_1 ... gen_m |
---|
4070 | + => |
---|
4071 | f_i = |
---|
4072 | |
---|
4073 | a^1_1 * var(1) * gen(1) + ... + a^1_m * var(1) * gen(m) + |
---|
4074 | a^2_1 * var(2) * gen(1) + ... + a^2_m * var(2) * gen(m) + |
---|
4075 | ... |
---|
4076 | a^n_1 * var(n) * gen(1) + ... + a^n_m * var(n) * gen(m); |
---|
4077 | |
---|
4078 | NOTE: for every f_i we run only ONCE along w_i saving partial sums into a temporary array of polys of size m |
---|
4079 | */ |
---|
4080 | ideal id_TensorModuleMult(const int m, const ideal M, const ring rRing) |
---|
4081 | { |
---|
4082 | // #ifdef DEBU |
---|
4083 | // WarnS("tensorModuleMult!!!!"); |
---|
4084 | |
---|
4085 | assume(m > 0); |
---|
4086 | assume(M != NULL); |
---|
4087 | |
---|
4088 | const int n = rRing->N; |
---|
4089 | |
---|
4090 | assume(M->rank <= m * n); |
---|
4091 | |
---|
4092 | const int k = IDELEMS(M); |
---|
4093 | |
---|
4094 | ideal idTemp = idInit(k,m); // = {f_1, ..., f_k } |
---|
4095 | |
---|
4096 | for( int i = 0; i < k; i++ ) // for every w \in M |
---|
4097 | { |
---|
4098 | poly pTempSum = NULL; |
---|
4099 | |
---|
4100 | poly w = M->m[i]; |
---|
4101 | |
---|
4102 | while(w != NULL) // for each term of w... |
---|
4103 | { |
---|
4104 | poly h = p_Head(w, rRing); |
---|
4105 | |
---|
4106 | const int gen = p_GetComp(h, rRing); // 1 ... |
---|
4107 | |
---|
4108 | assume(gen > 0); |
---|
4109 | assume(gen <= n*m); |
---|
4110 | |
---|
4111 | // TODO: write a formula with %, / instead of while! |
---|
4112 | /* |
---|
4113 | int c = gen; |
---|
4114 | int v = 1; |
---|
4115 | while(c > m) |
---|
4116 | { |
---|
4117 | c -= m; |
---|
4118 | v++; |
---|
4119 | } |
---|
4120 | */ |
---|
4121 | |
---|
4122 | int cc = gen % m; |
---|
4123 | if( cc == 0) cc = m; |
---|
4124 | int vv = 1 + (gen - cc) / m; |
---|
4125 | |
---|
4126 | // assume( cc == c ); |
---|
4127 | // assume( vv == v ); |
---|
4128 | |
---|
4129 | // 1<= c <= m |
---|
4130 | assume( cc > 0 ); |
---|
4131 | assume( cc <= m ); |
---|
4132 | |
---|
4133 | assume( vv > 0 ); |
---|
4134 | assume( vv <= n ); |
---|
4135 | |
---|
4136 | assume( (cc + (vv-1)*m) == gen ); |
---|
4137 | |
---|
4138 | p_IncrExp(h, vv, rRing); // h *= var(j) && // p_AddExp(h, vv, 1, rRing); |
---|
4139 | p_SetComp(h, cc, rRing); |
---|
4140 | |
---|
4141 | p_Setm(h, rRing); // addjust degree after the previous steps! |
---|
4142 | |
---|
4143 | pTempSum = p_Add_q(pTempSum, h, rRing); // it is slow since h will be usually put to the back of pTempSum!!! |
---|
4144 | |
---|
4145 | pIter(w); |
---|
4146 | } |
---|
4147 | |
---|
4148 | idTemp->m[i] = pTempSum; |
---|
4149 | } |
---|
4150 | |
---|
4151 | // simplify idTemp??? |
---|
4152 | |
---|
4153 | ideal idResult = id_Transp(idTemp, rRing); |
---|
4154 | |
---|
4155 | id_Delete(&idTemp, rRing); |
---|
4156 | |
---|
4157 | return(idResult); |
---|
4158 | } |
---|