/**************************************** * Computer Algebra System SINGULAR * ****************************************/ /* $Id: ideals.cc,v 1.57 2008-06-10 11:50:07 Singular Exp $ */ /* * ABSTRACT - all basic methods to manipulate ideals */ /* includes */ #include "mod2.h" #include "structs.h" #include "omalloc.h" #include "febase.h" #include "numbers.h" #include "longrat.h" #include "polys.h" #include "ring.h" #include "kstd1.h" #include "matpol.h" #include "weight.h" #include "intvec.h" #include "syz.h" #include "sparsmat.h" #include "ideals.h" #include "prCopy.h" #define MYTEST 0 /* #define WITH_OLD_MINOR */ #define pCopy_noCheck(p) pCopy(p) static poly * idpower; /*collects the monomials in makemonoms, must be allocated befor*/ static int idpowerpoint; /*index of the actual monomial in idpower*/ static poly * givenideal; /*the ideal from which a power is computed*/ /*0 implementation*/ /*2 * initialise an ideal */ #ifdef PDEBUG ideal idDBInit(int idsize, int rank, const char *f, int l) #else ideal idInit(int idsize, int rank) #endif { /*- initialise an ideal -*/ ideal hh = (ideal )omAllocBin(sip_sideal_bin); hh->nrows = 1; hh->rank = rank; IDELEMS(hh) = idsize; if (idsize>0) { hh->m = (poly *)omAlloc0(idsize*sizeof(poly)); } else hh->m=NULL; return hh; } //#ifndef __OPTIMIZE__ // this is mainly for outputting an ideal within the debugger void idShow(ideal id) { if( id == NULL ) Print("(NULL)"); else { Print("Module of rank %d,real rank %d and %d generators.\n", id->rank,idRankFreeModule(id),IDELEMS(id)); for (int i=0;incols*id->nrows;i++) { if (id->m[i]!=NULL) { Print("generator %d: ",i);pWrite(id->m[i]); } } } } //#endif /*2 * initialise the maximal ideal (at 0) */ ideal idMaxIdeal (void) { int l; ideal hh=NULL; hh=idInit(pVariables,1); for (l=0; lm[l] = pOne(); pSetExp(hh->m[l],l+1,1); pSetm(hh->m[l]); } return hh; } /*2 * deletes an ideal/matrix */ void id_Delete (ideal * h, ring r) { int j,elems; if (*h == NULL) return; elems=j=(*h)->nrows*(*h)->ncols; if (j>0) { do { p_Delete(&((*h)->m[--j]), r); } while (j>0); omFreeSize((ADDRESS)((*h)->m),sizeof(poly)*elems); } omFreeBin((ADDRESS)*h, sip_sideal_bin); *h=NULL; } /*2 * Shallowdeletes an ideal/matrix */ void id_ShallowDelete (ideal *h, ring r) { int j,elems; if (*h == NULL) return; elems=j=(*h)->nrows*(*h)->ncols; if (j>0) { do { p_ShallowDelete(&((*h)->m[--j]), r); } while (j>0); omFreeSize((ADDRESS)((*h)->m),sizeof(poly)*elems); } omFreeBin((ADDRESS)*h, sip_sideal_bin); *h=NULL; } /*2 *gives an ideal the minimal possible size */ void idSkipZeroes (ideal ide) { int k; int j = -1; BOOLEAN change=FALSE; for (k=0; km[k] != NULL) { j++; if (change) { ide->m[j] = ide->m[k]; } } else { change=TRUE; } } if (change) { if (j == -1) j = 0; else { for (k=j+1; km[k] = NULL; } pEnlargeSet(&(ide->m),IDELEMS(ide),j+1-IDELEMS(ide)); IDELEMS(ide) = j+1; } } /*2 * ideal id = (id[i]) * result is leadcoeff(id[i]) = 1 */ void idNorm(ideal id) { for (int i=IDELEMS(id)-1; i>=0; i--) { if (id->m[i] != NULL) { pNorm(id->m[i]); } } } /*2 * ideal id = (id[i]), c any number * if id[i] = c*id[j] then id[j] is deleted for j > i */ void idDelMultiples(ideal id) { int i, j; int k = IDELEMS(id)-1; for (i=k; i>=0; i--) { if (id->m[i]!=NULL) { for (j=k; j>i; j--) { if ((id->m[j]!=NULL) && (pComparePolys(id->m[i], id->m[j]))) { pDelete(&id->m[j]); } } } } } /*2 * ideal id = (id[i]) * if id[i] = id[j] then id[j] is deleted for j > i */ void idDelEquals(ideal id) { int i, j; int k = IDELEMS(id)-1; for (i=k; i>=0; i--) { if (id->m[i]!=NULL) { for (j=k; j>i; j--) { if ((id->m[j]!=NULL) && (pEqualPolys(id->m[i], id->m[j]))) { pDelete(&id->m[j]); } } } } } // // Delete id[j], if Lm(j) == Lm(i) and j > i // void idDelLmEquals(ideal id) { int i, j; int k = IDELEMS(id)-1; for (i=k; i>=0; i--) { if (id->m[i] != NULL) { for (j=k; j>i; j--) { if ((id->m[j] != NULL) && pLmEqual(id->m[i], id->m[j])) { pDelete(&id->m[j]); } } } } } void idDelDiv(ideal id) { int i, j; int k = IDELEMS(id)-1; for (i=k; i>=0; i--) { if (id->m[i] != NULL) { for (j=k; j>i; j--) { if (id->m[j]!=NULL) { if(pDivisibleBy(id->m[i], id->m[j])) { pDelete(&id->m[j]); } else if(pDivisibleBy(id->m[j], id->m[i])) { pDelete(&id->m[i]); break; } } } } } } /*2 *test if the ideal has only constant polynomials */ BOOLEAN idIsConstant(ideal id) { int k; for (k = IDELEMS(id)-1; k>=0; k--) { if (pIsConstantPoly(id->m[k]) == FALSE) return FALSE; } return TRUE; } /*2 * copy an ideal */ #ifdef PDEBUG ideal idDBCopy(ideal h1,const char *f,int l) { int i; ideal h2; idDBTest(h1,PDEBUG,f,l); //#ifdef TEST if (h1 == NULL) { h2=idDBInit(1,1,f,l); } else //#endif { h2=idDBInit(IDELEMS(h1),h1->rank,f,l); for (i=IDELEMS(h1)-1; i>=0; i--) h2->m[i] = pCopy(h1->m[i]); } return h2; } #endif ideal id_Copy (ideal h1, const ring r) { int i; ideal h2; //#ifdef TEST if (h1 == NULL) { h2=idInit(1,1); } else //#endif { h2=idInit(IDELEMS(h1),h1->rank); for (i=IDELEMS(h1)-1; i>=0; i--) h2->m[i] = p_Copy(h1->m[i],r); } return h2; } #ifdef PDEBUG void idDBTest(ideal h1, int level, const char *f,const int l) { int i; if (h1 != NULL) { // assume(IDELEMS(h1) > 0); for ideal/module, does not apply to matrix omCheckAddrSize(h1,sizeof(*h1)); omdebugAddrSize(h1->m,h1->ncols*h1->nrows*sizeof(poly)); /* to be able to test matrices: */ for (i=(h1->ncols*h1->nrows)-1; i>=0; i--) _p_Test(h1->m[i], currRing, level); int new_rk=idRankFreeModule(h1); if(new_rk > h1->rank) { dReportError("wrong rank %d (should be %d) in %s:%d\n", h1->rank, new_rk, f,l); omPrintAddrInfo(stderr, h1, " for ideal"); h1->rank=new_rk; } } } #endif /*3 * for idSort: compare a and b revlex inclusive module comp. */ static int pComp_RevLex(poly a, poly b,BOOLEAN nolex) { if (b==NULL) return 1; if (a==NULL) return -1; if (nolex) return pLmCmp(a,b); int l=pVariables; while ((l>0) && (pGetExp(a,l)==pGetExp(b,l))) l--; if (l==0) { if (pGetComp(a)==pGetComp(b)) return 0; if (pGetComp(a)>pGetComp(b)) return 1; } else if (pGetExp(a,l)>pGetExp(b,l)) return 1; return -1; } /*2 *sorts the ideal w.r.t. the actual ringordering *uses lex-ordering when nolex = FALSE */ intvec *idSort(ideal id,BOOLEAN nolex) { poly p,q; intvec * result = new intvec(IDELEMS(id)); int i, j, actpos=0, newpos, l; int diff, olddiff, lastcomp, newcomp; BOOLEAN notFound; for (i=0;im[i]!=NULL) { notFound = TRUE; newpos = actpos / 2; diff = (actpos+1) / 2; diff = (diff+1) / 2; lastcomp = pComp_RevLex(id->m[i],id->m[(*result)[newpos]],nolex); if (lastcomp<0) { newpos -= diff; } else if (lastcomp>0) { newpos += diff; } else { notFound = FALSE; } //while ((newpos>=0) && (newpos=0) && (newposm[i],id->m[(*result)[newpos]],nolex); olddiff = diff; if (diff>1) { diff = (diff+1) / 2; if ((newcomp==1) && (actpos-newpos>1) && (diff>1) && (newpos+diff>=actpos)) { diff = actpos-newpos-1; } else if ((newcomp==-1) && (diff>1) && (newpos0)) notFound = FALSE; else newpos -= diff; } else if (newcomp>0) { if ((olddiff==1) && (lastcomp<0)) { notFound = FALSE; newpos++; } else { newpos += diff; } } else { notFound = FALSE; } lastcomp = newcomp; if (diff==0) notFound=FALSE; /*hs*/ } if (newpos<0) newpos = 0; if (newpos>actpos) newpos = actpos; while ((newposm[i],id->m[(*result)[newpos]],nolex)==0)) newpos++; for (j=actpos;j>newpos;j--) { (*result)[j] = (*result)[j-1]; } (*result)[newpos] = i; actpos++; } } for (j=0;j= 0) && (h1->m[j] == NULL)) j--; i = IDELEMS(h2)-1; while ((i >= 0) && (h2->m[i] == NULL)) i--; r = si_max(h1->rank,h2->rank); if (i+j==(-2)) return idInit(1,r); else result=idInit(i+j+2,r); for (l=j; l>=0; l--) { result->m[l] = pCopy(h1->m[l]); } r = i+j+1; for (l=i; l>=0; l--, r--) { result->m[r] = pCopy(h2->m[l]); } return result; } /*2 * h1 + h2 */ ideal idAdd (ideal h1,ideal h2) { ideal result = idSimpleAdd(h1,h2); idCompactify(result); return result; } /*2 * h1 * h2 */ ideal idMult (ideal h1,ideal h2) { int i,j,k; ideal hh; j = IDELEMS(h1); while ((j > 0) && (h1->m[j-1] == NULL)) j--; i = IDELEMS(h2); while ((i > 0) && (h2->m[i-1] == NULL)) i--; j = j * i; if (j == 0) hh = idInit(1,1); else hh=idInit(j,1); if (h1->rankrank) hh->rank = h2->rank; else hh->rank = h1->rank; if (j==0) return hh; k = 0; for (i=0; im[i] != NULL) { for (j=0; jm[j] != NULL) { hh->m[k] = ppMult_qq(h1->m[i],h2->m[j]); k++; } } } } { idCompactify(hh); return hh; } } /*2 *returns true if h is the zero ideal */ BOOLEAN idIs0 (ideal h) { int i; if (h == NULL) return TRUE; i = IDELEMS(h)-1; while ((i >= 0) && (h->m[i] == NULL)) { i--; } if (i < 0) return TRUE; else return FALSE; } /*2 * return the maximal component number found in any polynomial in s */ long idRankFreeModule (ideal s, ring lmRing, ring tailRing) { if (s!=NULL) { int j=0; if (rRing_has_Comp(tailRing) && rRing_has_Comp(lmRing)) { int l=IDELEMS(s); poly *p=s->m; int k; for (; l != 0; l--) { if (*p!=NULL) { pp_Test(*p, lmRing, tailRing); k = p_MaxComp(*p, lmRing, tailRing); if (k>j) j = k; } p++; } } return j; } return -1; } BOOLEAN idIsModule(ideal id, ring r) { if (id != NULL && rRing_has_Comp(r)) { int j, l = IDELEMS(id); for (j=0; jm[j] != NULL && p_GetComp(id->m[j], r) > 0) return TRUE; } } return FALSE; } /*2 *returns true if id is homogenous with respect to the aktual weights */ BOOLEAN idHomIdeal (ideal id, ideal Q) { int i; BOOLEAN b; if ((id == NULL) || (IDELEMS(id) == 0)) return TRUE; i = 0; b = TRUE; while ((i < IDELEMS(id)) && b) { b = pIsHomogeneous(id->m[i]); i++; } if ((b) && (Q!=NULL) && (IDELEMS(Q)>0)) { i=0; while ((i < IDELEMS(Q)) && b) { b = pIsHomogeneous(Q->m[i]); i++; } } return b; } /*2 *returns a minimized set of generators of h1 */ ideal idMinBase (ideal h1) { ideal h2, h3,h4,e; int j,k; int i,l,ll; intvec * wth; BOOLEAN homog; homog = idHomModule(h1,currQuotient,&wth); if ((currRing->OrdSgn == 1) && (!homog)) { Warn("minbase applies only to the local or homogeneous case"); e=idCopy(h1); return e; } if ((currRing->OrdSgn == 1) && (homog)) { ideal re=kMin_std(h1,currQuotient,(tHomog)homog,&wth,h2,NULL,0,3); idDelete(&re); return h2; } e=idInit(1,h1->rank); if (idIs0(h1)) { return e; } pEnlargeSet(&(e->m),IDELEMS(e),15); IDELEMS(e) = 16; h2 = kStd(h1,currQuotient,isNotHomog,NULL); h3 = idMaxIdeal(); h4=idMult(h2,h3); idDelete(&h3); h3=kStd(h4,currQuotient,isNotHomog,NULL); k = IDELEMS(h3); while ((k > 0) && (h3->m[k-1] == NULL)) k--; j = -1; l = IDELEMS(h2); while ((l > 0) && (h2->m[l-1] == NULL)) l--; for (i=l-1; i>=0; i--) { if (h2->m[i] != NULL) { ll = 0; while ((ll < k) && ((h3->m[ll] == NULL) || !pDivisibleBy(h3->m[ll],h2->m[i]))) ll++; if (ll >= k) { j++; if (j > IDELEMS(e)-1) { pEnlargeSet(&(e->m),IDELEMS(e),16); IDELEMS(e) += 16; } e->m[j] = pCopy(h2->m[i]); } } } idDelete(&h2); idDelete(&h3); idDelete(&h4); if (currQuotient!=NULL) { h3=idInit(1,e->rank); h2=kNF(h3,currQuotient,e); idDelete(&h3); idDelete(&e); e=h2; } idSkipZeroes(e); return e; } /*2 *the minimal index of used variables - 1 */ int pLowVar (poly p) { int k,l,lex; if (p == NULL) return -1; k = 32000;/*a very large dummy value*/ while (p != NULL) { l = 1; lex = pGetExp(p,l); while ((l < pVariables) && (lex == 0)) { l++; lex = pGetExp(p,l); } l--; if (l < k) k = l; pIter(p); } return k; } /*3 *multiplies p with t (!cas) or (t-1) *the index of t is:1, so we have to shift all variables *p is NOT in the actual ring, it has no t */ static poly pMultWithT (poly p,BOOLEAN cas) { /*qp is the working pointer in p*/ /*result is the result, qresult is the working pointer*/ /*pp is p in the actual ring(shifted), qpp the working pointer*/ poly result,qp,pp; poly qresult=NULL; poly qpp=NULL; int i,j,lex; number n; pp = NULL; result = NULL; qp = p; while (qp != NULL) { i = 0; if (result == NULL) {/*first monomial*/ result = pInit(); qresult = result; } else { qresult->next = pInit(); pIter(qresult); } for (j=pVariables-1; j>0; j--) { lex = pGetExp(qp,j); pSetExp(qresult,j+1,lex);/*copy all variables*/ } lex = pGetComp(qp); pSetComp(qresult,lex); n=nCopy(pGetCoeff(qp)); pSetCoeff0(qresult,n); qresult->next = NULL; pSetm(qresult); /*qresult is now qp brought into the actual ring*/ if (cas) { /*case: mult with t-1*/ pSetExp(qresult,1,0); pSetm(qresult); if (pp == NULL) { /*first monomial*/ pp = pCopy(qresult); qpp = pp; } else { qpp->next = pCopy(qresult); pIter(qpp); } pGetCoeff(qpp)=nNeg(pGetCoeff(qpp)); /*now qpp contains -1*qp*/ } pSetExp(qresult,1,1);/*this is mult. by t*/ pSetm(qresult); pIter(qp); } /* *now p is processed: *result contains t*p * if cas: pp contains -1*p (in the new ring) */ if (cas) qresult->next = pp; /* else qresult->next = NULL;*/ return result; } /*2 *dehomogenized the generators of the ideal id1 with the leading *monomial of p replaced by n */ ideal idDehomogen (ideal id1,poly p,number n) { int i; ideal result; if (idIs0(id1)) { return idInit(1,id1->rank); } result=idInit(IDELEMS(id1),id1->rank); for (i=0; im[i] = pDehomogen(id1->m[i],p,n); } return result; } /*2 * verschiebt die Indizees der Modulerzeugenden um i */ void pShift (poly * p,int i) { poly qp1 = *p,qp2 = *p;/*working pointers*/ int j = pMaxComp(*p),k = pMinComp(*p); if (j+i < 0) return ; while (qp1 != NULL) { if ((pGetComp(qp1)+i > 0) || ((j == -i) && (j == k))) { pSetComp(qp1,pGetComp(qp1)+i); pSetmComp(qp1); qp2 = qp1; pIter(qp1); } else { if (qp2 == *p) { pIter(*p); pDeleteLm(&qp2); qp2 = *p; qp1 = *p; } else { qp2->next = qp1->next; pDeleteLm(&qp1); qp1 = qp2->next; } } } } /*2 *initialized a field with r numbers between beg and end for the *procedure idNextChoise */ void idInitChoise (int r,int beg,int end,BOOLEAN *endch,int * choise) { /*returns the first choise of r numbers between beg and end*/ int i; for (i=0; i end-beg+1) *endch = TRUE; else *endch = FALSE; } /*2 *returns the next choise of r numbers between beg and end */ void idGetNextChoise (int r,int end,BOOLEAN *endch,int * choise) { int i = r-1,j; while ((i >= 0) && (choise[i] == end)) { i--; end--; } if (i == -1) *endch = TRUE; else { choise[i]++; for (j=i+1; j=t) { i = t+1; while ((i=d) { omFreeSize((ADDRESS)localchoise,(d-1)*sizeof(int)); return result; } } idGetNextChoise(d-1,end,&b,localchoise); } omFreeSize((ADDRESS)localchoise,(d-1)*sizeof(int)); return 0; } /*2 *computes the binomial coefficient */ int binom (int n,int r) { int i,result; if (r==0) return 1; if (n-rm[j] = pOne(); pSetComp(h->m[j],j+1); pSetmComp(h->m[j]); } return h; } /*2 * h3 := h1 intersect h2 */ ideal idSect (ideal h1,ideal h2) { int i,j,k,length; int flength = idRankFreeModule(h1); int slength = idRankFreeModule(h2); int rank=si_min(flength,slength); if ((idIs0(h1)) || (idIs0(h2))) return idInit(1,rank); ideal first,second,temp,temp1,result; poly p,q; if (IDELEMS(h1)0) && (first->m[j-1]==NULL)) j--; temp = idInit(j /*IDELEMS(first)*/+IDELEMS(second),length+j); k = 0; for (i=0;im[i]!=NULL) { if (syz_ring==orig_ring) temp->m[k] = pCopy(first->m[i]); else temp->m[k] = prCopyR(first->m[i], orig_ring); q = pOne(); pSetComp(q,i+1+length); pSetmComp(q); if (flength==0) pShift(&(temp->m[k]),1); p = temp->m[k]; while (pNext(p)!=NULL) pIter(p); pNext(p) = q; k++; } } for (i=0;im[i]!=NULL) { if (syz_ring==orig_ring) temp->m[k] = pCopy(second->m[i]); else temp->m[k] = prCopyR(second->m[i], orig_ring); if (slength==0) pShift(&(temp->m[k]),1); k++; } } intvec *w=NULL; temp1 = kStd(temp,currQuotient,testHomog,&w,NULL,length); if (w!=NULL) delete w; idDelete(&temp); if(syz_ring!=orig_ring) rChangeCurrRing(orig_ring); result = idInit(IDELEMS(temp1),rank); j = 0; for (i=0;im[i]!=NULL) && (p_GetComp(temp1->m[i],syz_ring)>length)) { if(syz_ring==orig_ring) { p = temp1->m[i]; } else { p = prMoveR(temp1->m[i], syz_ring); } temp1->m[i]=NULL; while (p!=NULL) { q = pNext(p); pNext(p) = NULL; k = pGetComp(p)-1-length; pSetComp(p,0); pSetmComp(p); /* Warning! multiply only from the left! it's very important for Plural */ result->m[j] = pAdd(result->m[j],pMult(p,pCopy(first->m[k]))); p = q; } j++; } } if(syz_ring!=orig_ring) { rChangeCurrRing(syz_ring); idDelete(&temp1); rChangeCurrRing(orig_ring); rKill(syz_ring); } else { idDelete(&temp1); } idSkipZeroes(result); if (TEST_OPT_RETURN_SB) { w=NULL; temp1=kStd(result,currQuotient,testHomog,&w); if (w!=NULL) delete w; idDelete(&result); idSkipZeroes(temp1); return temp1; } else //temp1=kInterRed(result,currQuotient); return result; } /*2 * ideal/module intersection for a list of objects * given as 'resolvente' */ ideal idMultSect(resolvente arg, int length) { int i,j=0,k=0,syzComp,l,maxrk=-1,realrki; ideal bigmat,tempstd,result; poly p; int isIdeal=0; intvec * w=NULL; /* find 0-ideals and max rank -----------------------------------*/ for (i=0;imaxrk) maxrk = realrki; } else { if (arg[i]!=NULL) { return idInit(1,arg[i]->rank); } } } if (maxrk == 0) { isIdeal = 1; maxrk = 1; } /* init -----------------------------------------------------------*/ j += maxrk; syzComp = k*maxrk; ring orig_ring=currRing; ring syz_ring=rCurrRingAssure_SyzComp(); rSetSyzComp(syzComp); bigmat = idInit(j,(k+1)*maxrk); /* create unit matrices ------------------------------------------*/ for (i=0;im[i] = pAdd(bigmat->m[i],p); } } /* enter given ideals ------------------------------------------*/ i = maxrk; k = 0; for (j=0;jm[l]!=NULL) { if (syz_ring==orig_ring) bigmat->m[i] = pCopy(arg[j]->m[l]); else bigmat->m[i] = prCopyR(arg[j]->m[l], orig_ring); pShift(&(bigmat->m[i]),k*maxrk+isIdeal); i++; } } k++; } } /* std computation --------------------------------------------*/ tempstd = kStd(bigmat,currQuotient,testHomog,&w,NULL,syzComp); if (w!=NULL) delete w; idDelete(&bigmat); if(syz_ring!=orig_ring) rChangeCurrRing(orig_ring); /* interprete result ----------------------------------------*/ result = idInit(IDELEMS(tempstd),maxrk); k = 0; for (j=0;jm[j]!=NULL) && (p_GetComp(tempstd->m[j],syz_ring)>syzComp)) { if (syz_ring==orig_ring) p = pCopy(tempstd->m[j]); else p = prCopyR(tempstd->m[j], syz_ring); pShift(&p,-syzComp-isIdeal); result->m[k] = p; k++; } } /* clean up ----------------------------------------------------*/ if(syz_ring!=orig_ring) rChangeCurrRing(syz_ring); idDelete(&tempstd); if(syz_ring!=orig_ring) { rChangeCurrRing(orig_ring); rKill(syz_ring); } idSkipZeroes(result); return result; } /*2 *computes syzygies of h1, *if quot != NULL it computes in the quotient ring modulo "quot" *works always in a ring with ringorder_s */ static ideal idPrepare (ideal h1, tHomog h, int syzcomp, intvec **w) { ideal h2, h3; int i; int j,jj=0,k; poly p,q; if (idIs0(h1)) return NULL; k = idRankFreeModule(h1); h2=idCopy(h1); i = IDELEMS(h2)-1; if (k == 0) { for (j=0; j<=i; j++) pShift(&(h2->m[j]),1); k = 1; } if (syzcomprank = syzcomp+i+1; #if MYTEST #ifdef RDEBUG Print("Prepare::h2: "); idPrint(h2); #endif #endif for (j=0; j<=i; j++) { p = h2->m[j]; q = pOne(); pSetComp(q,syzcomp+1+j); pSetmComp(q); if (p!=NULL) { while (pNext(p)) pIter(p); p->next = q; } else h2->m[j]=q; } #ifdef PDEBUG for(j=0;jm[j]); #if MYTEST #ifdef RDEBUG Print("Prepare::Input: "); idPrint(h2); Print("Prepare::currQuotient: "); idPrint(currQuotient); #endif #endif #endif h3 = kStd(h2,currQuotient,h,w,NULL,syzcomp); idDelete(&h2); return h3; } /*2 * compute the syzygies of h1 in R/quot, * weights of components are in w * if setRegularity, return the regularity in deg * do not change h1, w */ ideal idSyzygies (ideal h1, tHomog h,intvec **w, BOOLEAN setSyzComp, BOOLEAN setRegularity, int *deg) { ideal s_h1; poly p; int j, k, length=0,reg; BOOLEAN isMonomial=TRUE; int ii, idElemens_h1; idElemens_h1=IDELEMS(h1); #ifdef PDEBUG for(ii=0;iim[ii]); #endif if (idIs0(h1)) { ideal result=idFreeModule(idElemens_h1/*IDELEMS(h1)*/); int curr_syz_limit=rGetCurrSyzLimit(); if (curr_syz_limit>0) for (ii=0;iim[ii]!=NULL) pShift(&h1->m[ii],curr_syz_limit); } return result; } int slength=(int)idRankFreeModule(h1); k=si_max(1,slength /*idRankFreeModule(h1)*/); assume(currRing != NULL); ring orig_ring=currRing; ring syz_ring=rCurrRingAssure_SyzComp(); if (setSyzComp) rSetSyzComp(k); if (orig_ring != syz_ring) { s_h1=idrCopyR_NoSort(h1,orig_ring); } else { s_h1 = h1; } ideal s_h3=idPrepare(s_h1,h,k,w); if (s_h3==NULL) { return idFreeModule( idElemens_h1 /*IDELEMS(h1)*/); } if (orig_ring != syz_ring) { idDelete(&s_h1); for (j=0; jm[j] != NULL) { if (p_MinComp(s_h3->m[j],syz_ring) > k) pShift(&s_h3->m[j], -k); else pDelete(&s_h3->m[j]); } } idSkipZeroes(s_h3); s_h3->rank -= k; rChangeCurrRing(orig_ring); s_h3 = idrMoveR_NoSort(s_h3, syz_ring); rKill(syz_ring); idTest(s_h3); return s_h3; } ideal e = idInit(IDELEMS(s_h3), s_h3->rank); for (j=0; jm[j] != NULL) { if (p_MinComp(s_h3->m[j],syz_ring) <= k) { e->m[j] = s_h3->m[j]; isMonomial=isMonomial && (pNext(s_h3->m[j])==NULL); pDelete(&pNext(s_h3->m[j])); s_h3->m[j] = NULL; } } } idSkipZeroes(s_h3); idSkipZeroes(e); if ((deg != NULL) && (!isMonomial) && (!TEST_OPT_NOTREGULARITY) && (setRegularity) && (h==isHomog) && (!rIsPluralRing(currRing)) ) { ring dp_C_ring = rCurrRingAssure_dp_C(); if (dp_C_ring != syz_ring) e = idrMoveR_NoSort(e, syz_ring); resolvente res = sySchreyerResolvente(e,-1,&length,TRUE, TRUE); intvec * dummy = syBetti(res,length,®, *w); *deg = reg+2; delete dummy; for (j=0;jrank); BITSET save_verbose=verbose; k=si_max(1,(int)idRankFreeModule(h1)); if (k==1) verbose |=Sy_bit(V_IDLIFT); ring orig_ring = currRing; ring syz_ring = rCurrRingAssure_SyzComp(); rSetSyzComp(k); #if MYTEST #ifdef RDEBUG rWrite(syz_ring); rDebugPrint(syz_ring); #endif #endif ideal s_h1=h1; if (orig_ring != syz_ring) s_h1 = idrCopyR_NoSort(h1,orig_ring); else s_h1 = h1; #if MYTEST #ifdef RDEBUG Print("Input: "); idPrint(s_h1); #endif #endif ideal s_h3=idPrepare(s_h1,h,k,&w); #if MYTEST #ifdef RDEBUG Print("Prepare: "); idPrint(s_h3); #endif #endif ideal s_h2 = idInit(IDELEMS(s_h3), s_h3->rank); #if MYTEST #ifdef RDEBUG Print("Temp: "); idPrint(s_h2); #endif #endif if (w!=NULL) delete w; i = 0; for (j=0; jm[j] != NULL) && (p_MinComp(s_h3->m[j],syz_ring) <= k)) { i++; q = s_h3->m[j]; while (pNext(q) != NULL) { if (pGetComp(pNext(q)) > k) { s_h2->m[j] = pNext(q); pNext(q) = NULL; } else { pIter(q); } } if (!inputIsIdeal) pShift(&(s_h3->m[j]), -1); } else { pDelete(&(s_h3->m[j])); } } idSkipZeroes(s_h3); #if MYTEST #ifdef RDEBUG Print("Input'': "); idPrint(s_h3); #endif #endif j = IDELEMS(s_h1); #if MYTEST #ifdef RDEBUG Print("Temp Result: "); idPrint(s_h2); #endif #endif if (syz_ring!=orig_ring) { idDelete(&s_h1); rChangeCurrRing(orig_ring); } idDelete((ideal*)ma); *ma = mpNew(j,i); i = 1; for (j=0; jm[j] != NULL) { q = prMoveR( s_h2->m[j], syz_ring); s_h2->m[j] = NULL; while (q != NULL) { p = q; pIter(q); pNext(p) = NULL; t=pGetComp(p); pSetComp(p,0); pSetmComp(p); MATELEM(*ma,t-k,i) = pAdd(MATELEM(*ma,t-k,i),p); } i++; } } idDelete(&s_h2); for (i=0; im[i] = prMoveR_NoSort(s_h3->m[i], syz_ring); } #if MYTEST #ifdef RDEBUG Print("Output STD Ideal: "); idPrint(s_h3); Print("Output Matrix: "); iiWriteMatrix(*ma, "ma", 2, 4); #endif #endif if (syz_ring!=orig_ring) rKill(syz_ring); verbose = save_verbose; return s_h3; } static void idPrepareStd(ideal s_temp, int k) { int j,rk=idRankFreeModule(s_temp); poly p,q; if (rk == 0) { for (j=0; jm[j]!=NULL) pSetCompP(s_temp->m[j],1); } k = si_max(k,1); } for (j=0; jm[j]!=NULL) { p = s_temp->m[j]; q = pOne(); //pGetCoeff(q)=nNeg(pGetCoeff(q)); //set q to -1 pSetComp(q,k+1+j); pSetmComp(q); while (pNext(p)) pIter(p); pNext(p) = q; } } } /*2 *computes a representation of the generators of submod with respect to those * of mod */ ideal idLift(ideal mod, ideal submod,ideal *rest, BOOLEAN goodShape, BOOLEAN isSB, BOOLEAN divide, matrix *unit) { int lsmod =idRankFreeModule(submod), i, j, k; int comps_to_add=0; poly p; if (idIs0(submod)) { if (unit!=NULL) { *unit=mpNew(1,1); MATELEM(*unit,1,1)=pOne(); } if (rest!=NULL) { *rest=idInit(1,mod->rank); } return idInit(1,mod->rank); } if (idIs0(mod)) { if (unit!=NULL) { i=IDELEMS(submod); *unit=mpNew(i,i); for (j=i;j>0;j--) { MATELEM(*unit,j,j)=pOne(); } } if (rest!=NULL) { *rest=idCopy(submod); } return idInit(1,mod->rank); } if (unit!=NULL) { comps_to_add = IDELEMS(submod); while ((comps_to_add>0) && (submod->m[comps_to_add-1]==NULL)) comps_to_add--; } k=idRankFreeModule(mod); if ((k!=0) && (lsmod==0)) lsmod=1; k=si_max(k,1); ring orig_ring=currRing; ring syz_ring=rCurrRingAssure_SyzComp(); rSetSyzComp(k); ideal s_mod, s_temp; if (orig_ring != syz_ring) { s_mod = idrCopyR_NoSort(mod,orig_ring); s_temp = idrCopyR_NoSort(submod,orig_ring); } else { s_mod = mod; s_temp = idCopy(submod); } ideal s_h3; if (isSB) { s_h3 = idCopy(s_mod); idPrepareStd(s_h3, k+comps_to_add); } else { s_h3 = idPrepare(s_mod,(tHomog)FALSE,k+comps_to_add,NULL); } if (!goodShape) { for (j=0;jm[j] != NULL) && (pMinComp(s_h3->m[j]) > k)) pDelete(&(s_h3->m[j])); } } idSkipZeroes(s_h3); if (lsmod==0) { for (j=IDELEMS(s_temp);j>0;j--) { if (s_temp->m[j-1]!=NULL) pShift(&(s_temp->m[j-1]),1); } } if (unit!=NULL) { for(j = 0;jm[j]; if (p!=NULL) { while (pNext(p)!=NULL) pIter(p); pNext(p) = pOne(); pIter(p); pSetComp(p,1+j+k); pSetmComp(p); p = pNeg(p); } } } ideal s_result = kNF(s_h3,currQuotient,s_temp,k); s_result->rank = s_h3->rank; ideal s_rest = idInit(IDELEMS(s_result),k); idDelete(&s_h3); idDelete(&s_temp); for (j=0;jm[j]!=NULL) { if (pGetComp(s_result->m[j])<=k) { if (!divide) { if (isSB) { WarnS("first module not a standardbasis\n" "// ** or second not a proper submodule"); } else WerrorS("2nd module does not lies in the first"); idDelete(&s_result); idDelete(&s_rest); s_result=idInit(IDELEMS(submod),submod->rank); break; } else { p = s_rest->m[j] = s_result->m[j]; while ((pNext(p)!=NULL) && (pGetComp(pNext(p))<=k)) pIter(p); s_result->m[j] = pNext(p); pNext(p) = NULL; } } pShift(&(s_result->m[j]),-k); pNeg(s_result->m[j]); } } if ((lsmod==0) && (!idIs0(s_rest))) { for (j=IDELEMS(s_rest);j>0;j--) { if (s_rest->m[j-1]!=NULL) { pShift(&(s_rest->m[j-1]),-1); s_rest->m[j-1] = s_rest->m[j-1]; } } } if(syz_ring!=orig_ring) { idDelete(&s_mod); rChangeCurrRing(orig_ring); s_result = idrMoveR_NoSort(s_result, syz_ring); s_rest = idrMoveR_NoSort(s_rest, syz_ring); rKill(syz_ring); } if (rest!=NULL) *rest = s_rest; else idDelete(&s_rest); //idPrint(s_result); if (unit!=NULL) { *unit=mpNew(comps_to_add,comps_to_add); int i; for(i=0;im[i]; poly q=NULL; while(p!=NULL) { if(pGetComp(p)<=comps_to_add) { pSetComp(p,0); if (q!=NULL) { pNext(q)=pNext(p); } else { pIter(s_result->m[i]); } pNext(p)=NULL; MATELEM(*unit,i+1,i+1)=pAdd(MATELEM(*unit,i+1,i+1),p); if(q!=NULL) p=pNext(q); else p=s_result->m[i]; } else { q=p; pIter(p); } } pShift(&s_result->m[i],-comps_to_add); } } return s_result; } /*2 *computes division of P by Q with remainder up to (w-weighted) degree n *P, Q, and w are not changed */ void idLiftW(ideal P,ideal Q,int n,matrix &T, ideal &R,short *w) { long N=0; int i; for(i=IDELEMS(Q)-1;i>=0;i--) if(w==NULL) N=si_max(N,pDeg(Q->m[i])); else N=si_max(N,pDegW(Q->m[i],w)); N+=n; T=mpNew(IDELEMS(Q),IDELEMS(P)); R=idInit(IDELEMS(P),P->rank); for(i=IDELEMS(P)-1;i>=0;i--) { poly p; if(w==NULL) p=ppJet(P->m[i],N); else p=ppJetW(P->m[i],N,w); int j=IDELEMS(Q)-1; while(p!=NULL) { if(pDivisibleBy(Q->m[j],p)) { poly p0=pDivideM(pHead(p),pHead(Q->m[j])); if(w==NULL) p=pJet(pSub(p,ppMult_mm(Q->m[j],p0)),N); else p=pJetW(pSub(p,ppMult_mm(Q->m[j],p0)),N,w); pNormalize(p); if((w==NULL)&&(pDeg(p0)>n)||(w!=NULL)&&(pDegW(p0,w)>n)) pDelete(&p0); else MATELEM(T,j+1,i+1)=pAdd(MATELEM(T,j+1,i+1),p0); j=IDELEMS(Q)-1; } else { if(j==0) { poly p0=p; pIter(p); pNext(p0)=NULL; if(((w==NULL)&&(pDeg(p0)>n)) ||((w!=NULL)&&(pDegW(p0,w)>n))) pDelete(&p0); else R->m[i]=pAdd(R->m[i],p0); j=IDELEMS(Q)-1; } else j--; } } } } /*2 *computes the quotient of h1,h2 : internal routine for idQuot *BEWARE: the returned ideals may contain incorrectly ordered polys ! * */ static ideal idInitializeQuot (ideal h1, ideal h2, BOOLEAN h1IsStb, BOOLEAN *addOnlyOne, int *kkmax) { ideal temph1; poly p,q = NULL; int i,l,ll,k,kkk,kmax; int j = 0; int k1 = idRankFreeModule(h1); int k2 = idRankFreeModule(h2); tHomog hom=isNotHomog; k=si_max(k1,k2); if (k==0) k = 1; if ((k2==0) && (k>1)) *addOnlyOne = FALSE; intvec * weights; hom = (tHomog)idHomModule(h1,currQuotient,&weights); if (addOnlyOne && (!h1IsStb)) temph1 = kStd(h1,currQuotient,hom,&weights,NULL); else temph1 = idCopy(h1); if (weights!=NULL) delete weights; idTest(temph1); /*--- making a single vector from h2 ---------------------*/ for (i=0; im[i] != NULL) { p = pCopy(h2->m[i]); if (k2 == 0) pShift(&p,j*k+1); else pShift(&p,j*k); q = pAdd(q,p); j++; } } *kkmax = kmax = j*k+1; /*--- adding a monomial for the result (syzygy) ----------*/ p = q; while (pNext(p)!=NULL) pIter(p); pNext(p) = pOne(); pIter(p); pSetComp(p,kmax); pSetmComp(p); /*--- constructing the big matrix ------------------------*/ ideal h4 = idInit(16,kmax+k-1); h4->m[0] = q; if (k2 == 0) { if (k > IDELEMS(h4)) { pEnlargeSet(&(h4->m),IDELEMS(h4),k-IDELEMS(h4)); IDELEMS(h4) = k; } for (i=1; im[i-1]); pShift(&p,1); h4->m[i] = p; } } kkk = IDELEMS(h4); i = IDELEMS(temph1); while ((i>0) && (temph1->m[i-1]==NULL)) i--; for (l=0; lm[l]!=NULL) { for (ll=0; llm[l]); if (k1 == 0) pShift(&p,ll*k+1); else pShift(&p,ll*k); if (kkk >= IDELEMS(h4)) { pEnlargeSet(&(h4->m),IDELEMS(h4),16); IDELEMS(h4) += 16; } h4->m[kkk] = p; kkk++; } } } /*--- if h2 goes in as single vector - the h1-part is just SB ---*/ if (*addOnlyOne) { p = h4->m[0]; for (i=0;im[i] = h4->m[i+1]; } h4->m[IDELEMS(h4)-1] = p; idSkipZeroes(h4); test |= Sy_bit(OPT_SB_1); } idDelete(&temph1); return h4; } /*2 *computes the quotient of h1,h2 */ ideal idQuot (ideal h1, ideal h2, BOOLEAN h1IsStb, BOOLEAN resultIsIdeal) { // first check for special case h1:(0) if (idIs0(h2)) { ideal res; if (resultIsIdeal) { res = idInit(1,1); res->m[0] = pOne(); } else res = idFreeModule(h1->rank); return res; } BITSET old_test=test; poly p,q = NULL; int i,l,ll,k,kkk,kmax; BOOLEAN addOnlyOne=TRUE; tHomog hom=isNotHomog; intvec * weights1; ideal s_h4 = idInitializeQuot (h1,h2,h1IsStb,&addOnlyOne,&kmax); hom = (tHomog)idHomModule(s_h4,currQuotient,&weights1); ring orig_ring=currRing; ring syz_ring=rCurrRingAssure_SyzComp(); rSetSyzComp(kmax-1); if (orig_ring!=syz_ring) // s_h4 = idrMoveR_NoSort(s_h4,orig_ring); s_h4 = idrMoveR(s_h4,orig_ring); idTest(s_h4); ideal s_h3; if (addOnlyOne) { s_h3 = kStd(s_h4,currQuotient,hom,&weights1,NULL,kmax-1,IDELEMS(s_h4)-1); } else { s_h3 = kStd(s_h4,currQuotient,hom,&weights1,NULL,kmax-1); } idTest(s_h3); if (weights1!=NULL) delete weights1; idDelete(&s_h4); for (i=0;im[i]!=NULL) && (pGetComp(s_h3->m[i])>=kmax)) { if (resultIsIdeal) pShift(&s_h3->m[i],-kmax); else pShift(&s_h3->m[i],-kmax+1); } else pDelete(&s_h3->m[i]); } if (resultIsIdeal) s_h3->rank = 1; else s_h3->rank = h1->rank; if(syz_ring!=orig_ring) { // pDelete(&q); rChangeCurrRing(orig_ring); s_h3 = idrMoveR_NoSort(s_h3, syz_ring); rKill(syz_ring); } idSkipZeroes(s_h3); test = old_test; idTest(s_h3); return s_h3; } /*2 *computes recursively all monomials of a certain degree *in every step the actvar-th entry in the exponential *vector is incremented and the other variables are *computed by recursive calls of makemonoms *if the last variable is reached, the difference to the *degree is computed directly *vars is the number variables *actvar is the actual variable to handle *deg is the degree of the monomials to compute *monomdeg is the actual degree of the monomial in consideration */ static void makemonoms(int vars,int actvar,int deg,int monomdeg) { poly p; int i=0; if ((idpowerpoint == 0) && (actvar ==1)) { idpower[idpowerpoint] = pOne(); monomdeg = 0; } while (i<=deg) { if (deg == monomdeg) { pSetm(idpower[idpowerpoint]); idpowerpoint++; return; } if (actvar == vars) { pSetExp(idpower[idpowerpoint],actvar,deg-monomdeg); pSetm(idpower[idpowerpoint]); pTest(idpower[idpowerpoint]); idpowerpoint++; return; } else { p = pCopy(idpower[idpowerpoint]); makemonoms(vars,actvar+1,deg,monomdeg); idpower[idpowerpoint] = p; } monomdeg++; pSetExp(idpower[idpowerpoint],actvar,pGetExp(idpower[idpowerpoint],actvar)+1); pSetm(idpower[idpowerpoint]); pTest(idpower[idpowerpoint]); i++; } } /*2 *returns the deg-th power of the maximal ideal of 0 */ ideal idMaxIdeal(int deg) { if (deg < 0) { WarnS("maxideal: power must be non-negative"); } if (deg < 1) { ideal I=idInit(1,1); I->m[0]=pOne(); return I; } if (deg == 1) { return idMaxIdeal(); } int vars = currRing->N; int i = binom(vars+deg-1,deg); if (i<=0) return idInit(1,1); ideal id=idInit(i,1); idpower = id->m; idpowerpoint = 0; makemonoms(vars,1,deg,0); idpower = NULL; idpowerpoint = 0; return id; } /*2 *computes recursively all generators of a certain degree *of the ideal "givenideal" *elms is the number elements in the given ideal *actelm is the actual element to handle *deg is the degree of the power to compute *gendeg is the actual degree of the generator in consideration */ static void makepotence(int elms,int actelm,int deg,int gendeg) { poly p; int i=0; if ((idpowerpoint == 0) && (actelm ==1)) { idpower[idpowerpoint] = pOne(); gendeg = 0; } while (i<=deg) { if (deg == gendeg) { idpowerpoint++; return; } if (actelm == elms) { p=pPower(pCopy(givenideal[actelm-1]),deg-gendeg); idpower[idpowerpoint]=pMult(idpower[idpowerpoint],p); idpowerpoint++; return; } else { p = pCopy(idpower[idpowerpoint]); makepotence(elms,actelm+1,deg,gendeg); idpower[idpowerpoint] = p; } gendeg++; idpower[idpowerpoint]=pMult(idpower[idpowerpoint],pCopy(givenideal[actelm-1])); i++; } } /*2 *returns the deg-th power of the ideal gid */ //ideal idPower(ideal gid,int deg) //{ // int i; // ideal id; // // if (deg < 1) deg = 1; // i = binom(IDELEMS(gid)+deg-1,deg); // id=idInit(i,1); // idpower = id->m; // givenideal = gid->m; // idpowerpoint = 0; // makepotence(IDELEMS(gid),1,deg,0); // idpower = NULL; // givenideal = NULL; // idpowerpoint = 0; // return id; //} static void idNextPotence(ideal given, ideal result, int begin, int end, int deg, int restdeg, poly ap) { poly p; int i; p = pPower(pCopy(given->m[begin]),restdeg); i = result->nrows; result->m[i] = pMult(pCopy(ap),p); //PrintS("."); (result->nrows)++; if (result->nrows >= IDELEMS(result)) { pEnlargeSet(&(result->m),IDELEMS(result),16); IDELEMS(result) += 16; } if (begin == end) return; for (i=restdeg-1;i>0;i--) { p = pPower(pCopy(given->m[begin]),i); p = pMult(pCopy(ap),p); idNextPotence(given, result, begin+1, end, deg, restdeg-i, p); pDelete(&p); } idNextPotence(given, result, begin+1, end, deg, restdeg, ap); } ideal idPower(ideal given,int exp) { ideal result,temp; poly p1; int i; if (idIs0(given)) return idInit(1,1); temp = idCopy(given); idSkipZeroes(temp); i = binom(IDELEMS(temp)+exp-1,exp); result = idInit(i,1); result->nrows = 0; //Print("ideal contains %d elements\n",i); p1=pOne(); idNextPotence(temp,result,0,IDELEMS(temp)-1,exp,exp,p1); pDelete(&p1); idDelete(&temp); result->nrows = 1; idDelEquals(result); idSkipZeroes(result); return result; } /*2 * eliminate delVar (product of vars) in h1 */ ideal idElimination (ideal h1,poly delVar,intvec *hilb) { int i,j=0,k,l; ideal h,hh, h3; int *ord,*block0,*block1; int ordersize=2; int **wv; tHomog hom; intvec * w; ring tmpR; ring origR = currRing; if (delVar==NULL) { return idCopy(h1); } if (currQuotient!=NULL) { WerrorS("cannot eliminate in a qring"); return idCopy(h1); } if (idIs0(h1)) return idInit(1,h1->rank); #ifdef HAVE_PLURAL if (rIsPluralRing(origR)) /* in the NC case, we have to check the admissibility of */ /* the subalgebra to be intersected with */ { if ((ncRingType(origR) != nc_skew) && (ncRingType(origR) != nc_exterior)) /* in (quasi)-commutative algebras every subalgebra is admissible */ { if (nc_CheckSubalgebra(delVar,origR)) { WerrorS("no elimination is possible: subalgebra is not admissible"); return idCopy(h1); } } } #endif hom=(tHomog)idHomModule(h1,NULL,&w); //sets w to weight vector or NULL h3=idInit(16,h1->rank); for (k=0;; k++) { if (origR->order[k]!=0) ordersize++; else break; } ord=(int*)omAlloc0(ordersize*sizeof(int)); block0=(int*)omAlloc(ordersize*sizeof(int)); block1=(int*)omAlloc(ordersize*sizeof(int)); wv=(int**) omAlloc0(ordersize*sizeof(int**)); for (k=0;kblock0[k]; block1[k+1] = origR->block1[k]; ord[k+1] = origR->order[k]; if (origR->wvhdl[k]!=NULL) wv[k+1] = (int*) omMemDup(origR->wvhdl[k]); } block0[0] = 1; block1[0] = rVar(origR); wv[0]=(int*)omAlloc((rVar(origR) + 1)*sizeof(int)); memset(wv[0],0,(rVar(origR) + 1)*sizeof(int)); for (j=0;jorder = ord; tmpR->block0 = block0; tmpR->block1 = block1; tmpR->wvhdl = wv; rComplete(tmpR, 1); #ifdef HAVE_PLURAL /* update nc structure on tmpR */ if (rIsPluralRing(origR)) { if ( nc_rComplete(origR, tmpR, false) ) // no quotient ideal! { Werror("no elimination is possible: ordering condition is violated"); // cleanup rDelete(tmpR); if (w!=NULL) delete w; return idCopy(h1); } } #endif // change into the new ring //pChangeRing(pVariables,currRing->OrdSgn,ord,block0,block1,wv); rChangeCurrRing(tmpR); h = idInit(IDELEMS(h1),h1->rank); // fetch data from the old ring for (k=0;km[k] = prCopyR( h1->m[k], origR); // compute kStd #if 1 hh = kStd(h,NULL,hom,&w,hilb); idDelete(&h); #else extern ideal kGroebner(ideal F, ideal Q); hh=kGroebner(h,NULL); #endif // go back to the original ring rChangeCurrRing(origR); i = IDELEMS(hh)-1; while ((i >= 0) && (hh->m[i] == NULL)) i--; j = -1; // fetch data from temp ring for (k=0; k<=i; k++) { l=pVariables; while ((l>0) && (p_GetExp( hh->m[k],l,tmpR)*pGetExp(delVar,l)==0)) l--; if (l==0) { j++; if (j >= IDELEMS(h3)) { pEnlargeSet(&(h3->m),IDELEMS(h3),16); IDELEMS(h3) += 16; } h3->m[j] = prCopyR( hh->m[k], tmpR); } } id_Delete(&hh, tmpR); idSkipZeroes(h3); rDelete(tmpR); if (w!=NULL) delete w; return h3; } #ifdef WITH_OLD_MINOR /*2 * compute all ar-minors of the matrix a */ ideal idMinors(matrix a, int ar, ideal R) { int i,j,k,size; int *rowchoise,*colchoise; BOOLEAN rowch,colch; ideal result; matrix tmp; poly p,q; i = binom(a->rows(),ar); j = binom(a->cols(),ar); rowchoise=(int *)omAlloc(ar*sizeof(int)); colchoise=(int *)omAlloc(ar*sizeof(int)); if ((i>512) || (j>512) || (i*j >512)) size=512; else size=i*j; result=idInit(size,1); tmp=mpNew(ar,ar); k = 0; /* the index in result*/ idInitChoise(ar,1,a->rows(),&rowch,rowchoise); while (!rowch) { idInitChoise(ar,1,a->cols(),&colch,colchoise); while (!colch) { for (i=1; i<=ar; i++) { for (j=1; j<=ar; j++) { MATELEM(tmp,i,j) = MATELEM(a,rowchoise[i-1],colchoise[j-1]); } } p = mpDetBareiss(tmp); if (p!=NULL) { if (R!=NULL) { q = p; p = kNF(R,currQuotient,q); pDelete(&q); } if (p!=NULL) { if (k>=size) { pEnlargeSet(&result->m,size,32); size += 32; } result->m[k] = p; k++; } } idGetNextChoise(ar,a->cols(),&colch,colchoise); } idGetNextChoise(ar,a->rows(),&rowch,rowchoise); } /*delete the matrix tmp*/ for (i=1; i<=ar; i++) { for (j=1; j<=ar; j++) MATELEM(tmp,i,j) = NULL; } idDelete((ideal*)&tmp); if (k==0) { k=1; result->m[0]=NULL; } omFreeSize((ADDRESS)rowchoise,ar*sizeof(int)); omFreeSize((ADDRESS)colchoise,ar*sizeof(int)); pEnlargeSet(&result->m,size,k-size); IDELEMS(result) = k; return (result); } #else /*2 * compute all ar-minors of the matrix a * the caller of mpRecMin * the elements of the result are not in R (if R!=NULL) */ ideal idMinors(matrix a, int ar, ideal R) { int elems=0; int r=a->nrows,c=a->ncols; int i; matrix b; ideal result,h; ring origR; sip_sring tmpR; Exponent_t bound; if((ar<=0) || (ar>r) || (ar>c)) { Werror("%d-th minor, matrix is %dx%d",ar,r,c); return NULL; } h = idMatrix2Module(mpCopy(a)); bound = smExpBound(h,c,r,ar); idDelete(&h); smRingChange(&origR,tmpR,bound); b = mpNew(r,c); for (i=r*c-1;i>=0;i--) { if (a->m[i]) b->m[i] = prCopyR(a->m[i],origR); } if (R) R = idrCopyR(R,origR); result=idInit(32,1); if(ar>1) mpRecMin(ar-1,result,elems,b,r,c,NULL,R); else mpMinorToResult(result,elems,b,r,c,R); idDelete((ideal *)&b); if (R) idDelete(&R); idSkipZeroes(result); rChangeCurrRing(origR); result = idrMoveR(result,&tmpR); smRingClean(origR,tmpR); idTest(result); return result; } #endif /*2 *skips all zeroes and double elements, searches also for units */ void idCompactify(ideal id) { int i,j; BOOLEAN b=FALSE; i = IDELEMS(id)-1; while ((! b) && (i>=0)) { b=pIsUnit(id->m[i]); i--; } if (b) { for(i=IDELEMS(id)-1;i>=0;i--) pDelete(&id->m[i]); id->m[0]=pOne(); } else { idDelMultiples(id); } idSkipZeroes(id); } /*2 *returns TRUE if id1 is a submodule of id2 */ BOOLEAN idIsSubModule(ideal id1,ideal id2) { int i; poly p; if (idIs0(id1)) return TRUE; for (i=0;im[i] != NULL) { p = kNF(id2,currQuotient,id1->m[i]); if (p != NULL) { pDelete(&p); return FALSE; } } } return TRUE; } /*2 * returns the ideals of initial terms */ ideal idHead(ideal h) { ideal m = idInit(IDELEMS(h),h->rank); int i; for (i=IDELEMS(h)-1;i>=0; i--) { if (h->m[i]!=NULL) m->m[i]=pHead(h->m[i]); } return m; } ideal idHomogen(ideal h, int varnum) { ideal m = idInit(IDELEMS(h),h->rank); int i; for (i=IDELEMS(h)-1;i>=0; i--) { m->m[i]=pHomogen(h->m[i],varnum); } return m; } /*------------------type conversions----------------*/ ideal idVec2Ideal(poly vec) { ideal result=idInit(1,1); omFree((ADDRESS)result->m); result->m=NULL; // remove later pVec2Polys(vec, &(result->m), &(IDELEMS(result))); return result; } #define NEW_STUFF #ifndef NEW_STUFF // converts mat to module, destroys mat ideal idMatrix2Module(matrix mat) { int mc=MATCOLS(mat); int mr=MATROWS(mat); ideal result = idInit(si_max(mc,1),si_max(mr,1)); int i,j; poly h; for(j=0;jm */ { for (i=1;i<=mr /*MATROWS(mat)*/;i++) { h = MATELEM(mat,i,j+1); if (h!=NULL) { MATELEM(mat,i,j+1)=NULL; pSetCompP(h,i); result->m[j] = pAdd(result->m[j],h); } } } // obachman: need to clean this up idDelete((ideal*) &mat); return result; } #else #include "sbuckets.h" // converts mat to module, destroys mat ideal idMatrix2Module(matrix mat) { int mc=MATCOLS(mat); int mr=MATROWS(mat); ideal result = idInit(si_max(mc,1),si_max(mr,1)); int i,j, l; poly h; poly p; sBucket_pt bucket = sBucketCreate(currRing); for(j=0;jm */ { for (i=1;i<=mr /*MATROWS(mat)*/;i++) { h = MATELEM(mat,i,j+1); if (h!=NULL) { l=pLength(h); MATELEM(mat,i,j+1)=NULL; p_SetCompP(h,i, currRing); sBucket_Merge_p(bucket, h, l); } } sBucketClearMerge(bucket, &(result->m[j]), &l); } sBucketDestroy(&bucket); // obachman: need to clean this up idDelete((ideal*) &mat); return result; } #endif /*2 * converts a module into a matrix, destroyes the input */ matrix idModule2Matrix(ideal mod) { matrix result = mpNew(mod->rank,IDELEMS(mod)); int i,cp; poly p,h; for(i=0;im[i]; mod->m[i]=NULL; while (p!=NULL) { h=p; pIter(p); pNext(h)=NULL; // cp = si_max(1,pGetComp(h)); // if used for ideals too cp = pGetComp(h); pSetComp(h,0); pSetmComp(h); #ifdef TEST if (cp>mod->rank) { Print("## inv. rank %d -> %d\n",mod->rank,cp); int k,l,o=mod->rank; mod->rank=cp; matrix d=mpNew(mod->rank,IDELEMS(mod)); for (l=1; l<=o; l++) { for (k=1; k<=IDELEMS(mod); k++) { MATELEM(d,l,k)=MATELEM(result,l,k); MATELEM(result,l,k)=NULL; } } idDelete((ideal *)&result); result=d; } #endif MATELEM(result,cp,i+1) = pAdd(MATELEM(result,cp,i+1),h); } } // obachman 10/99: added the following line, otherwise memory leack! idDelete(&mod); return result; } matrix idModule2formatedMatrix(ideal mod,int rows, int cols) { matrix result = mpNew(rows,cols); int i,cp,r=idRankFreeModule(mod),c=IDELEMS(mod); poly p,h; if (r>rows) r = rows; if (c>cols) c = cols; for(i=0;im[i]; mod->m[i]=NULL; while (p!=NULL) { h=p; pIter(p); pNext(h)=NULL; cp = pGetComp(h); if (cp<=r) { pSetComp(h,0); pSetmComp(h); MATELEM(result,cp,i+1) = pAdd(MATELEM(result,cp,i+1),h); } else pDelete(&h); } } idDelete(&mod); return result; } /*2 * substitute the n-th variable by the monomial e in id * destroy id */ ideal idSubst(ideal id, int n, poly e) { int k=MATROWS((matrix)id)*MATCOLS((matrix)id); ideal res=(ideal)mpNew(MATROWS((matrix)id),MATCOLS((matrix)id)); res->rank = id->rank; for(k--;k>=0;k--) { res->m[k]=pSubst(id->m[k],n,e); id->m[k]=NULL; } idDelete(&id); return res; } BOOLEAN idHomModule(ideal m, ideal Q, intvec **w) { if (w!=NULL) *w=NULL; if ((Q!=NULL) && (!idHomIdeal(Q,NULL))) return FALSE; if (idIs0(m)) { if (w!=NULL) (*w)=new intvec(m->rank); return TRUE; } int i,j,cmax=2,order=0,ord,* diff,* iscom,diffmin=32000; poly p=NULL; int length=IDELEMS(m); polyset P=m->m; polyset F=(polyset)omAlloc(length*sizeof(poly)); for (i=length-1;i>=0;i--) { p=F[i]=P[i]; cmax=si_max(cmax,(int)pMaxComp(p)+1); } diff = (int *)omAlloc0(cmax*sizeof(int)); if (w!=NULL) *w=new intvec(cmax-1); iscom = (int *)omAlloc0(cmax*sizeof(int)); i=0; while (i<=length) { if (i=length) break; p = F[i]; } if (pLexOrder && (currRing->order[0]==ringorder_lp)) order=pTotaldegree(p); else // order = p->order; order = pFDeg(p,currRing); order += diff[pGetComp(p)]; p = F[i]; //Print("Actual p=F[%d]: ",i);pWrite(p); F[i] = NULL; i=0; } while (p!=NULL) { //if (pLexOrder) // ord=pTotaldegree(p); //else // ord = p->order; ord = pFDeg(p,currRing); if (!iscom[pGetComp(p)]) { diff[pGetComp(p)] = order-ord; iscom[pGetComp(p)] = 1; /* *PrintS("new diff: "); *for (j=0;jm; for (i=length-1;i>=0;i--) { p=P[i]; if (p!=NULL) cmax=si_max(cmax,(int)pMaxComp(p)+1); } if (w != NULL) if (w->length()+1 < cmax) { // Print("length: %d - %d \n", w->length(),cmax); return FALSE; } if(w!=NULL) pSetModDeg(w); for (i=length-1;i>=0;i--) { p=P[i]; poly q=p; if (p!=NULL) { int d=pFDeg(p,currRing); loop { pIter(p); if (p==NULL) break; if (d!=pFDeg(p,currRing)) { //pWrite(q); wrp(p); Print(" -> %d - %d\n",d,pFDeg(p,currRing)); if(w!=NULL) pSetModDeg(NULL); return FALSE; } } } } if(w!=NULL) pSetModDeg(NULL); return TRUE; } ideal idJet(ideal i,int d) { ideal r=idInit((i->nrows)*(i->ncols),i->rank); r->nrows = i-> nrows; r->ncols = i-> ncols; //r->rank = i-> rank; int k; for(k=(i->nrows)*(i->ncols)-1;k>=0; k--) { r->m[k]=ppJet(i->m[k],d); } return r; } ideal idJetW(ideal i,int d, intvec * iv) { ideal r=idInit(IDELEMS(i),i->rank); if (ecartWeights!=NULL) { WerrorS("cannot compute weighted jets now"); } else { short *w=iv2array(iv); int k; for(k=0; km[k]=ppJetW(i->m[k],d,w); } omFreeSize((ADDRESS)w,(pVariables+1)*sizeof(short)); } return r; } int idMinDegW(ideal M,intvec *w) { int d=-1; for(int i=0;im[i],w); if(-1=0;i--) { if(U==NULL) M->m[i]=pSeries(n,M->m[i],NULL,w); else { M->m[i]=pSeries(n,M->m[i],MATELEM(U,i+1,i+1),w); MATELEM(U,i+1,i+1)=NULL; } } if(U!=NULL) idDelete((ideal*)&U); return M; } matrix idDiff(matrix i, int k) { int e=MATCOLS(i)*MATROWS(i); matrix r=mpNew(MATROWS(i),MATCOLS(i)); int j; for(j=0; jm[j]=pDiff(i->m[j],k); } return r; } matrix idDiffOp(ideal I, ideal J,BOOLEAN multiply) { matrix r=mpNew(IDELEMS(I),IDELEMS(J)); int i,j; for(i=0; im[i],J->m[j],multiply); } } return r; } /*3 *handles for some ideal operations the ring/syzcomp managment *returns all syzygies (componentwise-)shifted by -syzcomp *or -syzcomp-1 (in case of ideals as input) static ideal idHandleIdealOp(ideal arg,int syzcomp,int isIdeal=FALSE) { ring orig_ring=currRing; ring syz_ring=rCurrRingAssure_SyzComp(); rSetSyzComp(length); ideal s_temp; if (orig_ring!=syz_ring) s_temp=idrMoveR_NoSort(arg,orig_ring); else s_temp=arg; ideal s_temp1 = kStd(s_temp,currQuotient,testHomog,&w,NULL,length); if (w!=NULL) delete w; if (syz_ring!=orig_ring) { idDelete(&s_temp); rChangeCurrRing(orig_ring); } idDelete(&temp); ideal temp1=idRingCopy(s_temp1,syz_ring); if (syz_ring!=orig_ring) { rChangeCurrRing(syz_ring); idDelete(&s_temp1); rChangeCurrRing(orig_ring); rKill(syz_ring); } for (i=0;im[i]!=NULL) && (pGetComp(temp1->m[i])<=length)) { pDelete(&(temp1->m[i])); } else { pShift(&(temp1->m[i]),-length); } } temp1->rank = rk; idSkipZeroes(temp1); return temp1; } */ /*2 * represents (h1+h2)/h2=h1/(h1 intersect h2) */ //ideal idModulo (ideal h2,ideal h1) ideal idModulo (ideal h2,ideal h1, tHomog hom, intvec ** w) { intvec *wtmp=NULL; int i,j,k,rk,flength=0,slength,length; poly p,q; if (idIs0(h2)) return idFreeModule(si_max(1,h2->ncols)); if (!idIs0(h1)) flength = idRankFreeModule(h1); slength = idRankFreeModule(h2); length = si_max(flength,slength); if (length==0) { length = 1; } ideal temp = idInit(IDELEMS(h2),length+IDELEMS(h2)); if ((w!=NULL)&&((*w)!=NULL)) { //Print("input weights:");(*w)->show(1);PrintLn(); int d; int k; wtmp=new intvec(length+IDELEMS(h2)); for (i=0;im[i]; if (p!=NULL) { d = pDeg(p); k= pGetComp(p); if (slength>0) k--; d +=((**w)[k]); ((*wtmp)[i+length]) = d; } } //Print("weights:");wtmp->show(1);PrintLn(); } for (i=0;im[i] = pCopy(h2->m[i]); q = pOne(); pSetComp(q,i+1+length); pSetmComp(q); if(temp->m[i]!=NULL) { if (slength==0) pShift(&(temp->m[i]),1); p = temp->m[i]; while (pNext(p)!=NULL) pIter(p); pNext(p) = q; } else temp->m[i]=q; } rk = k = IDELEMS(h2); if (!idIs0(h1)) { pEnlargeSet(&(temp->m),IDELEMS(temp),IDELEMS(h1)); IDELEMS(temp) += IDELEMS(h1); for (i=0;im[i]!=NULL) { temp->m[k] = pCopy(h1->m[i]); if (flength==0) pShift(&(temp->m[k]),1); k++; } } } ring orig_ring=currRing; ring syz_ring=rCurrRingAssure_SyzComp(); rSetSyzComp(length); ideal s_temp; if (syz_ring != orig_ring) { s_temp = idrMoveR_NoSort(temp, orig_ring); } else { s_temp = temp; } idTest(s_temp); ideal s_temp1 = kStd(s_temp,currQuotient,hom,&wtmp,NULL,length); //if (wtmp!=NULL) Print("output weights:");wtmp->show(1);PrintLn(); if ((w!=NULL) && (*w !=NULL) && (wtmp!=NULL)) { delete *w; *w=new intvec(IDELEMS(h2)); for (i=0;im[i]!=NULL) && (pGetComp(s_temp1->m[i])<=length)) { pDelete(&(s_temp1->m[i])); } else { pShift(&(s_temp1->m[i]),-length); } } s_temp1->rank = rk; idSkipZeroes(s_temp1); if (syz_ring!=orig_ring) { rChangeCurrRing(orig_ring); s_temp1 = idrMoveR_NoSort(s_temp1, syz_ring); rKill(syz_ring); // Hmm ... here seems to be a memory leak // However, simply deleting it causes memory trouble // idDelete(&s_temp); } else { idDelete(&temp); } idTest(s_temp1); return s_temp1; } int idElem(const ideal F) { int i=0,j=IDELEMS(F)-1; while(j>=0) { if ((F->m)[j]!=NULL) i++; j--; } return i; } /* *computes module-weights for liftings of homogeneous modules */ intvec * idMWLift(ideal mod,intvec * weights) { if (idIs0(mod)) return new intvec(2); int i=IDELEMS(mod); while ((i>0) && (mod->m[i-1]==NULL)) i--; intvec *result = new intvec(i+1); while (i>0) { (*result)[i]=pFDeg(mod->m[i],currRing)+(*weights)[pGetComp(mod->m[i])]; } return result; } /*2 *sorts the kbase for idCoef* in a special way (lexicographically *with x_max,...,x_1) */ ideal idCreateSpecialKbase(ideal kBase,intvec ** convert) { int i; ideal result; if (idIs0(kBase)) return NULL; result = idInit(IDELEMS(kBase),kBase->rank); *convert = idSort(kBase,FALSE); for (i=0;i<(*convert)->length();i++) { result->m[i] = pCopy(kBase->m[(**convert)[i]-1]); } return result; } /*2 *returns the index of a given monom in the list of the special kbase */ int idIndexOfKBase(poly monom, ideal kbase) { int j=IDELEMS(kbase); while ((j>0) && (kbase->m[j-1]==NULL)) j--; if (j==0) return -1; int i=pVariables; while (i>0) { loop { if (pGetExp(monom,i)>pGetExp(kbase->m[j-1],i)) return -1; if (pGetExp(monom,i)==pGetExp(kbase->m[j-1],i)) break; j--; if (j==0) return -1; } if (i==1) { while(j>0) { if (pGetComp(monom)==pGetComp(kbase->m[j-1])) return j-1; if (pGetComp(monom)>pGetComp(kbase->m[j-1])) return -1; j--; } } i--; } return -1; } /*2 *decomposes the monom in a part of coefficients described by the *complement of how and a monom in variables occuring in how, the *index of which in kbase is returned as integer pos (-1 if it don't *exists) */ poly idDecompose(poly monom, poly how, ideal kbase, int * pos) { int i; poly coeff=pOne(), base=pOne(); for (i=1;i<=pVariables;i++) { if (pGetExp(how,i)>0) { pSetExp(base,i,pGetExp(monom,i)); } else { pSetExp(coeff,i,pGetExp(monom,i)); } } pSetComp(base,pGetComp(monom)); pSetm(base); pSetCoeff(coeff,nCopy(pGetCoeff(monom))); pSetm(coeff); *pos = idIndexOfKBase(base,kbase); if (*pos<0) pDelete(&coeff); pDelete(&base); return coeff; } /*2 *returns a matrix A of coefficients with kbase*A=arg *if all monomials in variables of how occur in kbase *the other are deleted */ matrix idCoeffOfKBase(ideal arg, ideal kbase, poly how) { matrix result; ideal tempKbase; poly p,q; intvec * convert; int i=IDELEMS(kbase),j=IDELEMS(arg),k,pos; #if 0 while ((i>0) && (kbase->m[i-1]==NULL)) i--; if (idIs0(arg)) return mpNew(i,1); while ((j>0) && (arg->m[j-1]==NULL)) j--; result = mpNew(i,j); #else result = mpNew(i, j); while ((j>0) && (arg->m[j-1]==NULL)) j--; #endif tempKbase = idCreateSpecialKbase(kbase,&convert); for (k=0;km[k]; while (p!=NULL) { q = idDecompose(p,how,tempKbase,&pos); if (pos>=0) { MATELEM(result,(*convert)[pos],k+1) = pAdd(MATELEM(result,(*convert)[pos],k+1),q); } else pDelete(&q); pIter(p); } } idDelete(&tempKbase); return result; } /*3 * searches for units in the components of the module arg and * returns the first one */ static int idReadOutUnits(ideal arg,int* comp) { if (idIs0(arg)) return -1; int i=0,j, generator=-1; int rk_arg=arg->rank; //idRankFreeModule(arg); int * componentIsUsed =(int *)omAlloc((rk_arg+1)*sizeof(int)); poly p,q; while ((generator<0) && (im[i]; while (p!=NULL) { j = pGetComp(p); if (componentIsUsed[j]==0) { if (pLmIsConstantComp(p)) { generator = i; componentIsUsed[j] = 1; } else { componentIsUsed[j] = -1; } } else if (componentIsUsed[j]>0) { (componentIsUsed[j])++; } pIter(p); } i++; } i = 0; *comp = -1; for (j=0;j<=rk_arg;j++) { if (componentIsUsed[j]>0) { if ((*comp==-1) || (componentIsUsed[j]=0;i--) { p = arg->m[i]; while (p!=NULL) { j = pGetComp(p); if (j>red_comp) { pSetComp(p,j-1); pSetm(p); } pIter(p); } } (arg->rank)--; } #endif static void idDeleteComps(ideal arg,int* red_comp,int del) // red_comp is an array [0..args->rank] { int i,j; poly p; for (i=IDELEMS(arg)-1;i>=0;i--) { p = arg->m[i]; while (p!=NULL) { j = pGetComp(p); if (red_comp[j]!=j) { pSetComp(p,red_comp[j]); pSetmComp(p); } pIter(p); } } (arg->rank) -= del; } /*2 * returns the presentation of an isomorphic, minimally * embedded module (arg represents the quotient!) */ ideal idMinEmbedding(ideal arg,BOOLEAN inPlace, intvec **w) { if (idIs0(arg)) return idInit(1,arg->rank); int i,next_gen,next_comp; ideal res=arg; if (!inPlace) res = idCopy(arg); res->rank=si_max(res->rank,idRankFreeModule(res)); int *red_comp=(int*)omAlloc((res->rank+1)*sizeof(int)); for (i=res->rank;i>=0;i--) red_comp[i]=i; int del=0; loop { next_gen = idReadOutUnits(res,&next_comp); if (next_gen<0) break; del++; syGaussForOne(res,next_gen,next_comp,0,IDELEMS(res)); for(i=next_comp+1;i<=arg->rank;i++) red_comp[i]--; if ((w !=NULL)&&(*w!=NULL)) { for(i=next_comp;i<(*w)->length();i++) (**w)[i-1]=(**w)[i]; } } idDeleteComps(res,red_comp,del); idSkipZeroes(res); omFree(red_comp); if ((w !=NULL)&&(*w!=NULL) &&(del>0)) { intvec *wtmp=new intvec((*w)->length()-del); for(i=0;irank;i++) (*wtmp)[i]=(**w)[i]; delete *w; *w=wtmp; } return res; } /*2 * transpose a module */ ideal idTransp(ideal a) { int r = a->rank, c = IDELEMS(a); ideal b = idInit(r,c); for (int i=c; i>0; i--) { poly p=a->m[i-1]; while(p!=NULL) { poly h=pHead(p); int co=pGetComp(h)-1; pSetComp(h,i); pSetmComp(h); b->m[co]=pAdd(b->m[co],h); pIter(p); } } return b; } intvec * idQHomWeight(ideal id) { poly head, tail; int k; int in=IDELEMS(id)-1, ready=0, all=0, coldim=pVariables, rowmax=2*coldim; if (in<0) return NULL; intvec *imat=new intvec(rowmax+1,coldim,0); do { head = id->m[in--]; if (head!=NULL) { tail = pNext(head); while (tail!=NULL) { all++; for (k=1;k<=coldim;k++) IMATELEM(*imat,all,k) = pGetExpDiff(head,tail,k); if (all==rowmax) { ivTriangIntern(imat, ready, all); if (ready==coldim) { delete imat; return NULL; } } pIter(tail); } } } while (in>=0); if (all>ready) { ivTriangIntern(imat, ready, all); if (ready==coldim) { delete imat; return NULL; } } intvec *result = ivSolveKern(imat, ready); delete imat; return result; } BOOLEAN idIsZeroDim(ideal I) { BOOLEAN *UsedAxis=(BOOLEAN *)omAlloc0(pVariables*sizeof(BOOLEAN)); int i,n; poly po; BOOLEAN res=TRUE; for(i=IDELEMS(I)-1;i>=0;i--) { po=I->m[i]; if ((po!=NULL) &&((n=pIsPurePower(po))!=0)) UsedAxis[n-1]=TRUE; } for(i=pVariables-1;i>=0;i--) { if(UsedAxis[i]==FALSE) {res=FALSE; break;} // not zero-dim. } omFreeSize(UsedAxis,pVariables*sizeof(BOOLEAN)); return res; } void idNormalize(ideal I) { if (rField_has_simple_inverse()) return; /* Z/p, GF(p,n), R, long R/C */ int i; poly p; for(i=IDELEMS(I)-1;i>=0;i--) { p=I->m[i] ; while(p!=NULL) { nNormalize(pGetCoeff(p)); pIter(p); } } } #include "clapsing.h" poly id_GCD(poly f, poly g, const ring r) { ring save_r=currRing; rChangeCurrRing(r); ideal I=idInit(2,1); I->m[0]=f; I->m[1]=g; intvec *w = NULL; ideal S=idSyzygies(I,testHomog,&w); if (w!=NULL) delete w; poly gg=pTakeOutComp(&(S->m[0]),2); idDelete(&S); poly gcd_p=singclap_pdivide(f,gg); pDelete(&gg); rChangeCurrRing(save_r); return gcd_p; } /*2 * xx,q: arrays of length 0..rl-1 * xx[i]: SB mod q[i] * assume: char=0 * assume: q[i]!=0 * destroys xx */ ideal idChineseRemainder(ideal *xx, number *q, int rl) { ideal result=idInit(IDELEMS(xx[0]),1); int i,j; poly r,h,hh,res_p; number *x=(number *)omAlloc(rl*sizeof(number)); for(i=IDELEMS(result)-1;i>=0;i--) { res_p=NULL; loop { r=NULL; for(j=rl-1;j>=0;j--) { h=xx[j]->m[i]; if ((h!=NULL) &&((r==NULL)||(pLmCmp(r,h)==-1))) r=h; } if (r==NULL) break; h=pHead(r); for(j=rl-1;j>=0;j--) { hh=xx[j]->m[i]; if ((hh!=NULL) && (pLmCmp(r,hh)==0)) { x[j]=pGetCoeff(hh); hh=pLmFreeAndNext(hh); xx[j]->m[i]=hh; } else x[j]=nlInit(0); } number n=nlChineseRemainder(x,q,rl); for(j=rl-1;j>=0;j--) { nlDelete(&(x[j]),currRing); } pSetCoeff(h,n); //Print("new mon:");pWrite(h); res_p=pAdd(res_p,h); } result->m[i]=res_p; } omFree(x); for(i=rl-1;i>=0;i--) idDelete(&(xx[i])); omFree(xx); return result; } ideal idChineseRemainder(ideal *xx, intvec *iv) { int rl=iv->length(); number *q=(number *)omAlloc(rl*sizeof(number)); int i; for(i=0; i