1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* $Id: ideals.cc 14320 2011-07-04 14:48:27Z hannes $ */ |
---|
5 | /* |
---|
6 | * ABSTRACT - all basic methods to manipulate ideals |
---|
7 | */ |
---|
8 | |
---|
9 | /* includes */ |
---|
10 | #include "mod2.h" |
---|
11 | |
---|
12 | |
---|
13 | #ifndef NDEBUG |
---|
14 | # define MYTEST 0 |
---|
15 | #else /* ifndef NDEBUG */ |
---|
16 | # define MYTEST 0 |
---|
17 | #endif /* ifndef NDEBUG */ |
---|
18 | |
---|
19 | #include <omalloc/omalloc.h> |
---|
20 | |
---|
21 | #include <misc/options.h> |
---|
22 | #include <misc/intvec.h> |
---|
23 | |
---|
24 | #include <coeffs/coeffs.h> |
---|
25 | #include <coeffs/numbers.h> |
---|
26 | |
---|
27 | #include <polys/polys.h> |
---|
28 | #include <polys/monomials/ring.h> |
---|
29 | #include <polys/matpol.h> |
---|
30 | #include <polys/weight.h> |
---|
31 | #include <polys/sparsmat.h> |
---|
32 | #include <polys/prCopy.h> |
---|
33 | #include <polys/nc/nc.h> |
---|
34 | |
---|
35 | |
---|
36 | #include <kernel/ideals.h> |
---|
37 | |
---|
38 | #include <kernel/febase.h> |
---|
39 | #include <kernel/kstd1.h> |
---|
40 | #include <kernel/syz.h> |
---|
41 | |
---|
42 | #include <kernel/longrat.h> |
---|
43 | |
---|
44 | |
---|
45 | omBin sip_sideal_bin = omGetSpecBin(sizeof(sip_sideal)); |
---|
46 | |
---|
47 | /* #define WITH_OLD_MINOR */ |
---|
48 | #define pCopy_noCheck(p) pCopy(p) |
---|
49 | |
---|
50 | static poly * idpower; |
---|
51 | /*collects the monomials in makemonoms, must be allocated befor*/ |
---|
52 | static int idpowerpoint; |
---|
53 | /*index of the actual monomial in idpower*/ |
---|
54 | static poly * givenideal; |
---|
55 | /*the ideal from which a power is computed*/ |
---|
56 | |
---|
57 | /*0 implementation*/ |
---|
58 | |
---|
59 | /*2 |
---|
60 | *returns a minimized set of generators of h1 |
---|
61 | */ |
---|
62 | ideal idMinBase (ideal h1) |
---|
63 | { |
---|
64 | ideal h2, h3,h4,e; |
---|
65 | int j,k; |
---|
66 | int i,l,ll; |
---|
67 | intvec * wth; |
---|
68 | BOOLEAN homog; |
---|
69 | |
---|
70 | homog = idHomModule(h1,currQuotient,&wth); |
---|
71 | if (rHasGlobalOrdering(currRing)) |
---|
72 | { |
---|
73 | if(!homog) |
---|
74 | { |
---|
75 | WarnS("minbase applies only to the local or homogeneous case"); |
---|
76 | e=idCopy(h1); |
---|
77 | return e; |
---|
78 | } |
---|
79 | else |
---|
80 | { |
---|
81 | ideal re=kMin_std(h1,currQuotient,(tHomog)homog,&wth,h2,NULL,0,3); |
---|
82 | idDelete(&re); |
---|
83 | return h2; |
---|
84 | } |
---|
85 | } |
---|
86 | e=idInit(1,h1->rank); |
---|
87 | if (idIs0(h1)) |
---|
88 | { |
---|
89 | return e; |
---|
90 | } |
---|
91 | pEnlargeSet(&(e->m),IDELEMS(e),15); |
---|
92 | IDELEMS(e) = 16; |
---|
93 | h2 = kStd(h1,currQuotient,isNotHomog,NULL); |
---|
94 | h3 = idMaxIdeal(1); |
---|
95 | h4=idMult(h2,h3); |
---|
96 | idDelete(&h3); |
---|
97 | h3=kStd(h4,currQuotient,isNotHomog,NULL); |
---|
98 | k = IDELEMS(h3); |
---|
99 | while ((k > 0) && (h3->m[k-1] == NULL)) k--; |
---|
100 | j = -1; |
---|
101 | l = IDELEMS(h2); |
---|
102 | while ((l > 0) && (h2->m[l-1] == NULL)) l--; |
---|
103 | for (i=l-1; i>=0; i--) |
---|
104 | { |
---|
105 | if (h2->m[i] != NULL) |
---|
106 | { |
---|
107 | ll = 0; |
---|
108 | while ((ll < k) && ((h3->m[ll] == NULL) |
---|
109 | || !pDivisibleBy(h3->m[ll],h2->m[i]))) |
---|
110 | ll++; |
---|
111 | if (ll >= k) |
---|
112 | { |
---|
113 | j++; |
---|
114 | if (j > IDELEMS(e)-1) |
---|
115 | { |
---|
116 | pEnlargeSet(&(e->m),IDELEMS(e),16); |
---|
117 | IDELEMS(e) += 16; |
---|
118 | } |
---|
119 | e->m[j] = pCopy(h2->m[i]); |
---|
120 | } |
---|
121 | } |
---|
122 | } |
---|
123 | idDelete(&h2); |
---|
124 | idDelete(&h3); |
---|
125 | idDelete(&h4); |
---|
126 | if (currQuotient!=NULL) |
---|
127 | { |
---|
128 | h3=idInit(1,e->rank); |
---|
129 | h2=kNF(h3,currQuotient,e); |
---|
130 | idDelete(&h3); |
---|
131 | idDelete(&e); |
---|
132 | e=h2; |
---|
133 | } |
---|
134 | idSkipZeroes(e); |
---|
135 | return e; |
---|
136 | } |
---|
137 | |
---|
138 | /*2 |
---|
139 | *the minimal index of used variables - 1 |
---|
140 | */ |
---|
141 | int pLowVar (poly p) |
---|
142 | { |
---|
143 | int k,l,lex; |
---|
144 | |
---|
145 | if (p == NULL) return -1; |
---|
146 | |
---|
147 | k = 32000;/*a very large dummy value*/ |
---|
148 | while (p != NULL) |
---|
149 | { |
---|
150 | l = 1; |
---|
151 | lex = pGetExp(p,l); |
---|
152 | while ((l < (currRing->N)) && (lex == 0)) |
---|
153 | { |
---|
154 | l++; |
---|
155 | lex = pGetExp(p,l); |
---|
156 | } |
---|
157 | l--; |
---|
158 | if (l < k) k = l; |
---|
159 | pIter(p); |
---|
160 | } |
---|
161 | return k; |
---|
162 | } |
---|
163 | |
---|
164 | /*3 |
---|
165 | *multiplies p with t (!cas) or (t-1) |
---|
166 | *the index of t is:1, so we have to shift all variables |
---|
167 | *p is NOT in the actual ring, it has no t |
---|
168 | */ |
---|
169 | static poly pMultWithT (poly p,BOOLEAN cas) |
---|
170 | { |
---|
171 | /*qp is the working pointer in p*/ |
---|
172 | /*result is the result, qresult is the working pointer*/ |
---|
173 | /*pp is p in the actual ring(shifted), qpp the working pointer*/ |
---|
174 | poly result,qp,pp; |
---|
175 | poly qresult=NULL; |
---|
176 | poly qpp=NULL; |
---|
177 | int i,j,lex; |
---|
178 | number n; |
---|
179 | |
---|
180 | pp = NULL; |
---|
181 | result = NULL; |
---|
182 | qp = p; |
---|
183 | while (qp != NULL) |
---|
184 | { |
---|
185 | i = 0; |
---|
186 | if (result == NULL) |
---|
187 | {/*first monomial*/ |
---|
188 | result = pInit(); |
---|
189 | qresult = result; |
---|
190 | } |
---|
191 | else |
---|
192 | { |
---|
193 | qresult->next = pInit(); |
---|
194 | pIter(qresult); |
---|
195 | } |
---|
196 | for (j=(currRing->N)-1; j>0; j--) |
---|
197 | { |
---|
198 | lex = pGetExp(qp,j); |
---|
199 | pSetExp(qresult,j+1,lex);/*copy all variables*/ |
---|
200 | } |
---|
201 | lex = pGetComp(qp); |
---|
202 | pSetComp(qresult,lex); |
---|
203 | n=nCopy(pGetCoeff(qp)); |
---|
204 | pSetCoeff0(qresult,n); |
---|
205 | qresult->next = NULL; |
---|
206 | pSetm(qresult); |
---|
207 | /*qresult is now qp brought into the actual ring*/ |
---|
208 | if (cas) |
---|
209 | { /*case: mult with t-1*/ |
---|
210 | pSetExp(qresult,1,0); |
---|
211 | pSetm(qresult); |
---|
212 | if (pp == NULL) |
---|
213 | { /*first monomial*/ |
---|
214 | pp = pCopy(qresult); |
---|
215 | qpp = pp; |
---|
216 | } |
---|
217 | else |
---|
218 | { |
---|
219 | qpp->next = pCopy(qresult); |
---|
220 | pIter(qpp); |
---|
221 | } |
---|
222 | pGetCoeff(qpp)=nNeg(pGetCoeff(qpp)); |
---|
223 | /*now qpp contains -1*qp*/ |
---|
224 | } |
---|
225 | pSetExp(qresult,1,1);/*this is mult. by t*/ |
---|
226 | pSetm(qresult); |
---|
227 | pIter(qp); |
---|
228 | } |
---|
229 | /* |
---|
230 | *now p is processed: |
---|
231 | *result contains t*p |
---|
232 | * if cas: pp contains -1*p (in the new ring) |
---|
233 | */ |
---|
234 | if (cas) qresult->next = pp; |
---|
235 | /* else qresult->next = NULL;*/ |
---|
236 | return result; |
---|
237 | } |
---|
238 | |
---|
239 | /*2 |
---|
240 | *initialized a field with r numbers between beg and end for the |
---|
241 | *procedure idNextChoise |
---|
242 | */ |
---|
243 | ideal idSectWithElim (ideal h1,ideal h2) |
---|
244 | // does not destroy h1,h2 |
---|
245 | { |
---|
246 | if (TEST_OPT_PROT) PrintS("intersect by elimination method\n"); |
---|
247 | assume(!idIs0(h1)); |
---|
248 | assume(!idIs0(h2)); |
---|
249 | assume(IDELEMS(h1)<=IDELEMS(h2)); |
---|
250 | assume(id_RankFreeModule(h1,currRing)==0); |
---|
251 | assume(id_RankFreeModule(h2,currRing)==0); |
---|
252 | // add a new variable: |
---|
253 | int j; |
---|
254 | ring origRing=currRing; |
---|
255 | ring r=rCopy0(origRing); |
---|
256 | r->N++; |
---|
257 | r->block0[0]=1; |
---|
258 | r->block1[0]= r->N; |
---|
259 | omFree(r->order); |
---|
260 | r->order=(int*)omAlloc0(3*sizeof(int*)); |
---|
261 | r->order[0]=ringorder_dp; |
---|
262 | r->order[1]=ringorder_C; |
---|
263 | char **names=(char**)omAlloc0(rVar(r) * sizeof(char_ptr)); |
---|
264 | for (j=0;j<r->N-1;j++) names[j]=r->names[j]; |
---|
265 | names[r->N-1]=omStrDup("@"); |
---|
266 | omFree(r->names); |
---|
267 | r->names=names; |
---|
268 | rComplete(r,TRUE); |
---|
269 | // fetch h1, h2 |
---|
270 | ideal h; |
---|
271 | h1=idrCopyR(h1,origRing,r); |
---|
272 | h2=idrCopyR(h2,origRing,r); |
---|
273 | // switch to temp. ring r |
---|
274 | rChangeCurrRing(r); |
---|
275 | // create 1-t, t |
---|
276 | poly omt=pOne(); |
---|
277 | pSetExp(omt,r->N,1); |
---|
278 | poly t=pCopy(omt); |
---|
279 | pSetm(omt); |
---|
280 | omt=pNeg(omt); |
---|
281 | omt=pAdd(omt,pOne()); |
---|
282 | // compute (1-t)*h1 |
---|
283 | h1=(ideal)mpMultP((matrix)h1,omt); |
---|
284 | // compute t*h2 |
---|
285 | h2=(ideal)mpMultP((matrix)h2,pCopy(t)); |
---|
286 | // (1-t)h1 + t*h2 |
---|
287 | h=idInit(IDELEMS(h1)+IDELEMS(h2),1); |
---|
288 | int l; |
---|
289 | for (l=IDELEMS(h1)-1; l>=0; l--) |
---|
290 | { |
---|
291 | h->m[l] = h1->m[l]; h1->m[l]=NULL; |
---|
292 | } |
---|
293 | j=IDELEMS(h1); |
---|
294 | for (l=IDELEMS(h2)-1; l>=0; l--) |
---|
295 | { |
---|
296 | h->m[l+j] = h2->m[l]; h2->m[l]=NULL; |
---|
297 | } |
---|
298 | idDelete(&h1); |
---|
299 | idDelete(&h2); |
---|
300 | // eliminate t: |
---|
301 | |
---|
302 | ideal res=idElimination(h,t); |
---|
303 | // cleanup |
---|
304 | idDelete(&h); |
---|
305 | res=idrMoveR(res,r,origRing); |
---|
306 | rChangeCurrRing(origRing); |
---|
307 | rKill(r); |
---|
308 | return res; |
---|
309 | } |
---|
310 | /*2 |
---|
311 | * h3 := h1 intersect h2 |
---|
312 | */ |
---|
313 | ideal idSect (ideal h1,ideal h2) |
---|
314 | { |
---|
315 | int i,j,k,length; |
---|
316 | int flength = id_RankFreeModule(h1,currRing); |
---|
317 | int slength = id_RankFreeModule(h2,currRing); |
---|
318 | int rank=si_min(flength,slength); |
---|
319 | if ((idIs0(h1)) || (idIs0(h2))) return idInit(1,rank); |
---|
320 | |
---|
321 | ideal first,second,temp,temp1,result; |
---|
322 | poly p,q; |
---|
323 | |
---|
324 | if (IDELEMS(h1)<IDELEMS(h2)) |
---|
325 | { |
---|
326 | first = h1; |
---|
327 | second = h2; |
---|
328 | } |
---|
329 | else |
---|
330 | { |
---|
331 | first = h2; |
---|
332 | second = h1; |
---|
333 | int t=flength; flength=slength; slength=t; |
---|
334 | } |
---|
335 | length = si_max(flength,slength); |
---|
336 | if (length==0) |
---|
337 | { |
---|
338 | if ((currQuotient==NULL) |
---|
339 | && (currRing->OrdSgn==1) |
---|
340 | && (!rIsPluralRing(currRing)) |
---|
341 | && ((TEST_V_INTERSECT_ELIM) || (!TEST_V_INTERSECT_SYZ))) |
---|
342 | return idSectWithElim(first,second); |
---|
343 | else length = 1; |
---|
344 | } |
---|
345 | if (TEST_OPT_PROT) PrintS("intersect by syzygy methods\n"); |
---|
346 | j = IDELEMS(first); |
---|
347 | |
---|
348 | ring orig_ring=currRing; |
---|
349 | ring syz_ring=rCurrRingAssure_SyzComp(); |
---|
350 | rSetSyzComp(length, syz_ring); |
---|
351 | |
---|
352 | while ((j>0) && (first->m[j-1]==NULL)) j--; |
---|
353 | temp = idInit(j /*IDELEMS(first)*/+IDELEMS(second),length+j); |
---|
354 | k = 0; |
---|
355 | for (i=0;i<j;i++) |
---|
356 | { |
---|
357 | if (first->m[i]!=NULL) |
---|
358 | { |
---|
359 | if (syz_ring==orig_ring) |
---|
360 | temp->m[k] = pCopy(first->m[i]); |
---|
361 | else |
---|
362 | temp->m[k] = prCopyR(first->m[i], orig_ring); |
---|
363 | q = pOne(); |
---|
364 | pSetComp(q,i+1+length); |
---|
365 | pSetmComp(q); |
---|
366 | if (flength==0) pShift(&(temp->m[k]),1); |
---|
367 | p = temp->m[k]; |
---|
368 | while (pNext(p)!=NULL) pIter(p); |
---|
369 | pNext(p) = q; |
---|
370 | k++; |
---|
371 | } |
---|
372 | } |
---|
373 | for (i=0;i<IDELEMS(second);i++) |
---|
374 | { |
---|
375 | if (second->m[i]!=NULL) |
---|
376 | { |
---|
377 | if (syz_ring==orig_ring) |
---|
378 | temp->m[k] = pCopy(second->m[i]); |
---|
379 | else |
---|
380 | temp->m[k] = prCopyR(second->m[i], orig_ring); |
---|
381 | if (slength==0) pShift(&(temp->m[k]),1); |
---|
382 | k++; |
---|
383 | } |
---|
384 | } |
---|
385 | intvec *w=NULL; |
---|
386 | temp1 = kStd(temp,currQuotient,testHomog,&w,NULL,length); |
---|
387 | if (w!=NULL) delete w; |
---|
388 | idDelete(&temp); |
---|
389 | if(syz_ring!=orig_ring) |
---|
390 | rChangeCurrRing(orig_ring); |
---|
391 | |
---|
392 | result = idInit(IDELEMS(temp1),rank); |
---|
393 | j = 0; |
---|
394 | for (i=0;i<IDELEMS(temp1);i++) |
---|
395 | { |
---|
396 | if ((temp1->m[i]!=NULL) |
---|
397 | && (p_GetComp(temp1->m[i],syz_ring)>length)) |
---|
398 | { |
---|
399 | if(syz_ring==orig_ring) |
---|
400 | { |
---|
401 | p = temp1->m[i]; |
---|
402 | } |
---|
403 | else |
---|
404 | { |
---|
405 | p = prMoveR(temp1->m[i], syz_ring,orig_ring); |
---|
406 | } |
---|
407 | temp1->m[i]=NULL; |
---|
408 | while (p!=NULL) |
---|
409 | { |
---|
410 | q = pNext(p); |
---|
411 | pNext(p) = NULL; |
---|
412 | k = pGetComp(p)-1-length; |
---|
413 | pSetComp(p,0); |
---|
414 | pSetmComp(p); |
---|
415 | /* Warning! multiply only from the left! it's very important for Plural */ |
---|
416 | result->m[j] = pAdd(result->m[j],pMult(p,pCopy(first->m[k]))); |
---|
417 | p = q; |
---|
418 | } |
---|
419 | j++; |
---|
420 | } |
---|
421 | } |
---|
422 | if(syz_ring!=orig_ring) |
---|
423 | { |
---|
424 | rChangeCurrRing(syz_ring); |
---|
425 | idDelete(&temp1); |
---|
426 | rChangeCurrRing(orig_ring); |
---|
427 | rKill(syz_ring); |
---|
428 | } |
---|
429 | else |
---|
430 | { |
---|
431 | idDelete(&temp1); |
---|
432 | } |
---|
433 | |
---|
434 | idSkipZeroes(result); |
---|
435 | if (TEST_OPT_RETURN_SB) |
---|
436 | { |
---|
437 | w=NULL; |
---|
438 | temp1=kStd(result,currQuotient,testHomog,&w); |
---|
439 | if (w!=NULL) delete w; |
---|
440 | idDelete(&result); |
---|
441 | idSkipZeroes(temp1); |
---|
442 | return temp1; |
---|
443 | } |
---|
444 | else //temp1=kInterRed(result,currQuotient); |
---|
445 | return result; |
---|
446 | } |
---|
447 | |
---|
448 | /*2 |
---|
449 | * ideal/module intersection for a list of objects |
---|
450 | * given as 'resolvente' |
---|
451 | */ |
---|
452 | ideal idMultSect(resolvente arg, int length) |
---|
453 | { |
---|
454 | int i,j=0,k=0,syzComp,l,maxrk=-1,realrki; |
---|
455 | ideal bigmat,tempstd,result; |
---|
456 | poly p; |
---|
457 | int isIdeal=0; |
---|
458 | intvec * w=NULL; |
---|
459 | |
---|
460 | /* find 0-ideals and max rank -----------------------------------*/ |
---|
461 | for (i=0;i<length;i++) |
---|
462 | { |
---|
463 | if (!idIs0(arg[i])) |
---|
464 | { |
---|
465 | realrki=id_RankFreeModule(arg[i],currRing); |
---|
466 | k++; |
---|
467 | j += IDELEMS(arg[i]); |
---|
468 | if (realrki>maxrk) maxrk = realrki; |
---|
469 | } |
---|
470 | else |
---|
471 | { |
---|
472 | if (arg[i]!=NULL) |
---|
473 | { |
---|
474 | return idInit(1,arg[i]->rank); |
---|
475 | } |
---|
476 | } |
---|
477 | } |
---|
478 | if (maxrk == 0) |
---|
479 | { |
---|
480 | isIdeal = 1; |
---|
481 | maxrk = 1; |
---|
482 | } |
---|
483 | /* init -----------------------------------------------------------*/ |
---|
484 | j += maxrk; |
---|
485 | syzComp = k*maxrk; |
---|
486 | |
---|
487 | ring orig_ring=currRing; |
---|
488 | ring syz_ring=rCurrRingAssure_SyzComp(); |
---|
489 | rSetSyzComp(syzComp, syz_ring); |
---|
490 | |
---|
491 | bigmat = idInit(j,(k+1)*maxrk); |
---|
492 | /* create unit matrices ------------------------------------------*/ |
---|
493 | for (i=0;i<maxrk;i++) |
---|
494 | { |
---|
495 | for (j=0;j<=k;j++) |
---|
496 | { |
---|
497 | p = pOne(); |
---|
498 | pSetComp(p,i+1+j*maxrk); |
---|
499 | pSetmComp(p); |
---|
500 | bigmat->m[i] = pAdd(bigmat->m[i],p); |
---|
501 | } |
---|
502 | } |
---|
503 | /* enter given ideals ------------------------------------------*/ |
---|
504 | i = maxrk; |
---|
505 | k = 0; |
---|
506 | for (j=0;j<length;j++) |
---|
507 | { |
---|
508 | if (arg[j]!=NULL) |
---|
509 | { |
---|
510 | for (l=0;l<IDELEMS(arg[j]);l++) |
---|
511 | { |
---|
512 | if (arg[j]->m[l]!=NULL) |
---|
513 | { |
---|
514 | if (syz_ring==orig_ring) |
---|
515 | bigmat->m[i] = pCopy(arg[j]->m[l]); |
---|
516 | else |
---|
517 | bigmat->m[i] = prCopyR(arg[j]->m[l], orig_ring); |
---|
518 | pShift(&(bigmat->m[i]),k*maxrk+isIdeal); |
---|
519 | i++; |
---|
520 | } |
---|
521 | } |
---|
522 | k++; |
---|
523 | } |
---|
524 | } |
---|
525 | /* std computation --------------------------------------------*/ |
---|
526 | tempstd = kStd(bigmat,currQuotient,testHomog,&w,NULL,syzComp); |
---|
527 | if (w!=NULL) delete w; |
---|
528 | idDelete(&bigmat); |
---|
529 | |
---|
530 | if(syz_ring!=orig_ring) |
---|
531 | rChangeCurrRing(orig_ring); |
---|
532 | |
---|
533 | /* interprete result ----------------------------------------*/ |
---|
534 | result = idInit(IDELEMS(tempstd),maxrk); |
---|
535 | k = 0; |
---|
536 | for (j=0;j<IDELEMS(tempstd);j++) |
---|
537 | { |
---|
538 | if ((tempstd->m[j]!=NULL) && (p_GetComp(tempstd->m[j],syz_ring)>syzComp)) |
---|
539 | { |
---|
540 | if (syz_ring==orig_ring) |
---|
541 | p = pCopy(tempstd->m[j]); |
---|
542 | else |
---|
543 | p = prCopyR(tempstd->m[j], syz_ring); |
---|
544 | pShift(&p,-syzComp-isIdeal); |
---|
545 | result->m[k] = p; |
---|
546 | k++; |
---|
547 | } |
---|
548 | } |
---|
549 | /* clean up ----------------------------------------------------*/ |
---|
550 | if(syz_ring!=orig_ring) |
---|
551 | rChangeCurrRing(syz_ring); |
---|
552 | idDelete(&tempstd); |
---|
553 | if(syz_ring!=orig_ring) |
---|
554 | { |
---|
555 | rChangeCurrRing(orig_ring); |
---|
556 | rKill(syz_ring); |
---|
557 | } |
---|
558 | idSkipZeroes(result); |
---|
559 | return result; |
---|
560 | } |
---|
561 | |
---|
562 | /*2 |
---|
563 | *computes syzygies of h1, |
---|
564 | *if quot != NULL it computes in the quotient ring modulo "quot" |
---|
565 | *works always in a ring with ringorder_s |
---|
566 | */ |
---|
567 | static ideal idPrepare (ideal h1, tHomog hom, int syzcomp, intvec **w) |
---|
568 | { |
---|
569 | ideal h2, h3; |
---|
570 | int i; |
---|
571 | int j,jj=0,k; |
---|
572 | poly p,q; |
---|
573 | |
---|
574 | if (idIs0(h1)) return NULL; |
---|
575 | k = id_RankFreeModule(h1,currRing); |
---|
576 | h2=idCopy(h1); |
---|
577 | i = IDELEMS(h2)-1; |
---|
578 | if (k == 0) |
---|
579 | { |
---|
580 | for (j=0; j<=i; j++) pShift(&(h2->m[j]),1); |
---|
581 | k = 1; |
---|
582 | } |
---|
583 | if (syzcomp<k) |
---|
584 | { |
---|
585 | Warn("syzcomp too low, should be %d instead of %d",k,syzcomp); |
---|
586 | syzcomp = k; |
---|
587 | rSetSyzComp(k,currRing); |
---|
588 | } |
---|
589 | h2->rank = syzcomp+i+1; |
---|
590 | |
---|
591 | //if (hom==testHomog) |
---|
592 | //{ |
---|
593 | // if(idHomIdeal(h1,currQuotient)) |
---|
594 | // { |
---|
595 | // hom=TRUE; |
---|
596 | // } |
---|
597 | //} |
---|
598 | |
---|
599 | #if MYTEST |
---|
600 | #ifdef RDEBUG |
---|
601 | Print("Prepare::h2: "); |
---|
602 | idPrint(h2); |
---|
603 | |
---|
604 | for(j=0;j<IDELEMS(h2);j++) pTest(h2->m[j]); |
---|
605 | |
---|
606 | #endif |
---|
607 | #endif |
---|
608 | |
---|
609 | for (j=0; j<=i; j++) |
---|
610 | { |
---|
611 | p = h2->m[j]; |
---|
612 | q = pOne(); |
---|
613 | pSetComp(q,syzcomp+1+j); |
---|
614 | pSetmComp(q); |
---|
615 | if (p!=NULL) |
---|
616 | { |
---|
617 | while (pNext(p)) pIter(p); |
---|
618 | p->next = q; |
---|
619 | } |
---|
620 | else |
---|
621 | h2->m[j]=q; |
---|
622 | } |
---|
623 | |
---|
624 | #ifdef PDEBUG |
---|
625 | for(j=0;j<IDELEMS(h2);j++) pTest(h2->m[j]); |
---|
626 | |
---|
627 | #if MYTEST |
---|
628 | #ifdef RDEBUG |
---|
629 | Print("Prepare::Input: "); |
---|
630 | idPrint(h2); |
---|
631 | |
---|
632 | Print("Prepare::currQuotient: "); |
---|
633 | idPrint(currQuotient); |
---|
634 | #endif |
---|
635 | #endif |
---|
636 | |
---|
637 | #endif |
---|
638 | |
---|
639 | idTest(h2); |
---|
640 | |
---|
641 | h3 = kStd(h2,currQuotient,hom,w,NULL,syzcomp); |
---|
642 | |
---|
643 | #if MYTEST |
---|
644 | #ifdef RDEBUG |
---|
645 | Print("Prepare::Output: "); |
---|
646 | idPrint(h3); |
---|
647 | for(j=0;j<IDELEMS(h2);j++) pTest(h3->m[j]); |
---|
648 | #endif |
---|
649 | #endif |
---|
650 | |
---|
651 | |
---|
652 | idDelete(&h2); |
---|
653 | return h3; |
---|
654 | } |
---|
655 | |
---|
656 | /*2 |
---|
657 | * compute the syzygies of h1 in R/quot, |
---|
658 | * weights of components are in w |
---|
659 | * if setRegularity, return the regularity in deg |
---|
660 | * do not change h1, w |
---|
661 | */ |
---|
662 | ideal idSyzygies (ideal h1, tHomog h,intvec **w, BOOLEAN setSyzComp, |
---|
663 | BOOLEAN setRegularity, int *deg) |
---|
664 | { |
---|
665 | ideal s_h1; |
---|
666 | poly p; |
---|
667 | int j, k, length=0,reg; |
---|
668 | BOOLEAN isMonomial=TRUE; |
---|
669 | int ii, idElemens_h1; |
---|
670 | |
---|
671 | assume(h1 != NULL); |
---|
672 | |
---|
673 | idElemens_h1=IDELEMS(h1); |
---|
674 | #ifdef PDEBUG |
---|
675 | for(ii=0;ii<idElemens_h1 /*IDELEMS(h1)*/;ii++) pTest(h1->m[ii]); |
---|
676 | #endif |
---|
677 | if (idIs0(h1)) |
---|
678 | { |
---|
679 | ideal result=idFreeModule(idElemens_h1/*IDELEMS(h1)*/); |
---|
680 | int curr_syz_limit=rGetCurrSyzLimit(); |
---|
681 | if (curr_syz_limit>0) |
---|
682 | for (ii=0;ii<idElemens_h1/*IDELEMS(h1)*/;ii++) |
---|
683 | { |
---|
684 | if (h1->m[ii]!=NULL) |
---|
685 | pShift(&h1->m[ii],curr_syz_limit); |
---|
686 | } |
---|
687 | return result; |
---|
688 | } |
---|
689 | int slength=(int)id_RankFreeModule(h1,currRing); |
---|
690 | k=si_max(1,slength /*id_RankFreeModule(h1)*/); |
---|
691 | |
---|
692 | assume(currRing != NULL); |
---|
693 | ring orig_ring=currRing; |
---|
694 | ring syz_ring=rCurrRingAssure_SyzComp(); |
---|
695 | |
---|
696 | if (setSyzComp) |
---|
697 | rSetSyzComp(k,syz_ring); |
---|
698 | |
---|
699 | if (orig_ring != syz_ring) |
---|
700 | { |
---|
701 | s_h1=idrCopyR_NoSort(h1,orig_ring); |
---|
702 | } |
---|
703 | else |
---|
704 | { |
---|
705 | s_h1 = h1; |
---|
706 | } |
---|
707 | |
---|
708 | idTest(s_h1); |
---|
709 | |
---|
710 | ideal s_h3=idPrepare(s_h1,h,k,w); // main (syz) GB computation |
---|
711 | |
---|
712 | if (s_h3==NULL) |
---|
713 | { |
---|
714 | return idFreeModule( idElemens_h1 /*IDELEMS(h1)*/); |
---|
715 | } |
---|
716 | |
---|
717 | if (orig_ring != syz_ring) |
---|
718 | { |
---|
719 | idDelete(&s_h1); |
---|
720 | for (j=0; j<IDELEMS(s_h3); j++) |
---|
721 | { |
---|
722 | if (s_h3->m[j] != NULL) |
---|
723 | { |
---|
724 | if (p_MinComp(s_h3->m[j],syz_ring) > k) |
---|
725 | pShift(&s_h3->m[j], -k); |
---|
726 | else |
---|
727 | pDelete(&s_h3->m[j]); |
---|
728 | } |
---|
729 | } |
---|
730 | idSkipZeroes(s_h3); |
---|
731 | s_h3->rank -= k; |
---|
732 | rChangeCurrRing(orig_ring); |
---|
733 | s_h3 = idrMoveR_NoSort(s_h3, syz_ring, orig_ring); |
---|
734 | rKill(syz_ring); |
---|
735 | #ifdef HAVE_PLURAL |
---|
736 | if (rIsPluralRing(currRing)) |
---|
737 | { |
---|
738 | idDelMultiples(s_h3); |
---|
739 | idSkipZeroes(s_h3); |
---|
740 | } |
---|
741 | #endif |
---|
742 | idTest(s_h3); |
---|
743 | return s_h3; |
---|
744 | } |
---|
745 | |
---|
746 | ideal e = idInit(IDELEMS(s_h3), s_h3->rank); |
---|
747 | |
---|
748 | for (j=IDELEMS(s_h3)-1; j>=0; j--) |
---|
749 | { |
---|
750 | if (s_h3->m[j] != NULL) |
---|
751 | { |
---|
752 | if (p_MinComp(s_h3->m[j],syz_ring) <= k) |
---|
753 | { |
---|
754 | e->m[j] = s_h3->m[j]; |
---|
755 | isMonomial=isMonomial && (pNext(s_h3->m[j])==NULL); |
---|
756 | pDelete(&pNext(s_h3->m[j])); |
---|
757 | s_h3->m[j] = NULL; |
---|
758 | } |
---|
759 | } |
---|
760 | } |
---|
761 | |
---|
762 | idSkipZeroes(s_h3); |
---|
763 | idSkipZeroes(e); |
---|
764 | |
---|
765 | if ((deg != NULL) |
---|
766 | && (!isMonomial) |
---|
767 | && (!TEST_OPT_NOTREGULARITY) |
---|
768 | && (setRegularity) |
---|
769 | && (h==isHomog) |
---|
770 | && (!rIsPluralRing(currRing)) |
---|
771 | ) |
---|
772 | { |
---|
773 | ring dp_C_ring = rCurrRingAssure_dp_C(); |
---|
774 | if (dp_C_ring != syz_ring) |
---|
775 | e = idrMoveR_NoSort(e, syz_ring, dp_C_ring); |
---|
776 | resolvente res = sySchreyerResolvente(e,-1,&length,TRUE, TRUE); |
---|
777 | intvec * dummy = syBetti(res,length,®, *w); |
---|
778 | *deg = reg+2; |
---|
779 | delete dummy; |
---|
780 | for (j=0;j<length;j++) |
---|
781 | { |
---|
782 | if (res[j]!=NULL) idDelete(&(res[j])); |
---|
783 | } |
---|
784 | omFreeSize((ADDRESS)res,length*sizeof(ideal)); |
---|
785 | idDelete(&e); |
---|
786 | if (dp_C_ring != syz_ring) |
---|
787 | { |
---|
788 | rChangeCurrRing(syz_ring); |
---|
789 | rKill(dp_C_ring); |
---|
790 | } |
---|
791 | } |
---|
792 | else |
---|
793 | { |
---|
794 | idDelete(&e); |
---|
795 | } |
---|
796 | idTest(s_h3); |
---|
797 | if (currQuotient != NULL) |
---|
798 | { |
---|
799 | ideal ts_h3=kStd(s_h3,currQuotient,h,w); |
---|
800 | idDelete(&s_h3); |
---|
801 | s_h3 = ts_h3; |
---|
802 | } |
---|
803 | return s_h3; |
---|
804 | } |
---|
805 | |
---|
806 | /*2 |
---|
807 | */ |
---|
808 | ideal idXXX (ideal h1, int k) |
---|
809 | { |
---|
810 | ideal s_h1; |
---|
811 | int j; |
---|
812 | intvec *w=NULL; |
---|
813 | |
---|
814 | assume(currRing != NULL); |
---|
815 | ring orig_ring=currRing; |
---|
816 | ring syz_ring=rCurrRingAssure_SyzComp(); |
---|
817 | |
---|
818 | rSetSyzComp(k,syz_ring); |
---|
819 | |
---|
820 | if (orig_ring != syz_ring) |
---|
821 | { |
---|
822 | s_h1=idrCopyR_NoSort(h1,orig_ring); |
---|
823 | } |
---|
824 | else |
---|
825 | { |
---|
826 | s_h1 = h1; |
---|
827 | } |
---|
828 | |
---|
829 | ideal s_h3=kStd(s_h1,NULL,testHomog,&w,NULL,k); |
---|
830 | |
---|
831 | if (s_h3==NULL) |
---|
832 | { |
---|
833 | return idFreeModule(IDELEMS(h1)); |
---|
834 | } |
---|
835 | |
---|
836 | if (orig_ring != syz_ring) |
---|
837 | { |
---|
838 | idDelete(&s_h1); |
---|
839 | idSkipZeroes(s_h3); |
---|
840 | rChangeCurrRing(orig_ring); |
---|
841 | s_h3 = idrMoveR_NoSort(s_h3, syz_ring, orig_ring); |
---|
842 | rKill(syz_ring); |
---|
843 | idTest(s_h3); |
---|
844 | return s_h3; |
---|
845 | } |
---|
846 | |
---|
847 | idSkipZeroes(s_h3); |
---|
848 | idTest(s_h3); |
---|
849 | return s_h3; |
---|
850 | } |
---|
851 | |
---|
852 | /* |
---|
853 | *computes a standard basis for h1 and stores the transformation matrix |
---|
854 | * in ma |
---|
855 | */ |
---|
856 | ideal idLiftStd (ideal h1, matrix* ma, tHomog hi, ideal * syz) |
---|
857 | { |
---|
858 | int i, j, k, t, inputIsIdeal=id_RankFreeModule(h1,currRing); |
---|
859 | poly p=NULL, q, qq; |
---|
860 | intvec *w=NULL; |
---|
861 | |
---|
862 | idDelete((ideal*)ma); |
---|
863 | BOOLEAN lift3=FALSE; |
---|
864 | if (syz!=NULL) { lift3=TRUE; idDelete(syz); } |
---|
865 | if (idIs0(h1)) |
---|
866 | { |
---|
867 | *ma=mpNew(1,0); |
---|
868 | if (lift3) |
---|
869 | { |
---|
870 | *syz=idFreeModule(IDELEMS(h1)); |
---|
871 | int curr_syz_limit=rGetCurrSyzLimit(); |
---|
872 | if (curr_syz_limit>0) |
---|
873 | for (int ii=0;ii<IDELEMS(h1);ii++) |
---|
874 | { |
---|
875 | if (h1->m[ii]!=NULL) |
---|
876 | pShift(&h1->m[ii],curr_syz_limit); |
---|
877 | } |
---|
878 | } |
---|
879 | return idInit(1,h1->rank); |
---|
880 | } |
---|
881 | |
---|
882 | BITSET save_verbose=verbose; |
---|
883 | |
---|
884 | k=si_max(1,(int)id_RankFreeModule(h1,currRing)); |
---|
885 | |
---|
886 | if ((k==1) && (!lift3)) verbose |=Sy_bit(V_IDLIFT); |
---|
887 | |
---|
888 | ring orig_ring = currRing; |
---|
889 | ring syz_ring = rCurrRingAssure_SyzComp(); |
---|
890 | rSetSyzComp(k,syz_ring); |
---|
891 | |
---|
892 | ideal s_h1=h1; |
---|
893 | |
---|
894 | if (orig_ring != syz_ring) |
---|
895 | s_h1 = idrCopyR_NoSort(h1,orig_ring); |
---|
896 | else |
---|
897 | s_h1 = h1; |
---|
898 | |
---|
899 | ideal s_h3=idPrepare(s_h1,hi,k,&w); // main (syz) GB computation |
---|
900 | |
---|
901 | ideal s_h2 = idInit(IDELEMS(s_h3), s_h3->rank); |
---|
902 | |
---|
903 | if (lift3) (*syz)=idInit(IDELEMS(s_h3),IDELEMS(h1)); |
---|
904 | |
---|
905 | if (w!=NULL) delete w; |
---|
906 | i = 0; |
---|
907 | |
---|
908 | // now sort the result, SB : leave in s_h3 |
---|
909 | // T: put in s_h2 |
---|
910 | // syz: put in *syz |
---|
911 | for (j=0; j<IDELEMS(s_h3); j++) |
---|
912 | { |
---|
913 | if (s_h3->m[j] != NULL) |
---|
914 | { |
---|
915 | //if (p_MinComp(s_h3->m[j],syz_ring) <= k) |
---|
916 | if (pGetComp(s_h3->m[j]) <= k) // syz_ring == currRing |
---|
917 | { |
---|
918 | i++; |
---|
919 | q = s_h3->m[j]; |
---|
920 | while (pNext(q) != NULL) |
---|
921 | { |
---|
922 | if (pGetComp(pNext(q)) > k) |
---|
923 | { |
---|
924 | s_h2->m[j] = pNext(q); |
---|
925 | pNext(q) = NULL; |
---|
926 | } |
---|
927 | else |
---|
928 | { |
---|
929 | pIter(q); |
---|
930 | } |
---|
931 | } |
---|
932 | if (!inputIsIdeal) pShift(&(s_h3->m[j]), -1); |
---|
933 | } |
---|
934 | else |
---|
935 | { |
---|
936 | // we a syzygy here: |
---|
937 | if (lift3) |
---|
938 | { |
---|
939 | pShift(&s_h3->m[j], -k); |
---|
940 | (*syz)->m[j]=s_h3->m[j]; |
---|
941 | s_h3->m[j]=NULL; |
---|
942 | } |
---|
943 | else |
---|
944 | pDelete(&(s_h3->m[j])); |
---|
945 | } |
---|
946 | } |
---|
947 | } |
---|
948 | idSkipZeroes(s_h3); |
---|
949 | //extern char * iiStringMatrix(matrix im, int dim,char ch); |
---|
950 | //PrintS("SB: ----------------------------------------\n"); |
---|
951 | //PrintS(iiStringMatrix((matrix)s_h3,k,'\n')); |
---|
952 | //PrintLn(); |
---|
953 | //PrintS("T: ----------------------------------------\n"); |
---|
954 | //PrintS(iiStringMatrix((matrix)s_h2,h1->rank,'\n')); |
---|
955 | //PrintLn(); |
---|
956 | |
---|
957 | if (lift3) idSkipZeroes(*syz); |
---|
958 | |
---|
959 | j = IDELEMS(s_h1); |
---|
960 | |
---|
961 | |
---|
962 | if (syz_ring!=orig_ring) |
---|
963 | { |
---|
964 | idDelete(&s_h1); |
---|
965 | rChangeCurrRing(orig_ring); |
---|
966 | } |
---|
967 | |
---|
968 | *ma = mpNew(j,i); |
---|
969 | |
---|
970 | i = 1; |
---|
971 | for (j=0; j<IDELEMS(s_h2); j++) |
---|
972 | { |
---|
973 | if (s_h2->m[j] != NULL) |
---|
974 | { |
---|
975 | q = prMoveR( s_h2->m[j], syz_ring,orig_ring); |
---|
976 | s_h2->m[j] = NULL; |
---|
977 | |
---|
978 | while (q != NULL) |
---|
979 | { |
---|
980 | p = q; |
---|
981 | pIter(q); |
---|
982 | pNext(p) = NULL; |
---|
983 | t=pGetComp(p); |
---|
984 | pSetComp(p,0); |
---|
985 | pSetmComp(p); |
---|
986 | MATELEM(*ma,t-k,i) = pAdd(MATELEM(*ma,t-k,i),p); |
---|
987 | } |
---|
988 | i++; |
---|
989 | } |
---|
990 | } |
---|
991 | idDelete(&s_h2); |
---|
992 | |
---|
993 | for (i=0; i<IDELEMS(s_h3); i++) |
---|
994 | { |
---|
995 | s_h3->m[i] = prMoveR_NoSort(s_h3->m[i], syz_ring,orig_ring); |
---|
996 | } |
---|
997 | if (lift3) |
---|
998 | { |
---|
999 | for (i=0; i<IDELEMS(*syz); i++) |
---|
1000 | { |
---|
1001 | (*syz)->m[i] = prMoveR_NoSort((*syz)->m[i], syz_ring,orig_ring); |
---|
1002 | } |
---|
1003 | } |
---|
1004 | |
---|
1005 | if (syz_ring!=orig_ring) rKill(syz_ring); |
---|
1006 | verbose = save_verbose; |
---|
1007 | return s_h3; |
---|
1008 | } |
---|
1009 | |
---|
1010 | static void idPrepareStd(ideal s_temp, int k) |
---|
1011 | { |
---|
1012 | int j,rk=id_RankFreeModule(s_temp,currRing); |
---|
1013 | poly p,q; |
---|
1014 | |
---|
1015 | if (rk == 0) |
---|
1016 | { |
---|
1017 | for (j=0; j<IDELEMS(s_temp); j++) |
---|
1018 | { |
---|
1019 | if (s_temp->m[j]!=NULL) pSetCompP(s_temp->m[j],1); |
---|
1020 | } |
---|
1021 | k = si_max(k,1); |
---|
1022 | } |
---|
1023 | for (j=0; j<IDELEMS(s_temp); j++) |
---|
1024 | { |
---|
1025 | if (s_temp->m[j]!=NULL) |
---|
1026 | { |
---|
1027 | p = s_temp->m[j]; |
---|
1028 | q = pOne(); |
---|
1029 | //pGetCoeff(q)=nNeg(pGetCoeff(q)); //set q to -1 |
---|
1030 | pSetComp(q,k+1+j); |
---|
1031 | pSetmComp(q); |
---|
1032 | while (pNext(p)) pIter(p); |
---|
1033 | pNext(p) = q; |
---|
1034 | } |
---|
1035 | } |
---|
1036 | } |
---|
1037 | |
---|
1038 | /*2 |
---|
1039 | *computes a representation of the generators of submod with respect to those |
---|
1040 | * of mod |
---|
1041 | */ |
---|
1042 | |
---|
1043 | ideal idLift(ideal mod, ideal submod,ideal *rest, BOOLEAN goodShape, |
---|
1044 | BOOLEAN isSB, BOOLEAN divide, matrix *unit) |
---|
1045 | { |
---|
1046 | int lsmod =id_RankFreeModule(submod,currRing), i, j, k; |
---|
1047 | int comps_to_add=0; |
---|
1048 | poly p; |
---|
1049 | |
---|
1050 | if (idIs0(submod)) |
---|
1051 | { |
---|
1052 | if (unit!=NULL) |
---|
1053 | { |
---|
1054 | *unit=mpNew(1,1); |
---|
1055 | MATELEM(*unit,1,1)=pOne(); |
---|
1056 | } |
---|
1057 | if (rest!=NULL) |
---|
1058 | { |
---|
1059 | *rest=idInit(1,mod->rank); |
---|
1060 | } |
---|
1061 | return idInit(1,mod->rank); |
---|
1062 | } |
---|
1063 | if (idIs0(mod)) /* and not idIs0(submod) */ |
---|
1064 | { |
---|
1065 | WerrorS("2nd module does not lie in the first"); |
---|
1066 | #if 0 |
---|
1067 | if (unit!=NULL) |
---|
1068 | { |
---|
1069 | i=IDELEMS(submod); |
---|
1070 | *unit=mpNew(i,i); |
---|
1071 | for (j=i;j>0;j--) |
---|
1072 | { |
---|
1073 | MATELEM(*unit,j,j)=pOne(); |
---|
1074 | } |
---|
1075 | } |
---|
1076 | if (rest!=NULL) |
---|
1077 | { |
---|
1078 | *rest=idCopy(submod); |
---|
1079 | } |
---|
1080 | return idInit(1,mod->rank); |
---|
1081 | #endif |
---|
1082 | return idInit(IDELEMS(submod),submod->rank); |
---|
1083 | } |
---|
1084 | if (unit!=NULL) |
---|
1085 | { |
---|
1086 | comps_to_add = IDELEMS(submod); |
---|
1087 | while ((comps_to_add>0) && (submod->m[comps_to_add-1]==NULL)) |
---|
1088 | comps_to_add--; |
---|
1089 | } |
---|
1090 | k=si_max(id_RankFreeModule(mod,currRing),id_RankFreeModule(submod,currRing)); |
---|
1091 | if ((k!=0) && (lsmod==0)) lsmod=1; |
---|
1092 | k=si_max(k,(int)mod->rank); |
---|
1093 | if (k<submod->rank) { WarnS("rk(submod) > rk(mod) ?");k=submod->rank; } |
---|
1094 | |
---|
1095 | ring orig_ring=currRing; |
---|
1096 | ring syz_ring=rCurrRingAssure_SyzComp(); |
---|
1097 | rSetSyzComp(k,syz_ring); |
---|
1098 | |
---|
1099 | ideal s_mod, s_temp; |
---|
1100 | if (orig_ring != syz_ring) |
---|
1101 | { |
---|
1102 | s_mod = idrCopyR_NoSort(mod,orig_ring); |
---|
1103 | s_temp = idrCopyR_NoSort(submod,orig_ring); |
---|
1104 | } |
---|
1105 | else |
---|
1106 | { |
---|
1107 | s_mod = mod; |
---|
1108 | s_temp = idCopy(submod); |
---|
1109 | } |
---|
1110 | ideal s_h3; |
---|
1111 | if (isSB) |
---|
1112 | { |
---|
1113 | s_h3 = idCopy(s_mod); |
---|
1114 | idPrepareStd(s_h3, k+comps_to_add); |
---|
1115 | } |
---|
1116 | else |
---|
1117 | { |
---|
1118 | s_h3 = idPrepare(s_mod,(tHomog)FALSE,k+comps_to_add,NULL); |
---|
1119 | } |
---|
1120 | if (!goodShape) |
---|
1121 | { |
---|
1122 | for (j=0;j<IDELEMS(s_h3);j++) |
---|
1123 | { |
---|
1124 | if ((s_h3->m[j] != NULL) && (pMinComp(s_h3->m[j]) > k)) |
---|
1125 | pDelete(&(s_h3->m[j])); |
---|
1126 | } |
---|
1127 | } |
---|
1128 | idSkipZeroes(s_h3); |
---|
1129 | if (lsmod==0) |
---|
1130 | { |
---|
1131 | for (j=IDELEMS(s_temp);j>0;j--) |
---|
1132 | { |
---|
1133 | if (s_temp->m[j-1]!=NULL) |
---|
1134 | pShift(&(s_temp->m[j-1]),1); |
---|
1135 | } |
---|
1136 | } |
---|
1137 | if (unit!=NULL) |
---|
1138 | { |
---|
1139 | for(j = 0;j<comps_to_add;j++) |
---|
1140 | { |
---|
1141 | p = s_temp->m[j]; |
---|
1142 | if (p!=NULL) |
---|
1143 | { |
---|
1144 | while (pNext(p)!=NULL) pIter(p); |
---|
1145 | pNext(p) = pOne(); |
---|
1146 | pIter(p); |
---|
1147 | pSetComp(p,1+j+k); |
---|
1148 | pSetmComp(p); |
---|
1149 | p = pNeg(p); |
---|
1150 | } |
---|
1151 | } |
---|
1152 | } |
---|
1153 | ideal s_result = kNF(s_h3,currQuotient,s_temp,k); |
---|
1154 | s_result->rank = s_h3->rank; |
---|
1155 | ideal s_rest = idInit(IDELEMS(s_result),k); |
---|
1156 | idDelete(&s_h3); |
---|
1157 | idDelete(&s_temp); |
---|
1158 | |
---|
1159 | for (j=0;j<IDELEMS(s_result);j++) |
---|
1160 | { |
---|
1161 | if (s_result->m[j]!=NULL) |
---|
1162 | { |
---|
1163 | if (pGetComp(s_result->m[j])<=k) |
---|
1164 | { |
---|
1165 | if (!divide) |
---|
1166 | { |
---|
1167 | if (isSB) |
---|
1168 | { |
---|
1169 | WarnS("first module not a standardbasis\n" |
---|
1170 | "// ** or second not a proper submodule"); |
---|
1171 | } |
---|
1172 | else |
---|
1173 | WerrorS("2nd module does not lie in the first"); |
---|
1174 | idDelete(&s_result); |
---|
1175 | idDelete(&s_rest); |
---|
1176 | s_result=idInit(IDELEMS(submod),submod->rank); |
---|
1177 | break; |
---|
1178 | } |
---|
1179 | else |
---|
1180 | { |
---|
1181 | p = s_rest->m[j] = s_result->m[j]; |
---|
1182 | while ((pNext(p)!=NULL) && (pGetComp(pNext(p))<=k)) pIter(p); |
---|
1183 | s_result->m[j] = pNext(p); |
---|
1184 | pNext(p) = NULL; |
---|
1185 | } |
---|
1186 | } |
---|
1187 | pShift(&(s_result->m[j]),-k); |
---|
1188 | pNeg(s_result->m[j]); |
---|
1189 | } |
---|
1190 | } |
---|
1191 | if ((lsmod==0) && (!idIs0(s_rest))) |
---|
1192 | { |
---|
1193 | for (j=IDELEMS(s_rest);j>0;j--) |
---|
1194 | { |
---|
1195 | if (s_rest->m[j-1]!=NULL) |
---|
1196 | { |
---|
1197 | pShift(&(s_rest->m[j-1]),-1); |
---|
1198 | s_rest->m[j-1] = s_rest->m[j-1]; |
---|
1199 | } |
---|
1200 | } |
---|
1201 | } |
---|
1202 | if(syz_ring!=orig_ring) |
---|
1203 | { |
---|
1204 | idDelete(&s_mod); |
---|
1205 | rChangeCurrRing(orig_ring); |
---|
1206 | s_result = idrMoveR_NoSort(s_result, syz_ring, orig_ring); |
---|
1207 | s_rest = idrMoveR_NoSort(s_rest, syz_ring, orig_ring); |
---|
1208 | rKill(syz_ring); |
---|
1209 | } |
---|
1210 | if (rest!=NULL) |
---|
1211 | *rest = s_rest; |
---|
1212 | else |
---|
1213 | idDelete(&s_rest); |
---|
1214 | //idPrint(s_result); |
---|
1215 | if (unit!=NULL) |
---|
1216 | { |
---|
1217 | *unit=mpNew(comps_to_add,comps_to_add); |
---|
1218 | int i; |
---|
1219 | for(i=0;i<IDELEMS(s_result);i++) |
---|
1220 | { |
---|
1221 | poly p=s_result->m[i]; |
---|
1222 | poly q=NULL; |
---|
1223 | while(p!=NULL) |
---|
1224 | { |
---|
1225 | if(pGetComp(p)<=comps_to_add) |
---|
1226 | { |
---|
1227 | pSetComp(p,0); |
---|
1228 | if (q!=NULL) |
---|
1229 | { |
---|
1230 | pNext(q)=pNext(p); |
---|
1231 | } |
---|
1232 | else |
---|
1233 | { |
---|
1234 | pIter(s_result->m[i]); |
---|
1235 | } |
---|
1236 | pNext(p)=NULL; |
---|
1237 | MATELEM(*unit,i+1,i+1)=pAdd(MATELEM(*unit,i+1,i+1),p); |
---|
1238 | if(q!=NULL) p=pNext(q); |
---|
1239 | else p=s_result->m[i]; |
---|
1240 | } |
---|
1241 | else |
---|
1242 | { |
---|
1243 | q=p; |
---|
1244 | pIter(p); |
---|
1245 | } |
---|
1246 | } |
---|
1247 | pShift(&s_result->m[i],-comps_to_add); |
---|
1248 | } |
---|
1249 | } |
---|
1250 | return s_result; |
---|
1251 | } |
---|
1252 | |
---|
1253 | /*2 |
---|
1254 | *computes division of P by Q with remainder up to (w-weighted) degree n |
---|
1255 | *P, Q, and w are not changed |
---|
1256 | */ |
---|
1257 | void idLiftW(ideal P,ideal Q,int n,matrix &T, ideal &R,short *w) |
---|
1258 | { |
---|
1259 | long N=0; |
---|
1260 | int i; |
---|
1261 | for(i=IDELEMS(Q)-1;i>=0;i--) |
---|
1262 | if(w==NULL) |
---|
1263 | N=si_max(N,pDeg(Q->m[i])); |
---|
1264 | else |
---|
1265 | N=si_max(N,pDegW(Q->m[i],w)); |
---|
1266 | N+=n; |
---|
1267 | |
---|
1268 | T=mpNew(IDELEMS(Q),IDELEMS(P)); |
---|
1269 | R=idInit(IDELEMS(P),P->rank); |
---|
1270 | |
---|
1271 | for(i=IDELEMS(P)-1;i>=0;i--) |
---|
1272 | { |
---|
1273 | poly p; |
---|
1274 | if(w==NULL) |
---|
1275 | p=ppJet(P->m[i],N); |
---|
1276 | else |
---|
1277 | p=ppJetW(P->m[i],N,w); |
---|
1278 | |
---|
1279 | int j=IDELEMS(Q)-1; |
---|
1280 | while(p!=NULL) |
---|
1281 | { |
---|
1282 | if(pDivisibleBy(Q->m[j],p)) |
---|
1283 | { |
---|
1284 | poly p0=pDivideM(pHead(p),pHead(Q->m[j])); |
---|
1285 | if(w==NULL) |
---|
1286 | p=pJet(pSub(p,ppMult_mm(Q->m[j],p0)),N); |
---|
1287 | else |
---|
1288 | p=pJetW(pSub(p,ppMult_mm(Q->m[j],p0)),N,w); |
---|
1289 | pNormalize(p); |
---|
1290 | if((w==NULL)&&(pDeg(p0)>n)||(w!=NULL)&&(pDegW(p0,w)>n)) |
---|
1291 | pDelete(&p0); |
---|
1292 | else |
---|
1293 | MATELEM(T,j+1,i+1)=pAdd(MATELEM(T,j+1,i+1),p0); |
---|
1294 | j=IDELEMS(Q)-1; |
---|
1295 | } |
---|
1296 | else |
---|
1297 | { |
---|
1298 | if(j==0) |
---|
1299 | { |
---|
1300 | poly p0=p; |
---|
1301 | pIter(p); |
---|
1302 | pNext(p0)=NULL; |
---|
1303 | if(((w==NULL)&&(pDeg(p0)>n)) |
---|
1304 | ||((w!=NULL)&&(pDegW(p0,w)>n))) |
---|
1305 | pDelete(&p0); |
---|
1306 | else |
---|
1307 | R->m[i]=pAdd(R->m[i],p0); |
---|
1308 | j=IDELEMS(Q)-1; |
---|
1309 | } |
---|
1310 | else |
---|
1311 | j--; |
---|
1312 | } |
---|
1313 | } |
---|
1314 | } |
---|
1315 | } |
---|
1316 | |
---|
1317 | /*2 |
---|
1318 | *computes the quotient of h1,h2 : internal routine for idQuot |
---|
1319 | *BEWARE: the returned ideals may contain incorrectly ordered polys ! |
---|
1320 | * |
---|
1321 | */ |
---|
1322 | static ideal idInitializeQuot (ideal h1, ideal h2, BOOLEAN h1IsStb, |
---|
1323 | BOOLEAN *addOnlyOne, int *kkmax) |
---|
1324 | { |
---|
1325 | ideal temph1; |
---|
1326 | poly p,q = NULL; |
---|
1327 | int i,l,ll,k,kkk,kmax; |
---|
1328 | int j = 0; |
---|
1329 | int k1 = id_RankFreeModule(h1,currRing); |
---|
1330 | int k2 = id_RankFreeModule(h2,currRing); |
---|
1331 | tHomog hom=isNotHomog; |
---|
1332 | |
---|
1333 | k=si_max(k1,k2); |
---|
1334 | if (k==0) |
---|
1335 | k = 1; |
---|
1336 | if ((k2==0) && (k>1)) *addOnlyOne = FALSE; |
---|
1337 | |
---|
1338 | intvec * weights; |
---|
1339 | hom = (tHomog)idHomModule(h1,currQuotient,&weights); |
---|
1340 | if (/**addOnlyOne &&*/ (!h1IsStb)) |
---|
1341 | temph1 = kStd(h1,currQuotient,hom,&weights,NULL); |
---|
1342 | else |
---|
1343 | temph1 = idCopy(h1); |
---|
1344 | if (weights!=NULL) delete weights; |
---|
1345 | idTest(temph1); |
---|
1346 | /*--- making a single vector from h2 ---------------------*/ |
---|
1347 | for (i=0; i<IDELEMS(h2); i++) |
---|
1348 | { |
---|
1349 | if (h2->m[i] != NULL) |
---|
1350 | { |
---|
1351 | p = pCopy(h2->m[i]); |
---|
1352 | if (k2 == 0) |
---|
1353 | pShift(&p,j*k+1); |
---|
1354 | else |
---|
1355 | pShift(&p,j*k); |
---|
1356 | q = pAdd(q,p); |
---|
1357 | j++; |
---|
1358 | } |
---|
1359 | } |
---|
1360 | *kkmax = kmax = j*k+1; |
---|
1361 | /*--- adding a monomial for the result (syzygy) ----------*/ |
---|
1362 | p = q; |
---|
1363 | while (pNext(p)!=NULL) pIter(p); |
---|
1364 | pNext(p) = pOne(); |
---|
1365 | pIter(p); |
---|
1366 | pSetComp(p,kmax); |
---|
1367 | pSetmComp(p); |
---|
1368 | /*--- constructing the big matrix ------------------------*/ |
---|
1369 | ideal h4 = idInit(16,kmax+k-1); |
---|
1370 | h4->m[0] = q; |
---|
1371 | if (k2 == 0) |
---|
1372 | { |
---|
1373 | if (k > IDELEMS(h4)) |
---|
1374 | { |
---|
1375 | pEnlargeSet(&(h4->m),IDELEMS(h4),k-IDELEMS(h4)); |
---|
1376 | IDELEMS(h4) = k; |
---|
1377 | } |
---|
1378 | for (i=1; i<k; i++) |
---|
1379 | { |
---|
1380 | if (h4->m[i-1]!=NULL) |
---|
1381 | { |
---|
1382 | p = pCopy_noCheck(h4->m[i-1]); |
---|
1383 | pShift(&p,1); |
---|
1384 | h4->m[i] = p; |
---|
1385 | } |
---|
1386 | } |
---|
1387 | } |
---|
1388 | idSkipZeroes(h4); |
---|
1389 | kkk = IDELEMS(h4); |
---|
1390 | i = IDELEMS(temph1); |
---|
1391 | for (l=0; l<i; l++) |
---|
1392 | { |
---|
1393 | if(temph1->m[l]!=NULL) |
---|
1394 | { |
---|
1395 | for (ll=0; ll<j; ll++) |
---|
1396 | { |
---|
1397 | p = pCopy(temph1->m[l]); |
---|
1398 | if (k1 == 0) |
---|
1399 | pShift(&p,ll*k+1); |
---|
1400 | else |
---|
1401 | pShift(&p,ll*k); |
---|
1402 | if (kkk >= IDELEMS(h4)) |
---|
1403 | { |
---|
1404 | pEnlargeSet(&(h4->m),IDELEMS(h4),16); |
---|
1405 | IDELEMS(h4) += 16; |
---|
1406 | } |
---|
1407 | h4->m[kkk] = p; |
---|
1408 | kkk++; |
---|
1409 | } |
---|
1410 | } |
---|
1411 | } |
---|
1412 | /*--- if h2 goes in as single vector - the h1-part is just SB ---*/ |
---|
1413 | if (*addOnlyOne) |
---|
1414 | { |
---|
1415 | idSkipZeroes(h4); |
---|
1416 | p = h4->m[0]; |
---|
1417 | for (i=0;i<IDELEMS(h4)-1;i++) |
---|
1418 | { |
---|
1419 | h4->m[i] = h4->m[i+1]; |
---|
1420 | } |
---|
1421 | h4->m[IDELEMS(h4)-1] = p; |
---|
1422 | test |= Sy_bit(OPT_SB_1); |
---|
1423 | } |
---|
1424 | idDelete(&temph1); |
---|
1425 | return h4; |
---|
1426 | } |
---|
1427 | /*2 |
---|
1428 | *computes the quotient of h1,h2 |
---|
1429 | */ |
---|
1430 | ideal idQuot (ideal h1, ideal h2, BOOLEAN h1IsStb, BOOLEAN resultIsIdeal) |
---|
1431 | { |
---|
1432 | // first check for special case h1:(0) |
---|
1433 | if (idIs0(h2)) |
---|
1434 | { |
---|
1435 | ideal res; |
---|
1436 | if (resultIsIdeal) |
---|
1437 | { |
---|
1438 | res = idInit(1,1); |
---|
1439 | res->m[0] = pOne(); |
---|
1440 | } |
---|
1441 | else |
---|
1442 | res = idFreeModule(h1->rank); |
---|
1443 | return res; |
---|
1444 | } |
---|
1445 | BITSET old_test=test; |
---|
1446 | int i,l,ll,k,kkk,kmax; |
---|
1447 | BOOLEAN addOnlyOne=TRUE; |
---|
1448 | tHomog hom=isNotHomog; |
---|
1449 | intvec * weights1; |
---|
1450 | |
---|
1451 | ideal s_h4 = idInitializeQuot (h1,h2,h1IsStb,&addOnlyOne,&kmax); |
---|
1452 | |
---|
1453 | hom = (tHomog)idHomModule(s_h4,currQuotient,&weights1); |
---|
1454 | |
---|
1455 | ring orig_ring=currRing; |
---|
1456 | ring syz_ring=rCurrRingAssure_SyzComp(); |
---|
1457 | rSetSyzComp(kmax-1,syz_ring); |
---|
1458 | if (orig_ring!=syz_ring) |
---|
1459 | // s_h4 = idrMoveR_NoSort(s_h4,orig_ring, syz_ring); |
---|
1460 | s_h4 = idrMoveR(s_h4,orig_ring, syz_ring); |
---|
1461 | idTest(s_h4); |
---|
1462 | #if 0 |
---|
1463 | void ipPrint_MA0(matrix m, const char *name); |
---|
1464 | matrix m=idModule2Matrix(idCopy(s_h4)); |
---|
1465 | PrintS("start:\n"); |
---|
1466 | ipPrint_MA0(m,"Q"); |
---|
1467 | idDelete((ideal *)&m); |
---|
1468 | PrintS("last elem:");wrp(s_h4->m[IDELEMS(s_h4)-1]);PrintLn(); |
---|
1469 | #endif |
---|
1470 | ideal s_h3; |
---|
1471 | if (addOnlyOne) |
---|
1472 | { |
---|
1473 | s_h3 = kStd(s_h4,currQuotient,hom,&weights1,NULL,0/*kmax-1*/,IDELEMS(s_h4)-1); |
---|
1474 | } |
---|
1475 | else |
---|
1476 | { |
---|
1477 | s_h3 = kStd(s_h4,currQuotient,hom,&weights1,NULL,kmax-1); |
---|
1478 | } |
---|
1479 | test = old_test; |
---|
1480 | #if 0 |
---|
1481 | // only together with the above debug stuff |
---|
1482 | idSkipZeroes(s_h3); |
---|
1483 | m=idModule2Matrix(idCopy(s_h3)); |
---|
1484 | Print("result, kmax=%d:\n",kmax); |
---|
1485 | ipPrint_MA0(m,"S"); |
---|
1486 | idDelete((ideal *)&m); |
---|
1487 | #endif |
---|
1488 | idTest(s_h3); |
---|
1489 | if (weights1!=NULL) delete weights1; |
---|
1490 | idDelete(&s_h4); |
---|
1491 | |
---|
1492 | for (i=0;i<IDELEMS(s_h3);i++) |
---|
1493 | { |
---|
1494 | if ((s_h3->m[i]!=NULL) && (pGetComp(s_h3->m[i])>=kmax)) |
---|
1495 | { |
---|
1496 | if (resultIsIdeal) |
---|
1497 | pShift(&s_h3->m[i],-kmax); |
---|
1498 | else |
---|
1499 | pShift(&s_h3->m[i],-kmax+1); |
---|
1500 | } |
---|
1501 | else |
---|
1502 | pDelete(&s_h3->m[i]); |
---|
1503 | } |
---|
1504 | if (resultIsIdeal) |
---|
1505 | s_h3->rank = 1; |
---|
1506 | else |
---|
1507 | s_h3->rank = h1->rank; |
---|
1508 | if(syz_ring!=orig_ring) |
---|
1509 | { |
---|
1510 | rChangeCurrRing(orig_ring); |
---|
1511 | s_h3 = idrMoveR_NoSort(s_h3, syz_ring, orig_ring); |
---|
1512 | rKill(syz_ring); |
---|
1513 | } |
---|
1514 | idSkipZeroes(s_h3); |
---|
1515 | idTest(s_h3); |
---|
1516 | return s_h3; |
---|
1517 | } |
---|
1518 | |
---|
1519 | /*2 |
---|
1520 | * eliminate delVar (product of vars) in h1 |
---|
1521 | */ |
---|
1522 | ideal idElimination (ideal h1,poly delVar,intvec *hilb) |
---|
1523 | { |
---|
1524 | int i,j=0,k,l; |
---|
1525 | ideal h,hh, h3; |
---|
1526 | int *ord,*block0,*block1; |
---|
1527 | int ordersize=2; |
---|
1528 | int **wv; |
---|
1529 | tHomog hom; |
---|
1530 | intvec * w; |
---|
1531 | ring tmpR; |
---|
1532 | ring origR = currRing; |
---|
1533 | |
---|
1534 | if (delVar==NULL) |
---|
1535 | { |
---|
1536 | return idCopy(h1); |
---|
1537 | } |
---|
1538 | if ((currQuotient!=NULL) && rIsPluralRing(origR)) |
---|
1539 | { |
---|
1540 | WerrorS("cannot eliminate in a qring"); |
---|
1541 | return idCopy(h1); |
---|
1542 | } |
---|
1543 | if (idIs0(h1)) return idInit(1,h1->rank); |
---|
1544 | #ifdef HAVE_PLURAL |
---|
1545 | if (rIsPluralRing(origR)) |
---|
1546 | /* in the NC case, we have to check the admissibility of */ |
---|
1547 | /* the subalgebra to be intersected with */ |
---|
1548 | { |
---|
1549 | if ((ncRingType(origR) != nc_skew) && (ncRingType(origR) != nc_exterior)) /* in (quasi)-commutative algebras every subalgebra is admissible */ |
---|
1550 | { |
---|
1551 | if (nc_CheckSubalgebra(delVar,origR)) |
---|
1552 | { |
---|
1553 | WerrorS("no elimination is possible: subalgebra is not admissible"); |
---|
1554 | return idCopy(h1); |
---|
1555 | } |
---|
1556 | } |
---|
1557 | } |
---|
1558 | #endif |
---|
1559 | hom=(tHomog)idHomModule(h1,NULL,&w); //sets w to weight vector or NULL |
---|
1560 | h3=idInit(16,h1->rank); |
---|
1561 | for (k=0;; k++) |
---|
1562 | { |
---|
1563 | if (origR->order[k]!=0) ordersize++; |
---|
1564 | else break; |
---|
1565 | } |
---|
1566 | #if 0 |
---|
1567 | if (rIsPluralRing(origR)) // we have too keep the odering: it may be needed |
---|
1568 | // for G-algebra |
---|
1569 | { |
---|
1570 | for (k=0;k<ordersize-1; k++) |
---|
1571 | { |
---|
1572 | block0[k+1] = origR->block0[k]; |
---|
1573 | block1[k+1] = origR->block1[k]; |
---|
1574 | ord[k+1] = origR->order[k]; |
---|
1575 | if (origR->wvhdl[k]!=NULL) wv[k+1] = (int*) omMemDup(origR->wvhdl[k]); |
---|
1576 | } |
---|
1577 | } |
---|
1578 | else |
---|
1579 | { |
---|
1580 | block0[1] = 1; |
---|
1581 | block1[1] = (currRing->N); |
---|
1582 | if (origR->OrdSgn==1) ord[1] = ringorder_wp; |
---|
1583 | else ord[1] = ringorder_ws; |
---|
1584 | wv[1]=(int*)omAlloc0((currRing->N)*sizeof(int)); |
---|
1585 | double wNsqr = (double)2.0 / (double)(currRing->N); |
---|
1586 | wFunctional = wFunctionalBuch; |
---|
1587 | int *x= (int * )omAlloc(2 * ((currRing->N) + 1) * sizeof(int)); |
---|
1588 | int sl=IDELEMS(h1) - 1; |
---|
1589 | wCall(h1->m, sl, x, wNsqr); |
---|
1590 | for (sl = (currRing->N); sl!=0; sl--) |
---|
1591 | wv[1][sl-1] = x[sl + (currRing->N) + 1]; |
---|
1592 | omFreeSize((ADDRESS)x, 2 * ((currRing->N) + 1) * sizeof(int)); |
---|
1593 | |
---|
1594 | ord[2]=ringorder_C; |
---|
1595 | ord[3]=0; |
---|
1596 | } |
---|
1597 | #else |
---|
1598 | #endif |
---|
1599 | if ((hom==TRUE) && (origR->OrdSgn==1) && (!rIsPluralRing(origR))) |
---|
1600 | { |
---|
1601 | #if 1 |
---|
1602 | // we change to an ordering: |
---|
1603 | // aa(1,1,1,...,0,0,0),wp(...),C |
---|
1604 | // this seems to be better than version 2 below, |
---|
1605 | // according to Tst/../elimiate_[3568].tat (- 17 %) |
---|
1606 | ord=(int*)omAlloc0(4*sizeof(int)); |
---|
1607 | block0=(int*)omAlloc0(4*sizeof(int)); |
---|
1608 | block1=(int*)omAlloc0(4*sizeof(int)); |
---|
1609 | wv=(int**) omAlloc0(4*sizeof(int**)); |
---|
1610 | block0[0] = block0[1] = 1; |
---|
1611 | block1[0] = block1[1] = rVar(origR); |
---|
1612 | wv[0]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int)); |
---|
1613 | // use this special ordering: like ringorder_a, except that pFDeg, pWeights |
---|
1614 | // ignore it |
---|
1615 | ord[0] = ringorder_aa; |
---|
1616 | for (j=0;j<rVar(origR);j++) |
---|
1617 | if (pGetExp(delVar,j+1)!=0) wv[0][j]=1; |
---|
1618 | BOOLEAN wp=FALSE; |
---|
1619 | for (j=0;j<rVar(origR);j++) |
---|
1620 | if (pWeight(j+1,origR)!=1) { wp=TRUE;break; } |
---|
1621 | if (wp) |
---|
1622 | { |
---|
1623 | wv[1]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int)); |
---|
1624 | for (j=0;j<rVar(origR);j++) |
---|
1625 | wv[1][j]=pWeight(j+1,origR); |
---|
1626 | ord[1] = ringorder_wp; |
---|
1627 | } |
---|
1628 | else |
---|
1629 | ord[1] = ringorder_dp; |
---|
1630 | #else |
---|
1631 | // we change to an ordering: |
---|
1632 | // a(w1,...wn),wp(1,...0.....),C |
---|
1633 | ord=(int*)omAlloc0(4*sizeof(int)); |
---|
1634 | block0=(int*)omAlloc0(4*sizeof(int)); |
---|
1635 | block1=(int*)omAlloc0(4*sizeof(int)); |
---|
1636 | wv=(int**) omAlloc0(4*sizeof(int**)); |
---|
1637 | block0[0] = block0[1] = 1; |
---|
1638 | block1[0] = block1[1] = rVar(origR); |
---|
1639 | wv[0]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int)); |
---|
1640 | wv[1]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int)); |
---|
1641 | ord[0] = ringorder_a; |
---|
1642 | for (j=0;j<rVar(origR);j++) |
---|
1643 | wv[0][j]=pWeight(j+1,origR); |
---|
1644 | ord[1] = ringorder_wp; |
---|
1645 | for (j=0;j<rVar(origR);j++) |
---|
1646 | if (pGetExp(delVar,j+1)!=0) wv[1][j]=1; |
---|
1647 | #endif |
---|
1648 | ord[2] = ringorder_C; |
---|
1649 | ord[3] = 0; |
---|
1650 | } |
---|
1651 | else |
---|
1652 | { |
---|
1653 | // we change to an ordering: |
---|
1654 | // aa(....),orig_ordering |
---|
1655 | ord=(int*)omAlloc0(ordersize*sizeof(int)); |
---|
1656 | block0=(int*)omAlloc0(ordersize*sizeof(int)); |
---|
1657 | block1=(int*)omAlloc0(ordersize*sizeof(int)); |
---|
1658 | wv=(int**) omAlloc0(ordersize*sizeof(int**)); |
---|
1659 | for (k=0;k<ordersize-1; k++) |
---|
1660 | { |
---|
1661 | block0[k+1] = origR->block0[k]; |
---|
1662 | block1[k+1] = origR->block1[k]; |
---|
1663 | ord[k+1] = origR->order[k]; |
---|
1664 | if (origR->wvhdl[k]!=NULL) wv[k+1] = (int*) omMemDup(origR->wvhdl[k]); |
---|
1665 | } |
---|
1666 | block0[0] = 1; |
---|
1667 | block1[0] = rVar(origR); |
---|
1668 | wv[0]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int)); |
---|
1669 | for (j=0;j<rVar(origR);j++) |
---|
1670 | if (pGetExp(delVar,j+1)!=0) wv[0][j]=1; |
---|
1671 | // use this special ordering: like ringorder_a, except that pFDeg, pWeights |
---|
1672 | // ignore it |
---|
1673 | ord[0] = ringorder_aa; |
---|
1674 | } |
---|
1675 | // fill in tmp ring to get back the data later on |
---|
1676 | tmpR = rCopy0(origR,FALSE,FALSE); // qring==NULL |
---|
1677 | //rUnComplete(tmpR); |
---|
1678 | tmpR->p_Procs=NULL; |
---|
1679 | tmpR->order = ord; |
---|
1680 | tmpR->block0 = block0; |
---|
1681 | tmpR->block1 = block1; |
---|
1682 | tmpR->wvhdl = wv; |
---|
1683 | rComplete(tmpR, 1); |
---|
1684 | |
---|
1685 | #ifdef HAVE_PLURAL |
---|
1686 | /* update nc structure on tmpR */ |
---|
1687 | if (rIsPluralRing(origR)) |
---|
1688 | { |
---|
1689 | if ( nc_rComplete(origR, tmpR, false) ) // no quotient ideal! |
---|
1690 | { |
---|
1691 | Werror("no elimination is possible: ordering condition is violated"); |
---|
1692 | // cleanup |
---|
1693 | rDelete(tmpR); |
---|
1694 | if (w!=NULL) |
---|
1695 | delete w; |
---|
1696 | return idCopy(h1); |
---|
1697 | } |
---|
1698 | } |
---|
1699 | #endif |
---|
1700 | // change into the new ring |
---|
1701 | //pChangeRing((currRing->N),currRing->OrdSgn,ord,block0,block1,wv); |
---|
1702 | rChangeCurrRing(tmpR); |
---|
1703 | |
---|
1704 | //h = idInit(IDELEMS(h1),h1->rank); |
---|
1705 | // fetch data from the old ring |
---|
1706 | //for (k=0;k<IDELEMS(h1);k++) h->m[k] = prCopyR( h1->m[k], origR); |
---|
1707 | h=idrCopyR(h1,origR,currRing); |
---|
1708 | if (origR->qideal!=NULL) |
---|
1709 | { |
---|
1710 | WarnS("eliminate in q-ring: experimental"); |
---|
1711 | ideal q=idrCopyR(origR->qideal,origR,currRing); |
---|
1712 | ideal s=idSimpleAdd(h,q); |
---|
1713 | idDelete(&h); |
---|
1714 | idDelete(&q); |
---|
1715 | h=s; |
---|
1716 | } |
---|
1717 | // compute kStd |
---|
1718 | #if 1 |
---|
1719 | //rWrite(tmpR);PrintLn(); |
---|
1720 | BITSET save=test; |
---|
1721 | //test |=1; |
---|
1722 | //Print("h: %d gen, rk=%d\n",IDELEMS(h),h->rank); |
---|
1723 | //extern char * showOption(); |
---|
1724 | //Print("%s\n",showOption()); |
---|
1725 | hh = kStd(h,NULL,hom,&w,hilb); |
---|
1726 | test=save; |
---|
1727 | idDelete(&h); |
---|
1728 | #else |
---|
1729 | extern ideal kGroebner(ideal F, ideal Q); |
---|
1730 | hh=kGroebner(h,NULL); |
---|
1731 | #endif |
---|
1732 | // go back to the original ring |
---|
1733 | rChangeCurrRing(origR); |
---|
1734 | i = IDELEMS(hh)-1; |
---|
1735 | while ((i >= 0) && (hh->m[i] == NULL)) i--; |
---|
1736 | j = -1; |
---|
1737 | // fetch data from temp ring |
---|
1738 | for (k=0; k<=i; k++) |
---|
1739 | { |
---|
1740 | l=(currRing->N); |
---|
1741 | while ((l>0) && (p_GetExp( hh->m[k],l,tmpR)*pGetExp(delVar,l)==0)) l--; |
---|
1742 | if (l==0) |
---|
1743 | { |
---|
1744 | j++; |
---|
1745 | if (j >= IDELEMS(h3)) |
---|
1746 | { |
---|
1747 | pEnlargeSet(&(h3->m),IDELEMS(h3),16); |
---|
1748 | IDELEMS(h3) += 16; |
---|
1749 | } |
---|
1750 | h3->m[j] = prMoveR( hh->m[k], tmpR,origR); |
---|
1751 | hh->m[k] = NULL; |
---|
1752 | } |
---|
1753 | } |
---|
1754 | id_Delete(&hh, tmpR); |
---|
1755 | idSkipZeroes(h3); |
---|
1756 | rDelete(tmpR); |
---|
1757 | if (w!=NULL) |
---|
1758 | delete w; |
---|
1759 | return h3; |
---|
1760 | } |
---|
1761 | |
---|
1762 | /*2 |
---|
1763 | * compute the which-th ar-minor of the matrix a |
---|
1764 | */ |
---|
1765 | poly idMinor(matrix a, int ar, unsigned long which, ideal R) |
---|
1766 | { |
---|
1767 | int i,j,k,size; |
---|
1768 | unsigned long curr; |
---|
1769 | int *rowchoise,*colchoise; |
---|
1770 | BOOLEAN rowch,colch; |
---|
1771 | ideal result; |
---|
1772 | matrix tmp; |
---|
1773 | poly p,q; |
---|
1774 | |
---|
1775 | i = binom(a->rows(),ar); |
---|
1776 | j = binom(a->cols(),ar); |
---|
1777 | |
---|
1778 | rowchoise=(int *)omAlloc(ar*sizeof(int)); |
---|
1779 | colchoise=(int *)omAlloc(ar*sizeof(int)); |
---|
1780 | if ((i>512) || (j>512) || (i*j >512)) size=512; |
---|
1781 | else size=i*j; |
---|
1782 | result=idInit(size,1); |
---|
1783 | tmp=mpNew(ar,ar); |
---|
1784 | k = 0; /* the index in result*/ |
---|
1785 | curr = 0; /* index of current minor */ |
---|
1786 | idInitChoise(ar,1,a->rows(),&rowch,rowchoise); |
---|
1787 | while (!rowch) |
---|
1788 | { |
---|
1789 | idInitChoise(ar,1,a->cols(),&colch,colchoise); |
---|
1790 | while (!colch) |
---|
1791 | { |
---|
1792 | if (curr == which) |
---|
1793 | { |
---|
1794 | for (i=1; i<=ar; i++) |
---|
1795 | { |
---|
1796 | for (j=1; j<=ar; j++) |
---|
1797 | { |
---|
1798 | MATELEM(tmp,i,j) = MATELEM(a,rowchoise[i-1],colchoise[j-1]); |
---|
1799 | } |
---|
1800 | } |
---|
1801 | p = mpDetBareiss(tmp); |
---|
1802 | if (p!=NULL) |
---|
1803 | { |
---|
1804 | if (R!=NULL) |
---|
1805 | { |
---|
1806 | q = p; |
---|
1807 | p = kNF(R,currQuotient,q); |
---|
1808 | pDelete(&q); |
---|
1809 | } |
---|
1810 | /*delete the matrix tmp*/ |
---|
1811 | for (i=1; i<=ar; i++) |
---|
1812 | { |
---|
1813 | for (j=1; j<=ar; j++) MATELEM(tmp,i,j) = NULL; |
---|
1814 | } |
---|
1815 | idDelete((ideal*)&tmp); |
---|
1816 | omFreeSize((ADDRESS)rowchoise,ar*sizeof(int)); |
---|
1817 | omFreeSize((ADDRESS)colchoise,ar*sizeof(int)); |
---|
1818 | return (p); |
---|
1819 | } |
---|
1820 | } |
---|
1821 | curr++; |
---|
1822 | idGetNextChoise(ar,a->cols(),&colch,colchoise); |
---|
1823 | } |
---|
1824 | idGetNextChoise(ar,a->rows(),&rowch,rowchoise); |
---|
1825 | } |
---|
1826 | return (poly) 1; |
---|
1827 | } |
---|
1828 | |
---|
1829 | #ifdef WITH_OLD_MINOR |
---|
1830 | /*2 |
---|
1831 | * compute all ar-minors of the matrix a |
---|
1832 | */ |
---|
1833 | ideal idMinors(matrix a, int ar, ideal R) |
---|
1834 | { |
---|
1835 | int i,j,k,size; |
---|
1836 | int *rowchoise,*colchoise; |
---|
1837 | BOOLEAN rowch,colch; |
---|
1838 | ideal result; |
---|
1839 | matrix tmp; |
---|
1840 | poly p,q; |
---|
1841 | |
---|
1842 | i = binom(a->rows(),ar); |
---|
1843 | j = binom(a->cols(),ar); |
---|
1844 | |
---|
1845 | rowchoise=(int *)omAlloc(ar*sizeof(int)); |
---|
1846 | colchoise=(int *)omAlloc(ar*sizeof(int)); |
---|
1847 | if ((i>512) || (j>512) || (i*j >512)) size=512; |
---|
1848 | else size=i*j; |
---|
1849 | result=idInit(size,1); |
---|
1850 | tmp=mpNew(ar,ar); |
---|
1851 | k = 0; /* the index in result*/ |
---|
1852 | idInitChoise(ar,1,a->rows(),&rowch,rowchoise); |
---|
1853 | while (!rowch) |
---|
1854 | { |
---|
1855 | idInitChoise(ar,1,a->cols(),&colch,colchoise); |
---|
1856 | while (!colch) |
---|
1857 | { |
---|
1858 | for (i=1; i<=ar; i++) |
---|
1859 | { |
---|
1860 | for (j=1; j<=ar; j++) |
---|
1861 | { |
---|
1862 | MATELEM(tmp,i,j) = MATELEM(a,rowchoise[i-1],colchoise[j-1]); |
---|
1863 | } |
---|
1864 | } |
---|
1865 | p = mpDetBareiss(tmp); |
---|
1866 | if (p!=NULL) |
---|
1867 | { |
---|
1868 | if (R!=NULL) |
---|
1869 | { |
---|
1870 | q = p; |
---|
1871 | p = kNF(R,currQuotient,q); |
---|
1872 | pDelete(&q); |
---|
1873 | } |
---|
1874 | if (p!=NULL) |
---|
1875 | { |
---|
1876 | if (k>=size) |
---|
1877 | { |
---|
1878 | pEnlargeSet(&result->m,size,32); |
---|
1879 | size += 32; |
---|
1880 | } |
---|
1881 | result->m[k] = p; |
---|
1882 | k++; |
---|
1883 | } |
---|
1884 | } |
---|
1885 | idGetNextChoise(ar,a->cols(),&colch,colchoise); |
---|
1886 | } |
---|
1887 | idGetNextChoise(ar,a->rows(),&rowch,rowchoise); |
---|
1888 | } |
---|
1889 | /*delete the matrix tmp*/ |
---|
1890 | for (i=1; i<=ar; i++) |
---|
1891 | { |
---|
1892 | for (j=1; j<=ar; j++) MATELEM(tmp,i,j) = NULL; |
---|
1893 | } |
---|
1894 | idDelete((ideal*)&tmp); |
---|
1895 | if (k==0) |
---|
1896 | { |
---|
1897 | k=1; |
---|
1898 | result->m[0]=NULL; |
---|
1899 | } |
---|
1900 | omFreeSize((ADDRESS)rowchoise,ar*sizeof(int)); |
---|
1901 | omFreeSize((ADDRESS)colchoise,ar*sizeof(int)); |
---|
1902 | pEnlargeSet(&result->m,size,k-size); |
---|
1903 | IDELEMS(result) = k; |
---|
1904 | return (result); |
---|
1905 | } |
---|
1906 | #else |
---|
1907 | /*2 |
---|
1908 | * compute all ar-minors of the matrix a |
---|
1909 | * the caller of mpRecMin |
---|
1910 | * the elements of the result are not in R (if R!=NULL) |
---|
1911 | */ |
---|
1912 | ideal idMinors(matrix a, int ar, ideal R) |
---|
1913 | { |
---|
1914 | int elems=0; |
---|
1915 | int r=a->nrows,c=a->ncols; |
---|
1916 | int i; |
---|
1917 | matrix b; |
---|
1918 | ideal result,h; |
---|
1919 | ring origR; |
---|
1920 | ring tmpR; |
---|
1921 | long bound; |
---|
1922 | |
---|
1923 | if((ar<=0) || (ar>r) || (ar>c)) |
---|
1924 | { |
---|
1925 | Werror("%d-th minor, matrix is %dx%d",ar,r,c); |
---|
1926 | return NULL; |
---|
1927 | } |
---|
1928 | h = idMatrix2Module(mpCopy(a)); |
---|
1929 | bound = smExpBound(h,c,r,ar); |
---|
1930 | idDelete(&h); |
---|
1931 | tmpR=smRingChange(&origR,bound); |
---|
1932 | b = mpNew(r,c); |
---|
1933 | for (i=r*c-1;i>=0;i--) |
---|
1934 | { |
---|
1935 | if (a->m[i]) |
---|
1936 | b->m[i] = prCopyR(a->m[i],origR); |
---|
1937 | } |
---|
1938 | if (R!=NULL) |
---|
1939 | { |
---|
1940 | R = idrCopyR(R,origR); |
---|
1941 | //if (ar>1) // otherwise done in mpMinorToResult |
---|
1942 | //{ |
---|
1943 | // matrix bb=(matrix)kNF(R,currQuotient,(ideal)b); |
---|
1944 | // bb->rank=b->rank; bb->nrows=b->nrows; bb->ncols=b->ncols; |
---|
1945 | // idDelete((ideal*)&b); b=bb; |
---|
1946 | //} |
---|
1947 | } |
---|
1948 | result=idInit(32,1); |
---|
1949 | if(ar>1) mpRecMin(ar-1,result,elems,b,r,c,NULL,R); |
---|
1950 | else mpMinorToResult(result,elems,b,r,c,R); |
---|
1951 | idDelete((ideal *)&b); |
---|
1952 | if (R!=NULL) idDelete(&R); |
---|
1953 | idSkipZeroes(result); |
---|
1954 | rChangeCurrRing(origR); |
---|
1955 | result = idrMoveR(result,tmpR); |
---|
1956 | smKillModifiedRing(tmpR); |
---|
1957 | idTest(result); |
---|
1958 | return result; |
---|
1959 | } |
---|
1960 | #endif |
---|
1961 | |
---|
1962 | /*2 |
---|
1963 | *returns TRUE if id1 is a submodule of id2 |
---|
1964 | */ |
---|
1965 | BOOLEAN idIsSubModule(ideal id1,ideal id2) |
---|
1966 | { |
---|
1967 | int i; |
---|
1968 | poly p; |
---|
1969 | |
---|
1970 | if (idIs0(id1)) return TRUE; |
---|
1971 | for (i=0;i<IDELEMS(id1);i++) |
---|
1972 | { |
---|
1973 | if (id1->m[i] != NULL) |
---|
1974 | { |
---|
1975 | p = kNF(id2,currQuotient,id1->m[i]); |
---|
1976 | if (p != NULL) |
---|
1977 | { |
---|
1978 | pDelete(&p); |
---|
1979 | return FALSE; |
---|
1980 | } |
---|
1981 | } |
---|
1982 | } |
---|
1983 | return TRUE; |
---|
1984 | } |
---|
1985 | |
---|
1986 | BOOLEAN idTestHomModule(ideal m, ideal Q, intvec *w) |
---|
1987 | { |
---|
1988 | if ((Q!=NULL) && (!idHomIdeal(Q,NULL))) { PrintS(" Q not hom\n"); return FALSE;} |
---|
1989 | if (idIs0(m)) return TRUE; |
---|
1990 | |
---|
1991 | int cmax=-1; |
---|
1992 | int i; |
---|
1993 | poly p=NULL; |
---|
1994 | int length=IDELEMS(m); |
---|
1995 | polyset P=m->m; |
---|
1996 | for (i=length-1;i>=0;i--) |
---|
1997 | { |
---|
1998 | p=P[i]; |
---|
1999 | if (p!=NULL) cmax=si_max(cmax,(int)pMaxComp(p)+1); |
---|
2000 | } |
---|
2001 | if (w != NULL) |
---|
2002 | if (w->length()+1 < cmax) |
---|
2003 | { |
---|
2004 | // Print("length: %d - %d \n", w->length(),cmax); |
---|
2005 | return FALSE; |
---|
2006 | } |
---|
2007 | |
---|
2008 | if(w!=NULL) |
---|
2009 | pSetModDeg(w); |
---|
2010 | |
---|
2011 | for (i=length-1;i>=0;i--) |
---|
2012 | { |
---|
2013 | p=P[i]; |
---|
2014 | poly q=p; |
---|
2015 | if (p!=NULL) |
---|
2016 | { |
---|
2017 | int d=currRing->pFDeg(p,currRing); |
---|
2018 | loop |
---|
2019 | { |
---|
2020 | pIter(p); |
---|
2021 | if (p==NULL) break; |
---|
2022 | if (d!=currRing->pFDeg(p,currRing)) |
---|
2023 | { |
---|
2024 | //pWrite(q); wrp(p); Print(" -> %d - %d\n",d,pFDeg(p,currRing)); |
---|
2025 | if(w!=NULL) |
---|
2026 | pSetModDeg(NULL); |
---|
2027 | return FALSE; |
---|
2028 | } |
---|
2029 | } |
---|
2030 | } |
---|
2031 | } |
---|
2032 | |
---|
2033 | if(w!=NULL) |
---|
2034 | pSetModDeg(NULL); |
---|
2035 | |
---|
2036 | return TRUE; |
---|
2037 | } |
---|
2038 | |
---|
2039 | int idMinDegW(ideal M,intvec *w) |
---|
2040 | { |
---|
2041 | int d=-1; |
---|
2042 | for(int i=0;i<IDELEMS(M);i++) |
---|
2043 | { |
---|
2044 | int d0=pMinDeg(M->m[i],w); |
---|
2045 | if(-1<d0&&(d0<d||d==-1)) |
---|
2046 | d=d0; |
---|
2047 | } |
---|
2048 | return d; |
---|
2049 | } |
---|
2050 | |
---|
2051 | ideal idSeries(int n,ideal M,matrix U,intvec *w) |
---|
2052 | { |
---|
2053 | for(int i=IDELEMS(M)-1;i>=0;i--) |
---|
2054 | { |
---|
2055 | if(U==NULL) |
---|
2056 | M->m[i]=pSeries(n,M->m[i],NULL,w); |
---|
2057 | else |
---|
2058 | { |
---|
2059 | M->m[i]=pSeries(n,M->m[i],MATELEM(U,i+1,i+1),w); |
---|
2060 | MATELEM(U,i+1,i+1)=NULL; |
---|
2061 | } |
---|
2062 | } |
---|
2063 | if(U!=NULL) |
---|
2064 | idDelete((ideal*)&U); |
---|
2065 | return M; |
---|
2066 | } |
---|
2067 | |
---|
2068 | matrix idDiff(matrix i, int k) |
---|
2069 | { |
---|
2070 | int e=MATCOLS(i)*MATROWS(i); |
---|
2071 | matrix r=mpNew(MATROWS(i),MATCOLS(i)); |
---|
2072 | r->rank=i->rank; |
---|
2073 | int j; |
---|
2074 | for(j=0; j<e; j++) |
---|
2075 | { |
---|
2076 | r->m[j]=pDiff(i->m[j],k); |
---|
2077 | } |
---|
2078 | return r; |
---|
2079 | } |
---|
2080 | |
---|
2081 | matrix idDiffOp(ideal I, ideal J,BOOLEAN multiply) |
---|
2082 | { |
---|
2083 | matrix r=mpNew(IDELEMS(I),IDELEMS(J)); |
---|
2084 | int i,j; |
---|
2085 | for(i=0; i<IDELEMS(I); i++) |
---|
2086 | { |
---|
2087 | for(j=0; j<IDELEMS(J); j++) |
---|
2088 | { |
---|
2089 | MATELEM(r,i+1,j+1)=pDiffOp(I->m[i],J->m[j],multiply); |
---|
2090 | } |
---|
2091 | } |
---|
2092 | return r; |
---|
2093 | } |
---|
2094 | |
---|
2095 | /*3 |
---|
2096 | *handles for some ideal operations the ring/syzcomp managment |
---|
2097 | *returns all syzygies (componentwise-)shifted by -syzcomp |
---|
2098 | *or -syzcomp-1 (in case of ideals as input) |
---|
2099 | static ideal idHandleIdealOp(ideal arg,int syzcomp,int isIdeal=FALSE) |
---|
2100 | { |
---|
2101 | ring orig_ring=currRing; |
---|
2102 | ring syz_ring=rCurrRingAssure_SyzComp(); |
---|
2103 | rSetSyzComp(length,syz_ring); |
---|
2104 | |
---|
2105 | ideal s_temp; |
---|
2106 | if (orig_ring!=syz_ring) |
---|
2107 | s_temp=idrMoveR_NoSort(arg,orig_ring, syz_ring); |
---|
2108 | else |
---|
2109 | s_temp=arg; |
---|
2110 | |
---|
2111 | ideal s_temp1 = kStd(s_temp,currQuotient,testHomog,&w,NULL,length); |
---|
2112 | if (w!=NULL) delete w; |
---|
2113 | |
---|
2114 | if (syz_ring!=orig_ring) |
---|
2115 | { |
---|
2116 | idDelete(&s_temp); |
---|
2117 | rChangeCurrRing(orig_ring); |
---|
2118 | } |
---|
2119 | |
---|
2120 | idDelete(&temp); |
---|
2121 | ideal temp1=idRingCopy(s_temp1,syz_ring); |
---|
2122 | |
---|
2123 | if (syz_ring!=orig_ring) |
---|
2124 | { |
---|
2125 | rChangeCurrRing(syz_ring); |
---|
2126 | idDelete(&s_temp1); |
---|
2127 | rChangeCurrRing(orig_ring); |
---|
2128 | rKill(syz_ring); |
---|
2129 | } |
---|
2130 | |
---|
2131 | for (i=0;i<IDELEMS(temp1);i++) |
---|
2132 | { |
---|
2133 | if ((temp1->m[i]!=NULL) |
---|
2134 | && (pGetComp(temp1->m[i])<=length)) |
---|
2135 | { |
---|
2136 | pDelete(&(temp1->m[i])); |
---|
2137 | } |
---|
2138 | else |
---|
2139 | { |
---|
2140 | pShift(&(temp1->m[i]),-length); |
---|
2141 | } |
---|
2142 | } |
---|
2143 | temp1->rank = rk; |
---|
2144 | idSkipZeroes(temp1); |
---|
2145 | |
---|
2146 | return temp1; |
---|
2147 | } |
---|
2148 | */ |
---|
2149 | /*2 |
---|
2150 | * represents (h1+h2)/h2=h1/(h1 intersect h2) |
---|
2151 | */ |
---|
2152 | //ideal idModulo (ideal h2,ideal h1) |
---|
2153 | ideal idModulo (ideal h2,ideal h1, tHomog hom, intvec ** w) |
---|
2154 | { |
---|
2155 | intvec *wtmp=NULL; |
---|
2156 | |
---|
2157 | int i,j,k,rk,flength=0,slength,length; |
---|
2158 | poly p,q; |
---|
2159 | |
---|
2160 | if (idIs0(h2)) |
---|
2161 | return idFreeModule(si_max(1,h2->ncols)); |
---|
2162 | if (!idIs0(h1)) |
---|
2163 | flength = id_RankFreeModule(h1,currRing); |
---|
2164 | slength = id_RankFreeModule(h2,currRing); |
---|
2165 | length = si_max(flength,slength); |
---|
2166 | if (length==0) |
---|
2167 | { |
---|
2168 | length = 1; |
---|
2169 | } |
---|
2170 | ideal temp = idInit(IDELEMS(h2),length+IDELEMS(h2)); |
---|
2171 | if ((w!=NULL)&&((*w)!=NULL)) |
---|
2172 | { |
---|
2173 | //Print("input weights:");(*w)->show(1);PrintLn(); |
---|
2174 | int d; |
---|
2175 | int k; |
---|
2176 | wtmp=new intvec(length+IDELEMS(h2)); |
---|
2177 | for (i=0;i<length;i++) |
---|
2178 | ((*wtmp)[i])=(**w)[i]; |
---|
2179 | for (i=0;i<IDELEMS(h2);i++) |
---|
2180 | { |
---|
2181 | poly p=h2->m[i]; |
---|
2182 | if (p!=NULL) |
---|
2183 | { |
---|
2184 | d = pDeg(p); |
---|
2185 | k= pGetComp(p); |
---|
2186 | if (slength>0) k--; |
---|
2187 | d +=((**w)[k]); |
---|
2188 | ((*wtmp)[i+length]) = d; |
---|
2189 | } |
---|
2190 | } |
---|
2191 | //Print("weights:");wtmp->show(1);PrintLn(); |
---|
2192 | } |
---|
2193 | for (i=0;i<IDELEMS(h2);i++) |
---|
2194 | { |
---|
2195 | temp->m[i] = pCopy(h2->m[i]); |
---|
2196 | q = pOne(); |
---|
2197 | pSetComp(q,i+1+length); |
---|
2198 | pSetmComp(q); |
---|
2199 | if(temp->m[i]!=NULL) |
---|
2200 | { |
---|
2201 | if (slength==0) pShift(&(temp->m[i]),1); |
---|
2202 | p = temp->m[i]; |
---|
2203 | while (pNext(p)!=NULL) pIter(p); |
---|
2204 | pNext(p) = q; |
---|
2205 | } |
---|
2206 | else |
---|
2207 | temp->m[i]=q; |
---|
2208 | } |
---|
2209 | rk = k = IDELEMS(h2); |
---|
2210 | if (!idIs0(h1)) |
---|
2211 | { |
---|
2212 | pEnlargeSet(&(temp->m),IDELEMS(temp),IDELEMS(h1)); |
---|
2213 | IDELEMS(temp) += IDELEMS(h1); |
---|
2214 | for (i=0;i<IDELEMS(h1);i++) |
---|
2215 | { |
---|
2216 | if (h1->m[i]!=NULL) |
---|
2217 | { |
---|
2218 | temp->m[k] = pCopy(h1->m[i]); |
---|
2219 | if (flength==0) pShift(&(temp->m[k]),1); |
---|
2220 | k++; |
---|
2221 | } |
---|
2222 | } |
---|
2223 | } |
---|
2224 | |
---|
2225 | ring orig_ring=currRing; |
---|
2226 | ring syz_ring=rCurrRingAssure_SyzComp(); |
---|
2227 | rSetSyzComp(length, syz_ring); |
---|
2228 | ideal s_temp; |
---|
2229 | |
---|
2230 | if (syz_ring != orig_ring) |
---|
2231 | { |
---|
2232 | s_temp = idrMoveR_NoSort(temp, orig_ring, syz_ring); |
---|
2233 | } |
---|
2234 | else |
---|
2235 | { |
---|
2236 | s_temp = temp; |
---|
2237 | } |
---|
2238 | |
---|
2239 | idTest(s_temp); |
---|
2240 | ideal s_temp1 = kStd(s_temp,currQuotient,hom,&wtmp,NULL,length); |
---|
2241 | |
---|
2242 | //if (wtmp!=NULL) Print("output weights:");wtmp->show(1);PrintLn(); |
---|
2243 | if ((w!=NULL) && (*w !=NULL) && (wtmp!=NULL)) |
---|
2244 | { |
---|
2245 | delete *w; |
---|
2246 | *w=new intvec(IDELEMS(h2)); |
---|
2247 | for (i=0;i<IDELEMS(h2);i++) |
---|
2248 | ((**w)[i])=(*wtmp)[i+length]; |
---|
2249 | } |
---|
2250 | if (wtmp!=NULL) delete wtmp; |
---|
2251 | |
---|
2252 | for (i=0;i<IDELEMS(s_temp1);i++) |
---|
2253 | { |
---|
2254 | if ((s_temp1->m[i]!=NULL) |
---|
2255 | && (pGetComp(s_temp1->m[i])<=length)) |
---|
2256 | { |
---|
2257 | pDelete(&(s_temp1->m[i])); |
---|
2258 | } |
---|
2259 | else |
---|
2260 | { |
---|
2261 | pShift(&(s_temp1->m[i]),-length); |
---|
2262 | } |
---|
2263 | } |
---|
2264 | s_temp1->rank = rk; |
---|
2265 | idSkipZeroes(s_temp1); |
---|
2266 | |
---|
2267 | if (syz_ring!=orig_ring) |
---|
2268 | { |
---|
2269 | rChangeCurrRing(orig_ring); |
---|
2270 | s_temp1 = idrMoveR_NoSort(s_temp1, syz_ring, orig_ring); |
---|
2271 | rKill(syz_ring); |
---|
2272 | // Hmm ... here seems to be a memory leak |
---|
2273 | // However, simply deleting it causes memory trouble |
---|
2274 | // idDelete(&s_temp); |
---|
2275 | } |
---|
2276 | else |
---|
2277 | { |
---|
2278 | idDelete(&temp); |
---|
2279 | } |
---|
2280 | idTest(s_temp1); |
---|
2281 | return s_temp1; |
---|
2282 | } |
---|
2283 | |
---|
2284 | int idElem(const ideal F) |
---|
2285 | { |
---|
2286 | int i=0,j=IDELEMS(F)-1; |
---|
2287 | |
---|
2288 | while(j>=0) |
---|
2289 | { |
---|
2290 | if ((F->m)[j]!=NULL) i++; |
---|
2291 | j--; |
---|
2292 | } |
---|
2293 | return i; |
---|
2294 | } |
---|
2295 | |
---|
2296 | /* |
---|
2297 | *computes module-weights for liftings of homogeneous modules |
---|
2298 | */ |
---|
2299 | intvec * idMWLift(ideal mod,intvec * weights) |
---|
2300 | { |
---|
2301 | if (idIs0(mod)) return new intvec(2); |
---|
2302 | int i=IDELEMS(mod); |
---|
2303 | while ((i>0) && (mod->m[i-1]==NULL)) i--; |
---|
2304 | intvec *result = new intvec(i+1); |
---|
2305 | while (i>0) |
---|
2306 | { |
---|
2307 | (*result)[i]=currRing->pFDeg(mod->m[i],currRing)+(*weights)[pGetComp(mod->m[i])]; |
---|
2308 | } |
---|
2309 | return result; |
---|
2310 | } |
---|
2311 | |
---|
2312 | /*2 |
---|
2313 | *sorts the kbase for idCoef* in a special way (lexicographically |
---|
2314 | *with x_max,...,x_1) |
---|
2315 | */ |
---|
2316 | ideal idCreateSpecialKbase(ideal kBase,intvec ** convert) |
---|
2317 | { |
---|
2318 | int i; |
---|
2319 | ideal result; |
---|
2320 | |
---|
2321 | if (idIs0(kBase)) return NULL; |
---|
2322 | result = idInit(IDELEMS(kBase),kBase->rank); |
---|
2323 | *convert = idSort(kBase,FALSE); |
---|
2324 | for (i=0;i<(*convert)->length();i++) |
---|
2325 | { |
---|
2326 | result->m[i] = pCopy(kBase->m[(**convert)[i]-1]); |
---|
2327 | } |
---|
2328 | return result; |
---|
2329 | } |
---|
2330 | |
---|
2331 | /*2 |
---|
2332 | *returns the index of a given monom in the list of the special kbase |
---|
2333 | */ |
---|
2334 | int idIndexOfKBase(poly monom, ideal kbase) |
---|
2335 | { |
---|
2336 | int j=IDELEMS(kbase); |
---|
2337 | |
---|
2338 | while ((j>0) && (kbase->m[j-1]==NULL)) j--; |
---|
2339 | if (j==0) return -1; |
---|
2340 | int i=(currRing->N); |
---|
2341 | while (i>0) |
---|
2342 | { |
---|
2343 | loop |
---|
2344 | { |
---|
2345 | if (pGetExp(monom,i)>pGetExp(kbase->m[j-1],i)) return -1; |
---|
2346 | if (pGetExp(monom,i)==pGetExp(kbase->m[j-1],i)) break; |
---|
2347 | j--; |
---|
2348 | if (j==0) return -1; |
---|
2349 | } |
---|
2350 | if (i==1) |
---|
2351 | { |
---|
2352 | while(j>0) |
---|
2353 | { |
---|
2354 | if (pGetComp(monom)==pGetComp(kbase->m[j-1])) return j-1; |
---|
2355 | if (pGetComp(monom)>pGetComp(kbase->m[j-1])) return -1; |
---|
2356 | j--; |
---|
2357 | } |
---|
2358 | } |
---|
2359 | i--; |
---|
2360 | } |
---|
2361 | return -1; |
---|
2362 | } |
---|
2363 | |
---|
2364 | /*2 |
---|
2365 | *decomposes the monom in a part of coefficients described by the |
---|
2366 | *complement of how and a monom in variables occuring in how, the |
---|
2367 | *index of which in kbase is returned as integer pos (-1 if it don't |
---|
2368 | *exists) |
---|
2369 | */ |
---|
2370 | poly idDecompose(poly monom, poly how, ideal kbase, int * pos) |
---|
2371 | { |
---|
2372 | int i; |
---|
2373 | poly coeff=pOne(), base=pOne(); |
---|
2374 | |
---|
2375 | for (i=1;i<=(currRing->N);i++) |
---|
2376 | { |
---|
2377 | if (pGetExp(how,i)>0) |
---|
2378 | { |
---|
2379 | pSetExp(base,i,pGetExp(monom,i)); |
---|
2380 | } |
---|
2381 | else |
---|
2382 | { |
---|
2383 | pSetExp(coeff,i,pGetExp(monom,i)); |
---|
2384 | } |
---|
2385 | } |
---|
2386 | pSetComp(base,pGetComp(monom)); |
---|
2387 | pSetm(base); |
---|
2388 | pSetCoeff(coeff,nCopy(pGetCoeff(monom))); |
---|
2389 | pSetm(coeff); |
---|
2390 | *pos = idIndexOfKBase(base,kbase); |
---|
2391 | if (*pos<0) |
---|
2392 | pDelete(&coeff); |
---|
2393 | pDelete(&base); |
---|
2394 | return coeff; |
---|
2395 | } |
---|
2396 | |
---|
2397 | /*2 |
---|
2398 | *returns a matrix A of coefficients with kbase*A=arg |
---|
2399 | *if all monomials in variables of how occur in kbase |
---|
2400 | *the other are deleted |
---|
2401 | */ |
---|
2402 | matrix idCoeffOfKBase(ideal arg, ideal kbase, poly how) |
---|
2403 | { |
---|
2404 | matrix result; |
---|
2405 | ideal tempKbase; |
---|
2406 | poly p,q; |
---|
2407 | intvec * convert; |
---|
2408 | int i=IDELEMS(kbase),j=IDELEMS(arg),k,pos; |
---|
2409 | #if 0 |
---|
2410 | while ((i>0) && (kbase->m[i-1]==NULL)) i--; |
---|
2411 | if (idIs0(arg)) |
---|
2412 | return mpNew(i,1); |
---|
2413 | while ((j>0) && (arg->m[j-1]==NULL)) j--; |
---|
2414 | result = mpNew(i,j); |
---|
2415 | #else |
---|
2416 | result = mpNew(i, j); |
---|
2417 | while ((j>0) && (arg->m[j-1]==NULL)) j--; |
---|
2418 | #endif |
---|
2419 | |
---|
2420 | tempKbase = idCreateSpecialKbase(kbase,&convert); |
---|
2421 | for (k=0;k<j;k++) |
---|
2422 | { |
---|
2423 | p = arg->m[k]; |
---|
2424 | while (p!=NULL) |
---|
2425 | { |
---|
2426 | q = idDecompose(p,how,tempKbase,&pos); |
---|
2427 | if (pos>=0) |
---|
2428 | { |
---|
2429 | MATELEM(result,(*convert)[pos],k+1) = |
---|
2430 | pAdd(MATELEM(result,(*convert)[pos],k+1),q); |
---|
2431 | } |
---|
2432 | else |
---|
2433 | pDelete(&q); |
---|
2434 | pIter(p); |
---|
2435 | } |
---|
2436 | } |
---|
2437 | idDelete(&tempKbase); |
---|
2438 | return result; |
---|
2439 | } |
---|
2440 | |
---|
2441 | static void idDeleteComps(ideal arg,int* red_comp,int del) |
---|
2442 | // red_comp is an array [0..args->rank] |
---|
2443 | { |
---|
2444 | int i,j; |
---|
2445 | poly p; |
---|
2446 | |
---|
2447 | for (i=IDELEMS(arg)-1;i>=0;i--) |
---|
2448 | { |
---|
2449 | p = arg->m[i]; |
---|
2450 | while (p!=NULL) |
---|
2451 | { |
---|
2452 | j = pGetComp(p); |
---|
2453 | if (red_comp[j]!=j) |
---|
2454 | { |
---|
2455 | pSetComp(p,red_comp[j]); |
---|
2456 | pSetmComp(p); |
---|
2457 | } |
---|
2458 | pIter(p); |
---|
2459 | } |
---|
2460 | } |
---|
2461 | (arg->rank) -= del; |
---|
2462 | } |
---|
2463 | |
---|
2464 | /*2 |
---|
2465 | * returns the presentation of an isomorphic, minimally |
---|
2466 | * embedded module (arg represents the quotient!) |
---|
2467 | */ |
---|
2468 | ideal idMinEmbedding(ideal arg,BOOLEAN inPlace, intvec **w) |
---|
2469 | { |
---|
2470 | if (idIs0(arg)) return idInit(1,arg->rank); |
---|
2471 | int i,next_gen,next_comp; |
---|
2472 | ideal res=arg; |
---|
2473 | if (!inPlace) res = idCopy(arg); |
---|
2474 | res->rank=si_max(res->rank,id_RankFreeModule(res,currRing)); |
---|
2475 | int *red_comp=(int*)omAlloc((res->rank+1)*sizeof(int)); |
---|
2476 | for (i=res->rank;i>=0;i--) red_comp[i]=i; |
---|
2477 | |
---|
2478 | int del=0; |
---|
2479 | loop |
---|
2480 | { |
---|
2481 | next_gen = idReadOutPivot(res,&next_comp); |
---|
2482 | if (next_gen<0) break; |
---|
2483 | del++; |
---|
2484 | syGaussForOne(res,next_gen,next_comp,0,IDELEMS(res)); |
---|
2485 | for(i=next_comp+1;i<=arg->rank;i++) red_comp[i]--; |
---|
2486 | if ((w !=NULL)&&(*w!=NULL)) |
---|
2487 | { |
---|
2488 | for(i=next_comp;i<(*w)->length();i++) (**w)[i-1]=(**w)[i]; |
---|
2489 | } |
---|
2490 | } |
---|
2491 | |
---|
2492 | idDeleteComps(res,red_comp,del); |
---|
2493 | idSkipZeroes(res); |
---|
2494 | omFree(red_comp); |
---|
2495 | |
---|
2496 | if ((w !=NULL)&&(*w!=NULL) &&(del>0)) |
---|
2497 | { |
---|
2498 | intvec *wtmp=new intvec((*w)->length()-del); |
---|
2499 | for(i=0;i<res->rank;i++) (*wtmp)[i]=(**w)[i]; |
---|
2500 | delete *w; |
---|
2501 | *w=wtmp; |
---|
2502 | } |
---|
2503 | return res; |
---|
2504 | } |
---|
2505 | |
---|
2506 | #include <polys/clapsing.h> |
---|
2507 | |
---|
2508 | #ifdef HAVE_FACTORY |
---|
2509 | poly id_GCD(poly f, poly g, const ring r) |
---|
2510 | { |
---|
2511 | ring save_r=currRing; |
---|
2512 | rChangeCurrRing(r); |
---|
2513 | ideal I=idInit(2,1); I->m[0]=f; I->m[1]=g; |
---|
2514 | intvec *w = NULL; |
---|
2515 | ideal S=idSyzygies(I,testHomog,&w); |
---|
2516 | if (w!=NULL) delete w; |
---|
2517 | poly gg=pTakeOutComp(&(S->m[0]),2); |
---|
2518 | idDelete(&S); |
---|
2519 | poly gcd_p=singclap_pdivide(f,gg,r); |
---|
2520 | pDelete(&gg); |
---|
2521 | rChangeCurrRing(save_r); |
---|
2522 | return gcd_p; |
---|
2523 | } |
---|
2524 | #endif |
---|
2525 | |
---|
2526 | /*2 |
---|
2527 | * xx,q: arrays of length 0..rl-1 |
---|
2528 | * xx[i]: SB mod q[i] |
---|
2529 | * assume: char=0 |
---|
2530 | * assume: q[i]!=0 |
---|
2531 | * destroys xx |
---|
2532 | */ |
---|
2533 | #ifdef HAVE_FACTORY |
---|
2534 | ideal idChineseRemainder(ideal *xx, number *q, int rl) |
---|
2535 | { |
---|
2536 | int cnt=IDELEMS(xx[0])*xx[0]->nrows; |
---|
2537 | ideal result=idInit(cnt,xx[0]->rank); |
---|
2538 | result->nrows=xx[0]->nrows; // for lifting matrices |
---|
2539 | result->ncols=xx[0]->ncols; // for lifting matrices |
---|
2540 | int i,j; |
---|
2541 | poly r,h,hh,res_p; |
---|
2542 | number *x=(number *)omAlloc(rl*sizeof(number)); |
---|
2543 | for(i=cnt-1;i>=0;i--) |
---|
2544 | { |
---|
2545 | res_p=NULL; |
---|
2546 | loop |
---|
2547 | { |
---|
2548 | r=NULL; |
---|
2549 | for(j=rl-1;j>=0;j--) |
---|
2550 | { |
---|
2551 | h=xx[j]->m[i]; |
---|
2552 | if ((h!=NULL) |
---|
2553 | &&((r==NULL)||(pLmCmp(r,h)==-1))) |
---|
2554 | r=h; |
---|
2555 | } |
---|
2556 | if (r==NULL) break; |
---|
2557 | h=pHead(r); |
---|
2558 | for(j=rl-1;j>=0;j--) |
---|
2559 | { |
---|
2560 | hh=xx[j]->m[i]; |
---|
2561 | if ((hh!=NULL) && (pLmCmp(r,hh)==0)) |
---|
2562 | { |
---|
2563 | x[j]=pGetCoeff(hh); |
---|
2564 | hh=pLmFreeAndNext(hh); |
---|
2565 | xx[j]->m[i]=hh; |
---|
2566 | } |
---|
2567 | else |
---|
2568 | x[j]=nlInit(0, currRing); |
---|
2569 | } |
---|
2570 | number n=nlChineseRemainder(x,q,rl); |
---|
2571 | for(j=rl-1;j>=0;j--) |
---|
2572 | { |
---|
2573 | x[j]=NULL; // nlInit(0...) takes no memory |
---|
2574 | } |
---|
2575 | if (nlIsZero(n)) pDelete(&h); |
---|
2576 | else |
---|
2577 | { |
---|
2578 | pSetCoeff(h,n); |
---|
2579 | //Print("new mon:");pWrite(h); |
---|
2580 | res_p=pAdd(res_p,h); |
---|
2581 | } |
---|
2582 | } |
---|
2583 | result->m[i]=res_p; |
---|
2584 | } |
---|
2585 | omFree(x); |
---|
2586 | for(i=rl-1;i>=0;i--) idDelete(&(xx[i])); |
---|
2587 | omFree(xx); |
---|
2588 | return result; |
---|
2589 | } |
---|
2590 | #endif |
---|
2591 | /* currently unsed: |
---|
2592 | ideal idChineseRemainder(ideal *xx, intvec *iv) |
---|
2593 | { |
---|
2594 | int rl=iv->length(); |
---|
2595 | number *q=(number *)omAlloc(rl*sizeof(number)); |
---|
2596 | int i; |
---|
2597 | for(i=0; i<rl; i++) |
---|
2598 | { |
---|
2599 | q[i]=nInit((*iv)[i]); |
---|
2600 | } |
---|
2601 | return idChineseRemainder(xx,q,rl); |
---|
2602 | } |
---|
2603 | */ |
---|
2604 | /* |
---|
2605 | * lift ideal with coeffs over Z (mod N) to Q via Farey |
---|
2606 | */ |
---|
2607 | ideal idFarey(ideal x, number N) |
---|
2608 | { |
---|
2609 | int cnt=IDELEMS(x)*x->nrows; |
---|
2610 | ideal result=idInit(cnt,x->rank); |
---|
2611 | result->nrows=x->nrows; // for lifting matrices |
---|
2612 | result->ncols=x->ncols; // for lifting matrices |
---|
2613 | |
---|
2614 | int i; |
---|
2615 | for(i=cnt-1;i>=0;i--) |
---|
2616 | { |
---|
2617 | poly h=pCopy(x->m[i]); |
---|
2618 | result->m[i]=h; |
---|
2619 | while(h!=NULL) |
---|
2620 | { |
---|
2621 | number c=pGetCoeff(h); |
---|
2622 | pSetCoeff0(h,nlFarey(c,N)); |
---|
2623 | nDelete(&c); |
---|
2624 | pIter(h); |
---|
2625 | } |
---|
2626 | while((result->m[i]!=NULL)&&(nIsZero(pGetCoeff(result->m[i])))) |
---|
2627 | { |
---|
2628 | pLmDelete(&(result->m[i])); |
---|
2629 | } |
---|
2630 | h=result->m[i]; |
---|
2631 | while((h!=NULL) && (pNext(h)!=NULL)) |
---|
2632 | { |
---|
2633 | if(nIsZero(pGetCoeff(pNext(h)))) |
---|
2634 | { |
---|
2635 | pLmDelete(&pNext(h)); |
---|
2636 | } |
---|
2637 | else pIter(h); |
---|
2638 | } |
---|
2639 | } |
---|
2640 | return result; |
---|
2641 | } |
---|