1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* |
---|
5 | * ABSTRACT - all basic methods to manipulate ideals |
---|
6 | */ |
---|
7 | |
---|
8 | /* includes */ |
---|
9 | |
---|
10 | #include "kernel/mod2.h" |
---|
11 | |
---|
12 | #include "misc/options.h" |
---|
13 | #include "misc/intvec.h" |
---|
14 | |
---|
15 | #include "coeffs/coeffs.h" |
---|
16 | #include "coeffs/numbers.h" |
---|
17 | // #include "coeffs/longrat.h" |
---|
18 | |
---|
19 | |
---|
20 | #include "polys/monomials/ring.h" |
---|
21 | #include "polys/matpol.h" |
---|
22 | #include "polys/weight.h" |
---|
23 | #include "polys/sparsmat.h" |
---|
24 | #include "polys/prCopy.h" |
---|
25 | #include "polys/nc/nc.h" |
---|
26 | |
---|
27 | |
---|
28 | #include "kernel/ideals.h" |
---|
29 | |
---|
30 | #include "kernel/polys.h" |
---|
31 | |
---|
32 | #include "kernel/GBEngine/kstd1.h" |
---|
33 | #include "kernel/GBEngine/kutil.h" |
---|
34 | #include "kernel/GBEngine/tgb.h" |
---|
35 | #include "kernel/GBEngine/syz.h" |
---|
36 | #include "Singular/ipshell.h" // iiCallLibProc1 |
---|
37 | #include "Singular/ipid.h" // ggetid |
---|
38 | |
---|
39 | |
---|
40 | #if 0 |
---|
41 | #include "Singular/ipprint.h" // ipPrint_MA0 |
---|
42 | #endif |
---|
43 | |
---|
44 | /* #define WITH_OLD_MINOR */ |
---|
45 | |
---|
46 | /*0 implementation*/ |
---|
47 | |
---|
48 | /*2 |
---|
49 | *returns a minimized set of generators of h1 |
---|
50 | */ |
---|
51 | ideal idMinBase (ideal h1) |
---|
52 | { |
---|
53 | ideal h2, h3,h4,e; |
---|
54 | int j,k; |
---|
55 | int i,l,ll; |
---|
56 | intvec * wth; |
---|
57 | BOOLEAN homog; |
---|
58 | if(rField_is_Ring(currRing)) |
---|
59 | { |
---|
60 | WarnS("minbase applies only to the local or homogeneous case over coefficient fields"); |
---|
61 | e=idCopy(h1); |
---|
62 | return e; |
---|
63 | } |
---|
64 | homog = idHomModule(h1,currRing->qideal,&wth); |
---|
65 | if (rHasGlobalOrdering(currRing)) |
---|
66 | { |
---|
67 | if(!homog) |
---|
68 | { |
---|
69 | WarnS("minbase applies only to the local or homogeneous case over coefficient fields"); |
---|
70 | e=idCopy(h1); |
---|
71 | return e; |
---|
72 | } |
---|
73 | else |
---|
74 | { |
---|
75 | ideal re=kMin_std(h1,currRing->qideal,(tHomog)homog,&wth,h2,NULL,0,3); |
---|
76 | idDelete(&re); |
---|
77 | return h2; |
---|
78 | } |
---|
79 | } |
---|
80 | e=idInit(1,h1->rank); |
---|
81 | if (idIs0(h1)) |
---|
82 | { |
---|
83 | return e; |
---|
84 | } |
---|
85 | pEnlargeSet(&(e->m),IDELEMS(e),15); |
---|
86 | IDELEMS(e) = 16; |
---|
87 | h2 = kStd(h1,currRing->qideal,isNotHomog,NULL); |
---|
88 | h3 = idMaxIdeal(1); |
---|
89 | h4=idMult(h2,h3); |
---|
90 | idDelete(&h3); |
---|
91 | h3=kStd(h4,currRing->qideal,isNotHomog,NULL); |
---|
92 | k = IDELEMS(h3); |
---|
93 | while ((k > 0) && (h3->m[k-1] == NULL)) k--; |
---|
94 | j = -1; |
---|
95 | l = IDELEMS(h2); |
---|
96 | while ((l > 0) && (h2->m[l-1] == NULL)) l--; |
---|
97 | for (i=l-1; i>=0; i--) |
---|
98 | { |
---|
99 | if (h2->m[i] != NULL) |
---|
100 | { |
---|
101 | ll = 0; |
---|
102 | while ((ll < k) && ((h3->m[ll] == NULL) |
---|
103 | || !pDivisibleBy(h3->m[ll],h2->m[i]))) |
---|
104 | ll++; |
---|
105 | if (ll >= k) |
---|
106 | { |
---|
107 | j++; |
---|
108 | if (j > IDELEMS(e)-1) |
---|
109 | { |
---|
110 | pEnlargeSet(&(e->m),IDELEMS(e),16); |
---|
111 | IDELEMS(e) += 16; |
---|
112 | } |
---|
113 | e->m[j] = pCopy(h2->m[i]); |
---|
114 | } |
---|
115 | } |
---|
116 | } |
---|
117 | idDelete(&h2); |
---|
118 | idDelete(&h3); |
---|
119 | idDelete(&h4); |
---|
120 | if (currRing->qideal!=NULL) |
---|
121 | { |
---|
122 | h3=idInit(1,e->rank); |
---|
123 | h2=kNF(h3,currRing->qideal,e); |
---|
124 | idDelete(&h3); |
---|
125 | idDelete(&e); |
---|
126 | e=h2; |
---|
127 | } |
---|
128 | idSkipZeroes(e); |
---|
129 | return e; |
---|
130 | } |
---|
131 | |
---|
132 | |
---|
133 | static ideal idSectWithElim (ideal h1,ideal h2, GbVariant alg) |
---|
134 | // does not destroy h1,h2 |
---|
135 | { |
---|
136 | if (TEST_OPT_PROT) PrintS("intersect by elimination method\n"); |
---|
137 | assume(!idIs0(h1)); |
---|
138 | assume(!idIs0(h2)); |
---|
139 | assume(IDELEMS(h1)<=IDELEMS(h2)); |
---|
140 | assume(id_RankFreeModule(h1,currRing)==0); |
---|
141 | assume(id_RankFreeModule(h2,currRing)==0); |
---|
142 | // add a new variable: |
---|
143 | int j; |
---|
144 | ring origRing=currRing; |
---|
145 | ring r=rCopy0(origRing); |
---|
146 | r->N++; |
---|
147 | r->block0[0]=1; |
---|
148 | r->block1[0]= r->N; |
---|
149 | omFree(r->order); |
---|
150 | r->order=(rRingOrder_t*)omAlloc0(3*sizeof(rRingOrder_t)); |
---|
151 | r->order[0]=ringorder_dp; |
---|
152 | r->order[1]=ringorder_C; |
---|
153 | char **names=(char**)omAlloc0(rVar(r) * sizeof(char_ptr)); |
---|
154 | for (j=0;j<r->N-1;j++) names[j]=r->names[j]; |
---|
155 | names[r->N-1]=omStrDup("@"); |
---|
156 | omFree(r->names); |
---|
157 | r->names=names; |
---|
158 | rComplete(r,TRUE); |
---|
159 | // fetch h1, h2 |
---|
160 | ideal h; |
---|
161 | h1=idrCopyR(h1,origRing,r); |
---|
162 | h2=idrCopyR(h2,origRing,r); |
---|
163 | // switch to temp. ring r |
---|
164 | rChangeCurrRing(r); |
---|
165 | // create 1-t, t |
---|
166 | poly omt=p_One(currRing); |
---|
167 | p_SetExp(omt,r->N,1,currRing); |
---|
168 | p_Setm(omt,currRing); |
---|
169 | poly t=p_Copy(omt,currRing); |
---|
170 | omt=p_Neg(omt,currRing); |
---|
171 | omt=p_Add_q(omt,pOne(),currRing); |
---|
172 | // compute (1-t)*h1 |
---|
173 | h1=(ideal)mp_MultP((matrix)h1,omt,currRing); |
---|
174 | // compute t*h2 |
---|
175 | h2=(ideal)mp_MultP((matrix)h2,pCopy(t),currRing); |
---|
176 | // (1-t)h1 + t*h2 |
---|
177 | h=idInit(IDELEMS(h1)+IDELEMS(h2),1); |
---|
178 | int l; |
---|
179 | for (l=IDELEMS(h1)-1; l>=0; l--) |
---|
180 | { |
---|
181 | h->m[l] = h1->m[l]; h1->m[l]=NULL; |
---|
182 | } |
---|
183 | j=IDELEMS(h1); |
---|
184 | for (l=IDELEMS(h2)-1; l>=0; l--) |
---|
185 | { |
---|
186 | h->m[l+j] = h2->m[l]; h2->m[l]=NULL; |
---|
187 | } |
---|
188 | idDelete(&h1); |
---|
189 | idDelete(&h2); |
---|
190 | // eliminate t: |
---|
191 | ideal res=idElimination(h,t,NULL,alg); |
---|
192 | // cleanup |
---|
193 | idDelete(&h); |
---|
194 | pDelete(&t); |
---|
195 | if (res!=NULL) res=idrMoveR(res,r,origRing); |
---|
196 | rChangeCurrRing(origRing); |
---|
197 | rDelete(r); |
---|
198 | return res; |
---|
199 | } |
---|
200 | |
---|
201 | static ideal idGroebner(ideal temp,int syzComp,GbVariant alg, intvec* hilb=NULL, intvec* w=NULL, tHomog hom=testHomog) |
---|
202 | { |
---|
203 | //Print("syz=%d\n",syzComp); |
---|
204 | //PrintS(showOption()); |
---|
205 | //PrintLn(); |
---|
206 | ideal temp1; |
---|
207 | if (w==NULL) |
---|
208 | { |
---|
209 | if (hom==testHomog) |
---|
210 | hom=(tHomog)idHomModule(temp,currRing->qideal,&w); //sets w to weight vector or NULL |
---|
211 | } |
---|
212 | else |
---|
213 | { |
---|
214 | w=ivCopy(w); |
---|
215 | hom=isHomog; |
---|
216 | } |
---|
217 | #ifdef HAVE_SHIFTBBA |
---|
218 | if (rIsLPRing(currRing)) alg = GbStd; |
---|
219 | #endif |
---|
220 | if ((alg==GbStd)||(alg==GbDefault)) |
---|
221 | { |
---|
222 | if (TEST_OPT_PROT &&(alg==GbStd)) { PrintS("std:"); mflush(); } |
---|
223 | temp1 = kStd(temp,currRing->qideal,hom,&w,hilb,syzComp); |
---|
224 | idDelete(&temp); |
---|
225 | } |
---|
226 | else if (alg==GbSlimgb) |
---|
227 | { |
---|
228 | if (TEST_OPT_PROT) { PrintS("slimgb:"); mflush(); } |
---|
229 | temp1 = t_rep_gb(currRing, temp, syzComp); |
---|
230 | idDelete(&temp); |
---|
231 | } |
---|
232 | else if (alg==GbGroebner) |
---|
233 | { |
---|
234 | if (TEST_OPT_PROT) { PrintS("groebner:"); mflush(); } |
---|
235 | BOOLEAN err; |
---|
236 | temp1=(ideal)iiCallLibProc1("groebner",temp,MODUL_CMD,err); |
---|
237 | if (err) |
---|
238 | { |
---|
239 | Werror("error %d in >>groebner<<",err); |
---|
240 | temp1=idInit(1,1); |
---|
241 | } |
---|
242 | } |
---|
243 | else if (alg==GbModstd) |
---|
244 | { |
---|
245 | if (TEST_OPT_PROT) { PrintS("modStd:"); mflush(); } |
---|
246 | BOOLEAN err; |
---|
247 | void *args[]={temp,(void*)1,NULL}; |
---|
248 | int arg_t[]={MODUL_CMD,INT_CMD,0}; |
---|
249 | leftv temp0=ii_CallLibProcM("modStd",args,arg_t,currRing,err); |
---|
250 | temp1=(ideal)temp0->data; |
---|
251 | omFreeBin((ADDRESS)temp0,sleftv_bin); |
---|
252 | if (err) |
---|
253 | { |
---|
254 | Werror("error %d in >>modStd<<",err); |
---|
255 | temp1=idInit(1,1); |
---|
256 | } |
---|
257 | } |
---|
258 | else if (alg==GbSba) |
---|
259 | { |
---|
260 | if (TEST_OPT_PROT) { PrintS("sba:"); mflush(); } |
---|
261 | temp1 = kSba(temp,currRing->qideal,hom,&w,1,0,NULL); |
---|
262 | if (w!=NULL) delete w; |
---|
263 | } |
---|
264 | else if (alg==GbStdSat) |
---|
265 | { |
---|
266 | if (TEST_OPT_PROT) { PrintS("std:sat:"); mflush(); } |
---|
267 | BOOLEAN err; |
---|
268 | // search for 2nd block of vars |
---|
269 | int i=0; |
---|
270 | int block=-1; |
---|
271 | loop |
---|
272 | { |
---|
273 | if ((currRing->order[i]!=ringorder_c) |
---|
274 | && (currRing->order[i]!=ringorder_C) |
---|
275 | && (currRing->order[i]!=ringorder_s)) |
---|
276 | { |
---|
277 | if (currRing->order[i]==0) { err=TRUE;break;} |
---|
278 | block++; |
---|
279 | if (block==1) { block=i; break;} |
---|
280 | } |
---|
281 | i++; |
---|
282 | } |
---|
283 | if (block>0) |
---|
284 | { |
---|
285 | if (TEST_OPT_PROT) |
---|
286 | { |
---|
287 | Print("sat(%d..%d)\n",currRing->block0[block],currRing->block1[block]); |
---|
288 | mflush(); |
---|
289 | } |
---|
290 | ideal v=idInit(currRing->block1[block]-currRing->block0[block]+1,1); |
---|
291 | for(i=currRing->block0[block];i<=currRing->block1[block];i++) |
---|
292 | { |
---|
293 | v->m[i-currRing->block0[block]]=pOne(); |
---|
294 | pSetExp(v->m[i-currRing->block0[block]],i,1); |
---|
295 | pSetm(v->m[i-currRing->block0[block]]); |
---|
296 | } |
---|
297 | void *args[]={temp,v,NULL}; |
---|
298 | int arg_t[]={MODUL_CMD,IDEAL_CMD,0}; |
---|
299 | leftv temp0=ii_CallLibProcM("satstd",args,arg_t,currRing,err); |
---|
300 | temp1=(ideal)temp0->data; |
---|
301 | omFreeBin((ADDRESS)temp0, sleftv_bin); |
---|
302 | } |
---|
303 | if (err) |
---|
304 | { |
---|
305 | Werror("error %d in >>satstd<<",err); |
---|
306 | temp1=idInit(1,1); |
---|
307 | } |
---|
308 | } |
---|
309 | if (w!=NULL) delete w; |
---|
310 | return temp1; |
---|
311 | } |
---|
312 | |
---|
313 | /*2 |
---|
314 | * h3 := h1 intersect h2 |
---|
315 | */ |
---|
316 | ideal idSect (ideal h1,ideal h2, GbVariant alg) |
---|
317 | { |
---|
318 | int i,j,k; |
---|
319 | unsigned length; |
---|
320 | int flength = id_RankFreeModule(h1,currRing); |
---|
321 | int slength = id_RankFreeModule(h2,currRing); |
---|
322 | int rank=si_max(h1->rank,h2->rank); |
---|
323 | if ((idIs0(h1)) || (idIs0(h2))) return idInit(1,rank); |
---|
324 | |
---|
325 | BITSET save_opt; |
---|
326 | SI_SAVE_OPT1(save_opt); |
---|
327 | si_opt_1 |= Sy_bit(OPT_REDTAIL_SYZ); |
---|
328 | |
---|
329 | ideal first,second,temp,temp1,result; |
---|
330 | poly p,q; |
---|
331 | |
---|
332 | if (IDELEMS(h1)<IDELEMS(h2)) |
---|
333 | { |
---|
334 | first = h1; |
---|
335 | second = h2; |
---|
336 | } |
---|
337 | else |
---|
338 | { |
---|
339 | first = h2; |
---|
340 | second = h1; |
---|
341 | int t=flength; flength=slength; slength=t; |
---|
342 | } |
---|
343 | length = si_max(flength,slength); |
---|
344 | if (length==0) |
---|
345 | { |
---|
346 | if ((currRing->qideal==NULL) |
---|
347 | && (currRing->OrdSgn==1) |
---|
348 | && (!rIsPluralRing(currRing)) |
---|
349 | && ((TEST_V_INTERSECT_ELIM) || (!TEST_V_INTERSECT_SYZ))) |
---|
350 | return idSectWithElim(first,second,alg); |
---|
351 | else length = 1; |
---|
352 | } |
---|
353 | if (TEST_OPT_PROT) PrintS("intersect by syzygy methods\n"); |
---|
354 | j = IDELEMS(first); |
---|
355 | |
---|
356 | ring orig_ring=currRing; |
---|
357 | ring syz_ring=rAssure_SyzOrder(orig_ring,TRUE); |
---|
358 | rSetSyzComp(length,syz_ring); |
---|
359 | rChangeCurrRing(syz_ring); |
---|
360 | |
---|
361 | while ((j>0) && (first->m[j-1]==NULL)) j--; |
---|
362 | temp = idInit(j /*IDELEMS(first)*/+IDELEMS(second),length+j); |
---|
363 | k = 0; |
---|
364 | for (i=0;i<j;i++) |
---|
365 | { |
---|
366 | if (first->m[i]!=NULL) |
---|
367 | { |
---|
368 | if (syz_ring==orig_ring) |
---|
369 | temp->m[k] = pCopy(first->m[i]); |
---|
370 | else |
---|
371 | temp->m[k] = prCopyR(first->m[i], orig_ring, syz_ring); |
---|
372 | q = pOne(); |
---|
373 | pSetComp(q,i+1+length); |
---|
374 | pSetmComp(q); |
---|
375 | if (flength==0) p_Shift(&(temp->m[k]),1,currRing); |
---|
376 | p = temp->m[k]; |
---|
377 | while (pNext(p)!=NULL) pIter(p); |
---|
378 | pNext(p) = q; |
---|
379 | k++; |
---|
380 | } |
---|
381 | } |
---|
382 | for (i=0;i<IDELEMS(second);i++) |
---|
383 | { |
---|
384 | if (second->m[i]!=NULL) |
---|
385 | { |
---|
386 | if (syz_ring==orig_ring) |
---|
387 | temp->m[k] = pCopy(second->m[i]); |
---|
388 | else |
---|
389 | temp->m[k] = prCopyR(second->m[i], orig_ring,currRing); |
---|
390 | if (slength==0) p_Shift(&(temp->m[k]),1,currRing); |
---|
391 | k++; |
---|
392 | } |
---|
393 | } |
---|
394 | intvec *w=NULL; |
---|
395 | |
---|
396 | if ((alg!=GbDefault) |
---|
397 | && (alg!=GbGroebner) |
---|
398 | && (alg!=GbModstd) |
---|
399 | && (alg!=GbSlimgb) |
---|
400 | && (alg!=GbStd)) |
---|
401 | { |
---|
402 | WarnS("wrong algorithm for GB"); |
---|
403 | alg=GbDefault; |
---|
404 | } |
---|
405 | temp1=idGroebner(temp,length,alg); |
---|
406 | |
---|
407 | if(syz_ring!=orig_ring) |
---|
408 | rChangeCurrRing(orig_ring); |
---|
409 | |
---|
410 | result = idInit(IDELEMS(temp1),rank); |
---|
411 | j = 0; |
---|
412 | for (i=0;i<IDELEMS(temp1);i++) |
---|
413 | { |
---|
414 | if ((temp1->m[i]!=NULL) |
---|
415 | && (__p_GetComp(temp1->m[i],syz_ring)>length)) |
---|
416 | { |
---|
417 | if(syz_ring==orig_ring) |
---|
418 | { |
---|
419 | p = temp1->m[i]; |
---|
420 | } |
---|
421 | else |
---|
422 | { |
---|
423 | p = prMoveR(temp1->m[i], syz_ring,orig_ring); |
---|
424 | } |
---|
425 | temp1->m[i]=NULL; |
---|
426 | while (p!=NULL) |
---|
427 | { |
---|
428 | q = pNext(p); |
---|
429 | pNext(p) = NULL; |
---|
430 | k = pGetComp(p)-1-length; |
---|
431 | pSetComp(p,0); |
---|
432 | pSetmComp(p); |
---|
433 | /* Warning! multiply only from the left! it's very important for Plural */ |
---|
434 | result->m[j] = pAdd(result->m[j],pMult(p,pCopy(first->m[k]))); |
---|
435 | p = q; |
---|
436 | } |
---|
437 | j++; |
---|
438 | } |
---|
439 | } |
---|
440 | if(syz_ring!=orig_ring) |
---|
441 | { |
---|
442 | rChangeCurrRing(syz_ring); |
---|
443 | idDelete(&temp1); |
---|
444 | rChangeCurrRing(orig_ring); |
---|
445 | rDelete(syz_ring); |
---|
446 | } |
---|
447 | else |
---|
448 | { |
---|
449 | idDelete(&temp1); |
---|
450 | } |
---|
451 | |
---|
452 | idSkipZeroes(result); |
---|
453 | SI_RESTORE_OPT1(save_opt); |
---|
454 | if (TEST_OPT_RETURN_SB) |
---|
455 | { |
---|
456 | w=NULL; |
---|
457 | temp1=kStd(result,currRing->qideal,testHomog,&w); |
---|
458 | if (w!=NULL) delete w; |
---|
459 | idDelete(&result); |
---|
460 | idSkipZeroes(temp1); |
---|
461 | return temp1; |
---|
462 | } |
---|
463 | //else |
---|
464 | // temp1=kInterRed(result,currRing->qideal); |
---|
465 | return result; |
---|
466 | } |
---|
467 | |
---|
468 | /*2 |
---|
469 | * ideal/module intersection for a list of objects |
---|
470 | * given as 'resolvente' |
---|
471 | */ |
---|
472 | ideal idMultSect(resolvente arg, int length, GbVariant alg) |
---|
473 | { |
---|
474 | int i,j=0,k=0,l,maxrk=-1,realrki; |
---|
475 | unsigned syzComp; |
---|
476 | ideal bigmat,tempstd,result; |
---|
477 | poly p; |
---|
478 | int isIdeal=0; |
---|
479 | |
---|
480 | /* find 0-ideals and max rank -----------------------------------*/ |
---|
481 | for (i=0;i<length;i++) |
---|
482 | { |
---|
483 | if (!idIs0(arg[i])) |
---|
484 | { |
---|
485 | realrki=id_RankFreeModule(arg[i],currRing); |
---|
486 | k++; |
---|
487 | j += IDELEMS(arg[i]); |
---|
488 | if (realrki>maxrk) maxrk = realrki; |
---|
489 | } |
---|
490 | else |
---|
491 | { |
---|
492 | if (arg[i]!=NULL) |
---|
493 | { |
---|
494 | return idInit(1,arg[i]->rank); |
---|
495 | } |
---|
496 | } |
---|
497 | } |
---|
498 | if (maxrk == 0) |
---|
499 | { |
---|
500 | isIdeal = 1; |
---|
501 | maxrk = 1; |
---|
502 | } |
---|
503 | /* init -----------------------------------------------------------*/ |
---|
504 | j += maxrk; |
---|
505 | syzComp = k*maxrk; |
---|
506 | |
---|
507 | ring orig_ring=currRing; |
---|
508 | ring syz_ring=rAssure_SyzOrder(orig_ring,TRUE); |
---|
509 | rSetSyzComp(syzComp,syz_ring); |
---|
510 | rChangeCurrRing(syz_ring); |
---|
511 | |
---|
512 | bigmat = idInit(j,(k+1)*maxrk); |
---|
513 | /* create unit matrices ------------------------------------------*/ |
---|
514 | for (i=0;i<maxrk;i++) |
---|
515 | { |
---|
516 | for (j=0;j<=k;j++) |
---|
517 | { |
---|
518 | p = pOne(); |
---|
519 | pSetComp(p,i+1+j*maxrk); |
---|
520 | pSetmComp(p); |
---|
521 | bigmat->m[i] = pAdd(bigmat->m[i],p); |
---|
522 | } |
---|
523 | } |
---|
524 | /* enter given ideals ------------------------------------------*/ |
---|
525 | i = maxrk; |
---|
526 | k = 0; |
---|
527 | for (j=0;j<length;j++) |
---|
528 | { |
---|
529 | if (arg[j]!=NULL) |
---|
530 | { |
---|
531 | for (l=0;l<IDELEMS(arg[j]);l++) |
---|
532 | { |
---|
533 | if (arg[j]->m[l]!=NULL) |
---|
534 | { |
---|
535 | if (syz_ring==orig_ring) |
---|
536 | bigmat->m[i] = pCopy(arg[j]->m[l]); |
---|
537 | else |
---|
538 | bigmat->m[i] = prCopyR(arg[j]->m[l], orig_ring,currRing); |
---|
539 | p_Shift(&(bigmat->m[i]),k*maxrk+isIdeal,currRing); |
---|
540 | i++; |
---|
541 | } |
---|
542 | } |
---|
543 | k++; |
---|
544 | } |
---|
545 | } |
---|
546 | /* std computation --------------------------------------------*/ |
---|
547 | if ((alg!=GbDefault) |
---|
548 | && (alg!=GbGroebner) |
---|
549 | && (alg!=GbModstd) |
---|
550 | && (alg!=GbSlimgb) |
---|
551 | && (alg!=GbStd)) |
---|
552 | { |
---|
553 | WarnS("wrong algorithm for GB"); |
---|
554 | alg=GbDefault; |
---|
555 | } |
---|
556 | tempstd=idGroebner(bigmat,syzComp,alg); |
---|
557 | |
---|
558 | if(syz_ring!=orig_ring) |
---|
559 | rChangeCurrRing(orig_ring); |
---|
560 | |
---|
561 | /* interpret result ----------------------------------------*/ |
---|
562 | result = idInit(IDELEMS(tempstd),maxrk); |
---|
563 | k = 0; |
---|
564 | for (j=0;j<IDELEMS(tempstd);j++) |
---|
565 | { |
---|
566 | if ((tempstd->m[j]!=NULL) && (__p_GetComp(tempstd->m[j],syz_ring)>syzComp)) |
---|
567 | { |
---|
568 | if (syz_ring==orig_ring) |
---|
569 | p = pCopy(tempstd->m[j]); |
---|
570 | else |
---|
571 | p = prCopyR(tempstd->m[j], syz_ring,currRing); |
---|
572 | p_Shift(&p,-syzComp-isIdeal,currRing); |
---|
573 | result->m[k] = p; |
---|
574 | k++; |
---|
575 | } |
---|
576 | } |
---|
577 | /* clean up ----------------------------------------------------*/ |
---|
578 | if(syz_ring!=orig_ring) |
---|
579 | rChangeCurrRing(syz_ring); |
---|
580 | idDelete(&tempstd); |
---|
581 | if(syz_ring!=orig_ring) |
---|
582 | { |
---|
583 | rChangeCurrRing(orig_ring); |
---|
584 | rDelete(syz_ring); |
---|
585 | } |
---|
586 | idSkipZeroes(result); |
---|
587 | return result; |
---|
588 | } |
---|
589 | |
---|
590 | /*2 |
---|
591 | *computes syzygies of h1, |
---|
592 | *if quot != NULL it computes in the quotient ring modulo "quot" |
---|
593 | *works always in a ring with ringorder_s |
---|
594 | */ |
---|
595 | /* construct a "matrix" (h11 may be NULL) |
---|
596 | * h1 h11 |
---|
597 | * E_n 0 |
---|
598 | * and compute a (column) GB of it, with a syzComp=rows(h1)=rows(h11) |
---|
599 | * currRing must be a syz-ring with syzComp set |
---|
600 | * result is a "matrix": |
---|
601 | * G 0 |
---|
602 | * T S |
---|
603 | * where G: GB of (h1+h11) |
---|
604 | * T: G/h11=h1*T |
---|
605 | * S: relative syzygies(h1) modulo h11 |
---|
606 | */ |
---|
607 | static ideal idPrepare (ideal h1, ideal h11, tHomog hom, int syzcomp, intvec **w, GbVariant alg) |
---|
608 | { |
---|
609 | ideal h2,h22; |
---|
610 | int j,k; |
---|
611 | poly p,q; |
---|
612 | |
---|
613 | if (idIs0(h1)) return NULL; |
---|
614 | k = id_RankFreeModule(h1,currRing); |
---|
615 | if (h11!=NULL) |
---|
616 | { |
---|
617 | k = si_max(k,(int)id_RankFreeModule(h11,currRing)); |
---|
618 | h22=idCopy(h11); |
---|
619 | } |
---|
620 | h2=idCopy(h1); |
---|
621 | int i = IDELEMS(h2); |
---|
622 | if (h11!=NULL) i+=IDELEMS(h22); |
---|
623 | if (k == 0) |
---|
624 | { |
---|
625 | id_Shift(h2,1,currRing); |
---|
626 | if (h11!=NULL) id_Shift(h22,1,currRing); |
---|
627 | k = 1; |
---|
628 | } |
---|
629 | if (syzcomp<k) |
---|
630 | { |
---|
631 | Warn("syzcomp too low, should be %d instead of %d",k,syzcomp); |
---|
632 | syzcomp = k; |
---|
633 | rSetSyzComp(k,currRing); |
---|
634 | } |
---|
635 | h2->rank = syzcomp+i; |
---|
636 | |
---|
637 | //if (hom==testHomog) |
---|
638 | //{ |
---|
639 | // if(idHomIdeal(h1,currRing->qideal)) |
---|
640 | // { |
---|
641 | // hom=TRUE; |
---|
642 | // } |
---|
643 | //} |
---|
644 | |
---|
645 | for (j=0; j<IDELEMS(h2); j++) |
---|
646 | { |
---|
647 | p = h2->m[j]; |
---|
648 | q = pOne(); |
---|
649 | #ifdef HAVE_SHIFTBBA |
---|
650 | // non multiplicative variable |
---|
651 | if (rIsLPRing(currRing)) |
---|
652 | { |
---|
653 | pSetExp(q, currRing->isLPring - currRing->LPncGenCount + j + 1, 1); |
---|
654 | p_Setm(q, currRing); |
---|
655 | } |
---|
656 | #endif |
---|
657 | pSetComp(q,syzcomp+1+j); |
---|
658 | pSetmComp(q); |
---|
659 | if (p!=NULL) |
---|
660 | { |
---|
661 | #ifdef HAVE_SHIFTBBA |
---|
662 | if (rIsLPRing(currRing)) |
---|
663 | { |
---|
664 | h2->m[j] = pAdd(p, q); |
---|
665 | } |
---|
666 | else |
---|
667 | #endif |
---|
668 | { |
---|
669 | while (pNext(p)) pIter(p); |
---|
670 | p->next = q; |
---|
671 | } |
---|
672 | } |
---|
673 | else |
---|
674 | h2->m[j]=q; |
---|
675 | } |
---|
676 | if (h11!=NULL) |
---|
677 | { |
---|
678 | ideal h=id_SimpleAdd(h2,h22,currRing); |
---|
679 | id_Delete(&h2,currRing); |
---|
680 | id_Delete(&h22,currRing); |
---|
681 | h2=h; |
---|
682 | } |
---|
683 | |
---|
684 | idTest(h2); |
---|
685 | #if 0 |
---|
686 | matrix TT=id_Module2Matrix(idCopy(h2),currRing); |
---|
687 | PrintS(" --------------before std------------------------\n"); |
---|
688 | ipPrint_MA0(TT,"T"); |
---|
689 | PrintLn(); |
---|
690 | idDelete((ideal*)&TT); |
---|
691 | #endif |
---|
692 | |
---|
693 | if ((alg!=GbDefault) |
---|
694 | && (alg!=GbGroebner) |
---|
695 | && (alg!=GbModstd) |
---|
696 | && (alg!=GbSlimgb) |
---|
697 | && (alg!=GbStd)) |
---|
698 | { |
---|
699 | WarnS("wrong algorithm for GB"); |
---|
700 | alg=GbDefault; |
---|
701 | } |
---|
702 | |
---|
703 | ideal h3; |
---|
704 | if (w!=NULL) h3=idGroebner(h2,syzcomp,alg,NULL,*w,hom); |
---|
705 | else h3=idGroebner(h2,syzcomp,alg,NULL,NULL,hom); |
---|
706 | return h3; |
---|
707 | } |
---|
708 | |
---|
709 | ideal idExtractG_T_S(ideal s_h3,matrix *T,ideal *S,long syzComp, |
---|
710 | int h1_size,BOOLEAN inputIsIdeal,const ring oring, const ring sring) |
---|
711 | { |
---|
712 | // now sort the result, SB : leave in s_h3 |
---|
713 | // T: put in s_h2 (*T as a matrix) |
---|
714 | // syz: put in *S |
---|
715 | idSkipZeroes(s_h3); |
---|
716 | ideal s_h2 = idInit(IDELEMS(s_h3), s_h3->rank); // will become T |
---|
717 | |
---|
718 | #if 0 |
---|
719 | matrix TT=id_Module2Matrix(idCopy(s_h3),currRing); |
---|
720 | Print("after std: --------------syzComp=%d------------------------\n",syzComp); |
---|
721 | ipPrint_MA0(TT,"T"); |
---|
722 | PrintLn(); |
---|
723 | idDelete((ideal*)&TT); |
---|
724 | #endif |
---|
725 | |
---|
726 | int j, i=0; |
---|
727 | for (j=0; j<IDELEMS(s_h3); j++) |
---|
728 | { |
---|
729 | if (s_h3->m[j] != NULL) |
---|
730 | { |
---|
731 | if (pGetComp(s_h3->m[j]) <= syzComp) // syz_ring == currRing |
---|
732 | { |
---|
733 | i++; |
---|
734 | poly q = s_h3->m[j]; |
---|
735 | while (pNext(q) != NULL) |
---|
736 | { |
---|
737 | if (pGetComp(pNext(q)) > syzComp) |
---|
738 | { |
---|
739 | s_h2->m[i-1] = pNext(q); |
---|
740 | pNext(q) = NULL; |
---|
741 | } |
---|
742 | else |
---|
743 | { |
---|
744 | pIter(q); |
---|
745 | } |
---|
746 | } |
---|
747 | if (!inputIsIdeal) p_Shift(&(s_h3->m[j]), -1,currRing); |
---|
748 | } |
---|
749 | else |
---|
750 | { |
---|
751 | // we a syzygy here: |
---|
752 | if (S!=NULL) |
---|
753 | { |
---|
754 | p_Shift(&s_h3->m[j], -syzComp,currRing); |
---|
755 | (*S)->m[j]=s_h3->m[j]; |
---|
756 | s_h3->m[j]=NULL; |
---|
757 | } |
---|
758 | else |
---|
759 | p_Delete(&(s_h3->m[j]),currRing); |
---|
760 | } |
---|
761 | } |
---|
762 | } |
---|
763 | idSkipZeroes(s_h3); |
---|
764 | |
---|
765 | #if 0 |
---|
766 | TT=id_Module2Matrix(idCopy(s_h2),currRing); |
---|
767 | PrintS("T: ----------------------------------------\n"); |
---|
768 | ipPrint_MA0(TT,"T"); |
---|
769 | PrintLn(); |
---|
770 | idDelete((ideal*)&TT); |
---|
771 | #endif |
---|
772 | |
---|
773 | if (S!=NULL) idSkipZeroes(*S); |
---|
774 | |
---|
775 | if (sring!=oring) |
---|
776 | { |
---|
777 | rChangeCurrRing(oring); |
---|
778 | } |
---|
779 | |
---|
780 | if (T!=NULL) |
---|
781 | { |
---|
782 | *T = mpNew(h1_size,i); |
---|
783 | |
---|
784 | for (j=0; j<i; j++) |
---|
785 | { |
---|
786 | if (s_h2->m[j] != NULL) |
---|
787 | { |
---|
788 | poly q = prMoveR( s_h2->m[j], sring,oring); |
---|
789 | s_h2->m[j] = NULL; |
---|
790 | |
---|
791 | if (q!=NULL) |
---|
792 | { |
---|
793 | q=pReverse(q); |
---|
794 | while (q != NULL) |
---|
795 | { |
---|
796 | poly p = q; |
---|
797 | pIter(q); |
---|
798 | pNext(p) = NULL; |
---|
799 | int t=pGetComp(p); |
---|
800 | pSetComp(p,0); |
---|
801 | pSetmComp(p); |
---|
802 | MATELEM(*T,t-syzComp,j+1) = pAdd(MATELEM(*T,t-syzComp,j+1),p); |
---|
803 | } |
---|
804 | } |
---|
805 | } |
---|
806 | } |
---|
807 | } |
---|
808 | id_Delete(&s_h2,sring); |
---|
809 | |
---|
810 | for (i=0; i<IDELEMS(s_h3); i++) |
---|
811 | { |
---|
812 | s_h3->m[i] = prMoveR_NoSort(s_h3->m[i], sring,oring); |
---|
813 | } |
---|
814 | if (S!=NULL) |
---|
815 | { |
---|
816 | for (i=0; i<IDELEMS(*S); i++) |
---|
817 | { |
---|
818 | (*S)->m[i] = prMoveR_NoSort((*S)->m[i], sring,oring); |
---|
819 | } |
---|
820 | } |
---|
821 | return s_h3; |
---|
822 | } |
---|
823 | |
---|
824 | /*2 |
---|
825 | * compute the syzygies of h1 in R/quot, |
---|
826 | * weights of components are in w |
---|
827 | * if setRegularity, return the regularity in deg |
---|
828 | * do not change h1, w |
---|
829 | */ |
---|
830 | ideal idSyzygies (ideal h1, tHomog h,intvec **w, BOOLEAN setSyzComp, |
---|
831 | BOOLEAN setRegularity, int *deg, GbVariant alg) |
---|
832 | { |
---|
833 | ideal s_h1; |
---|
834 | int j, k, length=0,reg; |
---|
835 | BOOLEAN isMonomial=TRUE; |
---|
836 | int ii, idElemens_h1; |
---|
837 | |
---|
838 | assume(h1 != NULL); |
---|
839 | |
---|
840 | idElemens_h1=IDELEMS(h1); |
---|
841 | #ifdef PDEBUG |
---|
842 | for(ii=0;ii<idElemens_h1 /*IDELEMS(h1)*/;ii++) pTest(h1->m[ii]); |
---|
843 | #endif |
---|
844 | if (idIs0(h1)) |
---|
845 | { |
---|
846 | ideal result=idFreeModule(idElemens_h1/*IDELEMS(h1)*/); |
---|
847 | return result; |
---|
848 | } |
---|
849 | int slength=(int)id_RankFreeModule(h1,currRing); |
---|
850 | k=si_max(1,slength /*id_RankFreeModule(h1)*/); |
---|
851 | |
---|
852 | assume(currRing != NULL); |
---|
853 | ring orig_ring=currRing; |
---|
854 | ring syz_ring=rAssure_SyzComp(orig_ring,TRUE); |
---|
855 | if (setSyzComp) rSetSyzComp(k,syz_ring); |
---|
856 | |
---|
857 | if (orig_ring != syz_ring) |
---|
858 | { |
---|
859 | rChangeCurrRing(syz_ring); |
---|
860 | s_h1=idrCopyR_NoSort(h1,orig_ring,syz_ring); |
---|
861 | } |
---|
862 | else |
---|
863 | { |
---|
864 | s_h1 = h1; |
---|
865 | } |
---|
866 | |
---|
867 | idTest(s_h1); |
---|
868 | |
---|
869 | BITSET save_opt; |
---|
870 | SI_SAVE_OPT1(save_opt); |
---|
871 | si_opt_1|=Sy_bit(OPT_REDTAIL_SYZ); |
---|
872 | |
---|
873 | ideal s_h3=idPrepare(s_h1,NULL,h,k,w,alg); // main (syz) GB computation |
---|
874 | |
---|
875 | SI_RESTORE_OPT1(save_opt); |
---|
876 | |
---|
877 | if (orig_ring != syz_ring) |
---|
878 | { |
---|
879 | idDelete(&s_h1); |
---|
880 | for (j=0; j<IDELEMS(s_h3); j++) |
---|
881 | { |
---|
882 | if (s_h3->m[j] != NULL) |
---|
883 | { |
---|
884 | if (p_MinComp(s_h3->m[j],syz_ring) > k) |
---|
885 | p_Shift(&s_h3->m[j], -k,syz_ring); |
---|
886 | else |
---|
887 | p_Delete(&s_h3->m[j],syz_ring); |
---|
888 | } |
---|
889 | } |
---|
890 | idSkipZeroes(s_h3); |
---|
891 | s_h3->rank -= k; |
---|
892 | rChangeCurrRing(orig_ring); |
---|
893 | s_h3 = idrMoveR_NoSort(s_h3, syz_ring, orig_ring); |
---|
894 | rDelete(syz_ring); |
---|
895 | #ifdef HAVE_PLURAL |
---|
896 | if (rIsPluralRing(orig_ring)) |
---|
897 | { |
---|
898 | id_DelMultiples(s_h3,orig_ring); |
---|
899 | idSkipZeroes(s_h3); |
---|
900 | } |
---|
901 | #endif |
---|
902 | idTest(s_h3); |
---|
903 | return s_h3; |
---|
904 | } |
---|
905 | |
---|
906 | ideal e = idInit(IDELEMS(s_h3), s_h3->rank); |
---|
907 | |
---|
908 | for (j=IDELEMS(s_h3)-1; j>=0; j--) |
---|
909 | { |
---|
910 | if (s_h3->m[j] != NULL) |
---|
911 | { |
---|
912 | if (p_MinComp(s_h3->m[j],syz_ring) <= k) |
---|
913 | { |
---|
914 | e->m[j] = s_h3->m[j]; |
---|
915 | isMonomial=isMonomial && (pNext(s_h3->m[j])==NULL); |
---|
916 | p_Delete(&pNext(s_h3->m[j]),syz_ring); |
---|
917 | s_h3->m[j] = NULL; |
---|
918 | } |
---|
919 | } |
---|
920 | } |
---|
921 | |
---|
922 | idSkipZeroes(s_h3); |
---|
923 | idSkipZeroes(e); |
---|
924 | |
---|
925 | if ((deg != NULL) |
---|
926 | && (!isMonomial) |
---|
927 | && (!TEST_OPT_NOTREGULARITY) |
---|
928 | && (setRegularity) |
---|
929 | && (h==isHomog) |
---|
930 | && (!rIsPluralRing(currRing)) |
---|
931 | && (!rField_is_Ring(currRing)) |
---|
932 | ) |
---|
933 | { |
---|
934 | assume(orig_ring==syz_ring); |
---|
935 | ring dp_C_ring = rAssure_dp_C(syz_ring); // will do rChangeCurrRing later |
---|
936 | if (dp_C_ring != syz_ring) |
---|
937 | { |
---|
938 | rChangeCurrRing(dp_C_ring); |
---|
939 | e = idrMoveR_NoSort(e, syz_ring, dp_C_ring); |
---|
940 | } |
---|
941 | resolvente res = sySchreyerResolvente(e,-1,&length,TRUE, TRUE); |
---|
942 | intvec * dummy = syBetti(res,length,®, *w); |
---|
943 | *deg = reg+2; |
---|
944 | delete dummy; |
---|
945 | for (j=0;j<length;j++) |
---|
946 | { |
---|
947 | if (res[j]!=NULL) idDelete(&(res[j])); |
---|
948 | } |
---|
949 | omFreeSize((ADDRESS)res,length*sizeof(ideal)); |
---|
950 | idDelete(&e); |
---|
951 | if (dp_C_ring != orig_ring) |
---|
952 | { |
---|
953 | rChangeCurrRing(orig_ring); |
---|
954 | rDelete(dp_C_ring); |
---|
955 | } |
---|
956 | } |
---|
957 | else |
---|
958 | { |
---|
959 | idDelete(&e); |
---|
960 | } |
---|
961 | assume(orig_ring==currRing); |
---|
962 | idTest(s_h3); |
---|
963 | if (currRing->qideal != NULL) |
---|
964 | { |
---|
965 | ideal ts_h3=kStd(s_h3,currRing->qideal,h,w); |
---|
966 | idDelete(&s_h3); |
---|
967 | s_h3 = ts_h3; |
---|
968 | } |
---|
969 | return s_h3; |
---|
970 | } |
---|
971 | |
---|
972 | /* |
---|
973 | *computes a standard basis for h1 and stores the transformation matrix |
---|
974 | * in ma |
---|
975 | */ |
---|
976 | ideal idLiftStd (ideal h1, matrix* T, tHomog hi, ideal * S, GbVariant alg, |
---|
977 | ideal h11) |
---|
978 | { |
---|
979 | int inputIsIdeal=id_RankFreeModule(h1,currRing); |
---|
980 | long k; |
---|
981 | intvec *w=NULL; |
---|
982 | |
---|
983 | idDelete((ideal*)T); |
---|
984 | BOOLEAN lift3=FALSE; |
---|
985 | if (S!=NULL) { lift3=TRUE; idDelete(S); } |
---|
986 | if (idIs0(h1)) |
---|
987 | { |
---|
988 | *T=mpNew(1,IDELEMS(h1)); |
---|
989 | if (lift3) |
---|
990 | { |
---|
991 | *S=idFreeModule(IDELEMS(h1)); |
---|
992 | } |
---|
993 | return idInit(1,h1->rank); |
---|
994 | } |
---|
995 | |
---|
996 | BITSET save2; |
---|
997 | SI_SAVE_OPT2(save2); |
---|
998 | |
---|
999 | k=si_max(1,inputIsIdeal); |
---|
1000 | |
---|
1001 | if ((!lift3)&&(!TEST_OPT_RETURN_SB)) si_opt_2 |=Sy_bit(V_IDLIFT); |
---|
1002 | |
---|
1003 | ring orig_ring = currRing; |
---|
1004 | ring syz_ring = rAssure_SyzOrder(orig_ring,TRUE); |
---|
1005 | rSetSyzComp(k,syz_ring); |
---|
1006 | rChangeCurrRing(syz_ring); |
---|
1007 | |
---|
1008 | ideal s_h1; |
---|
1009 | |
---|
1010 | if (orig_ring != syz_ring) |
---|
1011 | s_h1 = idrCopyR_NoSort(h1,orig_ring,syz_ring); |
---|
1012 | else |
---|
1013 | s_h1 = h1; |
---|
1014 | ideal s_h11=NULL; |
---|
1015 | if (h11!=NULL) |
---|
1016 | { |
---|
1017 | s_h11=idrCopyR_NoSort(h11,orig_ring,syz_ring); |
---|
1018 | } |
---|
1019 | |
---|
1020 | |
---|
1021 | ideal s_h3=idPrepare(s_h1,s_h11,hi,k,&w,alg); // main (syz) GB computation |
---|
1022 | |
---|
1023 | |
---|
1024 | if (w!=NULL) delete w; |
---|
1025 | if (syz_ring!=orig_ring) |
---|
1026 | { |
---|
1027 | idDelete(&s_h1); |
---|
1028 | if (s_h11!=NULL) idDelete(&s_h11); |
---|
1029 | } |
---|
1030 | |
---|
1031 | if (S!=NULL) (*S)=idInit(IDELEMS(s_h3),IDELEMS(h1)); |
---|
1032 | |
---|
1033 | s_h3=idExtractG_T_S(s_h3,T,S,k,IDELEMS(h1),inputIsIdeal,orig_ring,syz_ring); |
---|
1034 | |
---|
1035 | if (syz_ring!=orig_ring) rDelete(syz_ring); |
---|
1036 | s_h3->rank=h1->rank; |
---|
1037 | SI_RESTORE_OPT2(save2); |
---|
1038 | return s_h3; |
---|
1039 | } |
---|
1040 | |
---|
1041 | static void idPrepareStd(ideal s_temp, int k) |
---|
1042 | { |
---|
1043 | int j,rk=id_RankFreeModule(s_temp,currRing); |
---|
1044 | poly p,q; |
---|
1045 | |
---|
1046 | if (rk == 0) |
---|
1047 | { |
---|
1048 | for (j=0; j<IDELEMS(s_temp); j++) |
---|
1049 | { |
---|
1050 | if (s_temp->m[j]!=NULL) pSetCompP(s_temp->m[j],1); |
---|
1051 | } |
---|
1052 | k = si_max(k,1); |
---|
1053 | } |
---|
1054 | for (j=0; j<IDELEMS(s_temp); j++) |
---|
1055 | { |
---|
1056 | if (s_temp->m[j]!=NULL) |
---|
1057 | { |
---|
1058 | p = s_temp->m[j]; |
---|
1059 | q = pOne(); |
---|
1060 | //pGetCoeff(q)=nInpNeg(pGetCoeff(q)); //set q to -1 |
---|
1061 | pSetComp(q,k+1+j); |
---|
1062 | pSetmComp(q); |
---|
1063 | #ifdef HAVE_SHIFTBBA |
---|
1064 | // non multiplicative variable |
---|
1065 | if (rIsLPRing(currRing)) |
---|
1066 | { |
---|
1067 | pSetExp(q, currRing->isLPring - currRing->LPncGenCount + j + 1, 1); |
---|
1068 | p_Setm(q, currRing); |
---|
1069 | s_temp->m[j] = pAdd(p, q); |
---|
1070 | } |
---|
1071 | else |
---|
1072 | #endif |
---|
1073 | { |
---|
1074 | while (pNext(p)) pIter(p); |
---|
1075 | pNext(p) = q; |
---|
1076 | } |
---|
1077 | } |
---|
1078 | } |
---|
1079 | s_temp->rank = k+IDELEMS(s_temp); |
---|
1080 | } |
---|
1081 | |
---|
1082 | static void idLift_setUnit(int e_mod, matrix *unit) |
---|
1083 | { |
---|
1084 | if (unit!=NULL) |
---|
1085 | { |
---|
1086 | *unit=mpNew(e_mod,e_mod); |
---|
1087 | // make sure that U is a diagonal matrix of units |
---|
1088 | for(int i=e_mod;i>0;i--) |
---|
1089 | { |
---|
1090 | MATELEM(*unit,i,i)=pOne(); |
---|
1091 | } |
---|
1092 | } |
---|
1093 | } |
---|
1094 | /*2 |
---|
1095 | *computes a representation of the generators of submod with respect to those |
---|
1096 | * of mod |
---|
1097 | */ |
---|
1098 | /// represents the generators of submod in terms of the generators of mod |
---|
1099 | /// (Matrix(SM)*U-Matrix(rest)) = Matrix(M)*Matrix(result) |
---|
1100 | /// goodShape: maximal non-zero index in generators of SM <= that of M |
---|
1101 | /// isSB: generators of M form a Groebner basis |
---|
1102 | /// divide: allow SM not to be a submodule of M |
---|
1103 | /// U is an diagonal matrix of units (non-constant only in local rings) |
---|
1104 | /// rest is: 0 if SM in M, SM if not divide, NF(SM,std(M)) if divide |
---|
1105 | ideal idLift(ideal mod, ideal submod,ideal *rest, BOOLEAN goodShape, |
---|
1106 | BOOLEAN isSB, BOOLEAN divide, matrix *unit, GbVariant alg) |
---|
1107 | { |
---|
1108 | int lsmod =id_RankFreeModule(submod,currRing), j, k; |
---|
1109 | int comps_to_add=0; |
---|
1110 | int idelems_mod=IDELEMS(mod); |
---|
1111 | int idelems_submod=IDELEMS(submod); |
---|
1112 | poly p; |
---|
1113 | |
---|
1114 | if (idIs0(submod)) |
---|
1115 | { |
---|
1116 | if (rest!=NULL) |
---|
1117 | { |
---|
1118 | *rest=idInit(1,mod->rank); |
---|
1119 | } |
---|
1120 | idLift_setUnit(idelems_submod,unit); |
---|
1121 | return idInit(1,idelems_mod); |
---|
1122 | } |
---|
1123 | if (idIs0(mod)) /* and not idIs0(submod) */ |
---|
1124 | { |
---|
1125 | if (rest!=NULL) |
---|
1126 | { |
---|
1127 | *rest=idCopy(submod); |
---|
1128 | idLift_setUnit(idelems_submod,unit); |
---|
1129 | return idInit(1,idelems_mod); |
---|
1130 | } |
---|
1131 | else |
---|
1132 | { |
---|
1133 | WerrorS("2nd module does not lie in the first"); |
---|
1134 | return NULL; |
---|
1135 | } |
---|
1136 | } |
---|
1137 | if (unit!=NULL) |
---|
1138 | { |
---|
1139 | comps_to_add = idelems_submod; |
---|
1140 | while ((comps_to_add>0) && (submod->m[comps_to_add-1]==NULL)) |
---|
1141 | comps_to_add--; |
---|
1142 | } |
---|
1143 | k=si_max(id_RankFreeModule(mod,currRing),id_RankFreeModule(submod,currRing)); |
---|
1144 | if ((k!=0) && (lsmod==0)) lsmod=1; |
---|
1145 | k=si_max(k,(int)mod->rank); |
---|
1146 | if (k<submod->rank) { WarnS("rk(submod) > rk(mod) ?");k=submod->rank; } |
---|
1147 | |
---|
1148 | ring orig_ring=currRing; |
---|
1149 | ring syz_ring=rAssure_SyzOrder(orig_ring,TRUE); |
---|
1150 | rSetSyzComp(k,syz_ring); |
---|
1151 | rChangeCurrRing(syz_ring); |
---|
1152 | |
---|
1153 | ideal s_mod, s_temp; |
---|
1154 | if (orig_ring != syz_ring) |
---|
1155 | { |
---|
1156 | s_mod = idrCopyR_NoSort(mod,orig_ring,syz_ring); |
---|
1157 | s_temp = idrCopyR_NoSort(submod,orig_ring,syz_ring); |
---|
1158 | } |
---|
1159 | else |
---|
1160 | { |
---|
1161 | s_mod = mod; |
---|
1162 | s_temp = idCopy(submod); |
---|
1163 | } |
---|
1164 | ideal s_h3; |
---|
1165 | if (isSB) |
---|
1166 | { |
---|
1167 | s_h3 = idCopy(s_mod); |
---|
1168 | idPrepareStd(s_h3, k+comps_to_add); |
---|
1169 | } |
---|
1170 | else |
---|
1171 | { |
---|
1172 | s_h3 = idPrepare(s_mod,NULL,(tHomog)FALSE,k+comps_to_add,NULL,alg); |
---|
1173 | } |
---|
1174 | if (!goodShape) |
---|
1175 | { |
---|
1176 | for (j=0;j<IDELEMS(s_h3);j++) |
---|
1177 | { |
---|
1178 | if ((s_h3->m[j] != NULL) && (pMinComp(s_h3->m[j]) > k)) |
---|
1179 | p_Delete(&(s_h3->m[j]),currRing); |
---|
1180 | } |
---|
1181 | } |
---|
1182 | idSkipZeroes(s_h3); |
---|
1183 | if (lsmod==0) |
---|
1184 | { |
---|
1185 | id_Shift(s_temp,1,currRing); |
---|
1186 | } |
---|
1187 | if (unit!=NULL) |
---|
1188 | { |
---|
1189 | for(j = 0;j<comps_to_add;j++) |
---|
1190 | { |
---|
1191 | p = s_temp->m[j]; |
---|
1192 | if (p!=NULL) |
---|
1193 | { |
---|
1194 | while (pNext(p)!=NULL) pIter(p); |
---|
1195 | pNext(p) = pOne(); |
---|
1196 | pIter(p); |
---|
1197 | pSetComp(p,1+j+k); |
---|
1198 | pSetmComp(p); |
---|
1199 | p = pNeg(p); |
---|
1200 | } |
---|
1201 | } |
---|
1202 | s_temp->rank += (k+comps_to_add); |
---|
1203 | } |
---|
1204 | ideal s_result = kNF(s_h3,currRing->qideal,s_temp,k); |
---|
1205 | s_result->rank = s_h3->rank; |
---|
1206 | ideal s_rest = idInit(IDELEMS(s_result),k); |
---|
1207 | idDelete(&s_h3); |
---|
1208 | idDelete(&s_temp); |
---|
1209 | |
---|
1210 | for (j=0;j<IDELEMS(s_result);j++) |
---|
1211 | { |
---|
1212 | if (s_result->m[j]!=NULL) |
---|
1213 | { |
---|
1214 | if (pGetComp(s_result->m[j])<=k) |
---|
1215 | { |
---|
1216 | if (!divide) |
---|
1217 | { |
---|
1218 | if (rest==NULL) |
---|
1219 | { |
---|
1220 | if (isSB) |
---|
1221 | { |
---|
1222 | WarnS("first module not a standardbasis\n" |
---|
1223 | "// ** or second not a proper submodule"); |
---|
1224 | } |
---|
1225 | else |
---|
1226 | WerrorS("2nd module does not lie in the first"); |
---|
1227 | } |
---|
1228 | idDelete(&s_result); |
---|
1229 | idDelete(&s_rest); |
---|
1230 | if(syz_ring!=orig_ring) |
---|
1231 | { |
---|
1232 | idDelete(&s_mod); |
---|
1233 | rChangeCurrRing(orig_ring); |
---|
1234 | rDelete(syz_ring); |
---|
1235 | } |
---|
1236 | if (unit!=NULL) |
---|
1237 | { |
---|
1238 | idLift_setUnit(idelems_submod,unit); |
---|
1239 | } |
---|
1240 | if (rest!=NULL) *rest=idCopy(submod); |
---|
1241 | s_result=idInit(idelems_submod,idelems_mod); |
---|
1242 | return s_result; |
---|
1243 | } |
---|
1244 | else |
---|
1245 | { |
---|
1246 | p = s_rest->m[j] = s_result->m[j]; |
---|
1247 | while ((pNext(p)!=NULL) && (pGetComp(pNext(p))<=k)) pIter(p); |
---|
1248 | s_result->m[j] = pNext(p); |
---|
1249 | pNext(p) = NULL; |
---|
1250 | } |
---|
1251 | } |
---|
1252 | p_Shift(&(s_result->m[j]),-k,currRing); |
---|
1253 | pNeg(s_result->m[j]); |
---|
1254 | } |
---|
1255 | } |
---|
1256 | if ((lsmod==0) && (s_rest!=NULL)) |
---|
1257 | { |
---|
1258 | for (j=IDELEMS(s_rest);j>0;j--) |
---|
1259 | { |
---|
1260 | if (s_rest->m[j-1]!=NULL) |
---|
1261 | { |
---|
1262 | p_Shift(&(s_rest->m[j-1]),-1,currRing); |
---|
1263 | } |
---|
1264 | } |
---|
1265 | } |
---|
1266 | if(syz_ring!=orig_ring) |
---|
1267 | { |
---|
1268 | idDelete(&s_mod); |
---|
1269 | rChangeCurrRing(orig_ring); |
---|
1270 | s_result = idrMoveR_NoSort(s_result, syz_ring, orig_ring); |
---|
1271 | s_rest = idrMoveR_NoSort(s_rest, syz_ring, orig_ring); |
---|
1272 | rDelete(syz_ring); |
---|
1273 | } |
---|
1274 | if (rest!=NULL) |
---|
1275 | { |
---|
1276 | s_rest->rank=mod->rank; |
---|
1277 | *rest = s_rest; |
---|
1278 | } |
---|
1279 | else |
---|
1280 | idDelete(&s_rest); |
---|
1281 | if (unit!=NULL) |
---|
1282 | { |
---|
1283 | *unit=mpNew(idelems_submod,idelems_submod); |
---|
1284 | int i; |
---|
1285 | for(i=0;i<IDELEMS(s_result);i++) |
---|
1286 | { |
---|
1287 | poly p=s_result->m[i]; |
---|
1288 | poly q=NULL; |
---|
1289 | while(p!=NULL) |
---|
1290 | { |
---|
1291 | if(pGetComp(p)<=comps_to_add) |
---|
1292 | { |
---|
1293 | pSetComp(p,0); |
---|
1294 | if (q!=NULL) |
---|
1295 | { |
---|
1296 | pNext(q)=pNext(p); |
---|
1297 | } |
---|
1298 | else |
---|
1299 | { |
---|
1300 | pIter(s_result->m[i]); |
---|
1301 | } |
---|
1302 | pNext(p)=NULL; |
---|
1303 | MATELEM(*unit,i+1,i+1)=pAdd(MATELEM(*unit,i+1,i+1),p); |
---|
1304 | if(q!=NULL) p=pNext(q); |
---|
1305 | else p=s_result->m[i]; |
---|
1306 | } |
---|
1307 | else |
---|
1308 | { |
---|
1309 | q=p; |
---|
1310 | pIter(p); |
---|
1311 | } |
---|
1312 | } |
---|
1313 | p_Shift(&s_result->m[i],-comps_to_add,currRing); |
---|
1314 | } |
---|
1315 | } |
---|
1316 | s_result->rank=idelems_mod; |
---|
1317 | return s_result; |
---|
1318 | } |
---|
1319 | |
---|
1320 | /*2 |
---|
1321 | *computes division of P by Q with remainder up to (w-weighted) degree n |
---|
1322 | *P, Q, and w are not changed |
---|
1323 | */ |
---|
1324 | void idLiftW(ideal P,ideal Q,int n,matrix &T, ideal &R,int *w) |
---|
1325 | { |
---|
1326 | long N=0; |
---|
1327 | int i; |
---|
1328 | for(i=IDELEMS(Q)-1;i>=0;i--) |
---|
1329 | if(w==NULL) |
---|
1330 | N=si_max(N,p_Deg(Q->m[i],currRing)); |
---|
1331 | else |
---|
1332 | N=si_max(N,p_DegW(Q->m[i],w,currRing)); |
---|
1333 | N+=n; |
---|
1334 | |
---|
1335 | T=mpNew(IDELEMS(Q),IDELEMS(P)); |
---|
1336 | R=idInit(IDELEMS(P),P->rank); |
---|
1337 | |
---|
1338 | for(i=IDELEMS(P)-1;i>=0;i--) |
---|
1339 | { |
---|
1340 | poly p; |
---|
1341 | if(w==NULL) |
---|
1342 | p=ppJet(P->m[i],N); |
---|
1343 | else |
---|
1344 | p=ppJetW(P->m[i],N,w); |
---|
1345 | |
---|
1346 | int j=IDELEMS(Q)-1; |
---|
1347 | while(p!=NULL) |
---|
1348 | { |
---|
1349 | if(pDivisibleBy(Q->m[j],p)) |
---|
1350 | { |
---|
1351 | poly p0=p_DivideM(pHead(p),pHead(Q->m[j]),currRing); |
---|
1352 | if(w==NULL) |
---|
1353 | p=pJet(pSub(p,ppMult_mm(Q->m[j],p0)),N); |
---|
1354 | else |
---|
1355 | p=pJetW(pSub(p,ppMult_mm(Q->m[j],p0)),N,w); |
---|
1356 | pNormalize(p); |
---|
1357 | if(((w==NULL)&&(p_Deg(p0,currRing)>n))||((w!=NULL)&&(p_DegW(p0,w,currRing)>n))) |
---|
1358 | p_Delete(&p0,currRing); |
---|
1359 | else |
---|
1360 | MATELEM(T,j+1,i+1)=pAdd(MATELEM(T,j+1,i+1),p0); |
---|
1361 | j=IDELEMS(Q)-1; |
---|
1362 | } |
---|
1363 | else |
---|
1364 | { |
---|
1365 | if(j==0) |
---|
1366 | { |
---|
1367 | poly p0=p; |
---|
1368 | pIter(p); |
---|
1369 | pNext(p0)=NULL; |
---|
1370 | if(((w==NULL)&&(p_Deg(p0,currRing)>n)) |
---|
1371 | ||((w!=NULL)&&(p_DegW(p0,w,currRing)>n))) |
---|
1372 | p_Delete(&p0,currRing); |
---|
1373 | else |
---|
1374 | R->m[i]=pAdd(R->m[i],p0); |
---|
1375 | j=IDELEMS(Q)-1; |
---|
1376 | } |
---|
1377 | else |
---|
1378 | j--; |
---|
1379 | } |
---|
1380 | } |
---|
1381 | } |
---|
1382 | } |
---|
1383 | |
---|
1384 | /*2 |
---|
1385 | *computes the quotient of h1,h2 : internal routine for idQuot |
---|
1386 | *BEWARE: the returned ideals may contain incorrectly ordered polys ! |
---|
1387 | * |
---|
1388 | */ |
---|
1389 | static ideal idInitializeQuot (ideal h1, ideal h2, BOOLEAN h1IsStb, BOOLEAN *addOnlyOne, int *kkmax) |
---|
1390 | { |
---|
1391 | idTest(h1); |
---|
1392 | idTest(h2); |
---|
1393 | |
---|
1394 | ideal temph1; |
---|
1395 | poly p,q = NULL; |
---|
1396 | int i,l,ll,k,kkk,kmax; |
---|
1397 | int j = 0; |
---|
1398 | int k1 = id_RankFreeModule(h1,currRing); |
---|
1399 | int k2 = id_RankFreeModule(h2,currRing); |
---|
1400 | tHomog hom=isNotHomog; |
---|
1401 | k=si_max(k1,k2); |
---|
1402 | if (k==0) |
---|
1403 | k = 1; |
---|
1404 | if ((k2==0) && (k>1)) *addOnlyOne = FALSE; |
---|
1405 | intvec * weights; |
---|
1406 | hom = (tHomog)idHomModule(h1,currRing->qideal,&weights); |
---|
1407 | if /**addOnlyOne &&*/ (/*(*/ !h1IsStb /*)*/) |
---|
1408 | temph1 = kStd(h1,currRing->qideal,hom,&weights,NULL); |
---|
1409 | else |
---|
1410 | temph1 = idCopy(h1); |
---|
1411 | if (weights!=NULL) delete weights; |
---|
1412 | idTest(temph1); |
---|
1413 | /*--- making a single vector from h2 ---------------------*/ |
---|
1414 | for (i=0; i<IDELEMS(h2); i++) |
---|
1415 | { |
---|
1416 | if (h2->m[i] != NULL) |
---|
1417 | { |
---|
1418 | p = pCopy(h2->m[i]); |
---|
1419 | if (k2 == 0) |
---|
1420 | p_Shift(&p,j*k+1,currRing); |
---|
1421 | else |
---|
1422 | p_Shift(&p,j*k,currRing); |
---|
1423 | q = pAdd(q,p); |
---|
1424 | j++; |
---|
1425 | } |
---|
1426 | } |
---|
1427 | *kkmax = kmax = j*k+1; |
---|
1428 | /*--- adding a monomial for the result (syzygy) ----------*/ |
---|
1429 | p = q; |
---|
1430 | while (pNext(p)!=NULL) pIter(p); |
---|
1431 | pNext(p) = pOne(); |
---|
1432 | pIter(p); |
---|
1433 | pSetComp(p,kmax); |
---|
1434 | pSetmComp(p); |
---|
1435 | /*--- constructing the big matrix ------------------------*/ |
---|
1436 | ideal h4 = idInit(k,kmax+k-1); |
---|
1437 | h4->m[0] = q; |
---|
1438 | if (k2 == 0) |
---|
1439 | { |
---|
1440 | for (i=1; i<k; i++) |
---|
1441 | { |
---|
1442 | if (h4->m[i-1]!=NULL) |
---|
1443 | { |
---|
1444 | p = p_Copy_noCheck(h4->m[i-1], currRing); /*h4->m[i-1]!=NULL*/ |
---|
1445 | p_Shift(&p,1,currRing); |
---|
1446 | h4->m[i] = p; |
---|
1447 | } |
---|
1448 | else break; |
---|
1449 | } |
---|
1450 | } |
---|
1451 | idSkipZeroes(h4); |
---|
1452 | kkk = IDELEMS(h4); |
---|
1453 | i = IDELEMS(temph1); |
---|
1454 | for (l=0; l<i; l++) |
---|
1455 | { |
---|
1456 | if(temph1->m[l]!=NULL) |
---|
1457 | { |
---|
1458 | for (ll=0; ll<j; ll++) |
---|
1459 | { |
---|
1460 | p = pCopy(temph1->m[l]); |
---|
1461 | if (k1 == 0) |
---|
1462 | p_Shift(&p,ll*k+1,currRing); |
---|
1463 | else |
---|
1464 | p_Shift(&p,ll*k,currRing); |
---|
1465 | if (kkk >= IDELEMS(h4)) |
---|
1466 | { |
---|
1467 | pEnlargeSet(&(h4->m),IDELEMS(h4),16); |
---|
1468 | IDELEMS(h4) += 16; |
---|
1469 | } |
---|
1470 | h4->m[kkk] = p; |
---|
1471 | kkk++; |
---|
1472 | } |
---|
1473 | } |
---|
1474 | } |
---|
1475 | /*--- if h2 goes in as single vector - the h1-part is just SB ---*/ |
---|
1476 | if (*addOnlyOne) |
---|
1477 | { |
---|
1478 | idSkipZeroes(h4); |
---|
1479 | p = h4->m[0]; |
---|
1480 | for (i=0;i<IDELEMS(h4)-1;i++) |
---|
1481 | { |
---|
1482 | h4->m[i] = h4->m[i+1]; |
---|
1483 | } |
---|
1484 | h4->m[IDELEMS(h4)-1] = p; |
---|
1485 | } |
---|
1486 | idDelete(&temph1); |
---|
1487 | //idTest(h4);//see remark at the beginning |
---|
1488 | return h4; |
---|
1489 | } |
---|
1490 | |
---|
1491 | /*2 |
---|
1492 | *computes the quotient of h1,h2 |
---|
1493 | */ |
---|
1494 | ideal idQuot (ideal h1, ideal h2, BOOLEAN h1IsStb, BOOLEAN resultIsIdeal) |
---|
1495 | { |
---|
1496 | // first check for special case h1:(0) |
---|
1497 | if (idIs0(h2)) |
---|
1498 | { |
---|
1499 | ideal res; |
---|
1500 | if (resultIsIdeal) |
---|
1501 | { |
---|
1502 | res = idInit(1,1); |
---|
1503 | res->m[0] = pOne(); |
---|
1504 | } |
---|
1505 | else |
---|
1506 | res = idFreeModule(h1->rank); |
---|
1507 | return res; |
---|
1508 | } |
---|
1509 | int i, kmax; |
---|
1510 | BOOLEAN addOnlyOne=TRUE; |
---|
1511 | tHomog hom=isNotHomog; |
---|
1512 | intvec * weights1; |
---|
1513 | |
---|
1514 | ideal s_h4 = idInitializeQuot (h1,h2,h1IsStb,&addOnlyOne,&kmax); |
---|
1515 | |
---|
1516 | hom = (tHomog)idHomModule(s_h4,currRing->qideal,&weights1); |
---|
1517 | |
---|
1518 | ring orig_ring=currRing; |
---|
1519 | ring syz_ring=rAssure_SyzOrder(orig_ring,TRUE); |
---|
1520 | rSetSyzComp(kmax-1,syz_ring); |
---|
1521 | rChangeCurrRing(syz_ring); |
---|
1522 | if (orig_ring!=syz_ring) |
---|
1523 | // s_h4 = idrMoveR_NoSort(s_h4,orig_ring, syz_ring); |
---|
1524 | s_h4 = idrMoveR(s_h4,orig_ring, syz_ring); |
---|
1525 | idTest(s_h4); |
---|
1526 | |
---|
1527 | #if 0 |
---|
1528 | matrix m=idModule2Matrix(idCopy(s_h4)); |
---|
1529 | PrintS("start:\n"); |
---|
1530 | ipPrint_MA0(m,"Q"); |
---|
1531 | idDelete((ideal *)&m); |
---|
1532 | PrintS("last elem:");wrp(s_h4->m[IDELEMS(s_h4)-1]);PrintLn(); |
---|
1533 | #endif |
---|
1534 | |
---|
1535 | ideal s_h3; |
---|
1536 | BITSET old_test1; |
---|
1537 | SI_SAVE_OPT1(old_test1); |
---|
1538 | if (TEST_OPT_RETURN_SB) si_opt_1 |= Sy_bit(OPT_REDTAIL_SYZ); |
---|
1539 | if (addOnlyOne) |
---|
1540 | { |
---|
1541 | if(!rField_is_Ring(currRing)) si_opt_1 |= Sy_bit(OPT_SB_1); |
---|
1542 | s_h3 = kStd(s_h4,currRing->qideal,hom,&weights1,NULL,0/*kmax-1*/,IDELEMS(s_h4)-1); |
---|
1543 | } |
---|
1544 | else |
---|
1545 | { |
---|
1546 | s_h3 = kStd(s_h4,currRing->qideal,hom,&weights1,NULL,kmax-1); |
---|
1547 | } |
---|
1548 | SI_RESTORE_OPT1(old_test1); |
---|
1549 | |
---|
1550 | #if 0 |
---|
1551 | // only together with the above debug stuff |
---|
1552 | idSkipZeroes(s_h3); |
---|
1553 | m=idModule2Matrix(idCopy(s_h3)); |
---|
1554 | Print("result, kmax=%d:\n",kmax); |
---|
1555 | ipPrint_MA0(m,"S"); |
---|
1556 | idDelete((ideal *)&m); |
---|
1557 | #endif |
---|
1558 | |
---|
1559 | idTest(s_h3); |
---|
1560 | if (weights1!=NULL) delete weights1; |
---|
1561 | idDelete(&s_h4); |
---|
1562 | |
---|
1563 | for (i=0;i<IDELEMS(s_h3);i++) |
---|
1564 | { |
---|
1565 | if ((s_h3->m[i]!=NULL) && (pGetComp(s_h3->m[i])>=kmax)) |
---|
1566 | { |
---|
1567 | if (resultIsIdeal) |
---|
1568 | p_Shift(&s_h3->m[i],-kmax,currRing); |
---|
1569 | else |
---|
1570 | p_Shift(&s_h3->m[i],-kmax+1,currRing); |
---|
1571 | } |
---|
1572 | else |
---|
1573 | p_Delete(&s_h3->m[i],currRing); |
---|
1574 | } |
---|
1575 | if (resultIsIdeal) |
---|
1576 | s_h3->rank = 1; |
---|
1577 | else |
---|
1578 | s_h3->rank = h1->rank; |
---|
1579 | if(syz_ring!=orig_ring) |
---|
1580 | { |
---|
1581 | rChangeCurrRing(orig_ring); |
---|
1582 | s_h3 = idrMoveR_NoSort(s_h3, syz_ring, orig_ring); |
---|
1583 | rDelete(syz_ring); |
---|
1584 | } |
---|
1585 | idSkipZeroes(s_h3); |
---|
1586 | idTest(s_h3); |
---|
1587 | return s_h3; |
---|
1588 | } |
---|
1589 | |
---|
1590 | /*2 |
---|
1591 | * eliminate delVar (product of vars) in h1 |
---|
1592 | */ |
---|
1593 | ideal idElimination (ideal h1,poly delVar,intvec *hilb, GbVariant alg) |
---|
1594 | { |
---|
1595 | int i,j=0,k,l; |
---|
1596 | ideal h,hh, h3; |
---|
1597 | rRingOrder_t *ord; |
---|
1598 | int *block0,*block1; |
---|
1599 | int ordersize=2; |
---|
1600 | int **wv; |
---|
1601 | tHomog hom; |
---|
1602 | intvec * w; |
---|
1603 | ring tmpR; |
---|
1604 | ring origR = currRing; |
---|
1605 | |
---|
1606 | if (delVar==NULL) |
---|
1607 | { |
---|
1608 | return idCopy(h1); |
---|
1609 | } |
---|
1610 | if ((currRing->qideal!=NULL) && rIsPluralRing(origR)) |
---|
1611 | { |
---|
1612 | WerrorS("cannot eliminate in a qring"); |
---|
1613 | return NULL; |
---|
1614 | } |
---|
1615 | if (idIs0(h1)) return idInit(1,h1->rank); |
---|
1616 | #ifdef HAVE_PLURAL |
---|
1617 | if (rIsPluralRing(origR)) |
---|
1618 | /* in the NC case, we have to check the admissibility of */ |
---|
1619 | /* the subalgebra to be intersected with */ |
---|
1620 | { |
---|
1621 | if ((ncRingType(origR) != nc_skew) && (ncRingType(origR) != nc_exterior)) /* in (quasi)-commutative algebras every subalgebra is admissible */ |
---|
1622 | { |
---|
1623 | if (nc_CheckSubalgebra(delVar,origR)) |
---|
1624 | { |
---|
1625 | WerrorS("no elimination is possible: subalgebra is not admissible"); |
---|
1626 | return NULL; |
---|
1627 | } |
---|
1628 | } |
---|
1629 | } |
---|
1630 | #endif |
---|
1631 | hom=(tHomog)idHomModule(h1,NULL,&w); //sets w to weight vector or NULL |
---|
1632 | h3=idInit(16,h1->rank); |
---|
1633 | ordersize=rBlocks(origR)+1; |
---|
1634 | #if 0 |
---|
1635 | if (rIsPluralRing(origR)) // we have too keep the odering: it may be needed |
---|
1636 | // for G-algebra |
---|
1637 | { |
---|
1638 | for (k=0;k<ordersize-1; k++) |
---|
1639 | { |
---|
1640 | block0[k+1] = origR->block0[k]; |
---|
1641 | block1[k+1] = origR->block1[k]; |
---|
1642 | ord[k+1] = origR->order[k]; |
---|
1643 | if (origR->wvhdl[k]!=NULL) wv[k+1] = (int*) omMemDup(origR->wvhdl[k]); |
---|
1644 | } |
---|
1645 | } |
---|
1646 | else |
---|
1647 | { |
---|
1648 | block0[1] = 1; |
---|
1649 | block1[1] = (currRing->N); |
---|
1650 | if (origR->OrdSgn==1) ord[1] = ringorder_wp; |
---|
1651 | else ord[1] = ringorder_ws; |
---|
1652 | wv[1]=(int*)omAlloc0((currRing->N)*sizeof(int)); |
---|
1653 | double wNsqr = (double)2.0 / (double)(currRing->N); |
---|
1654 | wFunctional = wFunctionalBuch; |
---|
1655 | int *x= (int * )omAlloc(2 * ((currRing->N) + 1) * sizeof(int)); |
---|
1656 | int sl=IDELEMS(h1) - 1; |
---|
1657 | wCall(h1->m, sl, x, wNsqr); |
---|
1658 | for (sl = (currRing->N); sl!=0; sl--) |
---|
1659 | wv[1][sl-1] = x[sl + (currRing->N) + 1]; |
---|
1660 | omFreeSize((ADDRESS)x, 2 * ((currRing->N) + 1) * sizeof(int)); |
---|
1661 | |
---|
1662 | ord[2]=ringorder_C; |
---|
1663 | ord[3]=0; |
---|
1664 | } |
---|
1665 | #else |
---|
1666 | #endif |
---|
1667 | if ((hom==TRUE) && (origR->OrdSgn==1) && (!rIsPluralRing(origR))) |
---|
1668 | { |
---|
1669 | #if 1 |
---|
1670 | // we change to an ordering: |
---|
1671 | // aa(1,1,1,...,0,0,0),wp(...),C |
---|
1672 | // this seems to be better than version 2 below, |
---|
1673 | // according to Tst/../elimiate_[3568].tat (- 17 %) |
---|
1674 | ord=(rRingOrder_t*)omAlloc0(4*sizeof(rRingOrder_t)); |
---|
1675 | block0=(int*)omAlloc0(4*sizeof(int)); |
---|
1676 | block1=(int*)omAlloc0(4*sizeof(int)); |
---|
1677 | wv=(int**) omAlloc0(4*sizeof(int**)); |
---|
1678 | block0[0] = block0[1] = 1; |
---|
1679 | block1[0] = block1[1] = rVar(origR); |
---|
1680 | wv[0]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int)); |
---|
1681 | // use this special ordering: like ringorder_a, except that pFDeg, pWeights |
---|
1682 | // ignore it |
---|
1683 | ord[0] = ringorder_aa; |
---|
1684 | for (j=0;j<rVar(origR);j++) |
---|
1685 | if (pGetExp(delVar,j+1)!=0) wv[0][j]=1; |
---|
1686 | BOOLEAN wp=FALSE; |
---|
1687 | for (j=0;j<rVar(origR);j++) |
---|
1688 | if (p_Weight(j+1,origR)!=1) { wp=TRUE;break; } |
---|
1689 | if (wp) |
---|
1690 | { |
---|
1691 | wv[1]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int)); |
---|
1692 | for (j=0;j<rVar(origR);j++) |
---|
1693 | wv[1][j]=p_Weight(j+1,origR); |
---|
1694 | ord[1] = ringorder_wp; |
---|
1695 | } |
---|
1696 | else |
---|
1697 | ord[1] = ringorder_dp; |
---|
1698 | #else |
---|
1699 | // we change to an ordering: |
---|
1700 | // a(w1,...wn),wp(1,...0.....),C |
---|
1701 | ord=(int*)omAlloc0(4*sizeof(int)); |
---|
1702 | block0=(int*)omAlloc0(4*sizeof(int)); |
---|
1703 | block1=(int*)omAlloc0(4*sizeof(int)); |
---|
1704 | wv=(int**) omAlloc0(4*sizeof(int**)); |
---|
1705 | block0[0] = block0[1] = 1; |
---|
1706 | block1[0] = block1[1] = rVar(origR); |
---|
1707 | wv[0]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int)); |
---|
1708 | wv[1]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int)); |
---|
1709 | ord[0] = ringorder_a; |
---|
1710 | for (j=0;j<rVar(origR);j++) |
---|
1711 | wv[0][j]=pWeight(j+1,origR); |
---|
1712 | ord[1] = ringorder_wp; |
---|
1713 | for (j=0;j<rVar(origR);j++) |
---|
1714 | if (pGetExp(delVar,j+1)!=0) wv[1][j]=1; |
---|
1715 | #endif |
---|
1716 | ord[2] = ringorder_C; |
---|
1717 | ord[3] = (rRingOrder_t)0; |
---|
1718 | } |
---|
1719 | else |
---|
1720 | { |
---|
1721 | // we change to an ordering: |
---|
1722 | // aa(....),orig_ordering |
---|
1723 | ord=(rRingOrder_t*)omAlloc0(ordersize*sizeof(rRingOrder_t)); |
---|
1724 | block0=(int*)omAlloc0(ordersize*sizeof(int)); |
---|
1725 | block1=(int*)omAlloc0(ordersize*sizeof(int)); |
---|
1726 | wv=(int**) omAlloc0(ordersize*sizeof(int**)); |
---|
1727 | for (k=0;k<ordersize-1; k++) |
---|
1728 | { |
---|
1729 | block0[k+1] = origR->block0[k]; |
---|
1730 | block1[k+1] = origR->block1[k]; |
---|
1731 | ord[k+1] = origR->order[k]; |
---|
1732 | if (origR->wvhdl[k]!=NULL) |
---|
1733 | #ifdef HAVE_OMALLOC |
---|
1734 | wv[k+1] = (int*) omMemDup(origR->wvhdl[k]); |
---|
1735 | #else |
---|
1736 | { |
---|
1737 | int l=(origR->block1[k]-origR->block0[k]+1)*sizeof(int); |
---|
1738 | if (origR->order[k]==ringorder_a64) l*=2; |
---|
1739 | wv[k+1]=(int*)omalloc(l); |
---|
1740 | memcpy(wv[k+1],origR->wvhdl[k],l); |
---|
1741 | } |
---|
1742 | #endif |
---|
1743 | } |
---|
1744 | block0[0] = 1; |
---|
1745 | block1[0] = rVar(origR); |
---|
1746 | wv[0]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int)); |
---|
1747 | for (j=0;j<rVar(origR);j++) |
---|
1748 | if (pGetExp(delVar,j+1)!=0) wv[0][j]=1; |
---|
1749 | // use this special ordering: like ringorder_a, except that pFDeg, pWeights |
---|
1750 | // ignore it |
---|
1751 | ord[0] = ringorder_aa; |
---|
1752 | } |
---|
1753 | // fill in tmp ring to get back the data later on |
---|
1754 | tmpR = rCopy0(origR,FALSE,FALSE); // qring==NULL |
---|
1755 | //rUnComplete(tmpR); |
---|
1756 | tmpR->p_Procs=NULL; |
---|
1757 | tmpR->order = ord; |
---|
1758 | tmpR->block0 = block0; |
---|
1759 | tmpR->block1 = block1; |
---|
1760 | tmpR->wvhdl = wv; |
---|
1761 | rComplete(tmpR, 1); |
---|
1762 | |
---|
1763 | #ifdef HAVE_PLURAL |
---|
1764 | /* update nc structure on tmpR */ |
---|
1765 | if (rIsPluralRing(origR)) |
---|
1766 | { |
---|
1767 | if ( nc_rComplete(origR, tmpR, false) ) // no quotient ideal! |
---|
1768 | { |
---|
1769 | WerrorS("no elimination is possible: ordering condition is violated"); |
---|
1770 | // cleanup |
---|
1771 | rDelete(tmpR); |
---|
1772 | if (w!=NULL) |
---|
1773 | delete w; |
---|
1774 | return NULL; |
---|
1775 | } |
---|
1776 | } |
---|
1777 | #endif |
---|
1778 | // change into the new ring |
---|
1779 | //pChangeRing((currRing->N),currRing->OrdSgn,ord,block0,block1,wv); |
---|
1780 | rChangeCurrRing(tmpR); |
---|
1781 | |
---|
1782 | //h = idInit(IDELEMS(h1),h1->rank); |
---|
1783 | // fetch data from the old ring |
---|
1784 | //for (k=0;k<IDELEMS(h1);k++) h->m[k] = prCopyR( h1->m[k], origR); |
---|
1785 | h=idrCopyR(h1,origR,currRing); |
---|
1786 | if (origR->qideal!=NULL) |
---|
1787 | { |
---|
1788 | WarnS("eliminate in q-ring: experimental"); |
---|
1789 | ideal q=idrCopyR(origR->qideal,origR,currRing); |
---|
1790 | ideal s=idSimpleAdd(h,q); |
---|
1791 | idDelete(&h); |
---|
1792 | idDelete(&q); |
---|
1793 | h=s; |
---|
1794 | } |
---|
1795 | // compute GB |
---|
1796 | if ((alg!=GbDefault) |
---|
1797 | && (alg!=GbGroebner) |
---|
1798 | && (alg!=GbModstd) |
---|
1799 | && (alg!=GbSlimgb) |
---|
1800 | && (alg!=GbSba) |
---|
1801 | && (alg!=GbStd)) |
---|
1802 | { |
---|
1803 | WarnS("wrong algorithm for GB"); |
---|
1804 | alg=GbDefault; |
---|
1805 | } |
---|
1806 | BITSET save2; |
---|
1807 | SI_SAVE_OPT2(save2); |
---|
1808 | if (!TEST_OPT_RETURN_SB) si_opt_2|=V_IDELIM; |
---|
1809 | hh=idGroebner(h,0,alg,hilb); |
---|
1810 | SI_RESTORE_OPT2(save2); |
---|
1811 | // go back to the original ring |
---|
1812 | rChangeCurrRing(origR); |
---|
1813 | i = IDELEMS(hh)-1; |
---|
1814 | while ((i >= 0) && (hh->m[i] == NULL)) i--; |
---|
1815 | j = -1; |
---|
1816 | // fetch data from temp ring |
---|
1817 | for (k=0; k<=i; k++) |
---|
1818 | { |
---|
1819 | l=(currRing->N); |
---|
1820 | while ((l>0) && (p_GetExp( hh->m[k],l,tmpR)*pGetExp(delVar,l)==0)) l--; |
---|
1821 | if (l==0) |
---|
1822 | { |
---|
1823 | j++; |
---|
1824 | if (j >= IDELEMS(h3)) |
---|
1825 | { |
---|
1826 | pEnlargeSet(&(h3->m),IDELEMS(h3),16); |
---|
1827 | IDELEMS(h3) += 16; |
---|
1828 | } |
---|
1829 | h3->m[j] = prMoveR( hh->m[k], tmpR,origR); |
---|
1830 | hh->m[k] = NULL; |
---|
1831 | } |
---|
1832 | } |
---|
1833 | id_Delete(&hh, tmpR); |
---|
1834 | idSkipZeroes(h3); |
---|
1835 | rDelete(tmpR); |
---|
1836 | if (w!=NULL) |
---|
1837 | delete w; |
---|
1838 | return h3; |
---|
1839 | } |
---|
1840 | |
---|
1841 | #ifdef WITH_OLD_MINOR |
---|
1842 | /*2 |
---|
1843 | * compute the which-th ar-minor of the matrix a |
---|
1844 | */ |
---|
1845 | poly idMinor(matrix a, int ar, unsigned long which, ideal R) |
---|
1846 | { |
---|
1847 | int i,j/*,k,size*/; |
---|
1848 | unsigned long curr; |
---|
1849 | int *rowchoise,*colchoise; |
---|
1850 | BOOLEAN rowch,colch; |
---|
1851 | // ideal result; |
---|
1852 | matrix tmp; |
---|
1853 | poly p,q; |
---|
1854 | |
---|
1855 | rowchoise=(int *)omAlloc(ar*sizeof(int)); |
---|
1856 | colchoise=(int *)omAlloc(ar*sizeof(int)); |
---|
1857 | tmp=mpNew(ar,ar); |
---|
1858 | curr = 0; /* index of current minor */ |
---|
1859 | idInitChoise(ar,1,a->rows(),&rowch,rowchoise); |
---|
1860 | while (!rowch) |
---|
1861 | { |
---|
1862 | idInitChoise(ar,1,a->cols(),&colch,colchoise); |
---|
1863 | while (!colch) |
---|
1864 | { |
---|
1865 | if (curr == which) |
---|
1866 | { |
---|
1867 | for (i=1; i<=ar; i++) |
---|
1868 | { |
---|
1869 | for (j=1; j<=ar; j++) |
---|
1870 | { |
---|
1871 | MATELEM(tmp,i,j) = MATELEM(a,rowchoise[i-1],colchoise[j-1]); |
---|
1872 | } |
---|
1873 | } |
---|
1874 | p = mp_DetBareiss(tmp,currRing); |
---|
1875 | if (p!=NULL) |
---|
1876 | { |
---|
1877 | if (R!=NULL) |
---|
1878 | { |
---|
1879 | q = p; |
---|
1880 | p = kNF(R,currRing->qideal,q); |
---|
1881 | p_Delete(&q,currRing); |
---|
1882 | } |
---|
1883 | } |
---|
1884 | /*delete the matrix tmp*/ |
---|
1885 | for (i=1; i<=ar; i++) |
---|
1886 | { |
---|
1887 | for (j=1; j<=ar; j++) MATELEM(tmp,i,j) = NULL; |
---|
1888 | } |
---|
1889 | idDelete((ideal*)&tmp); |
---|
1890 | omFreeSize((ADDRESS)rowchoise,ar*sizeof(int)); |
---|
1891 | omFreeSize((ADDRESS)colchoise,ar*sizeof(int)); |
---|
1892 | return (p); |
---|
1893 | } |
---|
1894 | curr++; |
---|
1895 | idGetNextChoise(ar,a->cols(),&colch,colchoise); |
---|
1896 | } |
---|
1897 | idGetNextChoise(ar,a->rows(),&rowch,rowchoise); |
---|
1898 | } |
---|
1899 | return (poly) 1; |
---|
1900 | } |
---|
1901 | |
---|
1902 | /*2 |
---|
1903 | * compute all ar-minors of the matrix a |
---|
1904 | */ |
---|
1905 | ideal idMinors(matrix a, int ar, ideal R) |
---|
1906 | { |
---|
1907 | int i,j,/*k,*/size; |
---|
1908 | int *rowchoise,*colchoise; |
---|
1909 | BOOLEAN rowch,colch; |
---|
1910 | ideal result; |
---|
1911 | matrix tmp; |
---|
1912 | poly p,q; |
---|
1913 | |
---|
1914 | i = binom(a->rows(),ar); |
---|
1915 | j = binom(a->cols(),ar); |
---|
1916 | size=i*j; |
---|
1917 | |
---|
1918 | rowchoise=(int *)omAlloc(ar*sizeof(int)); |
---|
1919 | colchoise=(int *)omAlloc(ar*sizeof(int)); |
---|
1920 | result=idInit(size,1); |
---|
1921 | tmp=mpNew(ar,ar); |
---|
1922 | // k = 0; /* the index in result*/ |
---|
1923 | idInitChoise(ar,1,a->rows(),&rowch,rowchoise); |
---|
1924 | while (!rowch) |
---|
1925 | { |
---|
1926 | idInitChoise(ar,1,a->cols(),&colch,colchoise); |
---|
1927 | while (!colch) |
---|
1928 | { |
---|
1929 | for (i=1; i<=ar; i++) |
---|
1930 | { |
---|
1931 | for (j=1; j<=ar; j++) |
---|
1932 | { |
---|
1933 | MATELEM(tmp,i,j) = MATELEM(a,rowchoise[i-1],colchoise[j-1]); |
---|
1934 | } |
---|
1935 | } |
---|
1936 | p = mp_DetBareiss(tmp,currRing); |
---|
1937 | if (p!=NULL) |
---|
1938 | { |
---|
1939 | if (R!=NULL) |
---|
1940 | { |
---|
1941 | q = p; |
---|
1942 | p = kNF(R,currRing->qideal,q); |
---|
1943 | p_Delete(&q,currRing); |
---|
1944 | } |
---|
1945 | } |
---|
1946 | if (k>=size) |
---|
1947 | { |
---|
1948 | pEnlargeSet(&result->m,size,32); |
---|
1949 | size += 32; |
---|
1950 | } |
---|
1951 | result->m[k] = p; |
---|
1952 | k++; |
---|
1953 | idGetNextChoise(ar,a->cols(),&colch,colchoise); |
---|
1954 | } |
---|
1955 | idGetNextChoise(ar,a->rows(),&rowch,rowchoise); |
---|
1956 | } |
---|
1957 | /*delete the matrix tmp*/ |
---|
1958 | for (i=1; i<=ar; i++) |
---|
1959 | { |
---|
1960 | for (j=1; j<=ar; j++) MATELEM(tmp,i,j) = NULL; |
---|
1961 | } |
---|
1962 | idDelete((ideal*)&tmp); |
---|
1963 | if (k==0) |
---|
1964 | { |
---|
1965 | k=1; |
---|
1966 | result->m[0]=NULL; |
---|
1967 | } |
---|
1968 | omFreeSize((ADDRESS)rowchoise,ar*sizeof(int)); |
---|
1969 | omFreeSize((ADDRESS)colchoise,ar*sizeof(int)); |
---|
1970 | pEnlargeSet(&result->m,size,k-size); |
---|
1971 | IDELEMS(result) = k; |
---|
1972 | return (result); |
---|
1973 | } |
---|
1974 | #else |
---|
1975 | |
---|
1976 | |
---|
1977 | /// compute all ar-minors of the matrix a |
---|
1978 | /// the caller of mpRecMin |
---|
1979 | /// the elements of the result are not in R (if R!=NULL) |
---|
1980 | ideal idMinors(matrix a, int ar, ideal R) |
---|
1981 | { |
---|
1982 | |
---|
1983 | const ring origR=currRing; |
---|
1984 | id_Test((ideal)a, origR); |
---|
1985 | |
---|
1986 | const int r = a->nrows; |
---|
1987 | const int c = a->ncols; |
---|
1988 | |
---|
1989 | if((ar<=0) || (ar>r) || (ar>c)) |
---|
1990 | { |
---|
1991 | Werror("%d-th minor, matrix is %dx%d",ar,r,c); |
---|
1992 | return NULL; |
---|
1993 | } |
---|
1994 | |
---|
1995 | ideal h = id_Matrix2Module(mp_Copy(a,origR),origR); |
---|
1996 | long bound = sm_ExpBound(h,c,r,ar,origR); |
---|
1997 | id_Delete(&h, origR); |
---|
1998 | |
---|
1999 | ring tmpR = sm_RingChange(origR,bound); |
---|
2000 | |
---|
2001 | matrix b = mpNew(r,c); |
---|
2002 | |
---|
2003 | for (int i=r*c-1;i>=0;i--) |
---|
2004 | if (a->m[i] != NULL) |
---|
2005 | b->m[i] = prCopyR(a->m[i],origR,tmpR); |
---|
2006 | |
---|
2007 | id_Test( (ideal)b, tmpR); |
---|
2008 | |
---|
2009 | if (R!=NULL) |
---|
2010 | { |
---|
2011 | R = idrCopyR(R,origR,tmpR); // TODO: overwrites R? memory leak? |
---|
2012 | //if (ar>1) // otherwise done in mpMinorToResult |
---|
2013 | //{ |
---|
2014 | // matrix bb=(matrix)kNF(R,currRing->qideal,(ideal)b); |
---|
2015 | // bb->rank=b->rank; bb->nrows=b->nrows; bb->ncols=b->ncols; |
---|
2016 | // idDelete((ideal*)&b); b=bb; |
---|
2017 | //} |
---|
2018 | id_Test( R, tmpR); |
---|
2019 | } |
---|
2020 | |
---|
2021 | int size=binom(r,ar)*binom(c,ar); |
---|
2022 | ideal result = idInit(size,1); |
---|
2023 | |
---|
2024 | int elems = 0; |
---|
2025 | |
---|
2026 | if(ar>1) |
---|
2027 | mp_RecMin(ar-1,result,elems,b,r,c,NULL,R,tmpR); |
---|
2028 | else |
---|
2029 | mp_MinorToResult(result,elems,b,r,c,R,tmpR); |
---|
2030 | |
---|
2031 | id_Test( (ideal)b, tmpR); |
---|
2032 | |
---|
2033 | id_Delete((ideal *)&b, tmpR); |
---|
2034 | |
---|
2035 | if (R!=NULL) id_Delete(&R,tmpR); |
---|
2036 | |
---|
2037 | rChangeCurrRing(origR); |
---|
2038 | result = idrMoveR(result,tmpR,origR); |
---|
2039 | sm_KillModifiedRing(tmpR); |
---|
2040 | idTest(result); |
---|
2041 | return result; |
---|
2042 | } |
---|
2043 | #endif |
---|
2044 | |
---|
2045 | /*2 |
---|
2046 | *returns TRUE if id1 is a submodule of id2 |
---|
2047 | */ |
---|
2048 | BOOLEAN idIsSubModule(ideal id1,ideal id2) |
---|
2049 | { |
---|
2050 | int i; |
---|
2051 | poly p; |
---|
2052 | |
---|
2053 | if (idIs0(id1)) return TRUE; |
---|
2054 | for (i=0;i<IDELEMS(id1);i++) |
---|
2055 | { |
---|
2056 | if (id1->m[i] != NULL) |
---|
2057 | { |
---|
2058 | p = kNF(id2,currRing->qideal,id1->m[i]); |
---|
2059 | if (p != NULL) |
---|
2060 | { |
---|
2061 | p_Delete(&p,currRing); |
---|
2062 | return FALSE; |
---|
2063 | } |
---|
2064 | } |
---|
2065 | } |
---|
2066 | return TRUE; |
---|
2067 | } |
---|
2068 | |
---|
2069 | BOOLEAN idTestHomModule(ideal m, ideal Q, intvec *w) |
---|
2070 | { |
---|
2071 | if ((Q!=NULL) && (!idHomIdeal(Q,NULL))) { PrintS(" Q not hom\n"); return FALSE;} |
---|
2072 | if (idIs0(m)) return TRUE; |
---|
2073 | |
---|
2074 | int cmax=-1; |
---|
2075 | int i; |
---|
2076 | poly p=NULL; |
---|
2077 | int length=IDELEMS(m); |
---|
2078 | polyset P=m->m; |
---|
2079 | for (i=length-1;i>=0;i--) |
---|
2080 | { |
---|
2081 | p=P[i]; |
---|
2082 | if (p!=NULL) cmax=si_max(cmax,(int)pMaxComp(p)+1); |
---|
2083 | } |
---|
2084 | if (w != NULL) |
---|
2085 | if (w->length()+1 < cmax) |
---|
2086 | { |
---|
2087 | // Print("length: %d - %d \n", w->length(),cmax); |
---|
2088 | return FALSE; |
---|
2089 | } |
---|
2090 | |
---|
2091 | if(w!=NULL) |
---|
2092 | p_SetModDeg(w, currRing); |
---|
2093 | |
---|
2094 | for (i=length-1;i>=0;i--) |
---|
2095 | { |
---|
2096 | p=P[i]; |
---|
2097 | if (p!=NULL) |
---|
2098 | { |
---|
2099 | int d=currRing->pFDeg(p,currRing); |
---|
2100 | loop |
---|
2101 | { |
---|
2102 | pIter(p); |
---|
2103 | if (p==NULL) break; |
---|
2104 | if (d!=currRing->pFDeg(p,currRing)) |
---|
2105 | { |
---|
2106 | //pWrite(q); wrp(p); Print(" -> %d - %d\n",d,pFDeg(p,currRing)); |
---|
2107 | if(w!=NULL) |
---|
2108 | p_SetModDeg(NULL, currRing); |
---|
2109 | return FALSE; |
---|
2110 | } |
---|
2111 | } |
---|
2112 | } |
---|
2113 | } |
---|
2114 | |
---|
2115 | if(w!=NULL) |
---|
2116 | p_SetModDeg(NULL, currRing); |
---|
2117 | |
---|
2118 | return TRUE; |
---|
2119 | } |
---|
2120 | |
---|
2121 | ideal idSeries(int n,ideal M,matrix U,intvec *w) |
---|
2122 | { |
---|
2123 | for(int i=IDELEMS(M)-1;i>=0;i--) |
---|
2124 | { |
---|
2125 | if(U==NULL) |
---|
2126 | M->m[i]=pSeries(n,M->m[i],NULL,w); |
---|
2127 | else |
---|
2128 | { |
---|
2129 | M->m[i]=pSeries(n,M->m[i],MATELEM(U,i+1,i+1),w); |
---|
2130 | MATELEM(U,i+1,i+1)=NULL; |
---|
2131 | } |
---|
2132 | } |
---|
2133 | if(U!=NULL) |
---|
2134 | idDelete((ideal*)&U); |
---|
2135 | return M; |
---|
2136 | } |
---|
2137 | |
---|
2138 | matrix idDiff(matrix i, int k) |
---|
2139 | { |
---|
2140 | int e=MATCOLS(i)*MATROWS(i); |
---|
2141 | matrix r=mpNew(MATROWS(i),MATCOLS(i)); |
---|
2142 | r->rank=i->rank; |
---|
2143 | int j; |
---|
2144 | for(j=0; j<e; j++) |
---|
2145 | { |
---|
2146 | r->m[j]=pDiff(i->m[j],k); |
---|
2147 | } |
---|
2148 | return r; |
---|
2149 | } |
---|
2150 | |
---|
2151 | matrix idDiffOp(ideal I, ideal J,BOOLEAN multiply) |
---|
2152 | { |
---|
2153 | matrix r=mpNew(IDELEMS(I),IDELEMS(J)); |
---|
2154 | int i,j; |
---|
2155 | for(i=0; i<IDELEMS(I); i++) |
---|
2156 | { |
---|
2157 | for(j=0; j<IDELEMS(J); j++) |
---|
2158 | { |
---|
2159 | MATELEM(r,i+1,j+1)=pDiffOp(I->m[i],J->m[j],multiply); |
---|
2160 | } |
---|
2161 | } |
---|
2162 | return r; |
---|
2163 | } |
---|
2164 | |
---|
2165 | /*3 |
---|
2166 | *handles for some ideal operations the ring/syzcomp management |
---|
2167 | *returns all syzygies (componentwise-)shifted by -syzcomp |
---|
2168 | *or -syzcomp-1 (in case of ideals as input) |
---|
2169 | static ideal idHandleIdealOp(ideal arg,int syzcomp,int isIdeal=FALSE) |
---|
2170 | { |
---|
2171 | ring orig_ring=currRing; |
---|
2172 | ring syz_ring=rAssure_SyzOrder(orig_ring, TRUE); rChangeCurrRing(syz_ring); |
---|
2173 | rSetSyzComp(length, syz_ring); |
---|
2174 | |
---|
2175 | ideal s_temp; |
---|
2176 | if (orig_ring!=syz_ring) |
---|
2177 | s_temp=idrMoveR_NoSort(arg,orig_ring, syz_ring); |
---|
2178 | else |
---|
2179 | s_temp=arg; |
---|
2180 | |
---|
2181 | ideal s_temp1 = kStd(s_temp,currRing->qideal,testHomog,&w,NULL,length); |
---|
2182 | if (w!=NULL) delete w; |
---|
2183 | |
---|
2184 | if (syz_ring!=orig_ring) |
---|
2185 | { |
---|
2186 | idDelete(&s_temp); |
---|
2187 | rChangeCurrRing(orig_ring); |
---|
2188 | } |
---|
2189 | |
---|
2190 | idDelete(&temp); |
---|
2191 | ideal temp1=idRingCopy(s_temp1,syz_ring); |
---|
2192 | |
---|
2193 | if (syz_ring!=orig_ring) |
---|
2194 | { |
---|
2195 | rChangeCurrRing(syz_ring); |
---|
2196 | idDelete(&s_temp1); |
---|
2197 | rChangeCurrRing(orig_ring); |
---|
2198 | rDelete(syz_ring); |
---|
2199 | } |
---|
2200 | |
---|
2201 | for (i=0;i<IDELEMS(temp1);i++) |
---|
2202 | { |
---|
2203 | if ((temp1->m[i]!=NULL) |
---|
2204 | && (pGetComp(temp1->m[i])<=length)) |
---|
2205 | { |
---|
2206 | pDelete(&(temp1->m[i])); |
---|
2207 | } |
---|
2208 | else |
---|
2209 | { |
---|
2210 | p_Shift(&(temp1->m[i]),-length,currRing); |
---|
2211 | } |
---|
2212 | } |
---|
2213 | temp1->rank = rk; |
---|
2214 | idSkipZeroes(temp1); |
---|
2215 | |
---|
2216 | return temp1; |
---|
2217 | } |
---|
2218 | */ |
---|
2219 | |
---|
2220 | #ifdef HAVE_SHIFTBBA |
---|
2221 | ideal idModuloLP (ideal h2,ideal h1, tHomog, intvec ** w, matrix *T, GbVariant alg) |
---|
2222 | { |
---|
2223 | intvec *wtmp=NULL; |
---|
2224 | if (T!=NULL) idDelete((ideal*)T); |
---|
2225 | |
---|
2226 | int i,k,rk,flength=0,slength,length; |
---|
2227 | poly p,q; |
---|
2228 | |
---|
2229 | if (idIs0(h2)) |
---|
2230 | return idFreeModule(si_max(1,h2->ncols)); |
---|
2231 | if (!idIs0(h1)) |
---|
2232 | flength = id_RankFreeModule(h1,currRing); |
---|
2233 | slength = id_RankFreeModule(h2,currRing); |
---|
2234 | length = si_max(flength,slength); |
---|
2235 | if (length==0) |
---|
2236 | { |
---|
2237 | length = 1; |
---|
2238 | } |
---|
2239 | ideal temp = idInit(IDELEMS(h2),length+IDELEMS(h2)); |
---|
2240 | if ((w!=NULL)&&((*w)!=NULL)) |
---|
2241 | { |
---|
2242 | //Print("input weights:");(*w)->show(1);PrintLn(); |
---|
2243 | int d; |
---|
2244 | int k; |
---|
2245 | wtmp=new intvec(length+IDELEMS(h2)); |
---|
2246 | for (i=0;i<length;i++) |
---|
2247 | ((*wtmp)[i])=(**w)[i]; |
---|
2248 | for (i=0;i<IDELEMS(h2);i++) |
---|
2249 | { |
---|
2250 | poly p=h2->m[i]; |
---|
2251 | if (p!=NULL) |
---|
2252 | { |
---|
2253 | d = p_Deg(p,currRing); |
---|
2254 | k= pGetComp(p); |
---|
2255 | if (slength>0) k--; |
---|
2256 | d +=((**w)[k]); |
---|
2257 | ((*wtmp)[i+length]) = d; |
---|
2258 | } |
---|
2259 | } |
---|
2260 | //Print("weights:");wtmp->show(1);PrintLn(); |
---|
2261 | } |
---|
2262 | for (i=0;i<IDELEMS(h2);i++) |
---|
2263 | { |
---|
2264 | temp->m[i] = pCopy(h2->m[i]); |
---|
2265 | q = pOne(); |
---|
2266 | // non multiplicative variable |
---|
2267 | pSetExp(q, currRing->isLPring - currRing->LPncGenCount + i + 1, 1); |
---|
2268 | p_Setm(q, currRing); |
---|
2269 | pSetComp(q,i+1+length); |
---|
2270 | pSetmComp(q); |
---|
2271 | if(temp->m[i]!=NULL) |
---|
2272 | { |
---|
2273 | if (slength==0) p_Shift(&(temp->m[i]),1,currRing); |
---|
2274 | p = temp->m[i]; |
---|
2275 | temp->m[i] = pAdd(p, q); |
---|
2276 | } |
---|
2277 | else |
---|
2278 | temp->m[i]=q; |
---|
2279 | } |
---|
2280 | rk = k = IDELEMS(h2); |
---|
2281 | if (!idIs0(h1)) |
---|
2282 | { |
---|
2283 | pEnlargeSet(&(temp->m),IDELEMS(temp),IDELEMS(h1)); |
---|
2284 | IDELEMS(temp) += IDELEMS(h1); |
---|
2285 | for (i=0;i<IDELEMS(h1);i++) |
---|
2286 | { |
---|
2287 | if (h1->m[i]!=NULL) |
---|
2288 | { |
---|
2289 | temp->m[k] = pCopy(h1->m[i]); |
---|
2290 | if (flength==0) p_Shift(&(temp->m[k]),1,currRing); |
---|
2291 | k++; |
---|
2292 | } |
---|
2293 | } |
---|
2294 | } |
---|
2295 | |
---|
2296 | ring orig_ring=currRing; |
---|
2297 | ring syz_ring=rAssure_SyzOrder(orig_ring, TRUE); |
---|
2298 | rSetSyzComp(length,syz_ring); |
---|
2299 | rChangeCurrRing(syz_ring); |
---|
2300 | // we can use OPT_RETURN_SB only, if syz_ring==orig_ring, |
---|
2301 | // therefore we disable OPT_RETURN_SB for modulo: |
---|
2302 | // (see tr. #701) |
---|
2303 | //if (TEST_OPT_RETURN_SB) |
---|
2304 | // rSetSyzComp(IDELEMS(h2)+length, syz_ring); |
---|
2305 | //else |
---|
2306 | // rSetSyzComp(length, syz_ring); |
---|
2307 | ideal s_temp; |
---|
2308 | |
---|
2309 | if (syz_ring != orig_ring) |
---|
2310 | { |
---|
2311 | s_temp = idrMoveR_NoSort(temp, orig_ring, syz_ring); |
---|
2312 | } |
---|
2313 | else |
---|
2314 | { |
---|
2315 | s_temp = temp; |
---|
2316 | } |
---|
2317 | |
---|
2318 | idTest(s_temp); |
---|
2319 | unsigned save_opt,save_opt2; |
---|
2320 | SI_SAVE_OPT1(save_opt); |
---|
2321 | SI_SAVE_OPT2(save_opt2); |
---|
2322 | if (T==NULL) si_opt_1 |= Sy_bit(OPT_REDTAIL_SYZ); |
---|
2323 | si_opt_1 |= Sy_bit(OPT_REDTAIL); |
---|
2324 | ideal s_temp1 = idGroebner(s_temp,length,alg); |
---|
2325 | SI_RESTORE_OPT1(save_opt); |
---|
2326 | SI_RESTORE_OPT2(save_opt2); |
---|
2327 | |
---|
2328 | //if (wtmp!=NULL) Print("output weights:");wtmp->show(1);PrintLn(); |
---|
2329 | if ((w!=NULL) && (*w !=NULL) && (wtmp!=NULL)) |
---|
2330 | { |
---|
2331 | delete *w; |
---|
2332 | *w=new intvec(IDELEMS(h2)); |
---|
2333 | for (i=0;i<IDELEMS(h2);i++) |
---|
2334 | ((**w)[i])=(*wtmp)[i+length]; |
---|
2335 | } |
---|
2336 | if (wtmp!=NULL) delete wtmp; |
---|
2337 | |
---|
2338 | if (T==NULL) |
---|
2339 | { |
---|
2340 | for (i=0;i<IDELEMS(s_temp1);i++) |
---|
2341 | { |
---|
2342 | if (s_temp1->m[i]!=NULL) |
---|
2343 | { |
---|
2344 | if (((int)pGetComp(s_temp1->m[i]))<=length) |
---|
2345 | { |
---|
2346 | p_Delete(&(s_temp1->m[i]),currRing); |
---|
2347 | } |
---|
2348 | else |
---|
2349 | { |
---|
2350 | p_Shift(&(s_temp1->m[i]),-length,currRing); |
---|
2351 | } |
---|
2352 | } |
---|
2353 | } |
---|
2354 | } |
---|
2355 | else |
---|
2356 | { |
---|
2357 | *T=mpNew(IDELEMS(s_temp1),IDELEMS(h2)); |
---|
2358 | for (i=0;i<IDELEMS(s_temp1);i++) |
---|
2359 | { |
---|
2360 | if (s_temp1->m[i]!=NULL) |
---|
2361 | { |
---|
2362 | if (((int)pGetComp(s_temp1->m[i]))<=length) |
---|
2363 | { |
---|
2364 | do |
---|
2365 | { |
---|
2366 | p_LmDelete(&(s_temp1->m[i]),currRing); |
---|
2367 | } while((int)pGetComp(s_temp1->m[i])<=length); |
---|
2368 | poly q = prMoveR( s_temp1->m[i], syz_ring,orig_ring); |
---|
2369 | s_temp1->m[i] = NULL; |
---|
2370 | if (q!=NULL) |
---|
2371 | { |
---|
2372 | q=pReverse(q); |
---|
2373 | do |
---|
2374 | { |
---|
2375 | poly p = q; |
---|
2376 | long t=pGetComp(p); |
---|
2377 | pIter(q); |
---|
2378 | pNext(p) = NULL; |
---|
2379 | pSetComp(p,0); |
---|
2380 | pSetmComp(p); |
---|
2381 | pTest(p); |
---|
2382 | MATELEM(*T,(int)t-length,i) = pAdd(MATELEM(*T,(int)t-length,i),p); |
---|
2383 | } while (q != NULL); |
---|
2384 | } |
---|
2385 | } |
---|
2386 | else |
---|
2387 | { |
---|
2388 | p_Shift(&(s_temp1->m[i]),-length,currRing); |
---|
2389 | } |
---|
2390 | } |
---|
2391 | } |
---|
2392 | } |
---|
2393 | s_temp1->rank = rk; |
---|
2394 | idSkipZeroes(s_temp1); |
---|
2395 | |
---|
2396 | if (syz_ring!=orig_ring) |
---|
2397 | { |
---|
2398 | rChangeCurrRing(orig_ring); |
---|
2399 | s_temp1 = idrMoveR_NoSort(s_temp1, syz_ring, orig_ring); |
---|
2400 | rDelete(syz_ring); |
---|
2401 | // Hmm ... here seems to be a memory leak |
---|
2402 | // However, simply deleting it causes memory trouble |
---|
2403 | // idDelete(&s_temp); |
---|
2404 | } |
---|
2405 | idTest(s_temp1); |
---|
2406 | return s_temp1; |
---|
2407 | } |
---|
2408 | #endif |
---|
2409 | |
---|
2410 | /*2 |
---|
2411 | * represents (h1+h2)/h2=h1/(h1 intersect h2) |
---|
2412 | */ |
---|
2413 | //ideal idModulo (ideal h2,ideal h1) |
---|
2414 | ideal idModulo (ideal h2,ideal h1, tHomog hom, intvec ** w, matrix *T, GbVariant alg) |
---|
2415 | { |
---|
2416 | #ifdef HAVE_SHIFTBBA |
---|
2417 | if (rIsLPRing(currRing)) |
---|
2418 | return idModuloLP(h2,h1,hom,w,T,alg); |
---|
2419 | #endif |
---|
2420 | intvec *wtmp=NULL; |
---|
2421 | if (T!=NULL) idDelete((ideal*)T); |
---|
2422 | |
---|
2423 | int i,flength=0,slength,length; |
---|
2424 | |
---|
2425 | if (idIs0(h2)) |
---|
2426 | return idFreeModule(si_max(1,h2->ncols)); |
---|
2427 | if (!idIs0(h1)) |
---|
2428 | flength = id_RankFreeModule(h1,currRing); |
---|
2429 | slength = id_RankFreeModule(h2,currRing); |
---|
2430 | length = si_max(flength,slength); |
---|
2431 | BOOLEAN inputIsIdeal=FALSE; |
---|
2432 | if (length==0) |
---|
2433 | { |
---|
2434 | length = 1; |
---|
2435 | inputIsIdeal=TRUE; |
---|
2436 | } |
---|
2437 | if ((w!=NULL)&&((*w)!=NULL)) |
---|
2438 | { |
---|
2439 | //Print("input weights:");(*w)->show(1);PrintLn(); |
---|
2440 | int d; |
---|
2441 | int k; |
---|
2442 | wtmp=new intvec(length+IDELEMS(h2)); |
---|
2443 | for (i=0;i<length;i++) |
---|
2444 | ((*wtmp)[i])=(**w)[i]; |
---|
2445 | for (i=0;i<IDELEMS(h2);i++) |
---|
2446 | { |
---|
2447 | poly p=h2->m[i]; |
---|
2448 | if (p!=NULL) |
---|
2449 | { |
---|
2450 | d = p_Deg(p,currRing); |
---|
2451 | k= pGetComp(p); |
---|
2452 | if (slength>0) k--; |
---|
2453 | d +=((**w)[k]); |
---|
2454 | ((*wtmp)[i+length]) = d; |
---|
2455 | } |
---|
2456 | } |
---|
2457 | //Print("weights:");wtmp->show(1);PrintLn(); |
---|
2458 | } |
---|
2459 | ideal s_temp1; |
---|
2460 | ring orig_ring=currRing; |
---|
2461 | ring syz_ring=rAssure_SyzOrder(orig_ring, TRUE); |
---|
2462 | rSetSyzComp(length,syz_ring); |
---|
2463 | { |
---|
2464 | rChangeCurrRing(syz_ring); |
---|
2465 | ideal s1,s2; |
---|
2466 | |
---|
2467 | if (syz_ring != orig_ring) |
---|
2468 | { |
---|
2469 | s1 = idrCopyR_NoSort(h1, orig_ring, syz_ring); |
---|
2470 | s2 = idrCopyR_NoSort(h2, orig_ring, syz_ring); |
---|
2471 | } |
---|
2472 | else |
---|
2473 | { |
---|
2474 | s1=idCopy(h1); |
---|
2475 | s2=idCopy(h2); |
---|
2476 | } |
---|
2477 | |
---|
2478 | unsigned save_opt,save_opt2; |
---|
2479 | SI_SAVE_OPT1(save_opt); |
---|
2480 | SI_SAVE_OPT2(save_opt2); |
---|
2481 | if (T==NULL) si_opt_1 |= Sy_bit(OPT_REDTAIL); |
---|
2482 | si_opt_1 |= Sy_bit(OPT_REDTAIL_SYZ); |
---|
2483 | s_temp1 = idPrepare(s2,s1,testHomog,length,w,alg); |
---|
2484 | SI_RESTORE_OPT1(save_opt); |
---|
2485 | SI_RESTORE_OPT2(save_opt2); |
---|
2486 | } |
---|
2487 | |
---|
2488 | //if (wtmp!=NULL) Print("output weights:");wtmp->show(1);PrintLn(); |
---|
2489 | if ((w!=NULL) && (*w !=NULL) && (wtmp!=NULL)) |
---|
2490 | { |
---|
2491 | delete *w; |
---|
2492 | *w=new intvec(IDELEMS(h2)); |
---|
2493 | for (i=0;i<IDELEMS(h2);i++) |
---|
2494 | ((**w)[i])=(*wtmp)[i+length]; |
---|
2495 | } |
---|
2496 | if (wtmp!=NULL) delete wtmp; |
---|
2497 | |
---|
2498 | ideal result=idInit(IDELEMS(s_temp1),IDELEMS(h2)); |
---|
2499 | s_temp1=idExtractG_T_S(s_temp1,T,&result,length,IDELEMS(h2),inputIsIdeal,orig_ring,syz_ring); |
---|
2500 | |
---|
2501 | idDelete(&s_temp1); |
---|
2502 | if (syz_ring!=orig_ring) |
---|
2503 | { |
---|
2504 | rDelete(syz_ring); |
---|
2505 | } |
---|
2506 | idTest(h2); |
---|
2507 | idTest(h1); |
---|
2508 | idTest(result); |
---|
2509 | if (T!=NULL) idTest((ideal)*T); |
---|
2510 | return result; |
---|
2511 | } |
---|
2512 | |
---|
2513 | /* |
---|
2514 | *computes module-weights for liftings of homogeneous modules |
---|
2515 | */ |
---|
2516 | #if 0 |
---|
2517 | static intvec * idMWLift(ideal mod,intvec * weights) |
---|
2518 | { |
---|
2519 | if (idIs0(mod)) return new intvec(2); |
---|
2520 | int i=IDELEMS(mod); |
---|
2521 | while ((i>0) && (mod->m[i-1]==NULL)) i--; |
---|
2522 | intvec *result = new intvec(i+1); |
---|
2523 | while (i>0) |
---|
2524 | { |
---|
2525 | (*result)[i]=currRing->pFDeg(mod->m[i],currRing)+(*weights)[pGetComp(mod->m[i])]; |
---|
2526 | } |
---|
2527 | return result; |
---|
2528 | } |
---|
2529 | #endif |
---|
2530 | |
---|
2531 | /*2 |
---|
2532 | *sorts the kbase for idCoef* in a special way (lexicographically |
---|
2533 | *with x_max,...,x_1) |
---|
2534 | */ |
---|
2535 | ideal idCreateSpecialKbase(ideal kBase,intvec ** convert) |
---|
2536 | { |
---|
2537 | int i; |
---|
2538 | ideal result; |
---|
2539 | |
---|
2540 | if (idIs0(kBase)) return NULL; |
---|
2541 | result = idInit(IDELEMS(kBase),kBase->rank); |
---|
2542 | *convert = idSort(kBase,FALSE); |
---|
2543 | for (i=0;i<(*convert)->length();i++) |
---|
2544 | { |
---|
2545 | result->m[i] = pCopy(kBase->m[(**convert)[i]-1]); |
---|
2546 | } |
---|
2547 | return result; |
---|
2548 | } |
---|
2549 | |
---|
2550 | /*2 |
---|
2551 | *returns the index of a given monom in the list of the special kbase |
---|
2552 | */ |
---|
2553 | int idIndexOfKBase(poly monom, ideal kbase) |
---|
2554 | { |
---|
2555 | int j=IDELEMS(kbase); |
---|
2556 | |
---|
2557 | while ((j>0) && (kbase->m[j-1]==NULL)) j--; |
---|
2558 | if (j==0) return -1; |
---|
2559 | int i=(currRing->N); |
---|
2560 | while (i>0) |
---|
2561 | { |
---|
2562 | loop |
---|
2563 | { |
---|
2564 | if (pGetExp(monom,i)>pGetExp(kbase->m[j-1],i)) return -1; |
---|
2565 | if (pGetExp(monom,i)==pGetExp(kbase->m[j-1],i)) break; |
---|
2566 | j--; |
---|
2567 | if (j==0) return -1; |
---|
2568 | } |
---|
2569 | if (i==1) |
---|
2570 | { |
---|
2571 | while(j>0) |
---|
2572 | { |
---|
2573 | if (pGetComp(monom)==pGetComp(kbase->m[j-1])) return j-1; |
---|
2574 | if (pGetComp(monom)>pGetComp(kbase->m[j-1])) return -1; |
---|
2575 | j--; |
---|
2576 | } |
---|
2577 | } |
---|
2578 | i--; |
---|
2579 | } |
---|
2580 | return -1; |
---|
2581 | } |
---|
2582 | |
---|
2583 | /*2 |
---|
2584 | *decomposes the monom in a part of coefficients described by the |
---|
2585 | *complement of how and a monom in variables occurring in how, the |
---|
2586 | *index of which in kbase is returned as integer pos (-1 if it don't |
---|
2587 | *exists) |
---|
2588 | */ |
---|
2589 | poly idDecompose(poly monom, poly how, ideal kbase, int * pos) |
---|
2590 | { |
---|
2591 | int i; |
---|
2592 | poly coeff=pOne(), base=pOne(); |
---|
2593 | |
---|
2594 | for (i=1;i<=(currRing->N);i++) |
---|
2595 | { |
---|
2596 | if (pGetExp(how,i)>0) |
---|
2597 | { |
---|
2598 | pSetExp(base,i,pGetExp(monom,i)); |
---|
2599 | } |
---|
2600 | else |
---|
2601 | { |
---|
2602 | pSetExp(coeff,i,pGetExp(monom,i)); |
---|
2603 | } |
---|
2604 | } |
---|
2605 | pSetComp(base,pGetComp(monom)); |
---|
2606 | pSetm(base); |
---|
2607 | pSetCoeff(coeff,nCopy(pGetCoeff(monom))); |
---|
2608 | pSetm(coeff); |
---|
2609 | *pos = idIndexOfKBase(base,kbase); |
---|
2610 | if (*pos<0) |
---|
2611 | p_Delete(&coeff,currRing); |
---|
2612 | p_Delete(&base,currRing); |
---|
2613 | return coeff; |
---|
2614 | } |
---|
2615 | |
---|
2616 | /*2 |
---|
2617 | *returns a matrix A of coefficients with kbase*A=arg |
---|
2618 | *if all monomials in variables of how occur in kbase |
---|
2619 | *the other are deleted |
---|
2620 | */ |
---|
2621 | matrix idCoeffOfKBase(ideal arg, ideal kbase, poly how) |
---|
2622 | { |
---|
2623 | matrix result; |
---|
2624 | ideal tempKbase; |
---|
2625 | poly p,q; |
---|
2626 | intvec * convert; |
---|
2627 | int i=IDELEMS(kbase),j=IDELEMS(arg),k,pos; |
---|
2628 | #if 0 |
---|
2629 | while ((i>0) && (kbase->m[i-1]==NULL)) i--; |
---|
2630 | if (idIs0(arg)) |
---|
2631 | return mpNew(i,1); |
---|
2632 | while ((j>0) && (arg->m[j-1]==NULL)) j--; |
---|
2633 | result = mpNew(i,j); |
---|
2634 | #else |
---|
2635 | result = mpNew(i, j); |
---|
2636 | while ((j>0) && (arg->m[j-1]==NULL)) j--; |
---|
2637 | #endif |
---|
2638 | |
---|
2639 | tempKbase = idCreateSpecialKbase(kbase,&convert); |
---|
2640 | for (k=0;k<j;k++) |
---|
2641 | { |
---|
2642 | p = arg->m[k]; |
---|
2643 | while (p!=NULL) |
---|
2644 | { |
---|
2645 | q = idDecompose(p,how,tempKbase,&pos); |
---|
2646 | if (pos>=0) |
---|
2647 | { |
---|
2648 | MATELEM(result,(*convert)[pos],k+1) = |
---|
2649 | pAdd(MATELEM(result,(*convert)[pos],k+1),q); |
---|
2650 | } |
---|
2651 | else |
---|
2652 | p_Delete(&q,currRing); |
---|
2653 | pIter(p); |
---|
2654 | } |
---|
2655 | } |
---|
2656 | idDelete(&tempKbase); |
---|
2657 | return result; |
---|
2658 | } |
---|
2659 | |
---|
2660 | static void idDeleteComps(ideal arg,int* red_comp,int del) |
---|
2661 | // red_comp is an array [0..args->rank] |
---|
2662 | { |
---|
2663 | int i,j; |
---|
2664 | poly p; |
---|
2665 | |
---|
2666 | for (i=IDELEMS(arg)-1;i>=0;i--) |
---|
2667 | { |
---|
2668 | p = arg->m[i]; |
---|
2669 | while (p!=NULL) |
---|
2670 | { |
---|
2671 | j = pGetComp(p); |
---|
2672 | if (red_comp[j]!=j) |
---|
2673 | { |
---|
2674 | pSetComp(p,red_comp[j]); |
---|
2675 | pSetmComp(p); |
---|
2676 | } |
---|
2677 | pIter(p); |
---|
2678 | } |
---|
2679 | } |
---|
2680 | (arg->rank) -= del; |
---|
2681 | } |
---|
2682 | |
---|
2683 | /*2 |
---|
2684 | * returns the presentation of an isomorphic, minimally |
---|
2685 | * embedded module (arg represents the quotient!) |
---|
2686 | */ |
---|
2687 | ideal idMinEmbedding(ideal arg,BOOLEAN inPlace, intvec **w) |
---|
2688 | { |
---|
2689 | if (idIs0(arg)) return idInit(1,arg->rank); |
---|
2690 | int i,next_gen,next_comp; |
---|
2691 | ideal res=arg; |
---|
2692 | if (!inPlace) res = idCopy(arg); |
---|
2693 | res->rank=si_max(res->rank,id_RankFreeModule(res,currRing)); |
---|
2694 | int *red_comp=(int*)omAlloc((res->rank+1)*sizeof(int)); |
---|
2695 | for (i=res->rank;i>=0;i--) red_comp[i]=i; |
---|
2696 | |
---|
2697 | int del=0; |
---|
2698 | loop |
---|
2699 | { |
---|
2700 | next_gen = id_ReadOutPivot(res, &next_comp, currRing); |
---|
2701 | if (next_gen<0) break; |
---|
2702 | del++; |
---|
2703 | syGaussForOne(res,next_gen,next_comp,0,IDELEMS(res)); |
---|
2704 | for(i=next_comp+1;i<=arg->rank;i++) red_comp[i]--; |
---|
2705 | if ((w !=NULL)&&(*w!=NULL)) |
---|
2706 | { |
---|
2707 | for(i=next_comp;i<(*w)->length();i++) (**w)[i-1]=(**w)[i]; |
---|
2708 | } |
---|
2709 | } |
---|
2710 | |
---|
2711 | idDeleteComps(res,red_comp,del); |
---|
2712 | idSkipZeroes(res); |
---|
2713 | omFree(red_comp); |
---|
2714 | |
---|
2715 | if ((w !=NULL)&&(*w!=NULL) &&(del>0)) |
---|
2716 | { |
---|
2717 | int nl=si_max((*w)->length()-del,1); |
---|
2718 | intvec *wtmp=new intvec(nl); |
---|
2719 | for(i=0;i<res->rank;i++) (*wtmp)[i]=(**w)[i]; |
---|
2720 | delete *w; |
---|
2721 | *w=wtmp; |
---|
2722 | } |
---|
2723 | return res; |
---|
2724 | } |
---|
2725 | |
---|
2726 | #include "polys/clapsing.h" |
---|
2727 | |
---|
2728 | #if 0 |
---|
2729 | poly id_GCD(poly f, poly g, const ring r) |
---|
2730 | { |
---|
2731 | ring save_r=currRing; |
---|
2732 | rChangeCurrRing(r); |
---|
2733 | ideal I=idInit(2,1); I->m[0]=f; I->m[1]=g; |
---|
2734 | intvec *w = NULL; |
---|
2735 | ideal S=idSyzygies(I,testHomog,&w); |
---|
2736 | if (w!=NULL) delete w; |
---|
2737 | poly gg=pTakeOutComp(&(S->m[0]),2); |
---|
2738 | idDelete(&S); |
---|
2739 | poly gcd_p=singclap_pdivide(f,gg,r); |
---|
2740 | p_Delete(&gg,r); |
---|
2741 | rChangeCurrRing(save_r); |
---|
2742 | return gcd_p; |
---|
2743 | } |
---|
2744 | #else |
---|
2745 | poly id_GCD(poly f, poly g, const ring r) |
---|
2746 | { |
---|
2747 | ideal I=idInit(2,1); I->m[0]=f; I->m[1]=g; |
---|
2748 | intvec *w = NULL; |
---|
2749 | |
---|
2750 | ring save_r = currRing; |
---|
2751 | rChangeCurrRing(r); |
---|
2752 | ideal S=idSyzygies(I,testHomog,&w); |
---|
2753 | rChangeCurrRing(save_r); |
---|
2754 | |
---|
2755 | if (w!=NULL) delete w; |
---|
2756 | poly gg=p_TakeOutComp(&(S->m[0]), 2, r); |
---|
2757 | id_Delete(&S, r); |
---|
2758 | poly gcd_p=singclap_pdivide(f,gg, r); |
---|
2759 | p_Delete(&gg, r); |
---|
2760 | |
---|
2761 | return gcd_p; |
---|
2762 | } |
---|
2763 | #endif |
---|
2764 | |
---|
2765 | #if 0 |
---|
2766 | /*2 |
---|
2767 | * xx,q: arrays of length 0..rl-1 |
---|
2768 | * xx[i]: SB mod q[i] |
---|
2769 | * assume: char=0 |
---|
2770 | * assume: q[i]!=0 |
---|
2771 | * destroys xx |
---|
2772 | */ |
---|
2773 | ideal id_ChineseRemainder(ideal *xx, number *q, int rl, const ring R) |
---|
2774 | { |
---|
2775 | int cnt=IDELEMS(xx[0])*xx[0]->nrows; |
---|
2776 | ideal result=idInit(cnt,xx[0]->rank); |
---|
2777 | result->nrows=xx[0]->nrows; // for lifting matrices |
---|
2778 | result->ncols=xx[0]->ncols; // for lifting matrices |
---|
2779 | int i,j; |
---|
2780 | poly r,h,hh,res_p; |
---|
2781 | number *x=(number *)omAlloc(rl*sizeof(number)); |
---|
2782 | for(i=cnt-1;i>=0;i--) |
---|
2783 | { |
---|
2784 | res_p=NULL; |
---|
2785 | loop |
---|
2786 | { |
---|
2787 | r=NULL; |
---|
2788 | for(j=rl-1;j>=0;j--) |
---|
2789 | { |
---|
2790 | h=xx[j]->m[i]; |
---|
2791 | if ((h!=NULL) |
---|
2792 | &&((r==NULL)||(p_LmCmp(r,h,R)==-1))) |
---|
2793 | r=h; |
---|
2794 | } |
---|
2795 | if (r==NULL) break; |
---|
2796 | h=p_Head(r, R); |
---|
2797 | for(j=rl-1;j>=0;j--) |
---|
2798 | { |
---|
2799 | hh=xx[j]->m[i]; |
---|
2800 | if ((hh!=NULL) && (p_LmCmp(r,hh, R)==0)) |
---|
2801 | { |
---|
2802 | x[j]=p_GetCoeff(hh, R); |
---|
2803 | hh=p_LmFreeAndNext(hh, R); |
---|
2804 | xx[j]->m[i]=hh; |
---|
2805 | } |
---|
2806 | else |
---|
2807 | x[j]=n_Init(0, R->cf); // is R->cf really n_Q???, yes! |
---|
2808 | } |
---|
2809 | |
---|
2810 | number n=n_ChineseRemainder(x,q,rl, R->cf); |
---|
2811 | |
---|
2812 | for(j=rl-1;j>=0;j--) |
---|
2813 | { |
---|
2814 | x[j]=NULL; // nlInit(0...) takes no memory |
---|
2815 | } |
---|
2816 | if (n_IsZero(n, R->cf)) p_Delete(&h, R); |
---|
2817 | else |
---|
2818 | { |
---|
2819 | p_SetCoeff(h,n, R); |
---|
2820 | //Print("new mon:");pWrite(h); |
---|
2821 | res_p=p_Add_q(res_p, h, R); |
---|
2822 | } |
---|
2823 | } |
---|
2824 | result->m[i]=res_p; |
---|
2825 | } |
---|
2826 | omFree(x); |
---|
2827 | for(i=rl-1;i>=0;i--) id_Delete(&(xx[i]), R); |
---|
2828 | omFree(xx); |
---|
2829 | return result; |
---|
2830 | } |
---|
2831 | #endif |
---|
2832 | /* currently unused: |
---|
2833 | ideal idChineseRemainder(ideal *xx, intvec *iv) |
---|
2834 | { |
---|
2835 | int rl=iv->length(); |
---|
2836 | number *q=(number *)omAlloc(rl*sizeof(number)); |
---|
2837 | int i; |
---|
2838 | for(i=0; i<rl; i++) |
---|
2839 | { |
---|
2840 | q[i]=nInit((*iv)[i]); |
---|
2841 | } |
---|
2842 | return idChineseRemainder(xx,q,rl); |
---|
2843 | } |
---|
2844 | */ |
---|
2845 | /* |
---|
2846 | * lift ideal with coeffs over Z (mod N) to Q via Farey |
---|
2847 | */ |
---|
2848 | ideal id_Farey(ideal x, number N, const ring r) |
---|
2849 | { |
---|
2850 | int cnt=IDELEMS(x)*x->nrows; |
---|
2851 | ideal result=idInit(cnt,x->rank); |
---|
2852 | result->nrows=x->nrows; // for lifting matrices |
---|
2853 | result->ncols=x->ncols; // for lifting matrices |
---|
2854 | |
---|
2855 | int i; |
---|
2856 | for(i=cnt-1;i>=0;i--) |
---|
2857 | { |
---|
2858 | result->m[i]=p_Farey(x->m[i],N,r); |
---|
2859 | } |
---|
2860 | return result; |
---|
2861 | } |
---|
2862 | |
---|
2863 | |
---|
2864 | |
---|
2865 | |
---|
2866 | // uses glabl vars via pSetModDeg |
---|
2867 | /* |
---|
2868 | BOOLEAN idTestHomModule(ideal m, ideal Q, intvec *w) |
---|
2869 | { |
---|
2870 | if ((Q!=NULL) && (!idHomIdeal(Q,NULL))) { PrintS(" Q not hom\n"); return FALSE;} |
---|
2871 | if (idIs0(m)) return TRUE; |
---|
2872 | |
---|
2873 | int cmax=-1; |
---|
2874 | int i; |
---|
2875 | poly p=NULL; |
---|
2876 | int length=IDELEMS(m); |
---|
2877 | poly* P=m->m; |
---|
2878 | for (i=length-1;i>=0;i--) |
---|
2879 | { |
---|
2880 | p=P[i]; |
---|
2881 | if (p!=NULL) cmax=si_max(cmax,(int)pMaxComp(p)+1); |
---|
2882 | } |
---|
2883 | if (w != NULL) |
---|
2884 | if (w->length()+1 < cmax) |
---|
2885 | { |
---|
2886 | // Print("length: %d - %d \n", w->length(),cmax); |
---|
2887 | return FALSE; |
---|
2888 | } |
---|
2889 | |
---|
2890 | if(w!=NULL) |
---|
2891 | p_SetModDeg(w, currRing); |
---|
2892 | |
---|
2893 | for (i=length-1;i>=0;i--) |
---|
2894 | { |
---|
2895 | p=P[i]; |
---|
2896 | poly q=p; |
---|
2897 | if (p!=NULL) |
---|
2898 | { |
---|
2899 | int d=p_FDeg(p,currRing); |
---|
2900 | loop |
---|
2901 | { |
---|
2902 | pIter(p); |
---|
2903 | if (p==NULL) break; |
---|
2904 | if (d!=p_FDeg(p,currRing)) |
---|
2905 | { |
---|
2906 | //pWrite(q); wrp(p); Print(" -> %d - %d\n",d,pFDeg(p,currRing)); |
---|
2907 | if(w!=NULL) |
---|
2908 | p_SetModDeg(NULL, currRing); |
---|
2909 | return FALSE; |
---|
2910 | } |
---|
2911 | } |
---|
2912 | } |
---|
2913 | } |
---|
2914 | |
---|
2915 | if(w!=NULL) |
---|
2916 | p_SetModDeg(NULL, currRing); |
---|
2917 | |
---|
2918 | return TRUE; |
---|
2919 | } |
---|
2920 | */ |
---|
2921 | |
---|
2922 | /// keeps the first k (>= 1) entries of the given ideal |
---|
2923 | /// (Note that the kept polynomials may be zero.) |
---|
2924 | void idKeepFirstK(ideal id, const int k) |
---|
2925 | { |
---|
2926 | for (int i = IDELEMS(id)-1; i >= k; i--) |
---|
2927 | { |
---|
2928 | if (id->m[i] != NULL) pDelete(&id->m[i]); |
---|
2929 | } |
---|
2930 | int kk=k; |
---|
2931 | if (k==0) kk=1; /* ideals must have at least one element(0)*/ |
---|
2932 | pEnlargeSet(&(id->m), IDELEMS(id), kk-IDELEMS(id)); |
---|
2933 | IDELEMS(id) = kk; |
---|
2934 | } |
---|
2935 | |
---|
2936 | typedef struct |
---|
2937 | { |
---|
2938 | poly p; |
---|
2939 | int index; |
---|
2940 | } poly_sort; |
---|
2941 | |
---|
2942 | int pCompare_qsort(const void *a, const void *b) |
---|
2943 | { |
---|
2944 | return (p_Compare(((poly_sort *)a)->p, ((poly_sort *)b)->p,currRing)); |
---|
2945 | } |
---|
2946 | |
---|
2947 | void idSort_qsort(poly_sort *id_sort, int idsize) |
---|
2948 | { |
---|
2949 | qsort(id_sort, idsize, sizeof(poly_sort), pCompare_qsort); |
---|
2950 | } |
---|
2951 | |
---|
2952 | /*2 |
---|
2953 | * ideal id = (id[i]) |
---|
2954 | * if id[i] = id[j] then id[j] is deleted for j > i |
---|
2955 | */ |
---|
2956 | void idDelEquals(ideal id) |
---|
2957 | { |
---|
2958 | int idsize = IDELEMS(id); |
---|
2959 | poly_sort *id_sort = (poly_sort *)omAlloc0(idsize*sizeof(poly_sort)); |
---|
2960 | for (int i = 0; i < idsize; i++) |
---|
2961 | { |
---|
2962 | id_sort[i].p = id->m[i]; |
---|
2963 | id_sort[i].index = i; |
---|
2964 | } |
---|
2965 | idSort_qsort(id_sort, idsize); |
---|
2966 | int index, index_i, index_j; |
---|
2967 | int i = 0; |
---|
2968 | for (int j = 1; j < idsize; j++) |
---|
2969 | { |
---|
2970 | if (id_sort[i].p != NULL && pEqualPolys(id_sort[i].p, id_sort[j].p)) |
---|
2971 | { |
---|
2972 | index_i = id_sort[i].index; |
---|
2973 | index_j = id_sort[j].index; |
---|
2974 | if (index_j > index_i) |
---|
2975 | { |
---|
2976 | index = index_j; |
---|
2977 | } |
---|
2978 | else |
---|
2979 | { |
---|
2980 | index = index_i; |
---|
2981 | i = j; |
---|
2982 | } |
---|
2983 | pDelete(&id->m[index]); |
---|
2984 | } |
---|
2985 | else |
---|
2986 | { |
---|
2987 | i = j; |
---|
2988 | } |
---|
2989 | } |
---|
2990 | omFreeSize((ADDRESS)(id_sort), idsize*sizeof(poly_sort)); |
---|
2991 | } |
---|
2992 | |
---|
2993 | STATIC_VAR int * id_satstdSaturatingVariables=NULL; |
---|
2994 | |
---|
2995 | static BOOLEAN id_sat_vars_sp(kStrategy strat) |
---|
2996 | { |
---|
2997 | BOOLEAN b = FALSE; // set b to TRUE, if spoly was changed, |
---|
2998 | // let it remain FALSE otherwise |
---|
2999 | if (strat->P.t_p==NULL) |
---|
3000 | { |
---|
3001 | poly p=strat->P.p; |
---|
3002 | |
---|
3003 | // iterate over all terms of p and |
---|
3004 | // compute the minimum mm of all exponent vectors |
---|
3005 | int *mm=(int*)omAlloc((1+rVar(currRing))*sizeof(int)); |
---|
3006 | int *m0=(int*)omAlloc0((1+rVar(currRing))*sizeof(int)); |
---|
3007 | p_GetExpV(p,mm,currRing); |
---|
3008 | bool nonTrivialSaturationToBeDone=true; |
---|
3009 | for (p=pNext(p); p!=NULL; pIter(p)) |
---|
3010 | { |
---|
3011 | nonTrivialSaturationToBeDone=false; |
---|
3012 | p_GetExpV(p,m0,currRing); |
---|
3013 | for (int i=rVar(currRing); i>0; i--) |
---|
3014 | { |
---|
3015 | if (id_satstdSaturatingVariables[i]!=0) |
---|
3016 | { |
---|
3017 | mm[i]=si_min(mm[i],m0[i]); |
---|
3018 | if (mm[i]>0) nonTrivialSaturationToBeDone=true; |
---|
3019 | } |
---|
3020 | else mm[i]=0; |
---|
3021 | } |
---|
3022 | // abort if the minimum is zero in each component |
---|
3023 | if (!nonTrivialSaturationToBeDone) break; |
---|
3024 | } |
---|
3025 | if (nonTrivialSaturationToBeDone) |
---|
3026 | { |
---|
3027 | // std::cout << "simplifying!" << std::endl; |
---|
3028 | if (TEST_OPT_PROT) { PrintS("S"); mflush(); } |
---|
3029 | p=p_Copy(strat->P.p,currRing); |
---|
3030 | //pWrite(p); |
---|
3031 | // for (int i=rVar(currRing); i>0; i--) |
---|
3032 | // if (mm[i]!=0) Print("x_%d:%d ",i,mm[i]); |
---|
3033 | //PrintLn(); |
---|
3034 | strat->P.Init(currRing); |
---|
3035 | //memset(&strat->P,0,sizeof(strat->P)); |
---|
3036 | strat->P.tailRing = strat->tailRing; |
---|
3037 | strat->P.p=p; |
---|
3038 | while(p!=NULL) |
---|
3039 | { |
---|
3040 | for (int i=rVar(currRing); i>0; i--) |
---|
3041 | { |
---|
3042 | p_SubExp(p,i,mm[i],currRing); |
---|
3043 | } |
---|
3044 | p_Setm(p,currRing); |
---|
3045 | pIter(p); |
---|
3046 | } |
---|
3047 | b = TRUE; |
---|
3048 | } |
---|
3049 | omFree(mm); |
---|
3050 | omFree(m0); |
---|
3051 | } |
---|
3052 | else |
---|
3053 | { |
---|
3054 | poly p=strat->P.t_p; |
---|
3055 | |
---|
3056 | // iterate over all terms of p and |
---|
3057 | // compute the minimum mm of all exponent vectors |
---|
3058 | int *mm=(int*)omAlloc((1+rVar(currRing))*sizeof(int)); |
---|
3059 | int *m0=(int*)omAlloc0((1+rVar(currRing))*sizeof(int)); |
---|
3060 | p_GetExpV(p,mm,strat->tailRing); |
---|
3061 | bool nonTrivialSaturationToBeDone=true; |
---|
3062 | for (p = pNext(p); p!=NULL; pIter(p)) |
---|
3063 | { |
---|
3064 | nonTrivialSaturationToBeDone=false; |
---|
3065 | p_GetExpV(p,m0,strat->tailRing); |
---|
3066 | for(int i=rVar(currRing); i>0; i--) |
---|
3067 | { |
---|
3068 | if(id_satstdSaturatingVariables[i]!=0) |
---|
3069 | { |
---|
3070 | mm[i]=si_min(mm[i],m0[i]); |
---|
3071 | if (mm[i]>0) nonTrivialSaturationToBeDone = true; |
---|
3072 | } |
---|
3073 | else mm[i]=0; |
---|
3074 | } |
---|
3075 | // abort if the minimum is zero in each component |
---|
3076 | if (!nonTrivialSaturationToBeDone) break; |
---|
3077 | } |
---|
3078 | if (nonTrivialSaturationToBeDone) |
---|
3079 | { |
---|
3080 | if (TEST_OPT_PROT) { PrintS("S"); mflush(); } |
---|
3081 | p=p_Copy(strat->P.t_p,strat->tailRing); |
---|
3082 | //p_Write(p,strat->tailRing); |
---|
3083 | // for (int i=rVar(currRing); i>0; i--) |
---|
3084 | // if (mm[i]!=0) Print("x_%d:%d ",i,mm[i]); |
---|
3085 | //PrintLn(); |
---|
3086 | strat->P.Init(currRing); |
---|
3087 | //memset(&strat->P,0,sizeof(strat->P)); |
---|
3088 | strat->P.tailRing = strat->tailRing; |
---|
3089 | strat->P.t_p=p; |
---|
3090 | while(p!=NULL) |
---|
3091 | { |
---|
3092 | for(int i=rVar(currRing); i>0; i--) |
---|
3093 | { |
---|
3094 | p_SubExp(p,i,mm[i],strat->tailRing); |
---|
3095 | } |
---|
3096 | p_Setm(p,strat->tailRing); |
---|
3097 | pIter(p); |
---|
3098 | } |
---|
3099 | strat->P.GetP(); |
---|
3100 | b = TRUE; |
---|
3101 | } |
---|
3102 | omFree(mm); |
---|
3103 | omFree(m0); |
---|
3104 | } |
---|
3105 | return b; // return TRUE if sp was changed, FALSE if not |
---|
3106 | } |
---|
3107 | |
---|
3108 | ideal id_Satstd(const ideal I, ideal J, const ring r) |
---|
3109 | { |
---|
3110 | ring save=currRing; |
---|
3111 | if (currRing!=r) rChangeCurrRing(r); |
---|
3112 | idSkipZeroes(J); |
---|
3113 | id_satstdSaturatingVariables=(int*)omAlloc0((1+rVar(currRing))*sizeof(int)); |
---|
3114 | int k=IDELEMS(J); |
---|
3115 | if (k>1) |
---|
3116 | { |
---|
3117 | for (int i=0; i<k; i++) |
---|
3118 | { |
---|
3119 | poly x = J->m[i]; |
---|
3120 | int li = p_Var(x,r); |
---|
3121 | if (li>0) |
---|
3122 | id_satstdSaturatingVariables[li]=1; |
---|
3123 | else |
---|
3124 | { |
---|
3125 | if (currRing!=save) rChangeCurrRing(save); |
---|
3126 | WerrorS("ideal generators must be variables"); |
---|
3127 | return NULL; |
---|
3128 | } |
---|
3129 | } |
---|
3130 | } |
---|
3131 | else |
---|
3132 | { |
---|
3133 | poly x = J->m[0]; |
---|
3134 | for (int i=1; i<=r->N; i++) |
---|
3135 | { |
---|
3136 | int li = p_GetExp(x,i,r); |
---|
3137 | if (li==1) |
---|
3138 | id_satstdSaturatingVariables[i]=1; |
---|
3139 | else if (li>1) |
---|
3140 | { |
---|
3141 | if (currRing!=save) rChangeCurrRing(save); |
---|
3142 | Werror("exponent(x(%d)^%d) must be 0 or 1",i,li); |
---|
3143 | return NULL; |
---|
3144 | } |
---|
3145 | } |
---|
3146 | } |
---|
3147 | ideal res=kStd(I,r->qideal,testHomog,NULL,NULL,0,0,NULL,id_sat_vars_sp); |
---|
3148 | omFreeSize(id_satstdSaturatingVariables,(1+rVar(currRing))*sizeof(int)); |
---|
3149 | id_satstdSaturatingVariables=NULL; |
---|
3150 | if (currRing!=save) rChangeCurrRing(save); |
---|
3151 | return res; |
---|
3152 | } |
---|
3153 | |
---|
3154 | GbVariant syGetAlgorithm(char *n, const ring r, const ideal /*M*/) |
---|
3155 | { |
---|
3156 | GbVariant alg=GbDefault; |
---|
3157 | if (strcmp(n,"default")==0) alg=GbDefault; |
---|
3158 | else if (strcmp(n,"slimgb")==0) alg=GbSlimgb; |
---|
3159 | else if (strcmp(n,"std")==0) alg=GbStd; |
---|
3160 | else if (strcmp(n,"sba")==0) alg=GbSba; |
---|
3161 | else if (strcmp(n,"singmatic")==0) alg=GbSingmatic; |
---|
3162 | else if (strcmp(n,"groebner")==0) alg=GbGroebner; |
---|
3163 | else if (strcmp(n,"modstd")==0) alg=GbModstd; |
---|
3164 | else if (strcmp(n,"ffmod")==0) alg=GbFfmod; |
---|
3165 | else if (strcmp(n,"nfmod")==0) alg=GbNfmod; |
---|
3166 | else if (strcmp(n,"std:sat")==0) alg=GbStdSat; |
---|
3167 | else Warn(">>%s<< is an unknown algorithm",n); |
---|
3168 | |
---|
3169 | if (alg==GbSlimgb) // test conditions for slimgb |
---|
3170 | { |
---|
3171 | if(rHasGlobalOrdering(r) |
---|
3172 | &&(!rIsNCRing(r)) |
---|
3173 | &&(r->qideal==NULL) |
---|
3174 | &&(!rField_is_Ring(r))) |
---|
3175 | { |
---|
3176 | return GbSlimgb; |
---|
3177 | } |
---|
3178 | if (TEST_OPT_PROT) |
---|
3179 | WarnS("requires: coef:field, commutative, global ordering, not qring"); |
---|
3180 | } |
---|
3181 | else if (alg==GbSba) // cond. for sba |
---|
3182 | { |
---|
3183 | if(rField_is_Domain(r) |
---|
3184 | &&(!rIsNCRing(r)) |
---|
3185 | &&(rHasGlobalOrdering(r))) |
---|
3186 | { |
---|
3187 | return GbSba; |
---|
3188 | } |
---|
3189 | if (TEST_OPT_PROT) |
---|
3190 | WarnS("requires: coef:domain, commutative, global ordering"); |
---|
3191 | } |
---|
3192 | else if (alg==GbGroebner) // cond. for groebner |
---|
3193 | { |
---|
3194 | return GbGroebner; |
---|
3195 | } |
---|
3196 | else if(alg==GbModstd) // cond for modstd: Q or Q(a) |
---|
3197 | { |
---|
3198 | if(ggetid("modStd")==NULL) |
---|
3199 | { |
---|
3200 | WarnS(">>modStd<< not found"); |
---|
3201 | } |
---|
3202 | else if(rField_is_Q(r) |
---|
3203 | &&(!rIsNCRing(r)) |
---|
3204 | &&(rHasGlobalOrdering(r))) |
---|
3205 | { |
---|
3206 | return GbModstd; |
---|
3207 | } |
---|
3208 | if (TEST_OPT_PROT) |
---|
3209 | WarnS("requires: coef:QQ, commutative, global ordering"); |
---|
3210 | } |
---|
3211 | else if(alg==GbStdSat) // cond for std:sat: 2 blocks of variables |
---|
3212 | { |
---|
3213 | if(ggetid("satstd")==NULL) |
---|
3214 | { |
---|
3215 | WarnS(">>satstd<< not found"); |
---|
3216 | } |
---|
3217 | else |
---|
3218 | { |
---|
3219 | return GbStdSat; |
---|
3220 | } |
---|
3221 | } |
---|
3222 | |
---|
3223 | return GbStd; // no conditions for std |
---|
3224 | } |
---|
3225 | //---------------------------------------------------------------------------- |
---|
3226 | // GB-algorithms and their pre-conditions |
---|
3227 | // std slimgb sba singmatic modstd ffmod nfmod groebner |
---|
3228 | // + + + - + - - + coeffs: QQ |
---|
3229 | // + + + + - - - + coeffs: ZZ/p |
---|
3230 | // + + + - ? - + + coeffs: K[a]/f |
---|
3231 | // + + + - ? + - + coeffs: K(a) |
---|
3232 | // + - + - - - - + coeffs: domain, not field |
---|
3233 | // + - - - - - - + coeffs: zero-divisors |
---|
3234 | // + + + + - ? ? + also for modules: C |
---|
3235 | // + + - + - ? ? + also for modules: all orderings |
---|
3236 | // + + - - - - - + exterior algebra |
---|
3237 | // + + - - - - - + G-algebra |
---|
3238 | // + + + + + + + + degree ordering |
---|
3239 | // + - + + + + + + non-degree ordering |
---|
3240 | // - - - + + + + + parallel |
---|