1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* $Id: kspoly.cc,v 1.5 2006-06-09 23:17:04 wienand Exp $ */ |
---|
5 | /* |
---|
6 | * ABSTRACT - Routines for Spoly creation and reductions |
---|
7 | */ |
---|
8 | |
---|
9 | // #define PDEBUG 2 |
---|
10 | #include "mod2.h" |
---|
11 | #include "kutil.h" |
---|
12 | #include "numbers.h" |
---|
13 | #include "p_polys.h" |
---|
14 | #include "p_Procs.h" |
---|
15 | #include "gring.h" |
---|
16 | #ifdef HAVE_RING2TOM |
---|
17 | #include "polys.h" |
---|
18 | #endif |
---|
19 | |
---|
20 | #ifdef KDEBUG |
---|
21 | int red_count = 0; |
---|
22 | int create_count = 0; |
---|
23 | // define this if reductions are reported on TEST_OPT_DEBUG |
---|
24 | // #define TEST_OPT_DEBUG_RED |
---|
25 | #endif |
---|
26 | |
---|
27 | /*************************************************************** |
---|
28 | * |
---|
29 | * Reduces PR with PW |
---|
30 | * Assumes PR != NULL, PW != NULL, Lm(PW) divides Lm(PR) |
---|
31 | * |
---|
32 | ***************************************************************/ |
---|
33 | int ksReducePoly(LObject* PR, |
---|
34 | TObject* PW, |
---|
35 | poly spNoether, |
---|
36 | number *coef, |
---|
37 | kStrategy strat) |
---|
38 | { |
---|
39 | #ifdef KDEBUG |
---|
40 | red_count++; |
---|
41 | #ifdef TEST_OPT_DEBUG_RED |
---|
42 | if (TEST_OPT_DEBUG) |
---|
43 | { |
---|
44 | Print("Red %d:", red_count); PR->wrp(); Print(" with:"); |
---|
45 | PW->wrp(); |
---|
46 | } |
---|
47 | #endif |
---|
48 | #endif |
---|
49 | int ret = 0; |
---|
50 | ring tailRing = PR->tailRing; |
---|
51 | kTest_L(PR); |
---|
52 | kTest_T(PW); |
---|
53 | |
---|
54 | poly p1 = PR->GetLmTailRing(); // p2 | p1 |
---|
55 | poly p2 = PW->GetLmTailRing(); // i.e. will reduce p1 with p2; lm = LT(p1) / LM(p2) |
---|
56 | poly t2 = pNext(p2), lm = p1; // t2 = p2 - LT(p2); really compute P = LC(p2)*p1 - LT(p1)/LM(p2)*p2 |
---|
57 | assume(p1 != NULL && p2 != NULL);// Attention, we have rings and there LC(p2) and LC(p1) are special |
---|
58 | p_CheckPolyRing(p1, tailRing); |
---|
59 | p_CheckPolyRing(p2, tailRing); |
---|
60 | |
---|
61 | pAssume1(p2 != NULL && p1 != NULL && |
---|
62 | p_DivisibleBy(p2, p1, tailRing)); |
---|
63 | |
---|
64 | pAssume1(p_GetComp(p1, tailRing) == p_GetComp(p2, tailRing) || |
---|
65 | (p_GetComp(p2, tailRing) == 0 && |
---|
66 | p_MaxComp(pNext(p2),tailRing) == 0)); |
---|
67 | |
---|
68 | if (rIsPluralRing(currRing)) |
---|
69 | { |
---|
70 | // for the time being: we know currRing==strat->tailRing |
---|
71 | // no exp-bound checking needed |
---|
72 | // (only needed if exp-bound(tailring)<exp-b(currRing)) |
---|
73 | number c; |
---|
74 | if (PR->bucket!=NULL) nc_kBucketPolyRed(PR->bucket, p2,&c); |
---|
75 | else |
---|
76 | { |
---|
77 | poly _p = (PR->t_p != NULL ? PR->t_p : PR->p); |
---|
78 | assume(_p != NULL); |
---|
79 | nc_PolyPolyRed(_p, p2,&c); |
---|
80 | if (PR->t_p!=NULL) PR->t_p=_p; else PR->p=_p; |
---|
81 | PR->pLength=pLength(_p); |
---|
82 | } |
---|
83 | if (coef!=NULL) *coef=c; |
---|
84 | else nDelete(&c); |
---|
85 | return 0; |
---|
86 | } |
---|
87 | |
---|
88 | if (t2==NULL) // Divisor is just one term, therefore it will |
---|
89 | { // just cancel the leading term |
---|
90 | PR->LmDeleteAndIter(); |
---|
91 | if (coef != NULL) *coef = n_Init(1, tailRing); |
---|
92 | return 0; |
---|
93 | } |
---|
94 | |
---|
95 | p_ExpVectorSub(lm, p2, tailRing); // Calculate the Monomial we must multiply to p2 |
---|
96 | |
---|
97 | if (tailRing != currRing) |
---|
98 | { |
---|
99 | // check that reduction does not violate exp bound |
---|
100 | while (PW->max != NULL && !p_LmExpVectorAddIsOk(lm, PW->max, tailRing)) |
---|
101 | { |
---|
102 | // undo changes of lm |
---|
103 | p_ExpVectorAdd(lm, p2, tailRing); |
---|
104 | if (strat == NULL) return 2; |
---|
105 | if (! kStratChangeTailRing(strat, PR, PW)) return -1; |
---|
106 | tailRing = strat->tailRing; |
---|
107 | p1 = PR->GetLmTailRing(); |
---|
108 | p2 = PW->GetLmTailRing(); |
---|
109 | t2 = pNext(p2); |
---|
110 | lm = p1; |
---|
111 | p_ExpVectorSub(lm, p2, tailRing); |
---|
112 | ret = 1; |
---|
113 | } |
---|
114 | } |
---|
115 | |
---|
116 | // take care of coef buisness |
---|
117 | if (! n_IsOne(pGetCoeff(p2), tailRing)) |
---|
118 | { |
---|
119 | number bn = pGetCoeff(lm); |
---|
120 | number an = pGetCoeff(p2); |
---|
121 | int ct = ksCheckCoeff(&an, &bn); // Calculate special LC |
---|
122 | p_SetCoeff(lm, bn, tailRing); |
---|
123 | if ((ct == 0) || (ct == 2)) |
---|
124 | PR->Tail_Mult_nn(an); |
---|
125 | if (coef != NULL) *coef = an; |
---|
126 | else n_Delete(&an, tailRing); |
---|
127 | } |
---|
128 | else |
---|
129 | { |
---|
130 | if (coef != NULL) *coef = n_Init(1, tailRing); |
---|
131 | } |
---|
132 | |
---|
133 | |
---|
134 | // and finally, |
---|
135 | PR->Tail_Minus_mm_Mult_qq(lm, t2, PW->GetpLength() - 1, spNoether); |
---|
136 | assume(PW->GetpLength() == pLength(PW->p != NULL ? PW->p : PW->t_p)); |
---|
137 | PR->LmDeleteAndIter(); |
---|
138 | #if defined(KDEBUG) && defined(TEST_OPT_DEBUG_RED) |
---|
139 | if (TEST_OPT_DEBUG) |
---|
140 | { |
---|
141 | Print(" to: "); PR->wrp(); Print("\n"); |
---|
142 | } |
---|
143 | #endif |
---|
144 | return ret; |
---|
145 | } |
---|
146 | |
---|
147 | /*************************************************************** |
---|
148 | * |
---|
149 | * Creates S-Poly of p1 and p2 |
---|
150 | * |
---|
151 | * |
---|
152 | ***************************************************************/ |
---|
153 | void ksCreateSpoly(LObject* Pair, poly spNoether, |
---|
154 | int use_buckets, ring tailRing, |
---|
155 | poly m1, poly m2, TObject** R) |
---|
156 | { |
---|
157 | #ifdef KDEBUG |
---|
158 | create_count++; |
---|
159 | #endif |
---|
160 | kTest_L(Pair); |
---|
161 | poly p1 = Pair->p1; |
---|
162 | poly p2 = Pair->p2; |
---|
163 | poly last; |
---|
164 | Pair->tailRing = tailRing; |
---|
165 | |
---|
166 | assume(p1 != NULL); |
---|
167 | assume(p2 != NULL); |
---|
168 | assume(tailRing != NULL); |
---|
169 | |
---|
170 | poly a1 = pNext(p1), a2 = pNext(p2); |
---|
171 | number lc1 = pGetCoeff(p1), lc2 = pGetCoeff(p2); |
---|
172 | int co=0, ct = ksCheckCoeff(&lc1, &lc2); // gcd and zero divisors |
---|
173 | |
---|
174 | int l1=0, l2=0; |
---|
175 | |
---|
176 | if (p_GetComp(p1, currRing)!=p_GetComp(p2, currRing)) |
---|
177 | { |
---|
178 | if (p_GetComp(p1, currRing)==0) |
---|
179 | { |
---|
180 | co=1; |
---|
181 | p_SetCompP(p1,p_GetComp(p2, currRing), currRing, tailRing); |
---|
182 | } |
---|
183 | else |
---|
184 | { |
---|
185 | co=2; |
---|
186 | p_SetCompP(p2, p_GetComp(p1, currRing), currRing, tailRing); |
---|
187 | } |
---|
188 | } |
---|
189 | |
---|
190 | // get m1 = LCM(LM(p1), LM(p2))/LM(p1) |
---|
191 | // m2 = LCM(LM(p1), LM(p2))/LM(p2) |
---|
192 | if (m1 == NULL) |
---|
193 | k_GetLeadTerms(p1, p2, currRing, m1, m2, tailRing); |
---|
194 | |
---|
195 | pSetCoeff0(m1, lc2); |
---|
196 | pSetCoeff0(m2, lc1); // and now, m1 * LT(p1) == m2 * LT(p2) |
---|
197 | |
---|
198 | if (R != NULL) |
---|
199 | { |
---|
200 | l1 = (R[Pair->i_r1])->GetpLength() - 1; |
---|
201 | l2 = (R[Pair->i_r2])->GetpLength() - 1; |
---|
202 | } |
---|
203 | |
---|
204 | // get m2 * a2 |
---|
205 | if (spNoether != NULL) |
---|
206 | { |
---|
207 | l2 = -1; |
---|
208 | a2 = tailRing->p_Procs->pp_Mult_mm_Noether(a2, m2, spNoether, l2, tailRing,last); |
---|
209 | assume(l2 == pLength(a2)); |
---|
210 | } |
---|
211 | else |
---|
212 | a2 = tailRing->p_Procs->pp_Mult_mm(a2, m2, tailRing,last); |
---|
213 | #ifdef HAVE_RING2TOM |
---|
214 | if (currRing->cring == 1) l2 = pLength(a2); |
---|
215 | #endif |
---|
216 | |
---|
217 | Pair->SetLmTail(m2, a2, l2, use_buckets, tailRing, last); |
---|
218 | |
---|
219 | // get m2*a2 - m1*a1 |
---|
220 | Pair->Tail_Minus_mm_Mult_qq(m1, a1, l1, spNoether); |
---|
221 | |
---|
222 | // Clean-up time |
---|
223 | Pair->LmDeleteAndIter(); |
---|
224 | p_LmDelete(m1, tailRing); |
---|
225 | |
---|
226 | if (co != 0) |
---|
227 | { |
---|
228 | if (co==1) |
---|
229 | { |
---|
230 | p_SetCompP(p1,0, currRing, tailRing); |
---|
231 | } |
---|
232 | else |
---|
233 | { |
---|
234 | p_SetCompP(p2,0, currRing, tailRing); |
---|
235 | } |
---|
236 | } |
---|
237 | } |
---|
238 | |
---|
239 | int ksReducePolyTail(LObject* PR, TObject* PW, poly Current, poly spNoether) |
---|
240 | { |
---|
241 | BOOLEAN ret; |
---|
242 | number coef; |
---|
243 | poly Lp = PR->GetLmCurrRing(); |
---|
244 | poly Save = PW->GetLmCurrRing(); |
---|
245 | |
---|
246 | kTest_L(PR); |
---|
247 | kTest_T(PW); |
---|
248 | pAssume(pIsMonomOf(Lp, Current)); |
---|
249 | |
---|
250 | assume(Lp != NULL && Current != NULL && pNext(Current) != NULL); |
---|
251 | assume(PR->bucket == NULL); |
---|
252 | |
---|
253 | LObject Red(pNext(Current), PR->tailRing); |
---|
254 | TObject With(PW, Lp == Save); |
---|
255 | |
---|
256 | pAssume(!pHaveCommonMonoms(Red.p, With.p)); |
---|
257 | ret = ksReducePoly(&Red, &With, spNoether, &coef); |
---|
258 | |
---|
259 | if (!ret) |
---|
260 | { |
---|
261 | if (! n_IsOne(coef, currRing)) |
---|
262 | { |
---|
263 | pNext(Current) = NULL; |
---|
264 | if (Current == PR->p && PR->t_p != NULL) |
---|
265 | pNext(PR->t_p) = NULL; |
---|
266 | PR->Mult_nn(coef); |
---|
267 | } |
---|
268 | |
---|
269 | n_Delete(&coef, currRing); |
---|
270 | pNext(Current) = Red.GetLmTailRing(); |
---|
271 | if (Current == PR->p && PR->t_p != NULL) |
---|
272 | pNext(PR->t_p) = pNext(Current); |
---|
273 | } |
---|
274 | |
---|
275 | if (Lp == Save) |
---|
276 | With.Delete(); |
---|
277 | return ret; |
---|
278 | } |
---|
279 | |
---|
280 | /*************************************************************** |
---|
281 | * |
---|
282 | * Auxillary Routines |
---|
283 | * |
---|
284 | * |
---|
285 | ***************************************************************/ |
---|
286 | |
---|
287 | /* |
---|
288 | * input - output: a, b |
---|
289 | * returns: |
---|
290 | * a := a/gcd(a,b), b := b/gcd(a,b) |
---|
291 | * and return value |
---|
292 | * 0 -> a != 1, b != 1 |
---|
293 | * 1 -> a == 1, b != 1 |
---|
294 | * 2 -> a != 1, b == 1 |
---|
295 | * 3 -> a == 1, b == 1 |
---|
296 | * this value is used to control the spolys |
---|
297 | */ |
---|
298 | int ksCheckCoeff(number *a, number *b) |
---|
299 | { |
---|
300 | int c = 0; |
---|
301 | number an = *a, bn = *b; |
---|
302 | nTest(an); |
---|
303 | nTest(bn); |
---|
304 | |
---|
305 | number cn = nGcd(an, bn, currRing); |
---|
306 | |
---|
307 | if(nIsOne(cn)) |
---|
308 | { |
---|
309 | an = nCopy(an); |
---|
310 | bn = nCopy(bn); |
---|
311 | } |
---|
312 | else |
---|
313 | { |
---|
314 | an = nIntDiv(an, cn); |
---|
315 | bn = nIntDiv(bn, cn); |
---|
316 | } |
---|
317 | nDelete(&cn); |
---|
318 | if (nIsOne(an)) |
---|
319 | { |
---|
320 | c = 1; |
---|
321 | } |
---|
322 | if (nIsOne(bn)) |
---|
323 | { |
---|
324 | c += 2; |
---|
325 | } |
---|
326 | *a = an; |
---|
327 | *b = bn; |
---|
328 | return c; |
---|
329 | } |
---|
330 | |
---|
331 | /*2 |
---|
332 | * creates the leading term of the S-polynomial of p1 and p2 |
---|
333 | * do not destroy p1 and p2 |
---|
334 | * remarks: |
---|
335 | * 1. the coefficient is 0 (nNew) |
---|
336 | * 1. a) in the case of coefficient ring, the coefficient is calculated |
---|
337 | * 2. pNext is undefined |
---|
338 | */ |
---|
339 | //static void bbb() { int i=0; } |
---|
340 | poly ksCreateShortSpoly(poly p1, poly p2, ring tailRing) |
---|
341 | { |
---|
342 | poly a1 = pNext(p1), a2 = pNext(p2); |
---|
343 | Exponent_t c1=p_GetComp(p1, currRing),c2=p_GetComp(p2, currRing); |
---|
344 | Exponent_t c; |
---|
345 | poly m1,m2; |
---|
346 | number t1,t2; |
---|
347 | int cm,i; |
---|
348 | BOOLEAN equal; |
---|
349 | |
---|
350 | #ifdef HAVE_RING2TOM |
---|
351 | number lc1 = pGetCoeff(p1), lc2 = pGetCoeff(p2); |
---|
352 | int ct = ksCheckCoeff(&lc1, &lc2); // gcd and zero divisors |
---|
353 | if (currRing->cring == 1) |
---|
354 | { |
---|
355 | if (a1 != NULL) t2 = nMult(pGetCoeff(a1),lc2); |
---|
356 | if (a2 != NULL) t1 = nMult(pGetCoeff(a2),lc1); |
---|
357 | while (a1 != NULL && nIsZero(t2)) |
---|
358 | { |
---|
359 | pIter(a1); |
---|
360 | if (a1 != NULL) t2 = nMult(pGetCoeff(a1),lc2); |
---|
361 | } |
---|
362 | while (a2 != NULL && nIsZero(t1)) |
---|
363 | { |
---|
364 | pIter(a2); |
---|
365 | if (a2 != NULL) t1 = nMult(pGetCoeff(a2),lc1); |
---|
366 | } |
---|
367 | } |
---|
368 | #endif |
---|
369 | |
---|
370 | if (a1==NULL) |
---|
371 | { |
---|
372 | if(a2!=NULL) |
---|
373 | { |
---|
374 | m2=p_Init(currRing); |
---|
375 | x2: |
---|
376 | for (i = pVariables; i; i--) |
---|
377 | { |
---|
378 | c = p_GetExpDiff(p1, p2,i, currRing); |
---|
379 | if (c>0) |
---|
380 | { |
---|
381 | p_SetExp(m2,i,(c+p_GetExp(a2,i,tailRing)),currRing); |
---|
382 | } |
---|
383 | else |
---|
384 | { |
---|
385 | p_SetExp(m2,i,p_GetExp(a2,i,tailRing),currRing); |
---|
386 | } |
---|
387 | } |
---|
388 | if ((c1==c2)||(c2!=0)) |
---|
389 | { |
---|
390 | p_SetComp(m2,p_GetComp(a2,tailRing), currRing); |
---|
391 | } |
---|
392 | else |
---|
393 | { |
---|
394 | p_SetComp(m2,c1,currRing); |
---|
395 | } |
---|
396 | p_Setm(m2, currRing); |
---|
397 | #ifdef HAVE_RING2TOM |
---|
398 | if (currRing->cring == 1) |
---|
399 | pSetCoeff(m2, t1); |
---|
400 | else |
---|
401 | #endif |
---|
402 | nNew(&(pGetCoeff(m2))); |
---|
403 | return m2; |
---|
404 | } |
---|
405 | else |
---|
406 | return NULL; |
---|
407 | } |
---|
408 | if (a2==NULL) |
---|
409 | { |
---|
410 | m1=p_Init(currRing); |
---|
411 | x1: |
---|
412 | for (i = pVariables; i; i--) |
---|
413 | { |
---|
414 | c = p_GetExpDiff(p2, p1,i,currRing); |
---|
415 | if (c>0) |
---|
416 | { |
---|
417 | p_SetExp(m1,i,(c+p_GetExp(a1,i, tailRing)),currRing); |
---|
418 | } |
---|
419 | else |
---|
420 | { |
---|
421 | p_SetExp(m1,i,p_GetExp(a1,i, tailRing), currRing); |
---|
422 | } |
---|
423 | } |
---|
424 | if ((c1==c2)||(c1!=0)) |
---|
425 | { |
---|
426 | p_SetComp(m1,p_GetComp(a1,tailRing),currRing); |
---|
427 | } |
---|
428 | else |
---|
429 | { |
---|
430 | p_SetComp(m1,c2,currRing); |
---|
431 | } |
---|
432 | p_Setm(m1, currRing); |
---|
433 | #ifdef HAVE_RING2TOM |
---|
434 | if (currRing->cring == 1) |
---|
435 | pSetCoeff(m1, t2); |
---|
436 | else |
---|
437 | #endif |
---|
438 | nNew(&(pGetCoeff(m1))); |
---|
439 | return m1; |
---|
440 | } |
---|
441 | m1 = p_Init(currRing); |
---|
442 | m2 = p_Init(currRing); |
---|
443 | for(;;) |
---|
444 | { |
---|
445 | for (i = pVariables; i; i--) |
---|
446 | { |
---|
447 | c = p_GetExpDiff(p1, p2,i,currRing); |
---|
448 | if (c > 0) |
---|
449 | { |
---|
450 | p_SetExp(m2,i,(c+p_GetExp(a2,i,tailRing)), currRing); |
---|
451 | p_SetExp(m1,i,p_GetExp(a1,i, tailRing), currRing); |
---|
452 | } |
---|
453 | else |
---|
454 | { |
---|
455 | p_SetExp(m1,i,(p_GetExp(a1,i,tailRing)-c), currRing); |
---|
456 | p_SetExp(m2,i,p_GetExp(a2,i, tailRing), currRing); |
---|
457 | } |
---|
458 | } |
---|
459 | if(c1==c2) |
---|
460 | { |
---|
461 | p_SetComp(m1,p_GetComp(a1, tailRing), currRing); |
---|
462 | p_SetComp(m2,p_GetComp(a2, tailRing), currRing); |
---|
463 | } |
---|
464 | else |
---|
465 | { |
---|
466 | if(c1!=0) |
---|
467 | { |
---|
468 | p_SetComp(m1,p_GetComp(a1, tailRing), currRing); |
---|
469 | p_SetComp(m2,c1, currRing); |
---|
470 | } |
---|
471 | else |
---|
472 | { |
---|
473 | p_SetComp(m2,p_GetComp(a2, tailRing), currRing); |
---|
474 | p_SetComp(m1,c2, currRing); |
---|
475 | } |
---|
476 | } |
---|
477 | p_Setm(m1,currRing); |
---|
478 | p_Setm(m2,currRing); |
---|
479 | cm = p_LmCmp(m1, m2,currRing); |
---|
480 | if (cm!=0) |
---|
481 | { |
---|
482 | if(cm==1) |
---|
483 | { |
---|
484 | p_LmFree(m2,currRing); |
---|
485 | nNew(&(pGetCoeff(m1))); |
---|
486 | return m1; |
---|
487 | } |
---|
488 | else |
---|
489 | { |
---|
490 | p_LmFree(m1,currRing); |
---|
491 | nNew(&(pGetCoeff(m2))); |
---|
492 | return m2; |
---|
493 | } |
---|
494 | } |
---|
495 | #ifdef HAVE_RING2TOM |
---|
496 | if (currRing->cring == 1) |
---|
497 | { |
---|
498 | t1 = nSub(t1, t2); |
---|
499 | equal = nIsZero(t1); |
---|
500 | nDelete(&t2); |
---|
501 | } |
---|
502 | else |
---|
503 | #endif |
---|
504 | { |
---|
505 | t1 = nMult(pGetCoeff(a2),pGetCoeff(p1)); |
---|
506 | t2 = nMult(pGetCoeff(a1),pGetCoeff(p2)); |
---|
507 | equal = nEqual(t1,t2); |
---|
508 | nDelete(&t2); |
---|
509 | nDelete(&t1); |
---|
510 | } |
---|
511 | if (!equal) |
---|
512 | { |
---|
513 | p_LmFree(m2,currRing); |
---|
514 | #ifdef HAVE_RING2TOM |
---|
515 | if (currRing->cring == 1) |
---|
516 | pSetCoeff(m1, t1); |
---|
517 | else |
---|
518 | #endif |
---|
519 | nNew(&(pGetCoeff(m1))); |
---|
520 | return m1; |
---|
521 | } |
---|
522 | pIter(a1); |
---|
523 | pIter(a2); |
---|
524 | #ifdef HAVE_RING2TOM |
---|
525 | if (currRing->cring == 1) |
---|
526 | { |
---|
527 | nDelete(&t1); |
---|
528 | if (a2 != NULL) t1 = nMult(pGetCoeff(a2),lc1); |
---|
529 | if (a1 != NULL) t2 = nMult(pGetCoeff(a1),lc2); |
---|
530 | while (a1 != NULL && nIsZero(t2)) |
---|
531 | { |
---|
532 | pIter(a1); |
---|
533 | if (a1 != NULL) t2 = nMult(pGetCoeff(a1),lc2); |
---|
534 | } |
---|
535 | while (a2 != NULL && nIsZero(t1)) |
---|
536 | { |
---|
537 | pIter(a2); |
---|
538 | if (a2 != NULL) t1 = nMult(pGetCoeff(a2),lc1); |
---|
539 | } |
---|
540 | } |
---|
541 | #endif |
---|
542 | if (a2==NULL) |
---|
543 | { |
---|
544 | p_LmFree(m2,currRing); |
---|
545 | if (a1==NULL) |
---|
546 | { |
---|
547 | p_LmFree(m1,currRing); |
---|
548 | return NULL; |
---|
549 | } |
---|
550 | goto x1; |
---|
551 | } |
---|
552 | if (a1==NULL) |
---|
553 | { |
---|
554 | p_LmFree(m1,currRing); |
---|
555 | goto x2; |
---|
556 | } |
---|
557 | } |
---|
558 | } |
---|