1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* |
---|
5 | * ABSTRACT - Routines for Spoly creation and reductions |
---|
6 | */ |
---|
7 | |
---|
8 | // #define PDEBUG 2 |
---|
9 | #include "config.h" |
---|
10 | #include <kernel/mod2.h> |
---|
11 | #include <misc/options.h> |
---|
12 | #include <kernel/kutil.h> |
---|
13 | #include <coeffs/numbers.h> |
---|
14 | #include <polys/monomials/p_polys.h> |
---|
15 | #include <polys/templates/p_Procs.h> |
---|
16 | #include <polys/nc/nc.h> |
---|
17 | #ifdef KDEBUG |
---|
18 | #include <kernel/febase.h> |
---|
19 | #endif |
---|
20 | #ifdef HAVE_RINGS |
---|
21 | #include <kernel/polys.h> |
---|
22 | #endif |
---|
23 | |
---|
24 | #ifdef KDEBUG |
---|
25 | int red_count = 0; |
---|
26 | int create_count = 0; |
---|
27 | // define this if reductions are reported on TEST_OPT_DEBUG |
---|
28 | #define TEST_OPT_DEBUG_RED |
---|
29 | #endif |
---|
30 | |
---|
31 | /*************************************************************** |
---|
32 | * |
---|
33 | * Reduces PR with PW |
---|
34 | * Assumes PR != NULL, PW != NULL, Lm(PW) divides Lm(PR) |
---|
35 | * |
---|
36 | ***************************************************************/ |
---|
37 | int ksReducePoly(LObject* PR, |
---|
38 | TObject* PW, |
---|
39 | poly spNoether, |
---|
40 | number *coef, |
---|
41 | kStrategy strat) |
---|
42 | { |
---|
43 | #ifdef KDEBUG |
---|
44 | red_count++; |
---|
45 | #ifdef TEST_OPT_DEBUG_RED |
---|
46 | if (TEST_OPT_DEBUG) |
---|
47 | { |
---|
48 | Print("Red %d:", red_count); PR->wrp(); Print(" with:"); |
---|
49 | PW->wrp(); |
---|
50 | } |
---|
51 | #endif |
---|
52 | #endif |
---|
53 | int ret = 0; |
---|
54 | ring tailRing = PR->tailRing; |
---|
55 | assume(kTest_L(PR)); |
---|
56 | assume(kTest_T(PW)); |
---|
57 | |
---|
58 | poly p1 = PR->GetLmTailRing(); // p2 | p1 |
---|
59 | poly p2 = PW->GetLmTailRing(); // i.e. will reduce p1 with p2; lm = LT(p1) / LM(p2) |
---|
60 | poly t2 = pNext(p2), lm = p1; // t2 = p2 - LT(p2); really compute P = LC(p2)*p1 - LT(p1)/LM(p2)*p2 |
---|
61 | assume(p1 != NULL && p2 != NULL);// Attention, we have rings and there LC(p2) and LC(p1) are special |
---|
62 | p_CheckPolyRing(p1, tailRing); |
---|
63 | p_CheckPolyRing(p2, tailRing); |
---|
64 | |
---|
65 | pAssume1(p2 != NULL && p1 != NULL && |
---|
66 | p_DivisibleBy(p2, p1, tailRing)); |
---|
67 | |
---|
68 | pAssume1(p_GetComp(p1, tailRing) == p_GetComp(p2, tailRing) || |
---|
69 | (p_GetComp(p2, tailRing) == 0 && |
---|
70 | p_MaxComp(pNext(p2),tailRing) == 0)); |
---|
71 | |
---|
72 | #ifdef HAVE_PLURAL |
---|
73 | if (rIsPluralRing(currRing)) |
---|
74 | { |
---|
75 | // for the time being: we know currRing==strat->tailRing |
---|
76 | // no exp-bound checking needed |
---|
77 | // (only needed if exp-bound(tailring)<exp-b(currRing)) |
---|
78 | if (PR->bucket!=NULL) nc_kBucketPolyRed(PR->bucket, p2,coef); |
---|
79 | else |
---|
80 | { |
---|
81 | poly _p = (PR->t_p != NULL ? PR->t_p : PR->p); |
---|
82 | assume(_p != NULL); |
---|
83 | nc_PolyPolyRed(_p, p2,coef, currRing); |
---|
84 | if (PR->t_p!=NULL) PR->t_p=_p; else PR->p=_p; |
---|
85 | PR->pLength=0; // usually not used, GetpLength re-computes it if needed |
---|
86 | } |
---|
87 | return 0; |
---|
88 | } |
---|
89 | #endif |
---|
90 | |
---|
91 | if (t2==NULL) // Divisor is just one term, therefore it will |
---|
92 | { // just cancel the leading term |
---|
93 | PR->LmDeleteAndIter(); |
---|
94 | if (coef != NULL) *coef = n_Init(1, tailRing); |
---|
95 | return 0; |
---|
96 | } |
---|
97 | |
---|
98 | p_ExpVectorSub(lm, p2, tailRing); // Calculate the Monomial we must multiply to p2 |
---|
99 | |
---|
100 | if (tailRing != currRing) |
---|
101 | { |
---|
102 | // check that reduction does not violate exp bound |
---|
103 | while (PW->max != NULL && !p_LmExpVectorAddIsOk(lm, PW->max, tailRing)) |
---|
104 | { |
---|
105 | // undo changes of lm |
---|
106 | p_ExpVectorAdd(lm, p2, tailRing); |
---|
107 | if (strat == NULL) return 2; |
---|
108 | if (! kStratChangeTailRing(strat, PR, PW)) return -1; |
---|
109 | tailRing = strat->tailRing; |
---|
110 | p1 = PR->GetLmTailRing(); |
---|
111 | p2 = PW->GetLmTailRing(); |
---|
112 | t2 = pNext(p2); |
---|
113 | lm = p1; |
---|
114 | p_ExpVectorSub(lm, p2, tailRing); |
---|
115 | ret = 1; |
---|
116 | } |
---|
117 | } |
---|
118 | |
---|
119 | // take care of coef buisness |
---|
120 | if (! n_IsOne(pGetCoeff(p2), tailRing)) |
---|
121 | { |
---|
122 | number bn = pGetCoeff(lm); |
---|
123 | number an = pGetCoeff(p2); |
---|
124 | int ct = ksCheckCoeff(&an, &bn, tailRing->cf); // Calculate special LC |
---|
125 | p_SetCoeff(lm, bn, tailRing); |
---|
126 | if ((ct == 0) || (ct == 2)) |
---|
127 | PR->Tail_Mult_nn(an); |
---|
128 | if (coef != NULL) *coef = an; |
---|
129 | else n_Delete(&an, tailRing); |
---|
130 | } |
---|
131 | else |
---|
132 | { |
---|
133 | if (coef != NULL) *coef = n_Init(1, tailRing); |
---|
134 | } |
---|
135 | |
---|
136 | |
---|
137 | // and finally, |
---|
138 | PR->Tail_Minus_mm_Mult_qq(lm, t2, PW->GetpLength() - 1, spNoether); |
---|
139 | assume(PW->GetpLength() == pLength(PW->p != NULL ? PW->p : PW->t_p)); |
---|
140 | PR->LmDeleteAndIter(); |
---|
141 | |
---|
142 | // the following is commented out: shrinking |
---|
143 | #ifdef HAVE_SHIFTBBA_NONEXISTENT |
---|
144 | if ( (currRing->isLPring) && (!strat->homog) ) |
---|
145 | { |
---|
146 | // assume? h->p in currRing |
---|
147 | PR->GetP(); |
---|
148 | poly qq = p_Shrink(PR->p, currRing->isLPring, currRing); |
---|
149 | PR->Clear(); // does the right things |
---|
150 | PR->p = qq; |
---|
151 | PR->t_p = NULL; |
---|
152 | PR->SetShortExpVector(); |
---|
153 | } |
---|
154 | #endif |
---|
155 | |
---|
156 | #if defined(KDEBUG) && defined(TEST_OPT_DEBUG_RED) |
---|
157 | if (TEST_OPT_DEBUG) |
---|
158 | { |
---|
159 | Print(" to: "); PR->wrp(); Print("\n"); |
---|
160 | } |
---|
161 | #endif |
---|
162 | return ret; |
---|
163 | } |
---|
164 | |
---|
165 | /*************************************************************** |
---|
166 | * |
---|
167 | * Reduces PR with PW |
---|
168 | * Assumes PR != NULL, PW != NULL, Lm(PW) divides Lm(PR) |
---|
169 | * |
---|
170 | ***************************************************************/ |
---|
171 | int ksReducePolySig(LObject* PR, |
---|
172 | TObject* PW, |
---|
173 | long idx, |
---|
174 | poly spNoether, |
---|
175 | number *coef, |
---|
176 | kStrategy strat) |
---|
177 | { |
---|
178 | #ifdef KDEBUG |
---|
179 | red_count++; |
---|
180 | #ifdef TEST_OPT_DEBUG_RED |
---|
181 | if (TEST_OPT_DEBUG) |
---|
182 | { |
---|
183 | Print("Red %d:", red_count); PR->wrp(); Print(" with:"); |
---|
184 | PW->wrp(); |
---|
185 | } |
---|
186 | #endif |
---|
187 | #endif |
---|
188 | int ret = 0; |
---|
189 | ring tailRing = PR->tailRing; |
---|
190 | assume(kTest_L(PR)); |
---|
191 | assume(kTest_T(PW)); |
---|
192 | |
---|
193 | // signature-based stuff: |
---|
194 | // checking for sig-safeness first |
---|
195 | // NOTE: This has to be done in the current ring |
---|
196 | // |
---|
197 | /********************************************** |
---|
198 | * |
---|
199 | * TODO: |
---|
200 | * -------------------------------------------- |
---|
201 | * if strat->incremental |
---|
202 | * Since we are subdividing lower index and |
---|
203 | * current index reductions it is enough to |
---|
204 | * look at the polynomial part of the signature |
---|
205 | * for a check. This should speed-up checking |
---|
206 | * a lot! |
---|
207 | * if !strat->incremental |
---|
208 | * We are not subdividing lower and current index |
---|
209 | * due to the fact that we are using the induced |
---|
210 | * Schreyer order |
---|
211 | * |
---|
212 | * nevertheless, this different behaviour is |
---|
213 | * taken care of by is_sigsafe |
---|
214 | * => one reduction procedure can be used for |
---|
215 | * both, the incremental and the non-incremental |
---|
216 | * attempt! |
---|
217 | * -------------------------------------------- |
---|
218 | * |
---|
219 | *********************************************/ |
---|
220 | //printf("COMPARE IDX: %ld -- %ld\n",idx,strat->currIdx); |
---|
221 | if (!PW->is_sigsafe) |
---|
222 | { |
---|
223 | poly f1 = p_Copy(PR->GetLmCurrRing(),currRing); |
---|
224 | poly f2 = PW->GetLmCurrRing(); |
---|
225 | poly sigMult = pCopy(PW->sig); // copy signature of reducer |
---|
226 | p_ExpVectorSub(f1, f2, currRing); // Calculate the Monomial we must multiply to p2 |
---|
227 | //#if 1 |
---|
228 | #ifdef DEBUGF5 |
---|
229 | printf("IN KSREDUCEPOLYSIG: \n"); |
---|
230 | pWrite(pHead(f1)); |
---|
231 | pWrite(pHead(f2)); |
---|
232 | pWrite(sigMult); |
---|
233 | printf("--------------\n"); |
---|
234 | #endif |
---|
235 | sigMult = pp_Mult_qq(f1,sigMult,currRing); |
---|
236 | //#if 1 |
---|
237 | #ifdef DEBUGF5 |
---|
238 | printf("------------------- IN KSREDUCEPOLYSIG: --------------------\n"); |
---|
239 | pWrite(pHead(f1)); |
---|
240 | pWrite(pHead(f2)); |
---|
241 | pWrite(sigMult); |
---|
242 | pWrite(PR->sig); |
---|
243 | printf("--------------\n"); |
---|
244 | #endif |
---|
245 | int sigSafe = p_LmCmp(PR->sig,sigMult,currRing); |
---|
246 | // now we can delete the copied polynomial data used for checking for |
---|
247 | // sig-safeness of the reduction step |
---|
248 | //#if 1 |
---|
249 | #ifdef DEBUGF5 |
---|
250 | printf("%d -- %d sig\n",sigSafe,PW->is_sigsafe); |
---|
251 | |
---|
252 | #endif |
---|
253 | pDelete(&f1); |
---|
254 | pDelete(&sigMult); |
---|
255 | // go on with the computations only if the signature of p2 is greater than the |
---|
256 | // signature of fm*p1 |
---|
257 | if(sigSafe != 1) |
---|
258 | { |
---|
259 | PR->is_redundant = TRUE; |
---|
260 | return 3; |
---|
261 | } |
---|
262 | PW->is_sigsafe = TRUE; |
---|
263 | } |
---|
264 | PR->is_redundant = FALSE; |
---|
265 | poly p1 = PR->GetLmTailRing(); // p2 | p1 |
---|
266 | poly p2 = PW->GetLmTailRing(); // i.e. will reduce p1 with p2; lm = LT(p1) / LM(p2) |
---|
267 | poly t2 = pNext(p2), lm = p1; // t2 = p2 - LT(p2); really compute P = LC(p2)*p1 - LT(p1)/LM(p2)*p2 |
---|
268 | assume(p1 != NULL && p2 != NULL);// Attention, we have rings and there LC(p2) and LC(p1) are special |
---|
269 | p_CheckPolyRing(p1, tailRing); |
---|
270 | p_CheckPolyRing(p2, tailRing); |
---|
271 | |
---|
272 | pAssume1(p2 != NULL && p1 != NULL && |
---|
273 | p_DivisibleBy(p2, p1, tailRing)); |
---|
274 | |
---|
275 | pAssume1(p_GetComp(p1, tailRing) == p_GetComp(p2, tailRing) || |
---|
276 | (p_GetComp(p2, tailRing) == 0 && |
---|
277 | p_MaxComp(pNext(p2),tailRing) == 0)); |
---|
278 | |
---|
279 | #ifdef HAVE_PLURAL |
---|
280 | if (rIsPluralRing(currRing)) |
---|
281 | { |
---|
282 | // for the time being: we know currRing==strat->tailRing |
---|
283 | // no exp-bound checking needed |
---|
284 | // (only needed if exp-bound(tailring)<exp-b(currRing)) |
---|
285 | if (PR->bucket!=NULL) nc_kBucketPolyRed(PR->bucket, p2,coef); |
---|
286 | else |
---|
287 | { |
---|
288 | poly _p = (PR->t_p != NULL ? PR->t_p : PR->p); |
---|
289 | assume(_p != NULL); |
---|
290 | nc_PolyPolyRed(_p, p2, coef, currRing); |
---|
291 | if (PR->t_p!=NULL) PR->t_p=_p; else PR->p=_p; |
---|
292 | PR->pLength=0; // usaully not used, GetpLength re-comoutes it if needed |
---|
293 | } |
---|
294 | return 0; |
---|
295 | } |
---|
296 | #endif |
---|
297 | |
---|
298 | if (t2==NULL) // Divisor is just one term, therefore it will |
---|
299 | { // just cancel the leading term |
---|
300 | PR->LmDeleteAndIter(); |
---|
301 | if (coef != NULL) *coef = n_Init(1, tailRing); |
---|
302 | return 0; |
---|
303 | } |
---|
304 | |
---|
305 | p_ExpVectorSub(lm, p2, tailRing); // Calculate the Monomial we must multiply to p2 |
---|
306 | |
---|
307 | if (tailRing != currRing) |
---|
308 | { |
---|
309 | // check that reduction does not violate exp bound |
---|
310 | while (PW->max != NULL && !p_LmExpVectorAddIsOk(lm, PW->max, tailRing)) |
---|
311 | { |
---|
312 | // undo changes of lm |
---|
313 | p_ExpVectorAdd(lm, p2, tailRing); |
---|
314 | if (strat == NULL) return 2; |
---|
315 | if (! kStratChangeTailRing(strat, PR, PW)) return -1; |
---|
316 | tailRing = strat->tailRing; |
---|
317 | p1 = PR->GetLmTailRing(); |
---|
318 | p2 = PW->GetLmTailRing(); |
---|
319 | t2 = pNext(p2); |
---|
320 | lm = p1; |
---|
321 | p_ExpVectorSub(lm, p2, tailRing); |
---|
322 | ret = 1; |
---|
323 | } |
---|
324 | } |
---|
325 | |
---|
326 | // take care of coef buisness |
---|
327 | if (! n_IsOne(pGetCoeff(p2), tailRing)) |
---|
328 | { |
---|
329 | number bn = pGetCoeff(lm); |
---|
330 | number an = pGetCoeff(p2); |
---|
331 | int ct = ksCheckCoeff(&an, &bn, tailRing->cf); // Calculate special LC |
---|
332 | p_SetCoeff(lm, bn, tailRing); |
---|
333 | if ((ct == 0) || (ct == 2)) |
---|
334 | PR->Tail_Mult_nn(an); |
---|
335 | if (coef != NULL) *coef = an; |
---|
336 | else n_Delete(&an, tailRing); |
---|
337 | } |
---|
338 | else |
---|
339 | { |
---|
340 | if (coef != NULL) *coef = n_Init(1, tailRing); |
---|
341 | } |
---|
342 | |
---|
343 | |
---|
344 | // and finally, |
---|
345 | PR->Tail_Minus_mm_Mult_qq(lm, t2, PW->GetpLength() - 1, spNoether); |
---|
346 | assume(PW->GetpLength() == pLength(PW->p != NULL ? PW->p : PW->t_p)); |
---|
347 | PR->LmDeleteAndIter(); |
---|
348 | |
---|
349 | // the following is commented out: shrinking |
---|
350 | #ifdef HAVE_SHIFTBBA_NONEXISTENT |
---|
351 | if ( (currRing->isLPring) && (!strat->homog) ) |
---|
352 | { |
---|
353 | // assume? h->p in currRing |
---|
354 | PR->GetP(); |
---|
355 | poly qq = p_Shrink(PR->p, currRing->isLPring, currRing); |
---|
356 | PR->Clear(); // does the right things |
---|
357 | PR->p = qq; |
---|
358 | PR->t_p = NULL; |
---|
359 | PR->SetShortExpVector(); |
---|
360 | } |
---|
361 | #endif |
---|
362 | |
---|
363 | #if defined(KDEBUG) && defined(TEST_OPT_DEBUG_RED) |
---|
364 | if (TEST_OPT_DEBUG) |
---|
365 | { |
---|
366 | Print(" to: "); PR->wrp(); Print("\n"); |
---|
367 | } |
---|
368 | #endif |
---|
369 | return ret; |
---|
370 | } |
---|
371 | |
---|
372 | /*************************************************************** |
---|
373 | * |
---|
374 | * Creates S-Poly of p1 and p2 |
---|
375 | * |
---|
376 | * |
---|
377 | ***************************************************************/ |
---|
378 | void ksCreateSpoly(LObject* Pair, poly spNoether, |
---|
379 | int use_buckets, ring tailRing, |
---|
380 | poly m1, poly m2, TObject** R) |
---|
381 | { |
---|
382 | #ifdef KDEBUG |
---|
383 | create_count++; |
---|
384 | #endif |
---|
385 | assume(kTest_L(Pair)); |
---|
386 | poly p1 = Pair->p1; |
---|
387 | poly p2 = Pair->p2; |
---|
388 | Pair->tailRing = tailRing; |
---|
389 | |
---|
390 | assume(p1 != NULL); |
---|
391 | assume(p2 != NULL); |
---|
392 | assume(tailRing != NULL); |
---|
393 | |
---|
394 | poly a1 = pNext(p1), a2 = pNext(p2); |
---|
395 | number lc1 = pGetCoeff(p1), lc2 = pGetCoeff(p2); |
---|
396 | int co=0/*, ct = ksCheckCoeff(&lc1, &lc2, currRing->cf)*/; // gcd and zero divisors |
---|
397 | (void) ksCheckCoeff(&lc1, &lc2, currRing->cf); |
---|
398 | |
---|
399 | int l1=0, l2=0; |
---|
400 | |
---|
401 | if (p_GetComp(p1, currRing)!=p_GetComp(p2, currRing)) |
---|
402 | { |
---|
403 | if (p_GetComp(p1, currRing)==0) |
---|
404 | { |
---|
405 | co=1; |
---|
406 | p_SetCompP(p1,p_GetComp(p2, currRing), currRing, tailRing); |
---|
407 | } |
---|
408 | else |
---|
409 | { |
---|
410 | co=2; |
---|
411 | p_SetCompP(p2, p_GetComp(p1, currRing), currRing, tailRing); |
---|
412 | } |
---|
413 | } |
---|
414 | |
---|
415 | // get m1 = LCM(LM(p1), LM(p2))/LM(p1) |
---|
416 | // m2 = LCM(LM(p1), LM(p2))/LM(p2) |
---|
417 | if (m1 == NULL) |
---|
418 | k_GetLeadTerms(p1, p2, currRing, m1, m2, tailRing); |
---|
419 | |
---|
420 | pSetCoeff0(m1, lc2); |
---|
421 | pSetCoeff0(m2, lc1); // and now, m1 * LT(p1) == m2 * LT(p2) |
---|
422 | |
---|
423 | if (R != NULL) |
---|
424 | { |
---|
425 | if (Pair->i_r1 == -1) |
---|
426 | { |
---|
427 | l1 = pLength(p1) - 1; |
---|
428 | } |
---|
429 | else |
---|
430 | { |
---|
431 | l1 = (R[Pair->i_r1])->GetpLength() - 1; |
---|
432 | } |
---|
433 | if (Pair->i_r2 == -1) |
---|
434 | { |
---|
435 | l2 = pLength(p2) - 1; |
---|
436 | } |
---|
437 | else |
---|
438 | { |
---|
439 | l2 = (R[Pair->i_r2])->GetpLength() - 1; |
---|
440 | } |
---|
441 | } |
---|
442 | |
---|
443 | // get m2 * a2 |
---|
444 | if (spNoether != NULL) |
---|
445 | { |
---|
446 | l2 = -1; |
---|
447 | a2 = tailRing->p_Procs->pp_Mult_mm_Noether(a2, m2, spNoether, l2, tailRing); |
---|
448 | assume(l2 == pLength(a2)); |
---|
449 | } |
---|
450 | else |
---|
451 | a2 = tailRing->p_Procs->pp_Mult_mm(a2, m2, tailRing); |
---|
452 | #ifdef HAVE_RINGS |
---|
453 | if (!(rField_is_Domain(currRing))) l2 = pLength(a2); |
---|
454 | #endif |
---|
455 | |
---|
456 | Pair->SetLmTail(m2, a2, l2, use_buckets, tailRing); |
---|
457 | |
---|
458 | // get m2*a2 - m1*a1 |
---|
459 | Pair->Tail_Minus_mm_Mult_qq(m1, a1, l1, spNoether); |
---|
460 | |
---|
461 | // Clean-up time |
---|
462 | Pair->LmDeleteAndIter(); |
---|
463 | p_LmDelete(m1, tailRing); |
---|
464 | |
---|
465 | if (co != 0) |
---|
466 | { |
---|
467 | if (co==1) |
---|
468 | { |
---|
469 | p_SetCompP(p1,0, currRing, tailRing); |
---|
470 | } |
---|
471 | else |
---|
472 | { |
---|
473 | p_SetCompP(p2,0, currRing, tailRing); |
---|
474 | } |
---|
475 | } |
---|
476 | |
---|
477 | // the following is commented out: shrinking |
---|
478 | #ifdef HAVE_SHIFTBBA_NONEXISTENT |
---|
479 | if (currRing->isLPring) |
---|
480 | { |
---|
481 | // assume? h->p in currRing |
---|
482 | Pair->GetP(); |
---|
483 | poly qq = p_Shrink(Pair->p, currRing->isLPring, currRing); |
---|
484 | Pair->Clear(); // does the right things |
---|
485 | Pair->p = qq; |
---|
486 | Pair->t_p = NULL; |
---|
487 | Pair->SetShortExpVector(); |
---|
488 | } |
---|
489 | #endif |
---|
490 | |
---|
491 | } |
---|
492 | |
---|
493 | int ksReducePolyTail(LObject* PR, TObject* PW, poly Current, poly spNoether) |
---|
494 | { |
---|
495 | BOOLEAN ret; |
---|
496 | number coef; |
---|
497 | poly Lp = PR->GetLmCurrRing(); |
---|
498 | poly Save = PW->GetLmCurrRing(); |
---|
499 | |
---|
500 | assume(kTest_L(PR)); |
---|
501 | assume(kTest_T(PW)); |
---|
502 | pAssume(pIsMonomOf(Lp, Current)); |
---|
503 | |
---|
504 | assume(Lp != NULL && Current != NULL && pNext(Current) != NULL); |
---|
505 | assume(PR->bucket == NULL); |
---|
506 | |
---|
507 | LObject Red(pNext(Current), PR->tailRing); |
---|
508 | TObject With(PW, Lp == Save); |
---|
509 | |
---|
510 | pAssume(!pHaveCommonMonoms(Red.p, With.p)); |
---|
511 | ret = ksReducePoly(&Red, &With, spNoether, &coef); |
---|
512 | |
---|
513 | if (!ret) |
---|
514 | { |
---|
515 | if (! n_IsOne(coef, currRing)) |
---|
516 | { |
---|
517 | pNext(Current) = NULL; |
---|
518 | if (Current == PR->p && PR->t_p != NULL) |
---|
519 | pNext(PR->t_p) = NULL; |
---|
520 | PR->Mult_nn(coef); |
---|
521 | } |
---|
522 | |
---|
523 | n_Delete(&coef, currRing); |
---|
524 | pNext(Current) = Red.GetLmTailRing(); |
---|
525 | if (Current == PR->p && PR->t_p != NULL) |
---|
526 | pNext(PR->t_p) = pNext(Current); |
---|
527 | } |
---|
528 | |
---|
529 | if (Lp == Save) |
---|
530 | With.Delete(); |
---|
531 | |
---|
532 | // the following is commented out: shrinking |
---|
533 | #ifdef HAVE_SHIFTBBA_NONEXISTENT |
---|
534 | if (currRing->isLPring) |
---|
535 | { |
---|
536 | // assume? h->p in currRing |
---|
537 | PR->GetP(); |
---|
538 | poly qq = p_Shrink(PR->p, currRing->isLPring, currRing); |
---|
539 | PR->Clear(); // does the right things |
---|
540 | PR->p = qq; |
---|
541 | PR->t_p = NULL; |
---|
542 | PR->SetShortExpVector(); |
---|
543 | } |
---|
544 | #endif |
---|
545 | |
---|
546 | return ret; |
---|
547 | } |
---|
548 | |
---|
549 | /*************************************************************** |
---|
550 | * |
---|
551 | * Auxillary Routines |
---|
552 | * |
---|
553 | * |
---|
554 | ***************************************************************/ |
---|
555 | |
---|
556 | /*2 |
---|
557 | * creates the leading term of the S-polynomial of p1 and p2 |
---|
558 | * do not destroy p1 and p2 |
---|
559 | * remarks: |
---|
560 | * 1. the coefficient is 0 (nNew) |
---|
561 | * 1. a) in the case of coefficient ring, the coefficient is calculated |
---|
562 | * 2. pNext is undefined |
---|
563 | */ |
---|
564 | //static void bbb() { int i=0; } |
---|
565 | poly ksCreateShortSpoly(poly p1, poly p2, ring tailRing) |
---|
566 | { |
---|
567 | poly a1 = pNext(p1), a2 = pNext(p2); |
---|
568 | long c1=p_GetComp(p1, currRing),c2=p_GetComp(p2, currRing); |
---|
569 | long c; |
---|
570 | poly m1,m2; |
---|
571 | number t1 = NULL,t2 = NULL; |
---|
572 | int cm,i; |
---|
573 | BOOLEAN equal; |
---|
574 | |
---|
575 | #ifdef HAVE_RINGS |
---|
576 | BOOLEAN is_Ring=rField_is_Ring(currRing); |
---|
577 | number lc1 = pGetCoeff(p1), lc2 = pGetCoeff(p2); |
---|
578 | if (is_Ring) |
---|
579 | { |
---|
580 | ksCheckCoeff(&lc1, &lc2, currRing->cf); // gcd and zero divisors |
---|
581 | if (a1 != NULL) t2 = nMult(pGetCoeff(a1),lc2); |
---|
582 | if (a2 != NULL) t1 = nMult(pGetCoeff(a2),lc1); |
---|
583 | while (a1 != NULL && nIsZero(t2)) |
---|
584 | { |
---|
585 | pIter(a1); |
---|
586 | nDelete(&t2); |
---|
587 | if (a1 != NULL) t2 = nMult(pGetCoeff(a1),lc2); |
---|
588 | } |
---|
589 | while (a2 != NULL && nIsZero(t1)) |
---|
590 | { |
---|
591 | pIter(a2); |
---|
592 | nDelete(&t1); |
---|
593 | if (a2 != NULL) t1 = nMult(pGetCoeff(a2),lc1); |
---|
594 | } |
---|
595 | } |
---|
596 | #endif |
---|
597 | |
---|
598 | if (a1==NULL) |
---|
599 | { |
---|
600 | if(a2!=NULL) |
---|
601 | { |
---|
602 | m2=p_Init(currRing); |
---|
603 | x2: |
---|
604 | for (i = (currRing->N); i; i--) |
---|
605 | { |
---|
606 | c = p_GetExpDiff(p1, p2,i, currRing); |
---|
607 | if (c>0) |
---|
608 | { |
---|
609 | p_SetExp(m2,i,(c+p_GetExp(a2,i,tailRing)),currRing); |
---|
610 | } |
---|
611 | else |
---|
612 | { |
---|
613 | p_SetExp(m2,i,p_GetExp(a2,i,tailRing),currRing); |
---|
614 | } |
---|
615 | } |
---|
616 | if ((c1==c2)||(c2!=0)) |
---|
617 | { |
---|
618 | p_SetComp(m2,p_GetComp(a2,tailRing), currRing); |
---|
619 | } |
---|
620 | else |
---|
621 | { |
---|
622 | p_SetComp(m2,c1,currRing); |
---|
623 | } |
---|
624 | p_Setm(m2, currRing); |
---|
625 | #ifdef HAVE_RINGS |
---|
626 | if (is_Ring) |
---|
627 | { |
---|
628 | nDelete(&lc1); |
---|
629 | nDelete(&lc2); |
---|
630 | nDelete(&t2); |
---|
631 | pSetCoeff0(m2, t1); |
---|
632 | } |
---|
633 | else |
---|
634 | #endif |
---|
635 | nNew(&(pGetCoeff(m2))); |
---|
636 | return m2; |
---|
637 | } |
---|
638 | else |
---|
639 | { |
---|
640 | #ifdef HAVE_RINGS |
---|
641 | if (is_Ring) |
---|
642 | { |
---|
643 | nDelete(&lc1); |
---|
644 | nDelete(&lc2); |
---|
645 | nDelete(&t1); |
---|
646 | nDelete(&t2); |
---|
647 | } |
---|
648 | #endif |
---|
649 | return NULL; |
---|
650 | } |
---|
651 | } |
---|
652 | if (a2==NULL) |
---|
653 | { |
---|
654 | m1=p_Init(currRing); |
---|
655 | x1: |
---|
656 | for (i = (currRing->N); i; i--) |
---|
657 | { |
---|
658 | c = p_GetExpDiff(p2, p1,i,currRing); |
---|
659 | if (c>0) |
---|
660 | { |
---|
661 | p_SetExp(m1,i,(c+p_GetExp(a1,i, tailRing)),currRing); |
---|
662 | } |
---|
663 | else |
---|
664 | { |
---|
665 | p_SetExp(m1,i,p_GetExp(a1,i, tailRing), currRing); |
---|
666 | } |
---|
667 | } |
---|
668 | if ((c1==c2)||(c1!=0)) |
---|
669 | { |
---|
670 | p_SetComp(m1,p_GetComp(a1,tailRing),currRing); |
---|
671 | } |
---|
672 | else |
---|
673 | { |
---|
674 | p_SetComp(m1,c2,currRing); |
---|
675 | } |
---|
676 | p_Setm(m1, currRing); |
---|
677 | #ifdef HAVE_RINGS |
---|
678 | if (is_Ring) |
---|
679 | { |
---|
680 | pSetCoeff0(m1, t2); |
---|
681 | nDelete(&lc1); |
---|
682 | nDelete(&lc2); |
---|
683 | nDelete(&t1); |
---|
684 | } |
---|
685 | else |
---|
686 | #endif |
---|
687 | nNew(&(pGetCoeff(m1))); |
---|
688 | return m1; |
---|
689 | } |
---|
690 | m1 = p_Init(currRing); |
---|
691 | m2 = p_Init(currRing); |
---|
692 | loop |
---|
693 | { |
---|
694 | for (i = (currRing->N); i; i--) |
---|
695 | { |
---|
696 | c = p_GetExpDiff(p1, p2,i,currRing); |
---|
697 | if (c > 0) |
---|
698 | { |
---|
699 | p_SetExp(m2,i,(c+p_GetExp(a2,i,tailRing)), currRing); |
---|
700 | p_SetExp(m1,i,p_GetExp(a1,i, tailRing), currRing); |
---|
701 | } |
---|
702 | else |
---|
703 | { |
---|
704 | p_SetExp(m1,i,(p_GetExp(a1,i,tailRing)-c), currRing); |
---|
705 | p_SetExp(m2,i,p_GetExp(a2,i, tailRing), currRing); |
---|
706 | } |
---|
707 | } |
---|
708 | if(c1==c2) |
---|
709 | { |
---|
710 | p_SetComp(m1,p_GetComp(a1, tailRing), currRing); |
---|
711 | p_SetComp(m2,p_GetComp(a2, tailRing), currRing); |
---|
712 | } |
---|
713 | else |
---|
714 | { |
---|
715 | if(c1!=0) |
---|
716 | { |
---|
717 | p_SetComp(m1,p_GetComp(a1, tailRing), currRing); |
---|
718 | p_SetComp(m2,c1, currRing); |
---|
719 | } |
---|
720 | else |
---|
721 | { |
---|
722 | p_SetComp(m2,p_GetComp(a2, tailRing), currRing); |
---|
723 | p_SetComp(m1,c2, currRing); |
---|
724 | } |
---|
725 | } |
---|
726 | p_Setm(m1,currRing); |
---|
727 | p_Setm(m2,currRing); |
---|
728 | cm = p_LmCmp(m1, m2,currRing); |
---|
729 | if (cm!=0) |
---|
730 | { |
---|
731 | if(cm==1) |
---|
732 | { |
---|
733 | p_LmFree(m2,currRing); |
---|
734 | #ifdef HAVE_RINGS |
---|
735 | if (is_Ring) |
---|
736 | { |
---|
737 | pSetCoeff0(m1, t2); |
---|
738 | nDelete(&lc1); |
---|
739 | nDelete(&lc2); |
---|
740 | nDelete(&t1); |
---|
741 | } |
---|
742 | else |
---|
743 | #endif |
---|
744 | nNew(&(pGetCoeff(m1))); |
---|
745 | return m1; |
---|
746 | } |
---|
747 | else |
---|
748 | { |
---|
749 | p_LmFree(m1,currRing); |
---|
750 | #ifdef HAVE_RINGS |
---|
751 | if (is_Ring) |
---|
752 | { |
---|
753 | pSetCoeff0(m2, t1); |
---|
754 | nDelete(&lc1); |
---|
755 | nDelete(&lc2); |
---|
756 | nDelete(&t2); |
---|
757 | } |
---|
758 | else |
---|
759 | #endif |
---|
760 | nNew(&(pGetCoeff(m2))); |
---|
761 | return m2; |
---|
762 | } |
---|
763 | } |
---|
764 | #ifdef HAVE_RINGS |
---|
765 | if (is_Ring) |
---|
766 | { |
---|
767 | equal = nEqual(t1,t2); |
---|
768 | } |
---|
769 | else |
---|
770 | #endif |
---|
771 | { |
---|
772 | t1 = nMult(pGetCoeff(a2),pGetCoeff(p1)); |
---|
773 | t2 = nMult(pGetCoeff(a1),pGetCoeff(p2)); |
---|
774 | equal = nEqual(t1,t2); |
---|
775 | nDelete(&t2); |
---|
776 | nDelete(&t1); |
---|
777 | } |
---|
778 | if (!equal) |
---|
779 | { |
---|
780 | p_LmFree(m2,currRing); |
---|
781 | #ifdef HAVE_RINGS |
---|
782 | if (is_Ring) |
---|
783 | { |
---|
784 | pSetCoeff0(m1, nSub(t1, t2)); |
---|
785 | nDelete(&lc1); |
---|
786 | nDelete(&lc2); |
---|
787 | nDelete(&t1); |
---|
788 | nDelete(&t2); |
---|
789 | } |
---|
790 | else |
---|
791 | #endif |
---|
792 | nNew(&(pGetCoeff(m1))); |
---|
793 | return m1; |
---|
794 | } |
---|
795 | pIter(a1); |
---|
796 | pIter(a2); |
---|
797 | #ifdef HAVE_RINGS |
---|
798 | if (is_Ring) |
---|
799 | { |
---|
800 | if (a2 != NULL) |
---|
801 | { |
---|
802 | nDelete(&t1); |
---|
803 | t1 = nMult(pGetCoeff(a2),lc1); |
---|
804 | } |
---|
805 | if (a1 != NULL) |
---|
806 | { |
---|
807 | nDelete(&t2); |
---|
808 | t2 = nMult(pGetCoeff(a1),lc2); |
---|
809 | } |
---|
810 | while ((a1 != NULL) && nIsZero(t2)) |
---|
811 | { |
---|
812 | pIter(a1); |
---|
813 | if (a1 != NULL) |
---|
814 | { |
---|
815 | nDelete(&t2); |
---|
816 | t2 = nMult(pGetCoeff(a1),lc2); |
---|
817 | } |
---|
818 | } |
---|
819 | while ((a2 != NULL) && nIsZero(t1)) |
---|
820 | { |
---|
821 | pIter(a2); |
---|
822 | if (a2 != NULL) |
---|
823 | { |
---|
824 | nDelete(&t1); |
---|
825 | t1 = nMult(pGetCoeff(a2),lc1); |
---|
826 | } |
---|
827 | } |
---|
828 | } |
---|
829 | #endif |
---|
830 | if (a2==NULL) |
---|
831 | { |
---|
832 | p_LmFree(m2,currRing); |
---|
833 | if (a1==NULL) |
---|
834 | { |
---|
835 | #ifdef HAVE_RINGS |
---|
836 | if (is_Ring) |
---|
837 | { |
---|
838 | nDelete(&lc1); |
---|
839 | nDelete(&lc2); |
---|
840 | nDelete(&t1); |
---|
841 | nDelete(&t2); |
---|
842 | } |
---|
843 | #endif |
---|
844 | p_LmFree(m1,currRing); |
---|
845 | return NULL; |
---|
846 | } |
---|
847 | goto x1; |
---|
848 | } |
---|
849 | if (a1==NULL) |
---|
850 | { |
---|
851 | p_LmFree(m1,currRing); |
---|
852 | goto x2; |
---|
853 | } |
---|
854 | } |
---|
855 | } |
---|