1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* |
---|
5 | * ABSTRACT: kernel: utils for kStd |
---|
6 | */ |
---|
7 | |
---|
8 | // #define PDEBUG 2 |
---|
9 | // #define PDIV_DEBUG |
---|
10 | #define KUTIL_CC |
---|
11 | #include <stdlib.h> |
---|
12 | #include <string.h> |
---|
13 | #include "config.h" |
---|
14 | #include "mod2.h" |
---|
15 | |
---|
16 | #ifndef NDEBUG |
---|
17 | # define MYTEST 0 |
---|
18 | #else /* ifndef NDEBUG */ |
---|
19 | # define MYTEST 0 |
---|
20 | #endif /* ifndef NDEBUG */ |
---|
21 | |
---|
22 | |
---|
23 | #include <misc/mylimits.h> |
---|
24 | #include <misc/options.h> |
---|
25 | #include <polys/nc/nc.h> |
---|
26 | #include <polys/nc/sca.h> |
---|
27 | #include <polys/weight.h> /* for kDebugPrint: maxdegreeWecart*/ |
---|
28 | #ifdef KDEBUG |
---|
29 | #undef KDEBUG |
---|
30 | #define KDEBUG 2 |
---|
31 | #endif |
---|
32 | |
---|
33 | #ifdef DEBUGF5 |
---|
34 | #undef DEBUGF5 |
---|
35 | //#define DEBUGF5 1 |
---|
36 | #endif |
---|
37 | |
---|
38 | #ifdef HAVE_RINGS |
---|
39 | #include <kernel/ideals.h> |
---|
40 | #endif |
---|
41 | |
---|
42 | // define if enterL, enterT should use memmove instead of doing it manually |
---|
43 | // on topgun, this is slightly faster (see monodromy_l.tst, homog_gonnet.sing) |
---|
44 | #ifndef SunOS_4 |
---|
45 | #define ENTER_USE_MEMMOVE |
---|
46 | #endif |
---|
47 | |
---|
48 | // define, if the my_memmove inlines should be used instead of |
---|
49 | // system memmove -- it does not seem to pay off, though |
---|
50 | // #define ENTER_USE_MYMEMMOVE |
---|
51 | |
---|
52 | #include <kernel/kutil.h> |
---|
53 | #include <polys/kbuckets.h> |
---|
54 | #include <kernel/febase.h> |
---|
55 | #include <omalloc/omalloc.h> |
---|
56 | #include <coeffs/numbers.h> |
---|
57 | #include <kernel/polys.h> |
---|
58 | #include <polys/monomials/ring.h> |
---|
59 | #include <kernel/ideals.h> |
---|
60 | #include <kernel/timer.h> |
---|
61 | //#include "cntrlc.h" |
---|
62 | #include <kernel/stairc.h> |
---|
63 | #include <kernel/kstd1.h> |
---|
64 | #include <polys/operations/pShallowCopyDelete.h> |
---|
65 | |
---|
66 | /* shiftgb stuff */ |
---|
67 | #include <kernel/shiftgb.h> |
---|
68 | #include <polys/prCopy.h> |
---|
69 | |
---|
70 | #ifdef HAVE_RATGRING |
---|
71 | #include <kernel/ratgring.h> |
---|
72 | #endif |
---|
73 | |
---|
74 | #ifdef KDEBUG |
---|
75 | #undef KDEBUG |
---|
76 | #define KDEBUG 2 |
---|
77 | #endif |
---|
78 | |
---|
79 | #ifdef DEBUGF5 |
---|
80 | #undef DEBUGF5 |
---|
81 | #define DEBUGF5 2 |
---|
82 | #endif |
---|
83 | |
---|
84 | denominator_list DENOMINATOR_LIST=NULL; |
---|
85 | |
---|
86 | |
---|
87 | #ifdef ENTER_USE_MYMEMMOVE |
---|
88 | inline void _my_memmove_d_gt_s(unsigned long* d, unsigned long* s, long l) |
---|
89 | { |
---|
90 | register unsigned long* _dl = (unsigned long*) d; |
---|
91 | register unsigned long* _sl = (unsigned long*) s; |
---|
92 | register long _i = l - 1; |
---|
93 | |
---|
94 | do |
---|
95 | { |
---|
96 | _dl[_i] = _sl[_i]; |
---|
97 | _i--; |
---|
98 | } |
---|
99 | while (_i >= 0); |
---|
100 | } |
---|
101 | |
---|
102 | inline void _my_memmove_d_lt_s(unsigned long* d, unsigned long* s, long l) |
---|
103 | { |
---|
104 | register long _ll = l; |
---|
105 | register unsigned long* _dl = (unsigned long*) d; |
---|
106 | register unsigned long* _sl = (unsigned long*) s; |
---|
107 | register long _i = 0; |
---|
108 | |
---|
109 | do |
---|
110 | { |
---|
111 | _dl[_i] = _sl[_i]; |
---|
112 | _i++; |
---|
113 | } |
---|
114 | while (_i < _ll); |
---|
115 | } |
---|
116 | |
---|
117 | inline void _my_memmove(void* d, void* s, long l) |
---|
118 | { |
---|
119 | unsigned long _d = (unsigned long) d; |
---|
120 | unsigned long _s = (unsigned long) s; |
---|
121 | unsigned long _l = ((l) + SIZEOF_LONG - 1) >> LOG_SIZEOF_LONG; |
---|
122 | |
---|
123 | if (_d > _s) _my_memmove_d_gt_s(_d, _s, _l); |
---|
124 | else _my_memmove_d_lt_s(_d, _s, _l); |
---|
125 | } |
---|
126 | |
---|
127 | #undef memmove |
---|
128 | #define memmove(d,s,l) _my_memmove(d, s, l) |
---|
129 | #endif |
---|
130 | |
---|
131 | static poly redMora (poly h,int maxIndex,kStrategy strat); |
---|
132 | static poly redBba (poly h,int maxIndex,kStrategy strat); |
---|
133 | |
---|
134 | #ifdef HAVE_RINGS |
---|
135 | #define pDivComp_EQUAL 2 |
---|
136 | #define pDivComp_LESS 1 |
---|
137 | #define pDivComp_GREATER -1 |
---|
138 | #define pDivComp_INCOMP 0 |
---|
139 | /* Checks the relation of LM(p) and LM(q) |
---|
140 | LM(p) = LM(q) => return pDivComp_EQUAL |
---|
141 | LM(p) | LM(q) => return pDivComp_LESS |
---|
142 | LM(q) | LM(p) => return pDivComp_GREATER |
---|
143 | else return pDivComp_INCOMP */ |
---|
144 | static inline int pDivCompRing(poly p, poly q) |
---|
145 | { |
---|
146 | if (pGetComp(p) == pGetComp(q)) |
---|
147 | { |
---|
148 | BOOLEAN a=FALSE, b=FALSE; |
---|
149 | int i; |
---|
150 | unsigned long la, lb; |
---|
151 | unsigned long divmask = currRing->divmask; |
---|
152 | for (i=0; i<currRing->VarL_Size; i++) |
---|
153 | { |
---|
154 | la = p->exp[currRing->VarL_Offset[i]]; |
---|
155 | lb = q->exp[currRing->VarL_Offset[i]]; |
---|
156 | if (la != lb) |
---|
157 | { |
---|
158 | if (la < lb) |
---|
159 | { |
---|
160 | if (b) return pDivComp_INCOMP; |
---|
161 | if (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask)) |
---|
162 | return pDivComp_INCOMP; |
---|
163 | a = TRUE; |
---|
164 | } |
---|
165 | else |
---|
166 | { |
---|
167 | if (a) return pDivComp_INCOMP; |
---|
168 | if (((la & divmask) ^ (lb & divmask)) != ((la - lb) & divmask)) |
---|
169 | return pDivComp_INCOMP; |
---|
170 | b = TRUE; |
---|
171 | } |
---|
172 | } |
---|
173 | } |
---|
174 | if (a) return pDivComp_LESS; |
---|
175 | if (b) return pDivComp_GREATER; |
---|
176 | if (!a & !b) return pDivComp_EQUAL; |
---|
177 | } |
---|
178 | return pDivComp_INCOMP; |
---|
179 | } |
---|
180 | #endif |
---|
181 | |
---|
182 | static inline int pDivComp(poly p, poly q) |
---|
183 | { |
---|
184 | if (pGetComp(p) == pGetComp(q)) |
---|
185 | { |
---|
186 | #ifdef HAVE_RATGRING |
---|
187 | if (rIsRatGRing(currRing)) |
---|
188 | { |
---|
189 | if (_p_LmDivisibleByPart(p,currRing, |
---|
190 | q,currRing, |
---|
191 | currRing->real_var_start, currRing->real_var_end)) |
---|
192 | return 0; |
---|
193 | return pLmCmp(q,p); // ONLY FOR GLOBAL ORDER! |
---|
194 | } |
---|
195 | #endif |
---|
196 | BOOLEAN a=FALSE, b=FALSE; |
---|
197 | int i; |
---|
198 | unsigned long la, lb; |
---|
199 | unsigned long divmask = currRing->divmask; |
---|
200 | for (i=0; i<currRing->VarL_Size; i++) |
---|
201 | { |
---|
202 | la = p->exp[currRing->VarL_Offset[i]]; |
---|
203 | lb = q->exp[currRing->VarL_Offset[i]]; |
---|
204 | if (la != lb) |
---|
205 | { |
---|
206 | if (la < lb) |
---|
207 | { |
---|
208 | if (b) return 0; |
---|
209 | if (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask)) |
---|
210 | return 0; |
---|
211 | a = TRUE; |
---|
212 | } |
---|
213 | else |
---|
214 | { |
---|
215 | if (a) return 0; |
---|
216 | if (((la & divmask) ^ (lb & divmask)) != ((la - lb) & divmask)) |
---|
217 | return 0; |
---|
218 | b = TRUE; |
---|
219 | } |
---|
220 | } |
---|
221 | } |
---|
222 | if (a) { /*assume(pLmCmp(q,p)==1);*/ return 1; } |
---|
223 | if (b) { /*assume(pLmCmp(q,p)==-1);*/return -1; } |
---|
224 | /*assume(pLmCmp(q,p)==0);*/ |
---|
225 | } |
---|
226 | return 0; |
---|
227 | } |
---|
228 | |
---|
229 | |
---|
230 | int HCord; |
---|
231 | int Kstd1_deg; |
---|
232 | int Kstd1_mu=32000; |
---|
233 | |
---|
234 | /*2 |
---|
235 | *deletes higher monomial of p, re-compute ecart and length |
---|
236 | *works only for orderings with ecart =pFDeg(end)-pFDeg(start) |
---|
237 | */ |
---|
238 | void deleteHC(LObject *L, kStrategy strat, BOOLEAN fromNext) |
---|
239 | { |
---|
240 | if (strat->kHEdgeFound) |
---|
241 | { |
---|
242 | kTest_L(L); |
---|
243 | poly p1; |
---|
244 | poly p = L->GetLmTailRing(); |
---|
245 | int l = 1; |
---|
246 | kBucket_pt bucket = NULL; |
---|
247 | if (L->bucket != NULL) |
---|
248 | { |
---|
249 | kBucketClear(L->bucket, &pNext(p), &L->pLength); |
---|
250 | L->pLength++; |
---|
251 | bucket = L->bucket; |
---|
252 | L->bucket = NULL; |
---|
253 | } |
---|
254 | |
---|
255 | if (!fromNext && p_Cmp(p,strat->kNoetherTail(), L->tailRing) == -1) |
---|
256 | { |
---|
257 | L->Delete(); |
---|
258 | L->Clear(); |
---|
259 | L->ecart = -1; |
---|
260 | if (bucket != NULL) kBucketDestroy(&bucket); |
---|
261 | return; |
---|
262 | } |
---|
263 | p1 = p; |
---|
264 | while (pNext(p1)!=NULL) |
---|
265 | { |
---|
266 | if (p_LmCmp(pNext(p1), strat->kNoetherTail(), L->tailRing) == -1) |
---|
267 | { |
---|
268 | p_Delete(&pNext(p1), L->tailRing); |
---|
269 | if (p1 == p) |
---|
270 | { |
---|
271 | if (L->t_p != NULL) |
---|
272 | { |
---|
273 | assume(L->p != NULL && p == L->t_p); |
---|
274 | pNext(L->p) = NULL; |
---|
275 | } |
---|
276 | L->max = NULL; |
---|
277 | } |
---|
278 | else if (fromNext) |
---|
279 | L->max = p_GetMaxExpP(pNext(L->p), L->tailRing ); // p1; |
---|
280 | //if (L->pLength != 0) |
---|
281 | L->pLength = l; |
---|
282 | // Hmmm when called from updateT, then only |
---|
283 | // reset ecart when cut |
---|
284 | if (fromNext) |
---|
285 | L->ecart = L->pLDeg() - L->GetpFDeg(); |
---|
286 | break; |
---|
287 | } |
---|
288 | l++; |
---|
289 | pIter(p1); |
---|
290 | } |
---|
291 | if (! fromNext) |
---|
292 | { |
---|
293 | L->SetpFDeg(); |
---|
294 | L->ecart = L->pLDeg(strat->LDegLast) - L->GetpFDeg(); |
---|
295 | } |
---|
296 | if (bucket != NULL) |
---|
297 | { |
---|
298 | if (L->pLength > 1) |
---|
299 | { |
---|
300 | kBucketInit(bucket, pNext(p), L->pLength - 1); |
---|
301 | pNext(p) = NULL; |
---|
302 | if (L->t_p != NULL) pNext(L->t_p) = NULL; |
---|
303 | L->pLength = 0; |
---|
304 | L->bucket = bucket; |
---|
305 | } |
---|
306 | else |
---|
307 | kBucketDestroy(&bucket); |
---|
308 | } |
---|
309 | kTest_L(L); |
---|
310 | } |
---|
311 | } |
---|
312 | |
---|
313 | void deleteHC(poly* p, int* e, int* l,kStrategy strat) |
---|
314 | { |
---|
315 | LObject L(*p, currRing, strat->tailRing); |
---|
316 | |
---|
317 | deleteHC(&L, strat); |
---|
318 | *p = L.p; |
---|
319 | *e = L.ecart; |
---|
320 | *l = L.length; |
---|
321 | if (L.t_p != NULL) p_LmFree(L.t_p, strat->tailRing); |
---|
322 | } |
---|
323 | |
---|
324 | /*2 |
---|
325 | *tests if p.p=monomial*unit and cancels the unit |
---|
326 | */ |
---|
327 | void cancelunit (LObject* L,BOOLEAN inNF) |
---|
328 | { |
---|
329 | int i; |
---|
330 | poly h; |
---|
331 | |
---|
332 | if(rHasGlobalOrdering (currRing)) return; |
---|
333 | if(TEST_OPT_CANCELUNIT) return; |
---|
334 | |
---|
335 | ring r = L->tailRing; |
---|
336 | poly p = L->GetLmTailRing(); |
---|
337 | |
---|
338 | #ifdef HAVE_RINGS_LOC |
---|
339 | // Leading coef have to be a unit |
---|
340 | if ( !(nIsUnit(p_GetCoeff(p, r))) ) return; |
---|
341 | #endif |
---|
342 | |
---|
343 | if(p_GetComp(p, r) != 0 && !p_OneComp(p, r)) return; |
---|
344 | |
---|
345 | // for(i=r->N;i>0;i--) |
---|
346 | // { |
---|
347 | // if ((p_GetExp(p,i,r)>0) && (rIsPolyVar(i, r)==TRUE)) return; |
---|
348 | // } |
---|
349 | h = pNext(p); |
---|
350 | loop |
---|
351 | { |
---|
352 | if (h==NULL) |
---|
353 | { |
---|
354 | p_Delete(&pNext(p), r); |
---|
355 | if (!inNF) |
---|
356 | { |
---|
357 | number eins=nInit(1); |
---|
358 | if (L->p != NULL) pSetCoeff(L->p,eins); |
---|
359 | else if (L->t_p != NULL) nDelete(&pGetCoeff(L->t_p)); |
---|
360 | if (L->t_p != NULL) pSetCoeff0(L->t_p,eins); |
---|
361 | } |
---|
362 | L->ecart = 0; |
---|
363 | L->length = 1; |
---|
364 | //if (L->pLength > 0) |
---|
365 | L->pLength = 1; |
---|
366 | L->max = NULL; |
---|
367 | |
---|
368 | if (L->t_p != NULL && pNext(L->t_p) != NULL) |
---|
369 | pNext(L->t_p) = NULL; |
---|
370 | if (L->p != NULL && pNext(L->p) != NULL) |
---|
371 | pNext(L->p) = NULL; |
---|
372 | return; |
---|
373 | } |
---|
374 | i = 0; |
---|
375 | loop |
---|
376 | { |
---|
377 | i++; |
---|
378 | if (p_GetExp(p,i,r) > p_GetExp(h,i,r)) return ; // does not divide |
---|
379 | if (i == r->N) break; // does divide, try next monom |
---|
380 | } |
---|
381 | pIter(h); |
---|
382 | } |
---|
383 | } |
---|
384 | |
---|
385 | /*2 |
---|
386 | *pp is the new element in s |
---|
387 | *returns TRUE (in strat->kHEdgeFound) if |
---|
388 | *-HEcke is allowed |
---|
389 | *-we are in the last componente of the vector |
---|
390 | *-on all axis are monomials (all elements in NotUsedAxis are FALSE) |
---|
391 | *returns FALSE for pLexOrderings, |
---|
392 | *assumes in module case an ordering of type c* !! |
---|
393 | * HEckeTest is only called with strat->kHEdgeFound==FALSE ! |
---|
394 | */ |
---|
395 | void HEckeTest (poly pp,kStrategy strat) |
---|
396 | { |
---|
397 | int j,k,p; |
---|
398 | |
---|
399 | strat->kHEdgeFound=FALSE; |
---|
400 | if (currRing->pLexOrder || currRing->MixedOrder) |
---|
401 | { |
---|
402 | return; |
---|
403 | } |
---|
404 | if (strat->ak > 1) /*we are in the module case*/ |
---|
405 | { |
---|
406 | return; // until .... |
---|
407 | //if (!pVectorOut) /*pVectorOut <=> order = c,* */ |
---|
408 | // return FALSE; |
---|
409 | //if (pGetComp(pp) < strat->ak) /* ak is the number of the last component */ |
---|
410 | // return FALSE; |
---|
411 | } |
---|
412 | k = 0; |
---|
413 | p=pIsPurePower(pp); |
---|
414 | if (p!=0) strat->NotUsedAxis[p] = FALSE; |
---|
415 | /*- the leading term of pp is a power of the p-th variable -*/ |
---|
416 | for (j=(currRing->N);j>0; j--) |
---|
417 | { |
---|
418 | if (strat->NotUsedAxis[j]) |
---|
419 | { |
---|
420 | return; |
---|
421 | } |
---|
422 | } |
---|
423 | strat->kHEdgeFound=TRUE; |
---|
424 | } |
---|
425 | |
---|
426 | /*2 |
---|
427 | *utilities for TSet, LSet |
---|
428 | */ |
---|
429 | inline static intset initec (const int maxnr) |
---|
430 | { |
---|
431 | return (intset)omAlloc(maxnr*sizeof(int)); |
---|
432 | } |
---|
433 | |
---|
434 | inline static unsigned long* initsevS (const int maxnr) |
---|
435 | { |
---|
436 | return (unsigned long*)omAlloc0(maxnr*sizeof(unsigned long)); |
---|
437 | } |
---|
438 | inline static int* initS_2_R (const int maxnr) |
---|
439 | { |
---|
440 | return (int*)omAlloc0(maxnr*sizeof(int)); |
---|
441 | } |
---|
442 | |
---|
443 | static inline void enlargeT (TSet &T, TObject** &R, unsigned long* &sevT, |
---|
444 | int &length, const int incr) |
---|
445 | { |
---|
446 | assume(T!=NULL); |
---|
447 | assume(sevT!=NULL); |
---|
448 | assume(R!=NULL); |
---|
449 | assume((length+incr) > 0); |
---|
450 | |
---|
451 | int i; |
---|
452 | T = (TSet)omRealloc0Size(T, length*sizeof(TObject), |
---|
453 | (length+incr)*sizeof(TObject)); |
---|
454 | |
---|
455 | sevT = (unsigned long*) omReallocSize(sevT, length*sizeof(long*), |
---|
456 | (length+incr)*sizeof(long*)); |
---|
457 | |
---|
458 | R = (TObject**)omRealloc0Size(R,length*sizeof(TObject*), |
---|
459 | (length+incr)*sizeof(TObject*)); |
---|
460 | for (i=length-1;i>=0;i--) R[T[i].i_r] = &(T[i]); |
---|
461 | length += incr; |
---|
462 | } |
---|
463 | |
---|
464 | void cleanT (kStrategy strat) |
---|
465 | { |
---|
466 | int i,j; |
---|
467 | poly p; |
---|
468 | assume(currRing == strat->tailRing || strat->tailRing != NULL); |
---|
469 | |
---|
470 | pShallowCopyDeleteProc p_shallow_copy_delete = |
---|
471 | (strat->tailRing != currRing ? |
---|
472 | pGetShallowCopyDeleteProc(strat->tailRing, currRing) : |
---|
473 | NULL); |
---|
474 | |
---|
475 | for (j=0; j<=strat->tl; j++) |
---|
476 | { |
---|
477 | p = strat->T[j].p; |
---|
478 | strat->T[j].p=NULL; |
---|
479 | if (strat->T[j].max != NULL) |
---|
480 | { |
---|
481 | p_LmFree(strat->T[j].max, strat->tailRing); |
---|
482 | } |
---|
483 | i = -1; |
---|
484 | loop |
---|
485 | { |
---|
486 | i++; |
---|
487 | if (i>strat->sl) |
---|
488 | { |
---|
489 | if (strat->T[j].t_p != NULL) |
---|
490 | { |
---|
491 | p_Delete(&(strat->T[j].t_p), strat->tailRing); |
---|
492 | p_LmFree(p, currRing); |
---|
493 | } |
---|
494 | else |
---|
495 | pDelete(&p); |
---|
496 | break; |
---|
497 | } |
---|
498 | if (p == strat->S[i]) |
---|
499 | { |
---|
500 | if (strat->T[j].t_p != NULL) |
---|
501 | { |
---|
502 | assume(p_shallow_copy_delete != NULL); |
---|
503 | pNext(p) = p_shallow_copy_delete(pNext(p),strat->tailRing,currRing, |
---|
504 | currRing->PolyBin); |
---|
505 | p_LmFree(strat->T[j].t_p, strat->tailRing); |
---|
506 | } |
---|
507 | break; |
---|
508 | } |
---|
509 | } |
---|
510 | } |
---|
511 | strat->tl=-1; |
---|
512 | } |
---|
513 | |
---|
514 | //LSet initL () |
---|
515 | //{ |
---|
516 | // int i; |
---|
517 | // LSet l = (LSet)omAlloc(setmaxL*sizeof(LObject)); |
---|
518 | // return l; |
---|
519 | //} |
---|
520 | |
---|
521 | static inline void enlargeL (LSet* L,int* length,const int incr) |
---|
522 | { |
---|
523 | assume((*L)!=NULL); |
---|
524 | assume((length+incr)>0); |
---|
525 | |
---|
526 | *L = (LSet)omReallocSize((*L),(*length)*sizeof(LObject), |
---|
527 | ((*length)+incr)*sizeof(LObject)); |
---|
528 | (*length) += incr; |
---|
529 | } |
---|
530 | |
---|
531 | void initPairtest(kStrategy strat) |
---|
532 | { |
---|
533 | strat->pairtest = (BOOLEAN *)omAlloc0((strat->sl+2)*sizeof(BOOLEAN)); |
---|
534 | } |
---|
535 | |
---|
536 | /*2 |
---|
537 | *test whether (p1,p2) or (p2,p1) is in L up position length |
---|
538 | *it returns TRUE if yes and the position k |
---|
539 | */ |
---|
540 | BOOLEAN isInPairsetL(int length,poly p1,poly p2,int* k,kStrategy strat) |
---|
541 | { |
---|
542 | LObject *p=&(strat->L[length]); |
---|
543 | |
---|
544 | *k = length; |
---|
545 | loop |
---|
546 | { |
---|
547 | if ((*k) < 0) return FALSE; |
---|
548 | if (((p1 == (*p).p1) && (p2 == (*p).p2)) |
---|
549 | || ((p1 == (*p).p2) && (p2 == (*p).p1))) |
---|
550 | return TRUE; |
---|
551 | (*k)--; |
---|
552 | p--; |
---|
553 | } |
---|
554 | } |
---|
555 | |
---|
556 | /*2 |
---|
557 | *in B all pairs have the same element p on the right |
---|
558 | *it tests whether (q,p) is in B and returns TRUE if yes |
---|
559 | *and the position k |
---|
560 | */ |
---|
561 | BOOLEAN isInPairsetB(poly q,int* k,kStrategy strat) |
---|
562 | { |
---|
563 | LObject *p=&(strat->B[strat->Bl]); |
---|
564 | |
---|
565 | *k = strat->Bl; |
---|
566 | loop |
---|
567 | { |
---|
568 | if ((*k) < 0) return FALSE; |
---|
569 | if (q == (*p).p1) |
---|
570 | return TRUE; |
---|
571 | (*k)--; |
---|
572 | p--; |
---|
573 | } |
---|
574 | } |
---|
575 | |
---|
576 | int kFindInT(poly p, TSet T, int tlength) |
---|
577 | { |
---|
578 | int i; |
---|
579 | |
---|
580 | for (i=0; i<=tlength; i++) |
---|
581 | { |
---|
582 | if (T[i].p == p) return i; |
---|
583 | } |
---|
584 | return -1; |
---|
585 | } |
---|
586 | |
---|
587 | int kFindInT(poly p, kStrategy strat) |
---|
588 | { |
---|
589 | int i; |
---|
590 | do |
---|
591 | { |
---|
592 | i = kFindInT(p, strat->T, strat->tl); |
---|
593 | if (i >= 0) return i; |
---|
594 | strat = strat->next; |
---|
595 | } |
---|
596 | while (strat != NULL); |
---|
597 | return -1; |
---|
598 | } |
---|
599 | |
---|
600 | #ifdef KDEBUG |
---|
601 | |
---|
602 | void sTObject::wrp() |
---|
603 | { |
---|
604 | if (t_p != NULL) p_wrp(t_p, tailRing); |
---|
605 | else if (p != NULL) p_wrp(p, currRing, tailRing); |
---|
606 | else ::wrp(NULL); |
---|
607 | } |
---|
608 | |
---|
609 | #define kFalseReturn(x) do { if (!x) return FALSE;} while (0) |
---|
610 | |
---|
611 | // check that Lm's of a poly from T are "equal" |
---|
612 | static const char* kTest_LmEqual(poly p, poly t_p, ring tailRing) |
---|
613 | { |
---|
614 | int i; |
---|
615 | for (i=1; i<=tailRing->N; i++) |
---|
616 | { |
---|
617 | if (p_GetExp(p, i, currRing) != p_GetExp(t_p, i, tailRing)) |
---|
618 | return "Lm[i] different"; |
---|
619 | } |
---|
620 | if (p_GetComp(p, currRing) != p_GetComp(t_p, tailRing)) |
---|
621 | return "Lm[0] different"; |
---|
622 | if (pNext(p) != pNext(t_p)) |
---|
623 | return "Lm.next different"; |
---|
624 | if (pGetCoeff(p) != pGetCoeff(t_p)) |
---|
625 | return "Lm.coeff different"; |
---|
626 | return NULL; |
---|
627 | } |
---|
628 | |
---|
629 | static BOOLEAN sloppy_max = FALSE; |
---|
630 | BOOLEAN kTest_T(TObject * T, ring strat_tailRing, int i, char TN) |
---|
631 | { |
---|
632 | ring tailRing = T->tailRing; |
---|
633 | if (strat_tailRing == NULL) strat_tailRing = tailRing; |
---|
634 | r_assume(strat_tailRing == tailRing); |
---|
635 | |
---|
636 | poly p = T->p; |
---|
637 | ring r = currRing; |
---|
638 | |
---|
639 | if (T->p == NULL && T->t_p == NULL && i >= 0) |
---|
640 | return dReportError("%c[%d].poly is NULL", TN, i); |
---|
641 | |
---|
642 | if (T->tailRing != currRing) |
---|
643 | { |
---|
644 | if (T->t_p == NULL && i > 0) |
---|
645 | return dReportError("%c[%d].t_p is NULL", TN, i); |
---|
646 | pFalseReturn(p_Test(T->t_p, T->tailRing)); |
---|
647 | if (T->p != NULL) pFalseReturn(p_LmTest(T->p, currRing)); |
---|
648 | if (T->p != NULL && T->t_p != NULL) |
---|
649 | { |
---|
650 | const char* msg = kTest_LmEqual(T->p, T->t_p, T->tailRing); |
---|
651 | if (msg != NULL) |
---|
652 | return dReportError("%c[%d] %s", TN, i, msg); |
---|
653 | r = T->tailRing; |
---|
654 | p = T->t_p; |
---|
655 | } |
---|
656 | if (T->p == NULL) |
---|
657 | { |
---|
658 | p = T->t_p; |
---|
659 | r = T->tailRing; |
---|
660 | } |
---|
661 | if (T->t_p != NULL && i >= 0 && TN == 'T') |
---|
662 | { |
---|
663 | if (pNext(T->t_p) == NULL) |
---|
664 | { |
---|
665 | if (T->max != NULL) |
---|
666 | return dReportError("%c[%d].max is not NULL as it should be", TN, i); |
---|
667 | } |
---|
668 | else |
---|
669 | { |
---|
670 | if (T->max == NULL) |
---|
671 | return dReportError("%c[%d].max is NULL", TN, i); |
---|
672 | if (pNext(T->max) != NULL) |
---|
673 | return dReportError("pNext(%c[%d].max) != NULL", TN, i); |
---|
674 | |
---|
675 | pFalseReturn(p_CheckPolyRing(T->max, tailRing)); |
---|
676 | omCheckBinAddrSize(T->max, (omSizeWOfBin(tailRing->PolyBin))*SIZEOF_LONG); |
---|
677 | #if KDEBUG > 0 |
---|
678 | if (! sloppy_max) |
---|
679 | { |
---|
680 | poly test_max = p_GetMaxExpP(pNext(T->t_p), tailRing); |
---|
681 | p_Setm(T->max, tailRing); |
---|
682 | p_Setm(test_max, tailRing); |
---|
683 | BOOLEAN equal = p_ExpVectorEqual(T->max, test_max, tailRing); |
---|
684 | if (! equal) |
---|
685 | return dReportError("%c[%d].max out of sync", TN, i); |
---|
686 | p_LmFree(test_max, tailRing); |
---|
687 | } |
---|
688 | #endif |
---|
689 | } |
---|
690 | } |
---|
691 | } |
---|
692 | else |
---|
693 | { |
---|
694 | if (T->max != NULL) |
---|
695 | return dReportError("%c[%d].max != NULL but tailRing == currRing",TN,i); |
---|
696 | if (T->t_p != NULL) |
---|
697 | return dReportError("%c[%d].t_p != NULL but tailRing == currRing",TN,i); |
---|
698 | if (T->p == NULL && i > 0) |
---|
699 | return dReportError("%c[%d].p is NULL", TN, i); |
---|
700 | pFalseReturn(p_Test(T->p, currRing)); |
---|
701 | } |
---|
702 | |
---|
703 | if (i >= 0 && T->pLength != 0 |
---|
704 | && ! rIsSyzIndexRing(currRing) && T->pLength != pLength(p)) |
---|
705 | { |
---|
706 | int l=T->pLength; |
---|
707 | T->pLength=pLength(p); |
---|
708 | return dReportError("%c[%d] pLength error: has %d, specified to have %d", |
---|
709 | TN, i , pLength(p), l); |
---|
710 | } |
---|
711 | |
---|
712 | // check FDeg, for elements in L and T |
---|
713 | if (i >= 0 && (TN == 'T' || TN == 'L')) |
---|
714 | { |
---|
715 | // FDeg has ir element from T of L set |
---|
716 | if (T->FDeg != T->pFDeg()) |
---|
717 | { |
---|
718 | int d=T->FDeg; |
---|
719 | T->FDeg=T->pFDeg(); |
---|
720 | return dReportError("%c[%d] FDeg error: has %d, specified to have %d", |
---|
721 | TN, i , T->pFDeg(), d); |
---|
722 | } |
---|
723 | } |
---|
724 | |
---|
725 | // check is_normalized for elements in T |
---|
726 | if (i >= 0 && TN == 'T') |
---|
727 | { |
---|
728 | if (T->is_normalized && ! nIsOne(pGetCoeff(p))) |
---|
729 | return dReportError("T[%d] is_normalized error", i); |
---|
730 | |
---|
731 | } |
---|
732 | return TRUE; |
---|
733 | } |
---|
734 | |
---|
735 | BOOLEAN kTest_L(LObject *L, ring strat_tailRing, |
---|
736 | BOOLEAN testp, int lpos, TSet T, int tlength) |
---|
737 | { |
---|
738 | if (testp) |
---|
739 | { |
---|
740 | poly pn = NULL; |
---|
741 | if (L->bucket != NULL) |
---|
742 | { |
---|
743 | kFalseReturn(kbTest(L->bucket)); |
---|
744 | r_assume(L->bucket->bucket_ring == L->tailRing); |
---|
745 | if (L->p != NULL && pNext(L->p) != NULL) |
---|
746 | { |
---|
747 | pn = pNext(L->p); |
---|
748 | pNext(L->p) = NULL; |
---|
749 | } |
---|
750 | } |
---|
751 | kFalseReturn(kTest_T(L, strat_tailRing, lpos, 'L')); |
---|
752 | if (pn != NULL) |
---|
753 | pNext(L->p) = pn; |
---|
754 | |
---|
755 | ring r; |
---|
756 | poly p; |
---|
757 | L->GetLm(p, r); |
---|
758 | if (L->sev != 0 && p_GetShortExpVector(p, r) != L->sev) |
---|
759 | { |
---|
760 | return dReportError("L[%d] wrong sev: has %o, specified to have %o", |
---|
761 | lpos, p_GetShortExpVector(p, r), L->sev); |
---|
762 | } |
---|
763 | } |
---|
764 | if (L->p1 == NULL) |
---|
765 | { |
---|
766 | // L->p2 either NULL or "normal" poly |
---|
767 | pFalseReturn(pp_Test(L->p2, currRing, L->tailRing)); |
---|
768 | } |
---|
769 | else if (tlength > 0 && T != NULL && (lpos >=0)) |
---|
770 | { |
---|
771 | // now p1 and p2 must be != NULL and must be contained in T |
---|
772 | int i; |
---|
773 | i = kFindInT(L->p1, T, tlength); |
---|
774 | if (i < 0) |
---|
775 | return dReportError("L[%d].p1 not in T",lpos); |
---|
776 | i = kFindInT(L->p2, T, tlength); |
---|
777 | if (i < 0) |
---|
778 | return dReportError("L[%d].p2 not in T",lpos); |
---|
779 | } |
---|
780 | return TRUE; |
---|
781 | } |
---|
782 | |
---|
783 | BOOLEAN kTest (kStrategy strat) |
---|
784 | { |
---|
785 | int i; |
---|
786 | |
---|
787 | // test P |
---|
788 | kFalseReturn(kTest_L(&(strat->P), strat->tailRing, |
---|
789 | (strat->P.p != NULL && pNext(strat->P.p)!=strat->tail), |
---|
790 | -1, strat->T, strat->tl)); |
---|
791 | |
---|
792 | // test T |
---|
793 | if (strat->T != NULL) |
---|
794 | { |
---|
795 | for (i=0; i<=strat->tl; i++) |
---|
796 | { |
---|
797 | kFalseReturn(kTest_T(&(strat->T[i]), strat->tailRing, i, 'T')); |
---|
798 | if (strat->sevT[i] != pGetShortExpVector(strat->T[i].p)) |
---|
799 | return dReportError("strat->sevT[%d] out of sync", i); |
---|
800 | } |
---|
801 | } |
---|
802 | |
---|
803 | // test L |
---|
804 | if (strat->L != NULL) |
---|
805 | { |
---|
806 | for (i=0; i<=strat->Ll; i++) |
---|
807 | { |
---|
808 | kFalseReturn(kTest_L(&(strat->L[i]), strat->tailRing, |
---|
809 | strat->L[i].Next() != strat->tail, i, |
---|
810 | strat->T, strat->tl)); |
---|
811 | // may be unused |
---|
812 | //if (strat->use_buckets && strat->L[i].Next() != strat->tail && |
---|
813 | // strat->L[i].Next() != NULL && strat->L[i].p1 != NULL) |
---|
814 | //{ |
---|
815 | // assume(strat->L[i].bucket != NULL); |
---|
816 | //} |
---|
817 | } |
---|
818 | } |
---|
819 | |
---|
820 | // test S |
---|
821 | if (strat->S != NULL) |
---|
822 | kFalseReturn(kTest_S(strat)); |
---|
823 | |
---|
824 | return TRUE; |
---|
825 | } |
---|
826 | |
---|
827 | BOOLEAN kTest_S(kStrategy strat) |
---|
828 | { |
---|
829 | int i; |
---|
830 | BOOLEAN ret = TRUE; |
---|
831 | for (i=0; i<=strat->sl; i++) |
---|
832 | { |
---|
833 | if (strat->S[i] != NULL && |
---|
834 | strat->sevS[i] != pGetShortExpVector(strat->S[i])) |
---|
835 | { |
---|
836 | return dReportError("S[%d] wrong sev: has %o, specified to have %o", |
---|
837 | i , pGetShortExpVector(strat->S[i]), strat->sevS[i]); |
---|
838 | } |
---|
839 | } |
---|
840 | return ret; |
---|
841 | } |
---|
842 | |
---|
843 | |
---|
844 | |
---|
845 | BOOLEAN kTest_TS(kStrategy strat) |
---|
846 | { |
---|
847 | int i, j; |
---|
848 | BOOLEAN ret = TRUE; |
---|
849 | kFalseReturn(kTest(strat)); |
---|
850 | |
---|
851 | // test strat->R, strat->T[i].i_r |
---|
852 | for (i=0; i<=strat->tl; i++) |
---|
853 | { |
---|
854 | if (strat->T[i].i_r < 0 || strat->T[i].i_r > strat->tl) |
---|
855 | return dReportError("strat->T[%d].i_r == %d out of bounds", i, |
---|
856 | strat->T[i].i_r); |
---|
857 | if (strat->R[strat->T[i].i_r] != &(strat->T[i])) |
---|
858 | return dReportError("T[%d].i_r with R out of sync", i); |
---|
859 | } |
---|
860 | // test containment of S inT |
---|
861 | if (strat->S != NULL) |
---|
862 | { |
---|
863 | for (i=0; i<=strat->sl; i++) |
---|
864 | { |
---|
865 | j = kFindInT(strat->S[i], strat->T, strat->tl); |
---|
866 | if (j < 0) |
---|
867 | return dReportError("S[%d] not in T", i); |
---|
868 | if (strat->S_2_R[i] != strat->T[j].i_r) |
---|
869 | return dReportError("S_2_R[%d]=%d != T[%d].i_r=%d\n", |
---|
870 | i, strat->S_2_R[i], j, strat->T[j].i_r); |
---|
871 | } |
---|
872 | } |
---|
873 | // test strat->L[i].i_r1 |
---|
874 | for (i=0; i<=strat->Ll; i++) |
---|
875 | { |
---|
876 | if (strat->L[i].p1 != NULL && strat->L[i].p2) |
---|
877 | { |
---|
878 | if (strat->L[i].i_r1 < 0 || |
---|
879 | strat->L[i].i_r1 > strat->tl || |
---|
880 | strat->L[i].T_1(strat)->p != strat->L[i].p1) |
---|
881 | return dReportError("L[%d].i_r1 out of sync", i); |
---|
882 | if (strat->L[i].i_r2 < 0 || |
---|
883 | strat->L[i].i_r2 > strat->tl || |
---|
884 | strat->L[i].T_2(strat)->p != strat->L[i].p2); |
---|
885 | } |
---|
886 | else |
---|
887 | { |
---|
888 | if (strat->L[i].i_r1 != -1) |
---|
889 | return dReportError("L[%d].i_r1 out of sync", i); |
---|
890 | if (strat->L[i].i_r2 != -1) |
---|
891 | return dReportError("L[%d].i_r2 out of sync", i); |
---|
892 | } |
---|
893 | if (strat->L[i].i_r != -1) |
---|
894 | return dReportError("L[%d].i_r out of sync", i); |
---|
895 | } |
---|
896 | return TRUE; |
---|
897 | } |
---|
898 | |
---|
899 | #endif // KDEBUG |
---|
900 | |
---|
901 | /*2 |
---|
902 | *cancels the i-th polynomial in the standardbase s |
---|
903 | */ |
---|
904 | void deleteInS (int i,kStrategy strat) |
---|
905 | { |
---|
906 | #ifdef ENTER_USE_MEMMOVE |
---|
907 | memmove(&(strat->S[i]), &(strat->S[i+1]), (strat->sl - i)*sizeof(poly)); |
---|
908 | memmove(&(strat->ecartS[i]),&(strat->ecartS[i+1]),(strat->sl - i)*sizeof(int)); |
---|
909 | memmove(&(strat->sevS[i]),&(strat->sevS[i+1]),(strat->sl - i)*sizeof(unsigned long)); |
---|
910 | memmove(&(strat->S_2_R[i]),&(strat->S_2_R[i+1]),(strat->sl - i)*sizeof(int)); |
---|
911 | #else |
---|
912 | int j; |
---|
913 | for (j=i; j<strat->sl; j++) |
---|
914 | { |
---|
915 | strat->S[j] = strat->S[j+1]; |
---|
916 | strat->ecartS[j] = strat->ecartS[j+1]; |
---|
917 | strat->sevS[j] = strat->sevS[j+1]; |
---|
918 | strat->S_2_R[j] = strat->S_2_R[j+1]; |
---|
919 | } |
---|
920 | #endif |
---|
921 | if (strat->lenS!=NULL) |
---|
922 | { |
---|
923 | #ifdef ENTER_USE_MEMMOVE |
---|
924 | memmove(&(strat->lenS[i]),&(strat->lenS[i+1]),(strat->sl - i)*sizeof(int)); |
---|
925 | #else |
---|
926 | for (j=i; j<strat->sl; j++) strat->lenS[j] = strat->lenS[j+1]; |
---|
927 | #endif |
---|
928 | } |
---|
929 | if (strat->lenSw!=NULL) |
---|
930 | { |
---|
931 | #ifdef ENTER_USE_MEMMOVE |
---|
932 | memmove(&(strat->lenSw[i]),&(strat->lenSw[i+1]),(strat->sl - i)*sizeof(wlen_type)); |
---|
933 | #else |
---|
934 | for (j=i; j<strat->sl; j++) strat->lenSw[j] = strat->lenSw[j+1]; |
---|
935 | #endif |
---|
936 | } |
---|
937 | if (strat->fromQ!=NULL) |
---|
938 | { |
---|
939 | #ifdef ENTER_USE_MEMMOVE |
---|
940 | memmove(&(strat->fromQ[i]),&(strat->fromQ[i+1]),(strat->sl - i)*sizeof(int)); |
---|
941 | #else |
---|
942 | for (j=i; j<strat->sl; j++) |
---|
943 | { |
---|
944 | strat->fromQ[j] = strat->fromQ[j+1]; |
---|
945 | } |
---|
946 | #endif |
---|
947 | } |
---|
948 | strat->S[strat->sl] = NULL; |
---|
949 | strat->sl--; |
---|
950 | } |
---|
951 | |
---|
952 | |
---|
953 | /*2 |
---|
954 | *cancels the i-th polynomial in the standardbase s |
---|
955 | */ |
---|
956 | void deleteInSSba (int i,kStrategy strat) |
---|
957 | { |
---|
958 | #ifdef ENTER_USE_MEMMOVE |
---|
959 | memmove(&(strat->S[i]), &(strat->S[i+1]), (strat->sl - i)*sizeof(poly)); |
---|
960 | memmove(&(strat->sig[i]), &(strat->sig[i+1]), (strat->sl - i)*sizeof(poly)); |
---|
961 | memmove(&(strat->ecartS[i]),&(strat->ecartS[i+1]),(strat->sl - i)*sizeof(int)); |
---|
962 | memmove(&(strat->sevS[i]),&(strat->sevS[i+1]),(strat->sl - i)*sizeof(unsigned long)); |
---|
963 | memmove(&(strat->sevSig[i]),&(strat->sevSig[i+1]),(strat->sl - i)*sizeof(unsigned long)); |
---|
964 | memmove(&(strat->S_2_R[i]),&(strat->S_2_R[i+1]),(strat->sl - i)*sizeof(int)); |
---|
965 | memmove(&(strat->fromS[i]),&(strat->fromS[i+1]),(strat->sl - i)*sizeof(int)); |
---|
966 | #else |
---|
967 | int j; |
---|
968 | for (j=i; j<strat->sl; j++) |
---|
969 | { |
---|
970 | strat->S[j] = strat->S[j+1]; |
---|
971 | strat->sig[j] = strat->sig[j+1]; |
---|
972 | strat->ecartS[j] = strat->ecartS[j+1]; |
---|
973 | strat->sevS[j] = strat->sevS[j+1]; |
---|
974 | strat->sevSig[j] = strat->sevSig[j+1]; |
---|
975 | strat->S_2_R[j] = strat->S_2_R[j+1]; |
---|
976 | strat->fromS[j] = strat->fromS[j+1]; |
---|
977 | } |
---|
978 | #endif |
---|
979 | if (strat->lenS!=NULL) |
---|
980 | { |
---|
981 | #ifdef ENTER_USE_MEMMOVE |
---|
982 | memmove(&(strat->lenS[i]),&(strat->lenS[i+1]),(strat->sl - i)*sizeof(int)); |
---|
983 | #else |
---|
984 | for (j=i; j<strat->sl; j++) strat->lenS[j] = strat->lenS[j+1]; |
---|
985 | #endif |
---|
986 | } |
---|
987 | if (strat->lenSw!=NULL) |
---|
988 | { |
---|
989 | #ifdef ENTER_USE_MEMMOVE |
---|
990 | memmove(&(strat->lenSw[i]),&(strat->lenSw[i+1]),(strat->sl - i)*sizeof(wlen_type)); |
---|
991 | #else |
---|
992 | for (j=i; j<strat->sl; j++) strat->lenSw[j] = strat->lenSw[j+1]; |
---|
993 | #endif |
---|
994 | } |
---|
995 | if (strat->fromQ!=NULL) |
---|
996 | { |
---|
997 | #ifdef ENTER_USE_MEMMOVE |
---|
998 | memmove(&(strat->fromQ[i]),&(strat->fromQ[i+1]),(strat->sl - i)*sizeof(int)); |
---|
999 | #else |
---|
1000 | for (j=i; j<strat->sl; j++) |
---|
1001 | { |
---|
1002 | strat->fromQ[j] = strat->fromQ[j+1]; |
---|
1003 | } |
---|
1004 | #endif |
---|
1005 | } |
---|
1006 | strat->S[strat->sl] = NULL; |
---|
1007 | strat->sl--; |
---|
1008 | } |
---|
1009 | |
---|
1010 | /*2 |
---|
1011 | *cancels the j-th polynomial in the set |
---|
1012 | */ |
---|
1013 | void deleteInL (LSet set, int *length, int j,kStrategy strat) |
---|
1014 | { |
---|
1015 | if (set[j].lcm!=NULL) |
---|
1016 | { |
---|
1017 | #ifdef HAVE_RINGS |
---|
1018 | if (pGetCoeff(set[j].lcm) != NULL) |
---|
1019 | pLmDelete(set[j].lcm); |
---|
1020 | else |
---|
1021 | #endif |
---|
1022 | pLmFree(set[j].lcm); |
---|
1023 | } |
---|
1024 | if (set[j].p!=NULL) |
---|
1025 | { |
---|
1026 | if (pNext(set[j].p) == strat->tail) |
---|
1027 | { |
---|
1028 | #ifdef HAVE_RINGS |
---|
1029 | if (pGetCoeff(set[j].p) != NULL) |
---|
1030 | pLmDelete(set[j].p); |
---|
1031 | else |
---|
1032 | #endif |
---|
1033 | pLmFree(set[j].p); |
---|
1034 | /*- tail belongs to several int spolys -*/ |
---|
1035 | } |
---|
1036 | else |
---|
1037 | { |
---|
1038 | // search p in T, if it is there, do not delete it |
---|
1039 | if (currRing->OrdSgn != -1 || kFindInT(set[j].p, strat) < 0) |
---|
1040 | { |
---|
1041 | // assure that for global orderings kFindInT fails |
---|
1042 | assume(currRing->OrdSgn == -1 || kFindInT(set[j].p, strat) < 0); |
---|
1043 | set[j].Delete(); |
---|
1044 | } |
---|
1045 | } |
---|
1046 | } |
---|
1047 | if (*length > 0 && j < *length) |
---|
1048 | { |
---|
1049 | #ifdef ENTER_USE_MEMMOVE |
---|
1050 | memmove(&(set[j]), &(set[j+1]), (*length - j)*sizeof(LObject)); |
---|
1051 | #else |
---|
1052 | int i; |
---|
1053 | for (i=j; i < (*length); i++) |
---|
1054 | set[i] = set[i+1]; |
---|
1055 | #endif |
---|
1056 | } |
---|
1057 | #ifdef KDEBUG |
---|
1058 | memset(&(set[*length]),0,sizeof(LObject)); |
---|
1059 | #endif |
---|
1060 | (*length)--; |
---|
1061 | } |
---|
1062 | |
---|
1063 | /*2 |
---|
1064 | *enters p at position at in L |
---|
1065 | */ |
---|
1066 | void enterL (LSet *set,int *length, int *LSetmax, LObject p,int at) |
---|
1067 | { |
---|
1068 | // this should be corrected |
---|
1069 | assume(p.FDeg == p.pFDeg()); |
---|
1070 | |
---|
1071 | if ((*length)>=0) |
---|
1072 | { |
---|
1073 | if ((*length) == (*LSetmax)-1) enlargeL(set,LSetmax,setmaxLinc); |
---|
1074 | if (at <= (*length)) |
---|
1075 | #ifdef ENTER_USE_MEMMOVE |
---|
1076 | memmove(&((*set)[at+1]), &((*set)[at]), ((*length)-at+1)*sizeof(LObject)); |
---|
1077 | #else |
---|
1078 | for (i=(*length)+1; i>=at+1; i--) (*set)[i] = (*set)[i-1]; |
---|
1079 | #endif |
---|
1080 | } |
---|
1081 | else at = 0; |
---|
1082 | (*set)[at] = p; |
---|
1083 | (*length)++; |
---|
1084 | } |
---|
1085 | |
---|
1086 | /*2 |
---|
1087 | * computes the normal ecart; |
---|
1088 | * used in mora case and if pLexOrder & sugar in bba case |
---|
1089 | */ |
---|
1090 | void initEcartNormal (LObject* h) |
---|
1091 | { |
---|
1092 | h->FDeg = h->pFDeg(); |
---|
1093 | h->ecart = h->pLDeg() - h->FDeg; |
---|
1094 | // h->length is set by h->pLDeg |
---|
1095 | h->length=h->pLength=pLength(h->p); |
---|
1096 | } |
---|
1097 | |
---|
1098 | void initEcartBBA (LObject* h) |
---|
1099 | { |
---|
1100 | h->FDeg = h->pFDeg(); |
---|
1101 | (*h).ecart = 0; |
---|
1102 | h->length=h->pLength=pLength(h->p); |
---|
1103 | } |
---|
1104 | |
---|
1105 | void initEcartPairBba (LObject* Lp,poly /*f*/,poly /*g*/,int /*ecartF*/,int /*ecartG*/) |
---|
1106 | { |
---|
1107 | Lp->FDeg = Lp->pFDeg(); |
---|
1108 | (*Lp).ecart = 0; |
---|
1109 | (*Lp).length = 0; |
---|
1110 | } |
---|
1111 | |
---|
1112 | void initEcartPairMora (LObject* Lp,poly /*f*/,poly /*g*/,int ecartF,int ecartG) |
---|
1113 | { |
---|
1114 | Lp->FDeg = Lp->pFDeg(); |
---|
1115 | (*Lp).ecart = si_max(ecartF,ecartG); |
---|
1116 | (*Lp).ecart = (*Lp).ecart- (Lp->FDeg -p_FDeg((*Lp).lcm,currRing)); |
---|
1117 | (*Lp).length = 0; |
---|
1118 | } |
---|
1119 | |
---|
1120 | /*2 |
---|
1121 | *if ecart1<=ecart2 it returns TRUE |
---|
1122 | */ |
---|
1123 | static inline BOOLEAN sugarDivisibleBy(int ecart1, int ecart2) |
---|
1124 | { |
---|
1125 | return (ecart1 <= ecart2); |
---|
1126 | } |
---|
1127 | |
---|
1128 | #ifdef HAVE_RINGS |
---|
1129 | /*2 |
---|
1130 | * put the pair (s[i],p) into the set B, ecart=ecart(p) (ring case) |
---|
1131 | */ |
---|
1132 | void enterOnePairRing (int i,poly p,int ecart, int isFromQ,kStrategy strat, int atR = -1) |
---|
1133 | { |
---|
1134 | assume(i<=strat->sl); |
---|
1135 | int l,j,compare,compareCoeff; |
---|
1136 | LObject Lp; |
---|
1137 | |
---|
1138 | if (strat->interred_flag) return; |
---|
1139 | #ifdef KDEBUG |
---|
1140 | Lp.ecart=0; Lp.length=0; |
---|
1141 | #endif |
---|
1142 | /*- computes the lcm(s[i],p) -*/ |
---|
1143 | Lp.lcm = pInit(); |
---|
1144 | pSetCoeff0(Lp.lcm, n_Lcm(pGetCoeff(p), pGetCoeff(strat->S[i]), currRing->cf)); |
---|
1145 | // Lp.lcm == 0 |
---|
1146 | if (nIsZero(pGetCoeff(Lp.lcm))) |
---|
1147 | { |
---|
1148 | #ifdef KDEBUG |
---|
1149 | if (TEST_OPT_DEBUG) |
---|
1150 | { |
---|
1151 | PrintS("--- Lp.lcm == 0\n"); |
---|
1152 | PrintS("p:"); |
---|
1153 | wrp(p); |
---|
1154 | Print(" strat->S[%d]:", i); |
---|
1155 | wrp(strat->S[i]); |
---|
1156 | PrintLn(); |
---|
1157 | } |
---|
1158 | #endif |
---|
1159 | strat->cp++; |
---|
1160 | pLmDelete(Lp.lcm); |
---|
1161 | return; |
---|
1162 | } |
---|
1163 | // basic product criterion |
---|
1164 | pLcm(p,strat->S[i],Lp.lcm); |
---|
1165 | pSetm(Lp.lcm); |
---|
1166 | assume(!strat->sugarCrit); |
---|
1167 | if (pHasNotCF(p,strat->S[i]) && n_IsUnit(pGetCoeff(p),currRing->cf) |
---|
1168 | && n_IsUnit(pGetCoeff(strat->S[i]),currRing->cf)) |
---|
1169 | { |
---|
1170 | #ifdef KDEBUG |
---|
1171 | if (TEST_OPT_DEBUG) |
---|
1172 | { |
---|
1173 | PrintS("--- product criterion func enterOnePairRing type 1\n"); |
---|
1174 | PrintS("p:"); |
---|
1175 | wrp(p); |
---|
1176 | Print(" strat->S[%d]:", i); |
---|
1177 | wrp(strat->S[i]); |
---|
1178 | PrintLn(); |
---|
1179 | } |
---|
1180 | #endif |
---|
1181 | strat->cp++; |
---|
1182 | pLmDelete(Lp.lcm); |
---|
1183 | return; |
---|
1184 | } |
---|
1185 | assume(!strat->fromT); |
---|
1186 | /* |
---|
1187 | *the set B collects the pairs of type (S[j],p) |
---|
1188 | *suppose (r,p) is in B and (s,p) is the new pair and lcm(s,p) != lcm(r,p) |
---|
1189 | *if the leading term of s devides lcm(r,p) then (r,p) will be canceled |
---|
1190 | *if the leading term of r devides lcm(s,p) then (s,p) will not enter B |
---|
1191 | */ |
---|
1192 | for(j = strat->Bl;j>=0;j--) |
---|
1193 | { |
---|
1194 | compare=pDivCompRing(strat->B[j].lcm,Lp.lcm); |
---|
1195 | compareCoeff = n_DivComp(pGetCoeff(strat->B[j].lcm), pGetCoeff(Lp.lcm), currRing->cf); |
---|
1196 | if (compareCoeff == pDivComp_EQUAL || compare == compareCoeff) |
---|
1197 | { |
---|
1198 | if (compare == 1) |
---|
1199 | { |
---|
1200 | strat->c3++; |
---|
1201 | #ifdef KDEBUG |
---|
1202 | if (TEST_OPT_DEBUG) |
---|
1203 | { |
---|
1204 | PrintS("--- chain criterion type 1\n"); |
---|
1205 | PrintS("strat->B[j]:"); |
---|
1206 | wrp(strat->B[j].lcm); |
---|
1207 | PrintS(" Lp.lcm:"); |
---|
1208 | wrp(Lp.lcm); |
---|
1209 | PrintLn(); |
---|
1210 | } |
---|
1211 | #endif |
---|
1212 | if ((strat->fromQ==NULL) || (isFromQ==0) || (strat->fromQ[i]==0)) |
---|
1213 | { |
---|
1214 | pLmDelete(Lp.lcm); |
---|
1215 | return; |
---|
1216 | } |
---|
1217 | break; |
---|
1218 | } |
---|
1219 | else |
---|
1220 | if (compare == -1) |
---|
1221 | { |
---|
1222 | #ifdef KDEBUG |
---|
1223 | if (TEST_OPT_DEBUG) |
---|
1224 | { |
---|
1225 | PrintS("--- chain criterion type 2\n"); |
---|
1226 | Print("strat->B[%d].lcm:",j); |
---|
1227 | wrp(strat->B[j].lcm); |
---|
1228 | PrintS(" Lp.lcm:"); |
---|
1229 | wrp(Lp.lcm); |
---|
1230 | PrintLn(); |
---|
1231 | } |
---|
1232 | #endif |
---|
1233 | deleteInL(strat->B,&strat->Bl,j,strat); |
---|
1234 | strat->c3++; |
---|
1235 | } |
---|
1236 | } |
---|
1237 | if ((compare == pDivComp_EQUAL) && (compareCoeff != 2)) |
---|
1238 | { |
---|
1239 | if (compareCoeff == pDivComp_LESS) |
---|
1240 | { |
---|
1241 | #ifdef KDEBUG |
---|
1242 | if (TEST_OPT_DEBUG) |
---|
1243 | { |
---|
1244 | PrintS("--- chain criterion type 3\n"); |
---|
1245 | Print("strat->B[%d].lcm:", j); |
---|
1246 | wrp(strat->B[j].lcm); |
---|
1247 | PrintS(" Lp.lcm:"); |
---|
1248 | wrp(Lp.lcm); |
---|
1249 | PrintLn(); |
---|
1250 | } |
---|
1251 | #endif |
---|
1252 | strat->c3++; |
---|
1253 | if ((strat->fromQ==NULL) || (isFromQ==0) || (strat->fromQ[i]==0)) |
---|
1254 | { |
---|
1255 | pLmDelete(Lp.lcm); |
---|
1256 | return; |
---|
1257 | } |
---|
1258 | break; |
---|
1259 | } |
---|
1260 | else |
---|
1261 | // Add hint for same LM and LC (later) (TODO Oliver) |
---|
1262 | // if (compareCoeff == pDivComp_GREATER) |
---|
1263 | { |
---|
1264 | #ifdef KDEBUG |
---|
1265 | if (TEST_OPT_DEBUG) |
---|
1266 | { |
---|
1267 | PrintS("--- chain criterion type 4\n"); |
---|
1268 | Print("strat->B[%d].lcm:", j); |
---|
1269 | wrp(strat->B[j].lcm); |
---|
1270 | PrintS(" Lp.lcm:"); |
---|
1271 | wrp(Lp.lcm); |
---|
1272 | PrintLn(); |
---|
1273 | } |
---|
1274 | #endif |
---|
1275 | deleteInL(strat->B,&strat->Bl,j,strat); |
---|
1276 | strat->c3++; |
---|
1277 | } |
---|
1278 | } |
---|
1279 | } |
---|
1280 | /* |
---|
1281 | *the pair (S[i],p) enters B if the spoly != 0 |
---|
1282 | */ |
---|
1283 | /*- compute the short s-polynomial -*/ |
---|
1284 | if ((strat->S[i]==NULL) || (p==NULL)) { |
---|
1285 | #ifdef KDEBUG |
---|
1286 | if (TEST_OPT_DEBUG) |
---|
1287 | { |
---|
1288 | PrintS("--- spoly = NULL\n"); |
---|
1289 | } |
---|
1290 | #endif |
---|
1291 | pLmDelete(Lp.lcm); |
---|
1292 | return; |
---|
1293 | } |
---|
1294 | if ((strat->fromQ!=NULL) && (isFromQ!=0) && (strat->fromQ[i]!=0)) |
---|
1295 | { |
---|
1296 | // Is from a previous computed GB, therefore we know that spoly will |
---|
1297 | // reduce to zero. Oliver. |
---|
1298 | WarnS("Could we come here? 8738947389"); |
---|
1299 | Lp.p=NULL; |
---|
1300 | } |
---|
1301 | else |
---|
1302 | { |
---|
1303 | Lp.p = ksCreateShortSpoly(strat->S[i], p, strat->tailRing); |
---|
1304 | } |
---|
1305 | if (Lp.p == NULL) |
---|
1306 | { |
---|
1307 | #ifdef KDEBUG |
---|
1308 | if (TEST_OPT_DEBUG) |
---|
1309 | { |
---|
1310 | PrintS("--- spoly = NULL\n"); |
---|
1311 | } |
---|
1312 | #endif |
---|
1313 | /*- the case that the s-poly is 0 -*/ |
---|
1314 | if (strat->pairtest==NULL) initPairtest(strat); |
---|
1315 | strat->pairtest[i] = TRUE;/*- hint for spoly(S^[i],p)=0 -*/ |
---|
1316 | strat->pairtest[strat->sl+1] = TRUE; |
---|
1317 | /*hint for spoly(S[i],p) == 0 for some i,0 <= i <= sl*/ |
---|
1318 | /* |
---|
1319 | *suppose we have (s,r),(r,p),(s,p) and spoly(s,p) == 0 and (r,p) is |
---|
1320 | *still in B (i.e. lcm(r,p) == lcm(s,p) or the leading term of s does not |
---|
1321 | *devide lcm(r,p)). In the last case (s,r) can be canceled if the leading |
---|
1322 | *term of p devides the lcm(s,r) |
---|
1323 | *(this canceling should be done here because |
---|
1324 | *the case lcm(s,p) == lcm(s,r) is not covered in chainCrit) |
---|
1325 | *the first case is handeled in chainCrit |
---|
1326 | */ |
---|
1327 | pLmDelete(Lp.lcm); |
---|
1328 | } |
---|
1329 | else |
---|
1330 | { |
---|
1331 | /*- the pair (S[i],p) enters B -*/ |
---|
1332 | Lp.p1 = strat->S[i]; |
---|
1333 | Lp.p2 = p; |
---|
1334 | |
---|
1335 | pNext(Lp.p) = strat->tail; |
---|
1336 | |
---|
1337 | if (atR >= 0) |
---|
1338 | { |
---|
1339 | Lp.i_r2 = atR; |
---|
1340 | Lp.i_r1 = strat->S_2_R[i]; |
---|
1341 | } |
---|
1342 | strat->initEcartPair(&Lp,strat->S[i],p,strat->ecartS[i],ecart); |
---|
1343 | l = strat->posInL(strat->B,strat->Bl,&Lp,strat); |
---|
1344 | enterL(&strat->B,&strat->Bl,&strat->Bmax,Lp,l); |
---|
1345 | } |
---|
1346 | } |
---|
1347 | |
---|
1348 | |
---|
1349 | /*2 |
---|
1350 | * put the lcm(s[i],p) into the set B |
---|
1351 | */ |
---|
1352 | |
---|
1353 | BOOLEAN enterOneStrongPoly (int i,poly p,int /*ecart*/, int /*isFromQ*/,kStrategy strat, int atR = -1) |
---|
1354 | { |
---|
1355 | number d, s, t; |
---|
1356 | assume(i<=strat->sl); |
---|
1357 | assume(atR >= 0); |
---|
1358 | poly m1, m2, gcd; |
---|
1359 | |
---|
1360 | d = n_ExtGcd(pGetCoeff(p), pGetCoeff(strat->S[i]), &s, &t, currRing->cf); |
---|
1361 | |
---|
1362 | if (nIsZero(s) || nIsZero(t)) // evtl. durch divBy tests ersetzen |
---|
1363 | { |
---|
1364 | nDelete(&d); |
---|
1365 | nDelete(&s); |
---|
1366 | nDelete(&t); |
---|
1367 | return FALSE; |
---|
1368 | } |
---|
1369 | |
---|
1370 | k_GetStrongLeadTerms(p, strat->S[i], currRing, m1, m2, gcd, strat->tailRing); |
---|
1371 | //p_Test(m1,strat->tailRing); |
---|
1372 | //p_Test(m2,strat->tailRing); |
---|
1373 | while (! kCheckStrongCreation(atR, m1, i, m2, strat) ) |
---|
1374 | { |
---|
1375 | memset(&(strat->P), 0, sizeof(strat->P)); |
---|
1376 | kStratChangeTailRing(strat); |
---|
1377 | strat->P = *(strat->R[atR]); |
---|
1378 | p_LmFree(m1, strat->tailRing); |
---|
1379 | p_LmFree(m2, strat->tailRing); |
---|
1380 | p_LmFree(gcd, currRing); |
---|
1381 | k_GetStrongLeadTerms(p, strat->S[i], currRing, m1, m2, gcd, strat->tailRing); |
---|
1382 | } |
---|
1383 | pSetCoeff0(m1, s); |
---|
1384 | pSetCoeff0(m2, t); |
---|
1385 | pSetCoeff0(gcd, d); |
---|
1386 | p_Test(m1,strat->tailRing); |
---|
1387 | p_Test(m2,strat->tailRing); |
---|
1388 | |
---|
1389 | #ifdef KDEBUG |
---|
1390 | if (TEST_OPT_DEBUG) |
---|
1391 | { |
---|
1392 | // Print("t = %d; s = %d; d = %d\n", nInt(t), nInt(s), nInt(d)); |
---|
1393 | PrintS("m1 = "); |
---|
1394 | p_wrp(m1, strat->tailRing); |
---|
1395 | PrintS(" ; m2 = "); |
---|
1396 | p_wrp(m2, strat->tailRing); |
---|
1397 | PrintS(" ; gcd = "); |
---|
1398 | wrp(gcd); |
---|
1399 | PrintS("\n--- create strong gcd poly: "); |
---|
1400 | Print("\n p: ", i); |
---|
1401 | wrp(p); |
---|
1402 | Print("\n strat->S[%d]: ", i); |
---|
1403 | wrp(strat->S[i]); |
---|
1404 | PrintS(" ---> "); |
---|
1405 | } |
---|
1406 | #endif |
---|
1407 | |
---|
1408 | pNext(gcd) = p_Add_q(pp_Mult_mm(pNext(p), m1, strat->tailRing), pp_Mult_mm(pNext(strat->S[i]), m2, strat->tailRing), strat->tailRing); |
---|
1409 | p_LmDelete(m1, strat->tailRing); |
---|
1410 | p_LmDelete(m2, strat->tailRing); |
---|
1411 | |
---|
1412 | #ifdef KDEBUG |
---|
1413 | if (TEST_OPT_DEBUG) |
---|
1414 | { |
---|
1415 | wrp(gcd); |
---|
1416 | PrintLn(); |
---|
1417 | } |
---|
1418 | #endif |
---|
1419 | |
---|
1420 | LObject h; |
---|
1421 | h.p = gcd; |
---|
1422 | h.tailRing = strat->tailRing; |
---|
1423 | int posx; |
---|
1424 | h.pCleardenom(); |
---|
1425 | strat->initEcart(&h); |
---|
1426 | if (strat->Ll==-1) |
---|
1427 | posx =0; |
---|
1428 | else |
---|
1429 | posx = strat->posInL(strat->L,strat->Ll,&h,strat); |
---|
1430 | h.sev = pGetShortExpVector(h.p); |
---|
1431 | if (currRing!=strat->tailRing) |
---|
1432 | h.t_p = k_LmInit_currRing_2_tailRing(h.p, strat->tailRing); |
---|
1433 | enterL(&strat->L,&strat->Ll,&strat->Lmax,h,posx); |
---|
1434 | return TRUE; |
---|
1435 | } |
---|
1436 | #endif |
---|
1437 | |
---|
1438 | /*2 |
---|
1439 | * put the pair (s[i],p) into the set B, ecart=ecart(p) |
---|
1440 | */ |
---|
1441 | |
---|
1442 | void enterOnePairNormal (int i,poly p,int ecart, int isFromQ,kStrategy strat, int atR = -1) |
---|
1443 | { |
---|
1444 | assume(i<=strat->sl); |
---|
1445 | if (strat->interred_flag) return; |
---|
1446 | |
---|
1447 | int l,j,compare; |
---|
1448 | LObject Lp; |
---|
1449 | Lp.i_r = -1; |
---|
1450 | |
---|
1451 | #ifdef KDEBUG |
---|
1452 | Lp.ecart=0; Lp.length=0; |
---|
1453 | #endif |
---|
1454 | /*- computes the lcm(s[i],p) -*/ |
---|
1455 | Lp.lcm = pInit(); |
---|
1456 | |
---|
1457 | #ifndef HAVE_RATGRING |
---|
1458 | pLcm(p,strat->S[i],Lp.lcm); |
---|
1459 | #elif defined(HAVE_RATGRING) |
---|
1460 | // if (rIsRatGRing(currRing)) |
---|
1461 | pLcmRat(p,strat->S[i],Lp.lcm, currRing->real_var_start); // int rat_shift |
---|
1462 | #endif |
---|
1463 | pSetm(Lp.lcm); |
---|
1464 | |
---|
1465 | |
---|
1466 | if (strat->sugarCrit && ALLOW_PROD_CRIT(strat)) |
---|
1467 | { |
---|
1468 | if((!((strat->ecartS[i]>0)&&(ecart>0))) |
---|
1469 | && pHasNotCF(p,strat->S[i])) |
---|
1470 | { |
---|
1471 | /* |
---|
1472 | *the product criterion has applied for (s,p), |
---|
1473 | *i.e. lcm(s,p)=product of the leading terms of s and p. |
---|
1474 | *Suppose (s,r) is in L and the leading term |
---|
1475 | *of p divides lcm(s,r) |
---|
1476 | *(==> the leading term of p divides the leading term of r) |
---|
1477 | *but the leading term of s does not divide the leading term of r |
---|
1478 | *(notice that tis condition is automatically satisfied if r is still |
---|
1479 | *in S), then (s,r) can be cancelled. |
---|
1480 | *This should be done here because the |
---|
1481 | *case lcm(s,r)=lcm(s,p) is not covered by chainCrit. |
---|
1482 | * |
---|
1483 | *Moreover, skipping (s,r) holds also for the noncommutative case. |
---|
1484 | */ |
---|
1485 | strat->cp++; |
---|
1486 | pLmFree(Lp.lcm); |
---|
1487 | Lp.lcm=NULL; |
---|
1488 | return; |
---|
1489 | } |
---|
1490 | else |
---|
1491 | Lp.ecart = si_max(ecart,strat->ecartS[i]); |
---|
1492 | if (strat->fromT && (strat->ecartS[i]>ecart)) |
---|
1493 | { |
---|
1494 | pLmFree(Lp.lcm); |
---|
1495 | Lp.lcm=NULL; |
---|
1496 | return; |
---|
1497 | /*the pair is (s[i],t[.]), discard it if the ecart is too big*/ |
---|
1498 | } |
---|
1499 | /* |
---|
1500 | *the set B collects the pairs of type (S[j],p) |
---|
1501 | *suppose (r,p) is in B and (s,p) is the new pair and lcm(s,p)#lcm(r,p) |
---|
1502 | *if the leading term of s devides lcm(r,p) then (r,p) will be canceled |
---|
1503 | *if the leading term of r devides lcm(s,p) then (s,p) will not enter B |
---|
1504 | */ |
---|
1505 | { |
---|
1506 | j = strat->Bl; |
---|
1507 | loop |
---|
1508 | { |
---|
1509 | if (j < 0) break; |
---|
1510 | compare=pDivComp(strat->B[j].lcm,Lp.lcm); |
---|
1511 | if ((compare==1) |
---|
1512 | &&(sugarDivisibleBy(strat->B[j].ecart,Lp.ecart))) |
---|
1513 | { |
---|
1514 | strat->c3++; |
---|
1515 | if ((strat->fromQ==NULL) || (isFromQ==0) || (strat->fromQ[i]==0)) |
---|
1516 | { |
---|
1517 | pLmFree(Lp.lcm); |
---|
1518 | return; |
---|
1519 | } |
---|
1520 | break; |
---|
1521 | } |
---|
1522 | else |
---|
1523 | if ((compare ==-1) |
---|
1524 | && sugarDivisibleBy(Lp.ecart,strat->B[j].ecart)) |
---|
1525 | { |
---|
1526 | deleteInL(strat->B,&strat->Bl,j,strat); |
---|
1527 | strat->c3++; |
---|
1528 | } |
---|
1529 | j--; |
---|
1530 | } |
---|
1531 | } |
---|
1532 | } |
---|
1533 | else /*sugarcrit*/ |
---|
1534 | { |
---|
1535 | if (ALLOW_PROD_CRIT(strat)) |
---|
1536 | { |
---|
1537 | // if currRing->nc_type!=quasi (or skew) |
---|
1538 | // TODO: enable productCrit for super commutative algebras... |
---|
1539 | if(/*(strat->ak==0) && productCrit(p,strat->S[i])*/ |
---|
1540 | pHasNotCF(p,strat->S[i])) |
---|
1541 | { |
---|
1542 | /* |
---|
1543 | *the product criterion has applied for (s,p), |
---|
1544 | *i.e. lcm(s,p)=product of the leading terms of s and p. |
---|
1545 | *Suppose (s,r) is in L and the leading term |
---|
1546 | *of p devides lcm(s,r) |
---|
1547 | *(==> the leading term of p devides the leading term of r) |
---|
1548 | *but the leading term of s does not devide the leading term of r |
---|
1549 | *(notice that tis condition is automatically satisfied if r is still |
---|
1550 | *in S), then (s,r) can be canceled. |
---|
1551 | *This should be done here because the |
---|
1552 | *case lcm(s,r)=lcm(s,p) is not covered by chainCrit. |
---|
1553 | */ |
---|
1554 | strat->cp++; |
---|
1555 | pLmFree(Lp.lcm); |
---|
1556 | Lp.lcm=NULL; |
---|
1557 | return; |
---|
1558 | } |
---|
1559 | if (strat->fromT && (strat->ecartS[i]>ecart)) |
---|
1560 | { |
---|
1561 | pLmFree(Lp.lcm); |
---|
1562 | Lp.lcm=NULL; |
---|
1563 | return; |
---|
1564 | /*the pair is (s[i],t[.]), discard it if the ecart is too big*/ |
---|
1565 | } |
---|
1566 | /* |
---|
1567 | *the set B collects the pairs of type (S[j],p) |
---|
1568 | *suppose (r,p) is in B and (s,p) is the new pair and lcm(s,p)#lcm(r,p) |
---|
1569 | *if the leading term of s devides lcm(r,p) then (r,p) will be canceled |
---|
1570 | *if the leading term of r devides lcm(s,p) then (s,p) will not enter B |
---|
1571 | */ |
---|
1572 | for(j = strat->Bl;j>=0;j--) |
---|
1573 | { |
---|
1574 | compare=pDivComp(strat->B[j].lcm,Lp.lcm); |
---|
1575 | if (compare==1) |
---|
1576 | { |
---|
1577 | strat->c3++; |
---|
1578 | if ((strat->fromQ==NULL) || (isFromQ==0) || (strat->fromQ[i]==0)) |
---|
1579 | { |
---|
1580 | pLmFree(Lp.lcm); |
---|
1581 | return; |
---|
1582 | } |
---|
1583 | break; |
---|
1584 | } |
---|
1585 | else |
---|
1586 | if (compare ==-1) |
---|
1587 | { |
---|
1588 | deleteInL(strat->B,&strat->Bl,j,strat); |
---|
1589 | strat->c3++; |
---|
1590 | } |
---|
1591 | } |
---|
1592 | } |
---|
1593 | } |
---|
1594 | /* |
---|
1595 | *the pair (S[i],p) enters B if the spoly != 0 |
---|
1596 | */ |
---|
1597 | /*- compute the short s-polynomial -*/ |
---|
1598 | if (strat->fromT && !TEST_OPT_INTSTRATEGY) |
---|
1599 | pNorm(p); |
---|
1600 | |
---|
1601 | if ((strat->S[i]==NULL) || (p==NULL)) |
---|
1602 | return; |
---|
1603 | |
---|
1604 | if ((strat->fromQ!=NULL) && (isFromQ!=0) && (strat->fromQ[i]!=0)) |
---|
1605 | Lp.p=NULL; |
---|
1606 | else |
---|
1607 | { |
---|
1608 | #ifdef HAVE_PLURAL |
---|
1609 | if ( rIsPluralRing(currRing) ) |
---|
1610 | { |
---|
1611 | if(pHasNotCF(p, strat->S[i])) |
---|
1612 | { |
---|
1613 | if(ncRingType(currRing) == nc_lie) |
---|
1614 | { |
---|
1615 | // generalized prod-crit for lie-type |
---|
1616 | strat->cp++; |
---|
1617 | Lp.p = nc_p_Bracket_qq(pCopy(p),strat->S[i], currRing); |
---|
1618 | } |
---|
1619 | else |
---|
1620 | if( ALLOW_PROD_CRIT(strat) ) |
---|
1621 | { |
---|
1622 | // product criterion for homogeneous case in SCA |
---|
1623 | strat->cp++; |
---|
1624 | Lp.p = NULL; |
---|
1625 | } |
---|
1626 | else |
---|
1627 | { |
---|
1628 | Lp.p = // nc_CreateSpoly(strat->S[i],p,currRing); |
---|
1629 | nc_CreateShortSpoly(strat->S[i], p, currRing); |
---|
1630 | |
---|
1631 | assume(pNext(Lp.p)==NULL); // TODO: this may be violated whenever ext.prod.crit. for Lie alg. is used |
---|
1632 | pNext(Lp.p) = strat->tail; // !!! |
---|
1633 | } |
---|
1634 | } |
---|
1635 | else |
---|
1636 | { |
---|
1637 | Lp.p = // nc_CreateSpoly(strat->S[i],p,currRing); |
---|
1638 | nc_CreateShortSpoly(strat->S[i], p, currRing); |
---|
1639 | |
---|
1640 | assume(pNext(Lp.p)==NULL); // TODO: this may be violated whenever ext.prod.crit. for Lie alg. is used |
---|
1641 | pNext(Lp.p) = strat->tail; // !!! |
---|
1642 | |
---|
1643 | } |
---|
1644 | |
---|
1645 | |
---|
1646 | #if MYTEST |
---|
1647 | if (TEST_OPT_DEBUG) |
---|
1648 | { |
---|
1649 | PrintS("enterOnePairNormal::\n strat->S[i]: "); pWrite(strat->S[i]); |
---|
1650 | PrintS("p: "); pWrite(p); |
---|
1651 | PrintS("SPoly: "); pWrite(Lp.p); |
---|
1652 | } |
---|
1653 | #endif |
---|
1654 | |
---|
1655 | } |
---|
1656 | else |
---|
1657 | #endif |
---|
1658 | { |
---|
1659 | assume(!rIsPluralRing(currRing)); |
---|
1660 | Lp.p = ksCreateShortSpoly(strat->S[i], p, strat->tailRing); |
---|
1661 | #if MYTEST |
---|
1662 | if (TEST_OPT_DEBUG) |
---|
1663 | { |
---|
1664 | PrintS("enterOnePairNormal::\n strat->S[i]: "); pWrite(strat->S[i]); |
---|
1665 | PrintS("p: "); pWrite(p); |
---|
1666 | PrintS("commutative SPoly: "); pWrite(Lp.p); |
---|
1667 | } |
---|
1668 | #endif |
---|
1669 | |
---|
1670 | } |
---|
1671 | } |
---|
1672 | if (Lp.p == NULL) |
---|
1673 | { |
---|
1674 | /*- the case that the s-poly is 0 -*/ |
---|
1675 | if (strat->pairtest==NULL) initPairtest(strat); |
---|
1676 | strat->pairtest[i] = TRUE;/*- hint for spoly(S^[i],p)=0 -*/ |
---|
1677 | strat->pairtest[strat->sl+1] = TRUE; |
---|
1678 | /*hint for spoly(S[i],p) == 0 for some i,0 <= i <= sl*/ |
---|
1679 | /* |
---|
1680 | *suppose we have (s,r),(r,p),(s,p) and spoly(s,p) == 0 and (r,p) is |
---|
1681 | *still in B (i.e. lcm(r,p) == lcm(s,p) or the leading term of s does not |
---|
1682 | *devide lcm(r,p)). In the last case (s,r) can be canceled if the leading |
---|
1683 | *term of p devides the lcm(s,r) |
---|
1684 | *(this canceling should be done here because |
---|
1685 | *the case lcm(s,p) == lcm(s,r) is not covered in chainCrit) |
---|
1686 | *the first case is handeled in chainCrit |
---|
1687 | */ |
---|
1688 | if (Lp.lcm!=NULL) pLmFree(Lp.lcm); |
---|
1689 | } |
---|
1690 | else |
---|
1691 | { |
---|
1692 | /*- the pair (S[i],p) enters B -*/ |
---|
1693 | Lp.p1 = strat->S[i]; |
---|
1694 | Lp.p2 = p; |
---|
1695 | |
---|
1696 | if ( |
---|
1697 | (!rIsPluralRing(currRing)) |
---|
1698 | // || (rIsPluralRing(currRing) && (ncRingType(currRing) != nc_lie)) |
---|
1699 | ) |
---|
1700 | { |
---|
1701 | assume(pNext(Lp.p)==NULL); // TODO: this may be violated whenever ext.prod.crit. for Lie alg. is used |
---|
1702 | pNext(Lp.p) = strat->tail; // !!! |
---|
1703 | } |
---|
1704 | |
---|
1705 | if (atR >= 0) |
---|
1706 | { |
---|
1707 | Lp.i_r1 = strat->S_2_R[i]; |
---|
1708 | Lp.i_r2 = atR; |
---|
1709 | } |
---|
1710 | else |
---|
1711 | { |
---|
1712 | Lp.i_r1 = -1; |
---|
1713 | Lp.i_r2 = -1; |
---|
1714 | } |
---|
1715 | strat->initEcartPair(&Lp,strat->S[i],p,strat->ecartS[i],ecart); |
---|
1716 | |
---|
1717 | if (TEST_OPT_INTSTRATEGY) |
---|
1718 | { |
---|
1719 | if (!rIsPluralRing(currRing)) |
---|
1720 | nDelete(&(Lp.p->coef)); |
---|
1721 | } |
---|
1722 | |
---|
1723 | l = strat->posInL(strat->B,strat->Bl,&Lp,strat); |
---|
1724 | enterL(&strat->B,&strat->Bl,&strat->Bmax,Lp,l); |
---|
1725 | } |
---|
1726 | } |
---|
1727 | |
---|
1728 | /*2 |
---|
1729 | * put the pair (s[i],p) into the set B, ecart=ecart(p) |
---|
1730 | * NOTE: here we need to add the signature-based criteria |
---|
1731 | */ |
---|
1732 | |
---|
1733 | void enterOnePairSig (int i, poly p, poly pSig, int from, int ecart, int isFromQ, kStrategy strat, int atR = -1) |
---|
1734 | { |
---|
1735 | assume(i<=strat->sl); |
---|
1736 | if (strat->interred_flag) return; |
---|
1737 | |
---|
1738 | int l; |
---|
1739 | poly m1 = NULL,m2 = NULL; // we need the multipliers for the s-polynomial to compute |
---|
1740 | // the corresponding signatures for criteria checks |
---|
1741 | LObject Lp; |
---|
1742 | poly last; |
---|
1743 | poly pSigMult = p_Copy(pSig,currRing); |
---|
1744 | poly sSigMult = p_Copy(strat->sig[i],currRing); |
---|
1745 | unsigned long pSigMultNegSev,sSigMultNegSev; |
---|
1746 | Lp.i_r = -1; |
---|
1747 | |
---|
1748 | #ifdef KDEBUG |
---|
1749 | Lp.ecart=0; Lp.length=0; |
---|
1750 | #endif |
---|
1751 | /*- computes the lcm(s[i],p) -*/ |
---|
1752 | Lp.lcm = pInit(); |
---|
1753 | k_GetLeadTerms(p,strat->S[i],currRing,m1,m2,currRing); |
---|
1754 | #ifndef HAVE_RATGRING |
---|
1755 | pLcm(p,strat->S[i],Lp.lcm); |
---|
1756 | #elif defined(HAVE_RATGRING) |
---|
1757 | // if (rIsRatGRing(currRing)) |
---|
1758 | pLcmRat(p,strat->S[i],Lp.lcm, currRing->real_var_start); // int rat_shift |
---|
1759 | #endif |
---|
1760 | pSetm(Lp.lcm); |
---|
1761 | |
---|
1762 | // set coeffs of multipliers m1 and m2 |
---|
1763 | pSetCoeff0(m1, nInit(1)); |
---|
1764 | pSetCoeff0(m2, nInit(1)); |
---|
1765 | //#if 1 |
---|
1766 | #ifdef DEBUGF5 |
---|
1767 | Print("P1 "); |
---|
1768 | pWrite(pHead(p)); |
---|
1769 | Print("FROM: %d\n", from); |
---|
1770 | Print("P2 "); |
---|
1771 | pWrite(pHead(strat->S[i])); |
---|
1772 | Print("FROM: %d\n", strat->fromS[i]); |
---|
1773 | Print("M1 "); |
---|
1774 | pWrite(m1); |
---|
1775 | Print("M2 "); |
---|
1776 | pWrite(m2); |
---|
1777 | #endif |
---|
1778 | // get multiplied signatures for testing |
---|
1779 | pSigMult = currRing->p_Procs->pp_Mult_mm(pSigMult,m1,currRing); |
---|
1780 | pSigMultNegSev = ~p_GetShortExpVector(pSigMult,currRing); |
---|
1781 | sSigMult = currRing->p_Procs->pp_Mult_mm(sSigMult,m2,currRing); |
---|
1782 | sSigMultNegSev = ~p_GetShortExpVector(sSigMult,currRing); |
---|
1783 | |
---|
1784 | pDelete (&m1); |
---|
1785 | pDelete (&m2); |
---|
1786 | |
---|
1787 | //#if 1 |
---|
1788 | #ifdef DEBUGF5 |
---|
1789 | Print("----------------\n"); |
---|
1790 | pWrite(pSigMult); |
---|
1791 | pWrite(sSigMult); |
---|
1792 | Print("----------------\n"); |
---|
1793 | #endif |
---|
1794 | // testing by syzCrit = F5 Criterion |
---|
1795 | // testing by rewCrit1 = Rewritten Criterion |
---|
1796 | if ( strat->syzCrit(pSigMult,pSigMultNegSev,strat) || |
---|
1797 | strat->syzCrit(sSigMult,sSigMultNegSev,strat) |
---|
1798 | || strat->rewCrit1(sSigMult,sSigMultNegSev,strat,i+1) |
---|
1799 | ) |
---|
1800 | { |
---|
1801 | pDelete(&pSigMult); |
---|
1802 | pDelete(&sSigMult); |
---|
1803 | strat->cp++; |
---|
1804 | pLmFree(Lp.lcm); |
---|
1805 | Lp.lcm=NULL; |
---|
1806 | return; |
---|
1807 | } |
---|
1808 | // in any case Lp is checked up to the next strat->P which is added |
---|
1809 | // to S right after this critical pair creation. |
---|
1810 | // NOTE: this even holds if the 2nd generator gives the bigger signature |
---|
1811 | // moreover, this improves rewCriterion, |
---|
1812 | // i.e. strat->checked > strat->from if and only if the 2nd generator |
---|
1813 | // gives the bigger signature. |
---|
1814 | Lp.checked = strat->sl+1; |
---|
1815 | int sigCmp = p_LmCmp(pSigMult,sSigMult,currRing); |
---|
1816 | //#if 1 |
---|
1817 | #if DEBUGF5 |
---|
1818 | printf("IN PAIR GENERATION - COMPARING SIGS: %d\n",sigCmp); |
---|
1819 | pWrite(pSigMult); |
---|
1820 | pWrite(sSigMult); |
---|
1821 | #endif |
---|
1822 | if(sigCmp==0) |
---|
1823 | { |
---|
1824 | // printf("!!!! EQUAL SIGS !!!!\n"); |
---|
1825 | // pSig = sSig, delete element due to Rewritten Criterion |
---|
1826 | strat->cp++; |
---|
1827 | pDelete(&pSigMult); |
---|
1828 | pDelete(&sSigMult); |
---|
1829 | pLmFree(Lp.lcm); |
---|
1830 | Lp.lcm=NULL; |
---|
1831 | return; |
---|
1832 | } |
---|
1833 | // at this point it is clear that the pair will be added to L, since it has |
---|
1834 | // passed all tests up to now |
---|
1835 | |
---|
1836 | // store from which element this pair comes from for further tests |
---|
1837 | Lp.from = strat->sl+1; |
---|
1838 | if(sigCmp==currRing->OrdSgn) |
---|
1839 | { |
---|
1840 | // pSig > sSig |
---|
1841 | pDelete (&sSigMult); |
---|
1842 | Lp.sig = pSigMult; |
---|
1843 | Lp.sevSig = ~pSigMultNegSev; |
---|
1844 | } |
---|
1845 | else |
---|
1846 | { |
---|
1847 | // pSig < sSig |
---|
1848 | pDelete (&pSigMult); |
---|
1849 | Lp.sig = sSigMult; |
---|
1850 | Lp.sevSig = ~sSigMultNegSev; |
---|
1851 | } |
---|
1852 | #if DEBUGF5 |
---|
1853 | printf("SIGNATURE OF PAIR: "); |
---|
1854 | pWrite(Lp.sig); |
---|
1855 | #endif |
---|
1856 | /* |
---|
1857 | *the pair (S[i],p) enters B if the spoly != 0 |
---|
1858 | */ |
---|
1859 | /*- compute the short s-polynomial -*/ |
---|
1860 | if (strat->fromT && !TEST_OPT_INTSTRATEGY) |
---|
1861 | pNorm(p); |
---|
1862 | |
---|
1863 | if ((strat->S[i]==NULL) || (p==NULL)) |
---|
1864 | return; |
---|
1865 | |
---|
1866 | if ((strat->fromQ!=NULL) && (isFromQ!=0) && (strat->fromQ[i]!=0)) |
---|
1867 | Lp.p=NULL; |
---|
1868 | else |
---|
1869 | { |
---|
1870 | #ifdef HAVE_PLURAL |
---|
1871 | if ( rIsPluralRing(currRing) ) |
---|
1872 | { |
---|
1873 | if(pHasNotCF(p, strat->S[i])) |
---|
1874 | { |
---|
1875 | if(ncRingType(currRing) == nc_lie) |
---|
1876 | { |
---|
1877 | // generalized prod-crit for lie-type |
---|
1878 | strat->cp++; |
---|
1879 | Lp.p = nc_p_Bracket_qq(pCopy(p),strat->S[i], currRing); |
---|
1880 | } |
---|
1881 | else |
---|
1882 | if( ALLOW_PROD_CRIT(strat) ) |
---|
1883 | { |
---|
1884 | // product criterion for homogeneous case in SCA |
---|
1885 | strat->cp++; |
---|
1886 | Lp.p = NULL; |
---|
1887 | } |
---|
1888 | else |
---|
1889 | { |
---|
1890 | Lp.p = // nc_CreateSpoly(strat->S[i],p,currRing); |
---|
1891 | nc_CreateShortSpoly(strat->S[i], p, currRing); |
---|
1892 | |
---|
1893 | assume(pNext(Lp.p)==NULL); // TODO: this may be violated whenever ext.prod.crit. for Lie alg. is used |
---|
1894 | pNext(Lp.p) = strat->tail; // !!! |
---|
1895 | } |
---|
1896 | } |
---|
1897 | else |
---|
1898 | { |
---|
1899 | Lp.p = // nc_CreateSpoly(strat->S[i],p,currRing); |
---|
1900 | nc_CreateShortSpoly(strat->S[i], p, currRing); |
---|
1901 | |
---|
1902 | assume(pNext(Lp.p)==NULL); // TODO: this may be violated whenever ext.prod.crit. for Lie alg. is used |
---|
1903 | pNext(Lp.p) = strat->tail; // !!! |
---|
1904 | |
---|
1905 | } |
---|
1906 | |
---|
1907 | |
---|
1908 | #if MYTEST |
---|
1909 | if (TEST_OPT_DEBUG) |
---|
1910 | { |
---|
1911 | PrintS("enterOnePairNormal::\n strat->S[i]: "); pWrite(strat->S[i]); |
---|
1912 | PrintS("p: "); pWrite(p); |
---|
1913 | PrintS("SPoly: "); pWrite(Lp.p); |
---|
1914 | } |
---|
1915 | #endif |
---|
1916 | |
---|
1917 | } |
---|
1918 | else |
---|
1919 | #endif |
---|
1920 | { |
---|
1921 | assume(!rIsPluralRing(currRing)); |
---|
1922 | Lp.p = ksCreateShortSpoly(strat->S[i], p, strat->tailRing); |
---|
1923 | #if MYTEST |
---|
1924 | if (TEST_OPT_DEBUG) |
---|
1925 | { |
---|
1926 | PrintS("enterOnePairNormal::\n strat->S[i]: "); pWrite(strat->S[i]); |
---|
1927 | PrintS("p: "); pWrite(p); |
---|
1928 | PrintS("commutative SPoly: "); pWrite(Lp.p); |
---|
1929 | } |
---|
1930 | #endif |
---|
1931 | |
---|
1932 | } |
---|
1933 | } |
---|
1934 | if (Lp.p == NULL) |
---|
1935 | { |
---|
1936 | /*- the case that the s-poly is 0 -*/ |
---|
1937 | if (strat->pairtest==NULL) initPairtest(strat); |
---|
1938 | strat->pairtest[i] = TRUE;/*- hint for spoly(S^[i],p)=0 -*/ |
---|
1939 | strat->pairtest[strat->sl+1] = TRUE; |
---|
1940 | /*hint for spoly(S[i],p) == 0 for some i,0 <= i <= sl*/ |
---|
1941 | /* |
---|
1942 | *suppose we have (s,r),(r,p),(s,p) and spoly(s,p) == 0 and (r,p) is |
---|
1943 | *still in B (i.e. lcm(r,p) == lcm(s,p) or the leading term of s does not |
---|
1944 | *devide lcm(r,p)). In the last case (s,r) can be canceled if the leading |
---|
1945 | *term of p devides the lcm(s,r) |
---|
1946 | *(this canceling should be done here because |
---|
1947 | *the case lcm(s,p) == lcm(s,r) is not covered in chainCrit) |
---|
1948 | *the first case is handeled in chainCrit |
---|
1949 | */ |
---|
1950 | if (Lp.lcm!=NULL) pLmFree(Lp.lcm); |
---|
1951 | } |
---|
1952 | else |
---|
1953 | { |
---|
1954 | /*- the pair (S[i],p) enters B -*/ |
---|
1955 | Lp.p1 = strat->S[i]; |
---|
1956 | Lp.p2 = p; |
---|
1957 | |
---|
1958 | if ( |
---|
1959 | (!rIsPluralRing(currRing)) |
---|
1960 | // || (rIsPluralRing(currRing) && (ncRingType(currRing) != nc_lie)) |
---|
1961 | ) |
---|
1962 | { |
---|
1963 | assume(pNext(Lp.p)==NULL); // TODO: this may be violated whenever ext.prod.crit. for Lie alg. is used |
---|
1964 | pNext(Lp.p) = strat->tail; // !!! |
---|
1965 | } |
---|
1966 | |
---|
1967 | if (atR >= 0) |
---|
1968 | { |
---|
1969 | Lp.i_r1 = strat->S_2_R[i]; |
---|
1970 | Lp.i_r2 = atR; |
---|
1971 | } |
---|
1972 | else |
---|
1973 | { |
---|
1974 | Lp.i_r1 = -1; |
---|
1975 | Lp.i_r2 = -1; |
---|
1976 | } |
---|
1977 | strat->initEcartPair(&Lp,strat->S[i],p,strat->ecartS[i],ecart); |
---|
1978 | |
---|
1979 | if (TEST_OPT_INTSTRATEGY) |
---|
1980 | { |
---|
1981 | if (!rIsPluralRing(currRing)) |
---|
1982 | nDelete(&(Lp.p->coef)); |
---|
1983 | } |
---|
1984 | |
---|
1985 | l = strat->posInLSba(strat->B,strat->Bl,&Lp,strat); |
---|
1986 | enterL(&strat->B,&strat->Bl,&strat->Bmax,Lp,l); |
---|
1987 | } |
---|
1988 | } |
---|
1989 | |
---|
1990 | /*2 |
---|
1991 | * put the pair (s[i],p) into the set L, ecart=ecart(p) |
---|
1992 | * in the case that s forms a SB of (s) |
---|
1993 | */ |
---|
1994 | void enterOnePairSpecial (int i,poly p,int ecart,kStrategy strat, int atR = -1) |
---|
1995 | { |
---|
1996 | //PrintS("try ");wrp(strat->S[i]);PrintS(" and ");wrp(p);PrintLn(); |
---|
1997 | if(pHasNotCF(p,strat->S[i])) |
---|
1998 | { |
---|
1999 | //PrintS("prod-crit\n"); |
---|
2000 | if(ALLOW_PROD_CRIT(strat)) |
---|
2001 | { |
---|
2002 | //PrintS("prod-crit\n"); |
---|
2003 | strat->cp++; |
---|
2004 | return; |
---|
2005 | } |
---|
2006 | } |
---|
2007 | |
---|
2008 | int l,j,compare; |
---|
2009 | LObject Lp; |
---|
2010 | Lp.i_r = -1; |
---|
2011 | |
---|
2012 | Lp.lcm = pInit(); |
---|
2013 | pLcm(p,strat->S[i],Lp.lcm); |
---|
2014 | pSetm(Lp.lcm); |
---|
2015 | for(j = strat->Ll;j>=0;j--) |
---|
2016 | { |
---|
2017 | compare=pDivComp(strat->L[j].lcm,Lp.lcm); |
---|
2018 | if ((compare==1) || (pLmEqual(strat->L[j].lcm,Lp.lcm))) |
---|
2019 | { |
---|
2020 | //PrintS("c3-crit\n"); |
---|
2021 | strat->c3++; |
---|
2022 | pLmFree(Lp.lcm); |
---|
2023 | return; |
---|
2024 | } |
---|
2025 | else if (compare ==-1) |
---|
2026 | { |
---|
2027 | //Print("c3-crit with L[%d]\n",j); |
---|
2028 | deleteInL(strat->L,&strat->Ll,j,strat); |
---|
2029 | strat->c3++; |
---|
2030 | } |
---|
2031 | } |
---|
2032 | /*- compute the short s-polynomial -*/ |
---|
2033 | |
---|
2034 | #ifdef HAVE_PLURAL |
---|
2035 | if (rIsPluralRing(currRing)) |
---|
2036 | { |
---|
2037 | Lp.p = nc_CreateShortSpoly(strat->S[i],p, currRing); // ??? strat->tailRing? |
---|
2038 | } |
---|
2039 | else |
---|
2040 | #endif |
---|
2041 | Lp.p = ksCreateShortSpoly(strat->S[i],p,strat->tailRing); |
---|
2042 | |
---|
2043 | if (Lp.p == NULL) |
---|
2044 | { |
---|
2045 | //PrintS("short spoly==NULL\n"); |
---|
2046 | pLmFree(Lp.lcm); |
---|
2047 | } |
---|
2048 | else |
---|
2049 | { |
---|
2050 | /*- the pair (S[i],p) enters L -*/ |
---|
2051 | Lp.p1 = strat->S[i]; |
---|
2052 | Lp.p2 = p; |
---|
2053 | if (atR >= 0) |
---|
2054 | { |
---|
2055 | Lp.i_r1 = strat->S_2_R[i]; |
---|
2056 | Lp.i_r2 = atR; |
---|
2057 | } |
---|
2058 | else |
---|
2059 | { |
---|
2060 | Lp.i_r1 = -1; |
---|
2061 | Lp.i_r2 = -1; |
---|
2062 | } |
---|
2063 | assume(pNext(Lp.p) == NULL); |
---|
2064 | pNext(Lp.p) = strat->tail; |
---|
2065 | strat->initEcartPair(&Lp,strat->S[i],p,strat->ecartS[i],ecart); |
---|
2066 | if (TEST_OPT_INTSTRATEGY) |
---|
2067 | { |
---|
2068 | nDelete(&(Lp.p->coef)); |
---|
2069 | } |
---|
2070 | l = strat->posInL(strat->L,strat->Ll,&Lp,strat); |
---|
2071 | //Print("-> L[%d]\n",l); |
---|
2072 | enterL(&strat->L,&strat->Ll,&strat->Lmax,Lp,l); |
---|
2073 | } |
---|
2074 | } |
---|
2075 | |
---|
2076 | /*2 |
---|
2077 | * merge set B into L |
---|
2078 | */ |
---|
2079 | void kMergeBintoL(kStrategy strat) |
---|
2080 | { |
---|
2081 | int j=strat->Ll+strat->Bl+1; |
---|
2082 | if (j>strat->Lmax) |
---|
2083 | { |
---|
2084 | j=((j+setmaxLinc-1)/setmaxLinc)*setmaxLinc; |
---|
2085 | strat->L = (LSet)omReallocSize(strat->L,strat->Lmax*sizeof(LObject), |
---|
2086 | j*sizeof(LObject)); |
---|
2087 | strat->Lmax=j; |
---|
2088 | } |
---|
2089 | j = strat->Ll; |
---|
2090 | int i; |
---|
2091 | for (i=strat->Bl; i>=0; i--) |
---|
2092 | { |
---|
2093 | j = strat->posInL(strat->L,j,&(strat->B[i]),strat); |
---|
2094 | enterL(&strat->L,&strat->Ll,&strat->Lmax,strat->B[i],j); |
---|
2095 | } |
---|
2096 | strat->Bl = -1; |
---|
2097 | } |
---|
2098 | |
---|
2099 | /*2 |
---|
2100 | * merge set B into L |
---|
2101 | */ |
---|
2102 | void kMergeBintoLSba(kStrategy strat) |
---|
2103 | { |
---|
2104 | int j=strat->Ll+strat->Bl+1; |
---|
2105 | if (j>strat->Lmax) |
---|
2106 | { |
---|
2107 | j=((j+setmaxLinc-1)/setmaxLinc)*setmaxLinc; |
---|
2108 | strat->L = (LSet)omReallocSize(strat->L,strat->Lmax*sizeof(LObject), |
---|
2109 | j*sizeof(LObject)); |
---|
2110 | strat->Lmax=j; |
---|
2111 | } |
---|
2112 | j = strat->Ll; |
---|
2113 | int i; |
---|
2114 | for (i=strat->Bl; i>=0; i--) |
---|
2115 | { |
---|
2116 | j = strat->posInLSba(strat->L,j,&(strat->B[i]),strat); |
---|
2117 | enterL(&strat->L,&strat->Ll,&strat->Lmax,strat->B[i],j); |
---|
2118 | } |
---|
2119 | strat->Bl = -1; |
---|
2120 | } |
---|
2121 | /*2 |
---|
2122 | *the pairset B of pairs of type (s[i],p) is complete now. It will be updated |
---|
2123 | *using the chain-criterion in B and L and enters B to L |
---|
2124 | */ |
---|
2125 | void chainCritNormal (poly p,int ecart,kStrategy strat) |
---|
2126 | { |
---|
2127 | int i,j,l; |
---|
2128 | |
---|
2129 | /* |
---|
2130 | *pairtest[i] is TRUE if spoly(S[i],p) == 0. |
---|
2131 | *In this case all elements in B such |
---|
2132 | *that their lcm is divisible by the leading term of S[i] can be canceled |
---|
2133 | */ |
---|
2134 | if (strat->pairtest!=NULL) |
---|
2135 | { |
---|
2136 | { |
---|
2137 | /*- i.e. there is an i with pairtest[i]==TRUE -*/ |
---|
2138 | for (j=0; j<=strat->sl; j++) |
---|
2139 | { |
---|
2140 | if (strat->pairtest[j]) |
---|
2141 | { |
---|
2142 | for (i=strat->Bl; i>=0; i--) |
---|
2143 | { |
---|
2144 | if (pDivisibleBy(strat->S[j],strat->B[i].lcm)) |
---|
2145 | { |
---|
2146 | deleteInL(strat->B,&strat->Bl,i,strat); |
---|
2147 | strat->c3++; |
---|
2148 | } |
---|
2149 | } |
---|
2150 | } |
---|
2151 | } |
---|
2152 | } |
---|
2153 | omFreeSize(strat->pairtest,(strat->sl+2)*sizeof(BOOLEAN)); |
---|
2154 | strat->pairtest=NULL; |
---|
2155 | } |
---|
2156 | if (strat->Gebauer || strat->fromT) |
---|
2157 | { |
---|
2158 | if (strat->sugarCrit) |
---|
2159 | { |
---|
2160 | /* |
---|
2161 | *suppose L[j] == (s,r) and p/lcm(s,r) |
---|
2162 | *and lcm(s,r)#lcm(s,p) and lcm(s,r)#lcm(r,p) |
---|
2163 | *and in case the sugar is o.k. then L[j] can be canceled |
---|
2164 | */ |
---|
2165 | for (j=strat->Ll; j>=0; j--) |
---|
2166 | { |
---|
2167 | if (sugarDivisibleBy(ecart,strat->L[j].ecart) |
---|
2168 | && ((pNext(strat->L[j].p) == strat->tail) || (currRing->OrdSgn==1)) |
---|
2169 | && pCompareChain(p,strat->L[j].p1,strat->L[j].p2,strat->L[j].lcm)) |
---|
2170 | { |
---|
2171 | if (strat->L[j].p == strat->tail) |
---|
2172 | { |
---|
2173 | deleteInL(strat->L,&strat->Ll,j,strat); |
---|
2174 | strat->c3++; |
---|
2175 | } |
---|
2176 | } |
---|
2177 | } |
---|
2178 | /* |
---|
2179 | *this is GEBAUER-MOELLER: |
---|
2180 | *in B all elements with the same lcm except the "best" |
---|
2181 | *(i.e. the last one in B with this property) will be canceled |
---|
2182 | */ |
---|
2183 | j = strat->Bl; |
---|
2184 | loop /*cannot be changed into a for !!! */ |
---|
2185 | { |
---|
2186 | if (j <= 0) break; |
---|
2187 | i = j-1; |
---|
2188 | loop |
---|
2189 | { |
---|
2190 | if (i < 0) break; |
---|
2191 | if (pLmEqual(strat->B[j].lcm,strat->B[i].lcm)) |
---|
2192 | { |
---|
2193 | strat->c3++; |
---|
2194 | if (sugarDivisibleBy(strat->B[j].ecart,strat->B[i].ecart)) |
---|
2195 | { |
---|
2196 | deleteInL(strat->B,&strat->Bl,i,strat); |
---|
2197 | j--; |
---|
2198 | } |
---|
2199 | else |
---|
2200 | { |
---|
2201 | deleteInL(strat->B,&strat->Bl,j,strat); |
---|
2202 | break; |
---|
2203 | } |
---|
2204 | } |
---|
2205 | i--; |
---|
2206 | } |
---|
2207 | j--; |
---|
2208 | } |
---|
2209 | } |
---|
2210 | else /*sugarCrit*/ |
---|
2211 | { |
---|
2212 | /* |
---|
2213 | *suppose L[j] == (s,r) and p/lcm(s,r) |
---|
2214 | *and lcm(s,r)#lcm(s,p) and lcm(s,r)#lcm(r,p) |
---|
2215 | *and in case the sugar is o.k. then L[j] can be canceled |
---|
2216 | */ |
---|
2217 | for (j=strat->Ll; j>=0; j--) |
---|
2218 | { |
---|
2219 | if (pCompareChain(p,strat->L[j].p1,strat->L[j].p2,strat->L[j].lcm)) |
---|
2220 | { |
---|
2221 | if ((pNext(strat->L[j].p) == strat->tail)||(currRing->OrdSgn==1)) |
---|
2222 | { |
---|
2223 | deleteInL(strat->L,&strat->Ll,j,strat); |
---|
2224 | strat->c3++; |
---|
2225 | } |
---|
2226 | } |
---|
2227 | } |
---|
2228 | /* |
---|
2229 | *this is GEBAUER-MOELLER: |
---|
2230 | *in B all elements with the same lcm except the "best" |
---|
2231 | *(i.e. the last one in B with this property) will be canceled |
---|
2232 | */ |
---|
2233 | j = strat->Bl; |
---|
2234 | loop /*cannot be changed into a for !!! */ |
---|
2235 | { |
---|
2236 | if (j <= 0) break; |
---|
2237 | for(i=j-1; i>=0; i--) |
---|
2238 | { |
---|
2239 | if (pLmEqual(strat->B[j].lcm,strat->B[i].lcm)) |
---|
2240 | { |
---|
2241 | strat->c3++; |
---|
2242 | deleteInL(strat->B,&strat->Bl,i,strat); |
---|
2243 | j--; |
---|
2244 | } |
---|
2245 | } |
---|
2246 | j--; |
---|
2247 | } |
---|
2248 | } |
---|
2249 | /* |
---|
2250 | *the elements of B enter L |
---|
2251 | */ |
---|
2252 | kMergeBintoL(strat); |
---|
2253 | } |
---|
2254 | else |
---|
2255 | { |
---|
2256 | for (j=strat->Ll; j>=0; j--) |
---|
2257 | { |
---|
2258 | if (pCompareChain(p,strat->L[j].p1,strat->L[j].p2,strat->L[j].lcm)) |
---|
2259 | { |
---|
2260 | if ((pNext(strat->L[j].p) == strat->tail)||(currRing->OrdSgn==1)) |
---|
2261 | { |
---|
2262 | deleteInL(strat->L,&strat->Ll,j,strat); |
---|
2263 | strat->c3++; |
---|
2264 | } |
---|
2265 | } |
---|
2266 | } |
---|
2267 | /* |
---|
2268 | *this is our MODIFICATION of GEBAUER-MOELLER: |
---|
2269 | *First the elements of B enter L, |
---|
2270 | *then we fix a lcm and the "best" element in L |
---|
2271 | *(i.e the last in L with this lcm and of type (s,p)) |
---|
2272 | *and cancel all the other elements of type (r,p) with this lcm |
---|
2273 | *except the case the element (s,r) has also the same lcm |
---|
2274 | *and is on the worst position with respect to (s,p) and (r,p) |
---|
2275 | */ |
---|
2276 | /* |
---|
2277 | *B enters to L/their order with respect to B is permutated for elements |
---|
2278 | *B[i].p with the same leading term |
---|
2279 | */ |
---|
2280 | kMergeBintoL(strat); |
---|
2281 | j = strat->Ll; |
---|
2282 | loop /*cannot be changed into a for !!! */ |
---|
2283 | { |
---|
2284 | if (j <= 0) |
---|
2285 | { |
---|
2286 | /*now L[0] cannot be canceled any more and the tail can be removed*/ |
---|
2287 | if (strat->L[0].p2 == strat->tail) strat->L[0].p2 = p; |
---|
2288 | break; |
---|
2289 | } |
---|
2290 | if (strat->L[j].p2 == p) |
---|
2291 | { |
---|
2292 | i = j-1; |
---|
2293 | loop |
---|
2294 | { |
---|
2295 | if (i < 0) break; |
---|
2296 | if ((strat->L[i].p2 == p) && pLmEqual(strat->L[j].lcm,strat->L[i].lcm)) |
---|
2297 | { |
---|
2298 | /*L[i] could be canceled but we search for a better one to cancel*/ |
---|
2299 | strat->c3++; |
---|
2300 | if (isInPairsetL(i-1,strat->L[j].p1,strat->L[i].p1,&l,strat) |
---|
2301 | && (pNext(strat->L[l].p) == strat->tail) |
---|
2302 | && (!pLmEqual(strat->L[i].p,strat->L[l].p)) |
---|
2303 | && pDivisibleBy(p,strat->L[l].lcm)) |
---|
2304 | { |
---|
2305 | /* |
---|
2306 | *"NOT equal(...)" because in case of "equal" the element L[l] |
---|
2307 | *is "older" and has to be from theoretical point of view behind |
---|
2308 | *L[i], but we do not want to reorder L |
---|
2309 | */ |
---|
2310 | strat->L[i].p2 = strat->tail; |
---|
2311 | /* |
---|
2312 | *L[l] will be canceled, we cannot cancel L[i] later on, |
---|
2313 | *so we mark it with "tail" |
---|
2314 | */ |
---|
2315 | deleteInL(strat->L,&strat->Ll,l,strat); |
---|
2316 | i--; |
---|
2317 | } |
---|
2318 | else |
---|
2319 | { |
---|
2320 | deleteInL(strat->L,&strat->Ll,i,strat); |
---|
2321 | } |
---|
2322 | j--; |
---|
2323 | } |
---|
2324 | i--; |
---|
2325 | } |
---|
2326 | } |
---|
2327 | else if (strat->L[j].p2 == strat->tail) |
---|
2328 | { |
---|
2329 | /*now L[j] cannot be canceled any more and the tail can be removed*/ |
---|
2330 | strat->L[j].p2 = p; |
---|
2331 | } |
---|
2332 | j--; |
---|
2333 | } |
---|
2334 | } |
---|
2335 | } |
---|
2336 | /*2 |
---|
2337 | *the pairset B of pairs of type (s[i],p) is complete now. It will be updated |
---|
2338 | *using the chain-criterion in B and L and enters B to L |
---|
2339 | */ |
---|
2340 | void chainCritSig (poly p,int ecart,kStrategy strat) |
---|
2341 | { |
---|
2342 | int i,j,l; |
---|
2343 | kMergeBintoLSba(strat); |
---|
2344 | j = strat->Ll; |
---|
2345 | loop /*cannot be changed into a for !!! */ |
---|
2346 | { |
---|
2347 | if (j <= 0) |
---|
2348 | { |
---|
2349 | /*now L[0] cannot be canceled any more and the tail can be removed*/ |
---|
2350 | if (strat->L[0].p2 == strat->tail) strat->L[0].p2 = p; |
---|
2351 | break; |
---|
2352 | } |
---|
2353 | if (strat->L[j].p2 == p) |
---|
2354 | { |
---|
2355 | i = j-1; |
---|
2356 | loop |
---|
2357 | { |
---|
2358 | if (i < 0) break; |
---|
2359 | if ((strat->L[i].p2 == p) && pLmEqual(strat->L[j].lcm,strat->L[i].lcm)) |
---|
2360 | { |
---|
2361 | /*L[i] could be canceled but we search for a better one to cancel*/ |
---|
2362 | strat->c3++; |
---|
2363 | if (isInPairsetL(i-1,strat->L[j].p1,strat->L[i].p1,&l,strat) |
---|
2364 | && (pNext(strat->L[l].p) == strat->tail) |
---|
2365 | && (!pLmEqual(strat->L[i].p,strat->L[l].p)) |
---|
2366 | && pDivisibleBy(p,strat->L[l].lcm)) |
---|
2367 | { |
---|
2368 | /* |
---|
2369 | *"NOT equal(...)" because in case of "equal" the element L[l] |
---|
2370 | *is "older" and has to be from theoretical point of view behind |
---|
2371 | *L[i], but we do not want to reorder L |
---|
2372 | */ |
---|
2373 | strat->L[i].p2 = strat->tail; |
---|
2374 | /* |
---|
2375 | *L[l] will be canceled, we cannot cancel L[i] later on, |
---|
2376 | *so we mark it with "tail" |
---|
2377 | */ |
---|
2378 | deleteInL(strat->L,&strat->Ll,l,strat); |
---|
2379 | i--; |
---|
2380 | } |
---|
2381 | else |
---|
2382 | { |
---|
2383 | deleteInL(strat->L,&strat->Ll,i,strat); |
---|
2384 | } |
---|
2385 | j--; |
---|
2386 | } |
---|
2387 | i--; |
---|
2388 | } |
---|
2389 | } |
---|
2390 | else if (strat->L[j].p2 == strat->tail) |
---|
2391 | { |
---|
2392 | /*now L[j] cannot be canceled any more and the tail can be removed*/ |
---|
2393 | strat->L[j].p2 = p; |
---|
2394 | } |
---|
2395 | j--; |
---|
2396 | } |
---|
2397 | } |
---|
2398 | #ifdef HAVE_RATGRING |
---|
2399 | void chainCritPart (poly p,int ecart,kStrategy strat) |
---|
2400 | { |
---|
2401 | int i,j,l; |
---|
2402 | |
---|
2403 | /* |
---|
2404 | *pairtest[i] is TRUE if spoly(S[i],p) == 0. |
---|
2405 | *In this case all elements in B such |
---|
2406 | *that their lcm is divisible by the leading term of S[i] can be canceled |
---|
2407 | */ |
---|
2408 | if (strat->pairtest!=NULL) |
---|
2409 | { |
---|
2410 | { |
---|
2411 | /*- i.e. there is an i with pairtest[i]==TRUE -*/ |
---|
2412 | for (j=0; j<=strat->sl; j++) |
---|
2413 | { |
---|
2414 | if (strat->pairtest[j]) |
---|
2415 | { |
---|
2416 | for (i=strat->Bl; i>=0; i--) |
---|
2417 | { |
---|
2418 | if (_p_LmDivisibleByPart(strat->S[j],currRing, |
---|
2419 | strat->B[i].lcm,currRing, |
---|
2420 | currRing->real_var_start,currRing->real_var_end)) |
---|
2421 | { |
---|
2422 | if(TEST_OPT_DEBUG) |
---|
2423 | { |
---|
2424 | Print("chain-crit-part: S[%d]=",j); |
---|
2425 | p_wrp(strat->S[j],currRing); |
---|
2426 | Print(" divide B[%d].lcm=",i); |
---|
2427 | p_wrp(strat->B[i].lcm,currRing); |
---|
2428 | PrintLn(); |
---|
2429 | } |
---|
2430 | deleteInL(strat->B,&strat->Bl,i,strat); |
---|
2431 | strat->c3++; |
---|
2432 | } |
---|
2433 | } |
---|
2434 | } |
---|
2435 | } |
---|
2436 | } |
---|
2437 | omFreeSize(strat->pairtest,(strat->sl+2)*sizeof(BOOLEAN)); |
---|
2438 | strat->pairtest=NULL; |
---|
2439 | } |
---|
2440 | if (strat->Gebauer || strat->fromT) |
---|
2441 | { |
---|
2442 | if (strat->sugarCrit) |
---|
2443 | { |
---|
2444 | /* |
---|
2445 | *suppose L[j] == (s,r) and p/lcm(s,r) |
---|
2446 | *and lcm(s,r)#lcm(s,p) and lcm(s,r)#lcm(r,p) |
---|
2447 | *and in case the sugar is o.k. then L[j] can be canceled |
---|
2448 | */ |
---|
2449 | for (j=strat->Ll; j>=0; j--) |
---|
2450 | { |
---|
2451 | if (sugarDivisibleBy(ecart,strat->L[j].ecart) |
---|
2452 | && ((pNext(strat->L[j].p) == strat->tail) || (currRing->OrdSgn==1)) |
---|
2453 | && pCompareChainPart(p,strat->L[j].p1,strat->L[j].p2,strat->L[j].lcm)) |
---|
2454 | { |
---|
2455 | if (strat->L[j].p == strat->tail) |
---|
2456 | { |
---|
2457 | if(TEST_OPT_DEBUG) |
---|
2458 | { |
---|
2459 | PrintS("chain-crit-part: pCompareChainPart p="); |
---|
2460 | p_wrp(p,currRing); |
---|
2461 | Print(" delete L[%d]",j); |
---|
2462 | p_wrp(strat->L[j].lcm,currRing); |
---|
2463 | PrintLn(); |
---|
2464 | } |
---|
2465 | deleteInL(strat->L,&strat->Ll,j,strat); |
---|
2466 | strat->c3++; |
---|
2467 | } |
---|
2468 | } |
---|
2469 | } |
---|
2470 | /* |
---|
2471 | *this is GEBAUER-MOELLER: |
---|
2472 | *in B all elements with the same lcm except the "best" |
---|
2473 | *(i.e. the last one in B with this property) will be canceled |
---|
2474 | */ |
---|
2475 | j = strat->Bl; |
---|
2476 | loop /*cannot be changed into a for !!! */ |
---|
2477 | { |
---|
2478 | if (j <= 0) break; |
---|
2479 | i = j-1; |
---|
2480 | loop |
---|
2481 | { |
---|
2482 | if (i < 0) break; |
---|
2483 | if (pLmEqual(strat->B[j].lcm,strat->B[i].lcm)) |
---|
2484 | { |
---|
2485 | strat->c3++; |
---|
2486 | if (sugarDivisibleBy(strat->B[j].ecart,strat->B[i].ecart)) |
---|
2487 | { |
---|
2488 | if(TEST_OPT_DEBUG) |
---|
2489 | { |
---|
2490 | Print("chain-crit-part: sugar B[%d].lcm=",j); |
---|
2491 | p_wrp(strat->B[j].lcm,currRing); |
---|
2492 | Print(" delete B[%d]",i); |
---|
2493 | p_wrp(strat->B[i].lcm,currRing); |
---|
2494 | PrintLn(); |
---|
2495 | } |
---|
2496 | deleteInL(strat->B,&strat->Bl,i,strat); |
---|
2497 | j--; |
---|
2498 | } |
---|
2499 | else |
---|
2500 | { |
---|
2501 | if(TEST_OPT_DEBUG) |
---|
2502 | { |
---|
2503 | Print("chain-crit-part: sugar B[%d].lcm=",i); |
---|
2504 | p_wrp(strat->B[i].lcm,currRing); |
---|
2505 | Print(" delete B[%d]",j); |
---|
2506 | p_wrp(strat->B[j].lcm,currRing); |
---|
2507 | PrintLn(); |
---|
2508 | } |
---|
2509 | deleteInL(strat->B,&strat->Bl,j,strat); |
---|
2510 | break; |
---|
2511 | } |
---|
2512 | } |
---|
2513 | i--; |
---|
2514 | } |
---|
2515 | j--; |
---|
2516 | } |
---|
2517 | } |
---|
2518 | else /*sugarCrit*/ |
---|
2519 | { |
---|
2520 | /* |
---|
2521 | *suppose L[j] == (s,r) and p/lcm(s,r) |
---|
2522 | *and lcm(s,r)#lcm(s,p) and lcm(s,r)#lcm(r,p) |
---|
2523 | *and in case the sugar is o.k. then L[j] can be canceled |
---|
2524 | */ |
---|
2525 | for (j=strat->Ll; j>=0; j--) |
---|
2526 | { |
---|
2527 | if (pCompareChainPart(p,strat->L[j].p1,strat->L[j].p2,strat->L[j].lcm)) |
---|
2528 | { |
---|
2529 | if ((pNext(strat->L[j].p) == strat->tail)||(currRing->OrdSgn==1)) |
---|
2530 | { |
---|
2531 | if(TEST_OPT_DEBUG) |
---|
2532 | { |
---|
2533 | PrintS("chain-crit-part: sugar:pCompareChainPart p="); |
---|
2534 | p_wrp(p,currRing); |
---|
2535 | Print(" delete L[%d]",j); |
---|
2536 | p_wrp(strat->L[j].lcm,currRing); |
---|
2537 | PrintLn(); |
---|
2538 | } |
---|
2539 | deleteInL(strat->L,&strat->Ll,j,strat); |
---|
2540 | strat->c3++; |
---|
2541 | } |
---|
2542 | } |
---|
2543 | } |
---|
2544 | /* |
---|
2545 | *this is GEBAUER-MOELLER: |
---|
2546 | *in B all elements with the same lcm except the "best" |
---|
2547 | *(i.e. the last one in B with this property) will be canceled |
---|
2548 | */ |
---|
2549 | j = strat->Bl; |
---|
2550 | loop /*cannot be changed into a for !!! */ |
---|
2551 | { |
---|
2552 | if (j <= 0) break; |
---|
2553 | for(i=j-1; i>=0; i--) |
---|
2554 | { |
---|
2555 | if (pLmEqual(strat->B[j].lcm,strat->B[i].lcm)) |
---|
2556 | { |
---|
2557 | if(TEST_OPT_DEBUG) |
---|
2558 | { |
---|
2559 | Print("chain-crit-part: equal lcm B[%d].lcm=",j); |
---|
2560 | p_wrp(strat->B[j].lcm,currRing); |
---|
2561 | Print(" delete B[%d]\n",i); |
---|
2562 | } |
---|
2563 | strat->c3++; |
---|
2564 | deleteInL(strat->B,&strat->Bl,i,strat); |
---|
2565 | j--; |
---|
2566 | } |
---|
2567 | } |
---|
2568 | j--; |
---|
2569 | } |
---|
2570 | } |
---|
2571 | /* |
---|
2572 | *the elements of B enter L |
---|
2573 | */ |
---|
2574 | kMergeBintoL(strat); |
---|
2575 | } |
---|
2576 | else |
---|
2577 | { |
---|
2578 | for (j=strat->Ll; j>=0; j--) |
---|
2579 | { |
---|
2580 | if (pCompareChainPart(p,strat->L[j].p1,strat->L[j].p2,strat->L[j].lcm)) |
---|
2581 | { |
---|
2582 | if ((pNext(strat->L[j].p) == strat->tail)||(currRing->OrdSgn==1)) |
---|
2583 | { |
---|
2584 | if(TEST_OPT_DEBUG) |
---|
2585 | { |
---|
2586 | PrintS("chain-crit-part: pCompareChainPart p="); |
---|
2587 | p_wrp(p,currRing); |
---|
2588 | Print(" delete L[%d]",j); |
---|
2589 | p_wrp(strat->L[j].lcm,currRing); |
---|
2590 | PrintLn(); |
---|
2591 | } |
---|
2592 | deleteInL(strat->L,&strat->Ll,j,strat); |
---|
2593 | strat->c3++; |
---|
2594 | } |
---|
2595 | } |
---|
2596 | } |
---|
2597 | /* |
---|
2598 | *this is our MODIFICATION of GEBAUER-MOELLER: |
---|
2599 | *First the elements of B enter L, |
---|
2600 | *then we fix a lcm and the "best" element in L |
---|
2601 | *(i.e the last in L with this lcm and of type (s,p)) |
---|
2602 | *and cancel all the other elements of type (r,p) with this lcm |
---|
2603 | *except the case the element (s,r) has also the same lcm |
---|
2604 | *and is on the worst position with respect to (s,p) and (r,p) |
---|
2605 | */ |
---|
2606 | /* |
---|
2607 | *B enters to L/their order with respect to B is permutated for elements |
---|
2608 | *B[i].p with the same leading term |
---|
2609 | */ |
---|
2610 | kMergeBintoL(strat); |
---|
2611 | j = strat->Ll; |
---|
2612 | loop /*cannot be changed into a for !!! */ |
---|
2613 | { |
---|
2614 | if (j <= 0) |
---|
2615 | { |
---|
2616 | /*now L[0] cannot be canceled any more and the tail can be removed*/ |
---|
2617 | if (strat->L[0].p2 == strat->tail) strat->L[0].p2 = p; |
---|
2618 | break; |
---|
2619 | } |
---|
2620 | if (strat->L[j].p2 == p) |
---|
2621 | { |
---|
2622 | i = j-1; |
---|
2623 | loop |
---|
2624 | { |
---|
2625 | if (i < 0) break; |
---|
2626 | if ((strat->L[i].p2 == p) && pLmEqual(strat->L[j].lcm,strat->L[i].lcm)) |
---|
2627 | { |
---|
2628 | /*L[i] could be canceled but we search for a better one to cancel*/ |
---|
2629 | strat->c3++; |
---|
2630 | if (isInPairsetL(i-1,strat->L[j].p1,strat->L[i].p1,&l,strat) |
---|
2631 | && (pNext(strat->L[l].p) == strat->tail) |
---|
2632 | && (!pLmEqual(strat->L[i].p,strat->L[l].p)) |
---|
2633 | && _p_LmDivisibleByPart(p,currRing, |
---|
2634 | strat->L[l].lcm,currRing, |
---|
2635 | currRing->real_var_start, currRing->real_var_end)) |
---|
2636 | |
---|
2637 | { |
---|
2638 | /* |
---|
2639 | *"NOT equal(...)" because in case of "equal" the element L[l] |
---|
2640 | *is "older" and has to be from theoretical point of view behind |
---|
2641 | *L[i], but we do not want to reorder L |
---|
2642 | */ |
---|
2643 | strat->L[i].p2 = strat->tail; |
---|
2644 | /* |
---|
2645 | *L[l] will be canceled, we cannot cancel L[i] later on, |
---|
2646 | *so we mark it with "tail" |
---|
2647 | */ |
---|
2648 | if(TEST_OPT_DEBUG) |
---|
2649 | { |
---|
2650 | PrintS("chain-crit-part: divisible_by p="); |
---|
2651 | p_wrp(p,currRing); |
---|
2652 | Print(" delete L[%d]",l); |
---|
2653 | p_wrp(strat->L[l].lcm,currRing); |
---|
2654 | PrintLn(); |
---|
2655 | } |
---|
2656 | deleteInL(strat->L,&strat->Ll,l,strat); |
---|
2657 | i--; |
---|
2658 | } |
---|
2659 | else |
---|
2660 | { |
---|
2661 | if(TEST_OPT_DEBUG) |
---|
2662 | { |
---|
2663 | PrintS("chain-crit-part: divisible_by(2) p="); |
---|
2664 | p_wrp(p,currRing); |
---|
2665 | Print(" delete L[%d]",i); |
---|
2666 | p_wrp(strat->L[i].lcm,currRing); |
---|
2667 | PrintLn(); |
---|
2668 | } |
---|
2669 | deleteInL(strat->L,&strat->Ll,i,strat); |
---|
2670 | } |
---|
2671 | j--; |
---|
2672 | } |
---|
2673 | i--; |
---|
2674 | } |
---|
2675 | } |
---|
2676 | else if (strat->L[j].p2 == strat->tail) |
---|
2677 | { |
---|
2678 | /*now L[j] cannot be canceled any more and the tail can be removed*/ |
---|
2679 | strat->L[j].p2 = p; |
---|
2680 | } |
---|
2681 | j--; |
---|
2682 | } |
---|
2683 | } |
---|
2684 | } |
---|
2685 | #endif |
---|
2686 | |
---|
2687 | /*2 |
---|
2688 | *(s[0],h),...,(s[k],h) will be put to the pairset L |
---|
2689 | */ |
---|
2690 | void initenterpairs (poly h,int k,int ecart,int isFromQ,kStrategy strat, int atR = -1) |
---|
2691 | { |
---|
2692 | |
---|
2693 | if ((strat->syzComp==0) |
---|
2694 | || (pGetComp(h)<=strat->syzComp)) |
---|
2695 | { |
---|
2696 | int j; |
---|
2697 | BOOLEAN new_pair=FALSE; |
---|
2698 | |
---|
2699 | if (pGetComp(h)==0) |
---|
2700 | { |
---|
2701 | /* for Q!=NULL: build pairs (f,q),(f1,f2), but not (q1,q2)*/ |
---|
2702 | if ((isFromQ)&&(strat->fromQ!=NULL)) |
---|
2703 | { |
---|
2704 | for (j=0; j<=k; j++) |
---|
2705 | { |
---|
2706 | if (!strat->fromQ[j]) |
---|
2707 | { |
---|
2708 | new_pair=TRUE; |
---|
2709 | strat->enterOnePair(j,h,ecart,isFromQ,strat, atR); |
---|
2710 | //Print("j:%d, Ll:%d\n",j,strat->Ll); |
---|
2711 | } |
---|
2712 | } |
---|
2713 | } |
---|
2714 | else |
---|
2715 | { |
---|
2716 | new_pair=TRUE; |
---|
2717 | for (j=0; j<=k; j++) |
---|
2718 | { |
---|
2719 | strat->enterOnePair(j,h,ecart,isFromQ,strat, atR); |
---|
2720 | //Print("j:%d, Ll:%d\n",j,strat->Ll); |
---|
2721 | } |
---|
2722 | } |
---|
2723 | } |
---|
2724 | else |
---|
2725 | { |
---|
2726 | for (j=0; j<=k; j++) |
---|
2727 | { |
---|
2728 | if ((pGetComp(h)==pGetComp(strat->S[j])) |
---|
2729 | || (pGetComp(strat->S[j])==0)) |
---|
2730 | { |
---|
2731 | new_pair=TRUE; |
---|
2732 | strat->enterOnePair(j,h,ecart,isFromQ,strat, atR); |
---|
2733 | //Print("j:%d, Ll:%d\n",j,strat->Ll); |
---|
2734 | } |
---|
2735 | } |
---|
2736 | } |
---|
2737 | |
---|
2738 | if (new_pair) |
---|
2739 | { |
---|
2740 | #ifdef HAVE_RATGRING |
---|
2741 | if (currRing->real_var_start>0) |
---|
2742 | chainCritPart(h,ecart,strat); |
---|
2743 | else |
---|
2744 | #endif |
---|
2745 | strat->chainCrit(h,ecart,strat); |
---|
2746 | } |
---|
2747 | } |
---|
2748 | } |
---|
2749 | |
---|
2750 | /*2 |
---|
2751 | *(s[0],h),...,(s[k],h) will be put to the pairset L |
---|
2752 | *using signatures <= only for signature-based standard basis algorithms |
---|
2753 | */ |
---|
2754 | void initenterpairsSig (poly h,poly hSig,int hFrom,int k,int ecart,int isFromQ,kStrategy strat, int atR = -1) |
---|
2755 | { |
---|
2756 | |
---|
2757 | if ((strat->syzComp==0) |
---|
2758 | || (pGetComp(h)<=strat->syzComp)) |
---|
2759 | { |
---|
2760 | int j; |
---|
2761 | BOOLEAN new_pair=FALSE; |
---|
2762 | |
---|
2763 | if (pGetComp(h)==0) |
---|
2764 | { |
---|
2765 | /* for Q!=NULL: build pairs (f,q),(f1,f2), but not (q1,q2)*/ |
---|
2766 | if ((isFromQ)&&(strat->fromQ!=NULL)) |
---|
2767 | { |
---|
2768 | for (j=0; j<=k; j++) |
---|
2769 | { |
---|
2770 | if (!strat->fromQ[j]) |
---|
2771 | { |
---|
2772 | new_pair=TRUE; |
---|
2773 | enterOnePairSig(j,h,hSig,hFrom,ecart,isFromQ,strat, atR); |
---|
2774 | //Print("j:%d, Ll:%d\n",j,strat->Ll); |
---|
2775 | } |
---|
2776 | } |
---|
2777 | } |
---|
2778 | else |
---|
2779 | { |
---|
2780 | new_pair=TRUE; |
---|
2781 | for (j=0; j<=k; j++) |
---|
2782 | { |
---|
2783 | enterOnePairSig(j,h,hSig,hFrom,ecart,isFromQ,strat, atR); |
---|
2784 | //Print("j:%d, Ll:%d\n",j,strat->Ll); |
---|
2785 | } |
---|
2786 | } |
---|
2787 | } |
---|
2788 | else |
---|
2789 | { |
---|
2790 | for (j=0; j<=k; j++) |
---|
2791 | { |
---|
2792 | if ((pGetComp(h)==pGetComp(strat->S[j])) |
---|
2793 | || (pGetComp(strat->S[j])==0)) |
---|
2794 | { |
---|
2795 | new_pair=TRUE; |
---|
2796 | enterOnePairSig(j,h,hSig,hFrom,ecart,isFromQ,strat, atR); |
---|
2797 | //Print("j:%d, Ll:%d\n",j,strat->Ll); |
---|
2798 | } |
---|
2799 | } |
---|
2800 | } |
---|
2801 | |
---|
2802 | if (new_pair) |
---|
2803 | { |
---|
2804 | #ifdef HAVE_RATGRING |
---|
2805 | if (currRing->real_var_start>0) |
---|
2806 | chainCritPart(h,ecart,strat); |
---|
2807 | else |
---|
2808 | #endif |
---|
2809 | strat->chainCrit(h,ecart,strat); |
---|
2810 | } |
---|
2811 | } |
---|
2812 | } |
---|
2813 | |
---|
2814 | #ifdef HAVE_RINGS |
---|
2815 | /*2 |
---|
2816 | *the pairset B of pairs of type (s[i],p) is complete now. It will be updated |
---|
2817 | *using the chain-criterion in B and L and enters B to L |
---|
2818 | */ |
---|
2819 | void chainCritRing (poly p,int, kStrategy strat) |
---|
2820 | { |
---|
2821 | int i,j,l; |
---|
2822 | /* |
---|
2823 | *pairtest[i] is TRUE if spoly(S[i],p) == 0. |
---|
2824 | *In this case all elements in B such |
---|
2825 | *that their lcm is divisible by the leading term of S[i] can be canceled |
---|
2826 | */ |
---|
2827 | if (strat->pairtest!=NULL) |
---|
2828 | { |
---|
2829 | { |
---|
2830 | /*- i.e. there is an i with pairtest[i]==TRUE -*/ |
---|
2831 | for (j=0; j<=strat->sl; j++) |
---|
2832 | { |
---|
2833 | if (strat->pairtest[j]) |
---|
2834 | { |
---|
2835 | for (i=strat->Bl; i>=0; i--) |
---|
2836 | { |
---|
2837 | if (pDivisibleBy(strat->S[j],strat->B[i].lcm)) |
---|
2838 | { |
---|
2839 | #ifdef KDEBUG |
---|
2840 | if (TEST_OPT_DEBUG) |
---|
2841 | { |
---|
2842 | PrintS("--- chain criterion func chainCritRing type 1\n"); |
---|
2843 | PrintS("strat->S[j]:"); |
---|
2844 | wrp(strat->S[j]); |
---|
2845 | PrintS(" strat->B[i].lcm:"); |
---|
2846 | wrp(strat->B[i].lcm); |
---|
2847 | PrintLn(); |
---|
2848 | } |
---|
2849 | #endif |
---|
2850 | deleteInL(strat->B,&strat->Bl,i,strat); |
---|
2851 | strat->c3++; |
---|
2852 | } |
---|
2853 | } |
---|
2854 | } |
---|
2855 | } |
---|
2856 | } |
---|
2857 | omFreeSize(strat->pairtest,(strat->sl+2)*sizeof(BOOLEAN)); |
---|
2858 | strat->pairtest=NULL; |
---|
2859 | } |
---|
2860 | assume(!(strat->Gebauer || strat->fromT)); |
---|
2861 | for (j=strat->Ll; j>=0; j--) |
---|
2862 | { |
---|
2863 | if (strat->L[j].lcm != NULL && n_DivBy(pGetCoeff(strat->L[j].lcm), pGetCoeff(p), currRing->cf)) |
---|
2864 | { |
---|
2865 | if (pCompareChain(p,strat->L[j].p1,strat->L[j].p2,strat->L[j].lcm)) |
---|
2866 | { |
---|
2867 | if ((pNext(strat->L[j].p) == strat->tail) || (currRing->OrdSgn==1)) |
---|
2868 | { |
---|
2869 | deleteInL(strat->L,&strat->Ll,j,strat); |
---|
2870 | strat->c3++; |
---|
2871 | #ifdef KDEBUG |
---|
2872 | if (TEST_OPT_DEBUG) |
---|
2873 | { |
---|
2874 | PrintS("--- chain criterion func chainCritRing type 2\n"); |
---|
2875 | PrintS("strat->L[j].p:"); |
---|
2876 | wrp(strat->L[j].p); |
---|
2877 | PrintS(" p:"); |
---|
2878 | wrp(p); |
---|
2879 | PrintLn(); |
---|
2880 | } |
---|
2881 | #endif |
---|
2882 | } |
---|
2883 | } |
---|
2884 | } |
---|
2885 | } |
---|
2886 | /* |
---|
2887 | *this is our MODIFICATION of GEBAUER-MOELLER: |
---|
2888 | *First the elements of B enter L, |
---|
2889 | *then we fix a lcm and the "best" element in L |
---|
2890 | *(i.e the last in L with this lcm and of type (s,p)) |
---|
2891 | *and cancel all the other elements of type (r,p) with this lcm |
---|
2892 | *except the case the element (s,r) has also the same lcm |
---|
2893 | *and is on the worst position with respect to (s,p) and (r,p) |
---|
2894 | */ |
---|
2895 | /* |
---|
2896 | *B enters to L/their order with respect to B is permutated for elements |
---|
2897 | *B[i].p with the same leading term |
---|
2898 | */ |
---|
2899 | kMergeBintoL(strat); |
---|
2900 | j = strat->Ll; |
---|
2901 | loop /*cannot be changed into a for !!! */ |
---|
2902 | { |
---|
2903 | if (j <= 0) |
---|
2904 | { |
---|
2905 | /*now L[0] cannot be canceled any more and the tail can be removed*/ |
---|
2906 | if (strat->L[0].p2 == strat->tail) strat->L[0].p2 = p; |
---|
2907 | break; |
---|
2908 | } |
---|
2909 | if (strat->L[j].p2 == p) // Was the element added from B? |
---|
2910 | { |
---|
2911 | i = j-1; |
---|
2912 | loop |
---|
2913 | { |
---|
2914 | if (i < 0) break; |
---|
2915 | // Element is from B and has the same lcm as L[j] |
---|
2916 | if ((strat->L[i].p2 == p) && n_DivBy(pGetCoeff(strat->L[j].lcm), pGetCoeff(strat->L[i].lcm), currRing->cf) |
---|
2917 | && pLmEqual(strat->L[j].lcm,strat->L[i].lcm)) |
---|
2918 | { |
---|
2919 | /*L[i] could be canceled but we search for a better one to cancel*/ |
---|
2920 | strat->c3++; |
---|
2921 | #ifdef KDEBUG |
---|
2922 | if (TEST_OPT_DEBUG) |
---|
2923 | { |
---|
2924 | PrintS("--- chain criterion func chainCritRing type 3\n"); |
---|
2925 | PrintS("strat->L[j].lcm:"); |
---|
2926 | wrp(strat->L[j].lcm); |
---|
2927 | PrintS(" strat->L[i].lcm:"); |
---|
2928 | wrp(strat->L[i].lcm); |
---|
2929 | PrintLn(); |
---|
2930 | } |
---|
2931 | #endif |
---|
2932 | if (isInPairsetL(i-1,strat->L[j].p1,strat->L[i].p1,&l,strat) |
---|
2933 | && (pNext(strat->L[l].p) == strat->tail) |
---|
2934 | && (!pLmEqual(strat->L[i].p,strat->L[l].p)) |
---|
2935 | && pDivisibleBy(p,strat->L[l].lcm)) |
---|
2936 | { |
---|
2937 | /* |
---|
2938 | *"NOT equal(...)" because in case of "equal" the element L[l] |
---|
2939 | *is "older" and has to be from theoretical point of view behind |
---|
2940 | *L[i], but we do not want to reorder L |
---|
2941 | */ |
---|
2942 | strat->L[i].p2 = strat->tail; |
---|
2943 | /* |
---|
2944 | *L[l] will be canceled, we cannot cancel L[i] later on, |
---|
2945 | *so we mark it with "tail" |
---|
2946 | */ |
---|
2947 | deleteInL(strat->L,&strat->Ll,l,strat); |
---|
2948 | i--; |
---|
2949 | } |
---|
2950 | else |
---|
2951 | { |
---|
2952 | deleteInL(strat->L,&strat->Ll,i,strat); |
---|
2953 | } |
---|
2954 | j--; |
---|
2955 | } |
---|
2956 | i--; |
---|
2957 | } |
---|
2958 | } |
---|
2959 | else if (strat->L[j].p2 == strat->tail) |
---|
2960 | { |
---|
2961 | /*now L[j] cannot be canceled any more and the tail can be removed*/ |
---|
2962 | strat->L[j].p2 = p; |
---|
2963 | } |
---|
2964 | j--; |
---|
2965 | } |
---|
2966 | } |
---|
2967 | #endif |
---|
2968 | |
---|
2969 | #ifdef HAVE_RINGS |
---|
2970 | long ind2(long arg) |
---|
2971 | { |
---|
2972 | long ind = 0; |
---|
2973 | if (arg <= 0) return 0; |
---|
2974 | while (arg%2 == 0) |
---|
2975 | { |
---|
2976 | arg = arg / 2; |
---|
2977 | ind++; |
---|
2978 | } |
---|
2979 | return ind; |
---|
2980 | } |
---|
2981 | |
---|
2982 | long ind_fact_2(long arg) |
---|
2983 | { |
---|
2984 | long ind = 0; |
---|
2985 | if (arg <= 0) return 0; |
---|
2986 | if (arg%2 == 1) { arg--; } |
---|
2987 | while (arg > 0) |
---|
2988 | { |
---|
2989 | ind += ind2(arg); |
---|
2990 | arg = arg - 2; |
---|
2991 | } |
---|
2992 | return ind; |
---|
2993 | } |
---|
2994 | #endif |
---|
2995 | |
---|
2996 | #ifdef HAVE_VANIDEAL |
---|
2997 | long twoPow(long arg) |
---|
2998 | { |
---|
2999 | return 1L << arg; |
---|
3000 | } |
---|
3001 | |
---|
3002 | /*2 |
---|
3003 | * put the pair (p, f) in B and f in T |
---|
3004 | */ |
---|
3005 | void enterOneZeroPairRing (poly f, poly t_p, poly p, int ecart, kStrategy strat, int atR = -1) |
---|
3006 | { |
---|
3007 | int l,j,compare,compareCoeff; |
---|
3008 | LObject Lp; |
---|
3009 | |
---|
3010 | if (strat->interred_flag) return; |
---|
3011 | #ifdef KDEBUG |
---|
3012 | Lp.ecart=0; Lp.length=0; |
---|
3013 | #endif |
---|
3014 | /*- computes the lcm(s[i],p) -*/ |
---|
3015 | Lp.lcm = pInit(); |
---|
3016 | |
---|
3017 | pLcm(p,f,Lp.lcm); |
---|
3018 | pSetm(Lp.lcm); |
---|
3019 | pSetCoeff(Lp.lcm, nLcm(pGetCoeff(p), pGetCoeff(f), currRing)); |
---|
3020 | assume(!strat->sugarCrit); |
---|
3021 | assume(!strat->fromT); |
---|
3022 | /* |
---|
3023 | *the set B collects the pairs of type (S[j],p) |
---|
3024 | *suppose (r,p) is in B and (s,p) is the new pair and lcm(s,p) != lcm(r,p) |
---|
3025 | *if the leading term of s devides lcm(r,p) then (r,p) will be canceled |
---|
3026 | *if the leading term of r devides lcm(s,p) then (s,p) will not enter B |
---|
3027 | */ |
---|
3028 | for(j = strat->Bl;j>=0;j--) |
---|
3029 | { |
---|
3030 | compare=pDivCompRing(strat->B[j].lcm,Lp.lcm); |
---|
3031 | compareCoeff = nDivComp(pGetCoeff(strat->B[j].lcm), pGetCoeff(Lp.lcm)); |
---|
3032 | if (compareCoeff == 0 || compare == compareCoeff) |
---|
3033 | { |
---|
3034 | if (compare == 1) |
---|
3035 | { |
---|
3036 | strat->c3++; |
---|
3037 | pLmDelete(Lp.lcm); |
---|
3038 | return; |
---|
3039 | } |
---|
3040 | else |
---|
3041 | if (compare == -1) |
---|
3042 | { |
---|
3043 | deleteInL(strat->B,&strat->Bl,j,strat); |
---|
3044 | strat->c3++; |
---|
3045 | } |
---|
3046 | } |
---|
3047 | if (compare == pDivComp_EQUAL) |
---|
3048 | { |
---|
3049 | // Add hint for same LM and direction of LC (later) (TODO Oliver) |
---|
3050 | if (compareCoeff == 1) |
---|
3051 | { |
---|
3052 | strat->c3++; |
---|
3053 | pLmDelete(Lp.lcm); |
---|
3054 | return; |
---|
3055 | } |
---|
3056 | else |
---|
3057 | if (compareCoeff == -1) |
---|
3058 | { |
---|
3059 | deleteInL(strat->B,&strat->Bl,j,strat); |
---|
3060 | strat->c3++; |
---|
3061 | } |
---|
3062 | } |
---|
3063 | } |
---|
3064 | /* |
---|
3065 | *the pair (S[i],p) enters B if the spoly != 0 |
---|
3066 | */ |
---|
3067 | /*- compute the short s-polynomial -*/ |
---|
3068 | if ((f==NULL) || (p==NULL)) return; |
---|
3069 | pNorm(p); |
---|
3070 | { |
---|
3071 | Lp.p = ksCreateShortSpoly(f, p, strat->tailRing); |
---|
3072 | } |
---|
3073 | if (Lp.p == NULL) //deactivated, as we are adding pairs with zeropoly and not from S |
---|
3074 | { |
---|
3075 | /*- the case that the s-poly is 0 -*/ |
---|
3076 | // if (strat->pairtest==NULL) initPairtest(strat); |
---|
3077 | // strat->pairtest[i] = TRUE;/*- hint for spoly(S^[i],p)=0 -*/ |
---|
3078 | // strat->pairtest[strat->sl+1] = TRUE; |
---|
3079 | /*hint for spoly(S[i],p) == 0 for some i,0 <= i <= sl*/ |
---|
3080 | /* |
---|
3081 | *suppose we have (s,r),(r,p),(s,p) and spoly(s,p) == 0 and (r,p) is |
---|
3082 | *still in B (i.e. lcm(r,p) == lcm(s,p) or the leading term of s does not |
---|
3083 | *devide lcm(r,p)). In the last case (s,r) can be canceled if the leading |
---|
3084 | *term of p devides the lcm(s,r) |
---|
3085 | *(this canceling should be done here because |
---|
3086 | *the case lcm(s,p) == lcm(s,r) is not covered in chainCrit) |
---|
3087 | *the first case is handeled in chainCrit |
---|
3088 | */ |
---|
3089 | if (Lp.lcm!=NULL) pLmDelete(Lp.lcm); |
---|
3090 | } |
---|
3091 | else |
---|
3092 | { |
---|
3093 | /*- the pair (S[i],p) enters B -*/ |
---|
3094 | Lp.p1 = f; |
---|
3095 | Lp.p2 = p; |
---|
3096 | |
---|
3097 | pNext(Lp.p) = strat->tail; |
---|
3098 | |
---|
3099 | LObject tmp_h(f, currRing, strat->tailRing); |
---|
3100 | tmp_h.SetShortExpVector(); |
---|
3101 | strat->initEcart(&tmp_h); |
---|
3102 | tmp_h.sev = pGetShortExpVector(tmp_h.p); |
---|
3103 | tmp_h.t_p = t_p; |
---|
3104 | |
---|
3105 | enterT(tmp_h, strat, strat->tl + 1); |
---|
3106 | |
---|
3107 | if (atR >= 0) |
---|
3108 | { |
---|
3109 | Lp.i_r2 = atR; |
---|
3110 | Lp.i_r1 = strat->tl; |
---|
3111 | } |
---|
3112 | |
---|
3113 | strat->initEcartPair(&Lp,f,p,0/*strat->ecartS[i]*/,ecart); // Attention: TODO: break ecart |
---|
3114 | l = strat->posInL(strat->B,strat->Bl,&Lp,strat); |
---|
3115 | enterL(&strat->B, &strat->Bl, &strat->Bmax, Lp, l); |
---|
3116 | } |
---|
3117 | } |
---|
3118 | |
---|
3119 | /* Helper for kCreateZeroPoly |
---|
3120 | * enumerating the exponents |
---|
3121 | ring r = 2^2, (a, b, c), lp; ideal G0 = system("createG0"); ideal G = interred(G0); ncols(G0); ncols(G); |
---|
3122 | */ |
---|
3123 | |
---|
3124 | int nextZeroSimplexExponent (long exp[], long ind[], long cexp[], long cind[], long* cabsind, long step[], long bound, long N) |
---|
3125 | /* gives the next exponent from the set H_1 */ |
---|
3126 | { |
---|
3127 | long add = ind2(cexp[1] + 2); |
---|
3128 | if ((*cabsind < bound) && (*cabsind - step[1] + add < bound)) |
---|
3129 | { |
---|
3130 | cexp[1] += 2; |
---|
3131 | cind[1] += add; |
---|
3132 | *cabsind += add; |
---|
3133 | } |
---|
3134 | else |
---|
3135 | { |
---|
3136 | // cabsind >= habsind |
---|
3137 | if (N == 1) return 0; |
---|
3138 | int i = 1; |
---|
3139 | while (exp[i] == cexp[i] && i <= N) i++; |
---|
3140 | cexp[i] = exp[i]; |
---|
3141 | *cabsind -= cind[i]; |
---|
3142 | cind[i] = ind[i]; |
---|
3143 | step[i] = 500000; |
---|
3144 | *cabsind += cind[i]; |
---|
3145 | // Print("in: %d\n", *cabsind); |
---|
3146 | i += 1; |
---|
3147 | if (i > N) return 0; |
---|
3148 | do |
---|
3149 | { |
---|
3150 | step[1] = 500000; |
---|
3151 | for (int j = i + 1; j <= N; j++) |
---|
3152 | { |
---|
3153 | if (step[1] > step[j]) step[1] = step[j]; |
---|
3154 | } |
---|
3155 | add = ind2(cexp[i] + 2); |
---|
3156 | if (*cabsind - step[1] + add >= bound) |
---|
3157 | { |
---|
3158 | cexp[i] = exp[i]; |
---|
3159 | *cabsind -= cind[i]; |
---|
3160 | cind[i] = ind[i]; |
---|
3161 | *cabsind += cind[i]; |
---|
3162 | step[i] = 500000; |
---|
3163 | i += 1; |
---|
3164 | if (i > N) return 0; |
---|
3165 | } |
---|
3166 | else step[1] = -1; |
---|
3167 | } while (step[1] != -1); |
---|
3168 | step[1] = 500000; |
---|
3169 | cexp[i] += 2; |
---|
3170 | cind[i] += add; |
---|
3171 | *cabsind += add; |
---|
3172 | if (add < step[i]) step[i] = add; |
---|
3173 | for (i = 2; i <= N; i++) |
---|
3174 | { |
---|
3175 | if (step[1] > step[i]) step[1] = step[i]; |
---|
3176 | } |
---|
3177 | } |
---|
3178 | return 1; |
---|
3179 | } |
---|
3180 | |
---|
3181 | /* |
---|
3182 | * Creates the zero Polynomial on position exp |
---|
3183 | * long exp[] : exponent of leading term |
---|
3184 | * cabsind : total 2-ind of exp (if -1 will be computed) |
---|
3185 | * poly* t_p : will hold the LT in tailRing |
---|
3186 | * leadRing : ring for the LT |
---|
3187 | * tailRing : ring for the tail |
---|
3188 | */ |
---|
3189 | |
---|
3190 | poly kCreateZeroPoly(long exp[], long cabsind, poly* t_p, ring leadRing, ring tailRing) |
---|
3191 | { |
---|
3192 | |
---|
3193 | poly zeroPoly = NULL; |
---|
3194 | |
---|
3195 | number tmp1; |
---|
3196 | poly tmp2, tmp3; |
---|
3197 | |
---|
3198 | if (cabsind == -1) |
---|
3199 | { |
---|
3200 | cabsind = 0; |
---|
3201 | for (int i = 1; i <= leadRing->N; i++) |
---|
3202 | { |
---|
3203 | cabsind += ind_fact_2(exp[i]); |
---|
3204 | } |
---|
3205 | // Print("cabsind: %d\n", cabsind); |
---|
3206 | } |
---|
3207 | if (cabsind < leadRing->ch) |
---|
3208 | { |
---|
3209 | zeroPoly = p_ISet(twoPow(leadRing->ch - cabsind), tailRing); |
---|
3210 | } |
---|
3211 | else |
---|
3212 | { |
---|
3213 | zeroPoly = p_ISet(1, tailRing); |
---|
3214 | } |
---|
3215 | for (int i = 1; i <= leadRing->N; i++) |
---|
3216 | { |
---|
3217 | for (long j = 1; j <= exp[i]; j++) |
---|
3218 | { |
---|
3219 | tmp1 = nInit(j); |
---|
3220 | tmp2 = p_ISet(1, tailRing); |
---|
3221 | p_SetExp(tmp2, i, 1, tailRing); |
---|
3222 | p_Setm(tmp2, tailRing); |
---|
3223 | if (nIsZero(tmp1)) |
---|
3224 | { // should nowbe obsolet, test ! TODO OLIVER |
---|
3225 | zeroPoly = p_Mult_q(zeroPoly, tmp2, tailRing); |
---|
3226 | } |
---|
3227 | else |
---|
3228 | { |
---|
3229 | tmp3 = p_NSet(nCopy(tmp1), tailRing); |
---|
3230 | zeroPoly = p_Mult_q(zeroPoly, p_Add_q(tmp3, tmp2, tailRing), tailRing); |
---|
3231 | } |
---|
3232 | } |
---|
3233 | } |
---|
3234 | tmp2 = p_NSet(nCopy(pGetCoeff(zeroPoly)), leadRing); |
---|
3235 | for (int i = 1; i <= leadRing->N; i++) |
---|
3236 | { |
---|
3237 | pSetExp(tmp2, i, p_GetExp(zeroPoly, i, tailRing)); |
---|
3238 | } |
---|
3239 | p_Setm(tmp2, leadRing); |
---|
3240 | *t_p = zeroPoly; |
---|
3241 | zeroPoly = pNext(zeroPoly); |
---|
3242 | pNext(*t_p) = NULL; |
---|
3243 | pNext(tmp2) = zeroPoly; |
---|
3244 | return tmp2; |
---|
3245 | } |
---|
3246 | |
---|
3247 | // #define OLI_DEBUG |
---|
3248 | |
---|
3249 | /* |
---|
3250 | * Generate the s-polynomial for the virtual set of zero-polynomials |
---|
3251 | */ |
---|
3252 | |
---|
3253 | void initenterzeropairsRing (poly p, int ecart, kStrategy strat, int atR) |
---|
3254 | { |
---|
3255 | // Initialize |
---|
3256 | long exp[50]; // The exponent of \hat{X} (basepoint) |
---|
3257 | long cexp[50]; // The current exponent for iterating over all |
---|
3258 | long ind[50]; // The power of 2 in the i-th component of exp |
---|
3259 | long cind[50]; // analog for cexp |
---|
3260 | long mult[50]; // How to multiply the elements of G |
---|
3261 | long cabsind = 0; // The abs. index of cexp, i.e. the sum of cind |
---|
3262 | long habsind = 0; // The abs. index of the coefficient of h |
---|
3263 | long step[50]; // The last increases |
---|
3264 | for (int i = 1; i <= currRing->N; i++) |
---|
3265 | { |
---|
3266 | exp[i] = p_GetExp(p, i, currRing); |
---|
3267 | if (exp[i] & 1 != 0) |
---|
3268 | { |
---|
3269 | exp[i] = exp[i] - 1; |
---|
3270 | mult[i] = 1; |
---|
3271 | } |
---|
3272 | cexp[i] = exp[i]; |
---|
3273 | ind[i] = ind_fact_2(exp[i]); |
---|
3274 | cabsind += ind[i]; |
---|
3275 | cind[i] = ind[i]; |
---|
3276 | step[i] = 500000; |
---|
3277 | } |
---|
3278 | step[1] = 500000; |
---|
3279 | habsind = ind2((long) p_GetCoeff(p, currRing)); |
---|
3280 | long bound = currRing->ch - habsind; |
---|
3281 | #ifdef OLI_DEBUG |
---|
3282 | PrintS("-------------\npoly :"); |
---|
3283 | wrp(p); |
---|
3284 | Print("\nexp : (%d, %d)\n", exp[1] + mult[1], exp[2] + mult[1]); |
---|
3285 | Print("cexp : (%d, %d)\n", cexp[1], cexp[2]); |
---|
3286 | Print("cind : (%d, %d)\n", cind[1], cind[2]); |
---|
3287 | Print("bound : %d\n", bound); |
---|
3288 | Print("cind : %d\n", cabsind); |
---|
3289 | #endif |
---|
3290 | if (cabsind == 0) |
---|
3291 | { |
---|
3292 | if (!(nextZeroSimplexExponent(exp, ind, cexp, cind, &cabsind, step, bound, currRing->N))) |
---|
3293 | { |
---|
3294 | return; |
---|
3295 | } |
---|
3296 | } |
---|
3297 | // Now the whole simplex |
---|
3298 | do |
---|
3299 | { |
---|
3300 | // Build s-polynomial |
---|
3301 | // 2**ind-def * mult * g - exp-def * h |
---|
3302 | poly t_p; |
---|
3303 | poly zeroPoly = kCreateZeroPoly(cexp, cabsind, &t_p, currRing, strat->tailRing); |
---|
3304 | #ifdef OLI_DEBUG |
---|
3305 | Print("%d, (%d, %d), ind = (%d, %d)\n", cabsind, cexp[1], cexp[2], cind[1], cind[2]); |
---|
3306 | Print("zPoly : "); |
---|
3307 | wrp(zeroPoly); |
---|
3308 | Print("\n"); |
---|
3309 | #endif |
---|
3310 | enterOneZeroPairRing(zeroPoly, t_p, p, ecart, strat, atR); |
---|
3311 | } |
---|
3312 | while ( nextZeroSimplexExponent(exp, ind, cexp, cind, &cabsind, step, bound, currRing->N) ); |
---|
3313 | } |
---|
3314 | |
---|
3315 | /* |
---|
3316 | * Create the Groebner basis of the vanishing polynomials. |
---|
3317 | */ |
---|
3318 | |
---|
3319 | ideal createG0() |
---|
3320 | { |
---|
3321 | // Initialize |
---|
3322 | long exp[50]; // The exponent of \hat{X} (basepoint) |
---|
3323 | long cexp[50]; // The current exponent for iterating over all |
---|
3324 | long ind[50]; // The power of 2 in the i-th component of exp |
---|
3325 | long cind[50]; // analog for cexp |
---|
3326 | long mult[50]; // How to multiply the elements of G |
---|
3327 | long cabsind = 0; // The abs. index of cexp, i.e. the sum of cind |
---|
3328 | long habsind = 0; // The abs. index of the coefficient of h |
---|
3329 | long step[50]; // The last increases |
---|
3330 | for (int i = 1; i <= currRing->N; i++) |
---|
3331 | { |
---|
3332 | exp[i] = 0; |
---|
3333 | cexp[i] = exp[i]; |
---|
3334 | ind[i] = 0; |
---|
3335 | step[i] = 500000; |
---|
3336 | cind[i] = ind[i]; |
---|
3337 | } |
---|
3338 | long bound = currRing->ch; |
---|
3339 | step[1] = 500000; |
---|
3340 | #ifdef OLI_DEBUG |
---|
3341 | PrintS("-------------\npoly :"); |
---|
3342 | // wrp(p); |
---|
3343 | Print("\nexp : (%d, %d)\n", exp[1] + mult[1], exp[2] + mult[1]); |
---|
3344 | Print("cexp : (%d, %d)\n", cexp[1], cexp[2]); |
---|
3345 | Print("cind : (%d, %d)\n", cind[1], cind[2]); |
---|
3346 | Print("bound : %d\n", bound); |
---|
3347 | Print("cind : %d\n", cabsind); |
---|
3348 | #endif |
---|
3349 | if (cabsind == 0) |
---|
3350 | { |
---|
3351 | if (!(nextZeroSimplexExponent(exp, ind, cexp, cind, &cabsind, step, bound, currRing->N))) |
---|
3352 | { |
---|
3353 | return idInit(1, 1); |
---|
3354 | } |
---|
3355 | } |
---|
3356 | ideal G0 = idInit(1, 1); |
---|
3357 | // Now the whole simplex |
---|
3358 | do |
---|
3359 | { |
---|
3360 | // Build s-polynomial |
---|
3361 | // 2**ind-def * mult * g - exp-def * h |
---|
3362 | poly t_p; |
---|
3363 | poly zeroPoly = kCreateZeroPoly(cexp, cabsind, &t_p, currRing, currRing); |
---|
3364 | #ifdef OLI_DEBUG |
---|
3365 | Print("%d, (%d, %d), ind = (%d, %d)\n", cabsind, cexp[1], cexp[2], cind[1], cind[2]); |
---|
3366 | Print("zPoly : "); |
---|
3367 | wrp(zeroPoly); |
---|
3368 | Print("\n"); |
---|
3369 | #endif |
---|
3370 | // Add to ideal |
---|
3371 | pEnlargeSet(&(G0->m), IDELEMS(G0), 1); |
---|
3372 | IDELEMS(G0) += 1; |
---|
3373 | G0->m[IDELEMS(G0) - 1] = zeroPoly; |
---|
3374 | } |
---|
3375 | while ( nextZeroSimplexExponent(exp, ind, cexp, cind, &cabsind, step, bound, currRing->N) ); |
---|
3376 | idSkipZeroes(G0); |
---|
3377 | return G0; |
---|
3378 | } |
---|
3379 | #endif |
---|
3380 | |
---|
3381 | #ifdef HAVE_RINGS |
---|
3382 | /*2 |
---|
3383 | *(s[0],h),...,(s[k],h) will be put to the pairset L |
---|
3384 | */ |
---|
3385 | void initenterstrongPairs (poly h,int k,int ecart,int isFromQ,kStrategy strat, int atR = -1) |
---|
3386 | { |
---|
3387 | const unsigned long iCompH = pGetComp(h); |
---|
3388 | if (!nIsOne(pGetCoeff(h))) |
---|
3389 | { |
---|
3390 | int j; |
---|
3391 | BOOLEAN new_pair=FALSE; |
---|
3392 | |
---|
3393 | for (j=0; j<=k; j++) |
---|
3394 | { |
---|
3395 | // Print("j:%d, Ll:%d\n",j,strat->Ll); |
---|
3396 | // if (((unsigned long) pGetCoeff(h) % (unsigned long) pGetCoeff(strat->S[j]) != 0) && |
---|
3397 | // ((unsigned long) pGetCoeff(strat->S[j]) % (unsigned long) pGetCoeff(h) != 0)) |
---|
3398 | if ( iCompH == pGetComp(strat->S[j]) ) |
---|
3399 | { |
---|
3400 | { |
---|
3401 | if (enterOneStrongPoly(j,h,ecart,isFromQ,strat, atR)) |
---|
3402 | new_pair=TRUE; |
---|
3403 | } |
---|
3404 | } |
---|
3405 | } |
---|
3406 | } |
---|
3407 | /* |
---|
3408 | ring r=256,(x,y,z),dp; |
---|
3409 | ideal I=12xz-133y, 2xy-z; |
---|
3410 | */ |
---|
3411 | |
---|
3412 | } |
---|
3413 | |
---|
3414 | /*2 |
---|
3415 | * Generates spoly(0, h) if applicable. Assumes ring in Z/2^n. |
---|
3416 | */ |
---|
3417 | void enterExtendedSpoly(poly h,kStrategy strat) |
---|
3418 | { |
---|
3419 | if (nIsOne(pGetCoeff(h))) return; |
---|
3420 | number gcd; |
---|
3421 | bool go = false; |
---|
3422 | if (n_DivBy((number) 0, pGetCoeff(h), currRing->cf)) |
---|
3423 | { |
---|
3424 | gcd = nIntDiv((number) 0, pGetCoeff(h)); |
---|
3425 | go = true; |
---|
3426 | } |
---|
3427 | else |
---|
3428 | gcd = nGcd((number) 0, pGetCoeff(h), strat->tailRing); |
---|
3429 | if (go || !nIsOne(gcd)) |
---|
3430 | { |
---|
3431 | poly p = h->next; |
---|
3432 | if (!go) |
---|
3433 | { |
---|
3434 | number tmp = gcd; |
---|
3435 | gcd = nIntDiv(0, gcd); |
---|
3436 | nDelete(&tmp); |
---|
3437 | } |
---|
3438 | p_Test(p,strat->tailRing); |
---|
3439 | p = pp_Mult_nn(p, gcd, strat->tailRing); |
---|
3440 | nDelete(&gcd); |
---|
3441 | |
---|
3442 | if (p != NULL) |
---|
3443 | { |
---|
3444 | if (TEST_OPT_PROT) |
---|
3445 | { |
---|
3446 | PrintS("Z"); |
---|
3447 | } |
---|
3448 | #ifdef KDEBUG |
---|
3449 | if (TEST_OPT_DEBUG) |
---|
3450 | { |
---|
3451 | PrintS("--- create zero spoly: "); |
---|
3452 | p_wrp(h,currRing,strat->tailRing); |
---|
3453 | PrintS(" ---> "); |
---|
3454 | } |
---|
3455 | #endif |
---|
3456 | poly tmp = pInit(); |
---|
3457 | pSetCoeff0(tmp, pGetCoeff(p)); |
---|
3458 | for (int i = 1; i <= rVar(currRing); i++) |
---|
3459 | { |
---|
3460 | pSetExp(tmp, i, p_GetExp(p, i, strat->tailRing)); |
---|
3461 | } |
---|
3462 | if (rRing_has_Comp(currRing) && rRing_has_Comp(strat->tailRing)) |
---|
3463 | { |
---|
3464 | p_SetComp(tmp, p_GetComp(p, strat->tailRing), currRing); |
---|
3465 | } |
---|
3466 | p_Setm(tmp, currRing); |
---|
3467 | p = p_LmFreeAndNext(p, strat->tailRing); |
---|
3468 | pNext(tmp) = p; |
---|
3469 | LObject h; |
---|
3470 | h.Init(); |
---|
3471 | h.p = tmp; |
---|
3472 | h.tailRing = strat->tailRing; |
---|
3473 | int posx; |
---|
3474 | if (h.p!=NULL) |
---|
3475 | { |
---|
3476 | if (TEST_OPT_INTSTRATEGY) |
---|
3477 | { |
---|
3478 | //pContent(h.p); |
---|
3479 | h.pCleardenom(); // also does a pContent |
---|
3480 | } |
---|
3481 | else |
---|
3482 | { |
---|
3483 | h.pNorm(); |
---|
3484 | } |
---|
3485 | strat->initEcart(&h); |
---|
3486 | if (strat->Ll==-1) |
---|
3487 | posx =0; |
---|
3488 | else |
---|
3489 | posx = strat->posInL(strat->L,strat->Ll,&h,strat); |
---|
3490 | h.sev = pGetShortExpVector(h.p); |
---|
3491 | if (strat->tailRing != currRing) |
---|
3492 | { |
---|
3493 | h.t_p = k_LmInit_currRing_2_tailRing(h.p, strat->tailRing); |
---|
3494 | } |
---|
3495 | #ifdef KDEBUG |
---|
3496 | if (TEST_OPT_DEBUG) |
---|
3497 | { |
---|
3498 | p_wrp(tmp,currRing,strat->tailRing); |
---|
3499 | PrintLn(); |
---|
3500 | } |
---|
3501 | #endif |
---|
3502 | enterL(&strat->L,&strat->Ll,&strat->Lmax,h,posx); |
---|
3503 | } |
---|
3504 | } |
---|
3505 | } |
---|
3506 | nDelete(&gcd); |
---|
3507 | } |
---|
3508 | |
---|
3509 | void clearSbatch (poly h,int k,int pos,kStrategy strat) |
---|
3510 | { |
---|
3511 | int j = pos; |
---|
3512 | if ( (!strat->fromT) |
---|
3513 | && (1//(strat->syzComp==0) |
---|
3514 | //||(pGetComp(h)<=strat->syzComp))) |
---|
3515 | )) |
---|
3516 | { |
---|
3517 | // Print("start clearS k=%d, pos=%d, sl=%d\n",k,pos,strat->sl); |
---|
3518 | unsigned long h_sev = pGetShortExpVector(h); |
---|
3519 | loop |
---|
3520 | { |
---|
3521 | if (j > k) break; |
---|
3522 | clearS(h,h_sev, &j,&k,strat); |
---|
3523 | j++; |
---|
3524 | } |
---|
3525 | // Print("end clearS sl=%d\n",strat->sl); |
---|
3526 | } |
---|
3527 | } |
---|
3528 | |
---|
3529 | /*2 |
---|
3530 | * Generates a sufficient set of spolys (maybe just a finite generating |
---|
3531 | * set of the syzygys) |
---|
3532 | */ |
---|
3533 | void superenterpairs (poly h,int k,int ecart,int pos,kStrategy strat, int atR) |
---|
3534 | { |
---|
3535 | assume (rField_is_Ring(currRing)); |
---|
3536 | // enter also zero divisor * poly, if this is non zero and of smaller degree |
---|
3537 | if (!(rField_is_Domain(currRing))) enterExtendedSpoly(h, strat); |
---|
3538 | initenterpairs(h, k, ecart, 0, strat, atR); |
---|
3539 | initenterstrongPairs(h, k, ecart, 0, strat, atR); |
---|
3540 | clearSbatch(h, k, pos, strat); |
---|
3541 | } |
---|
3542 | #endif |
---|
3543 | |
---|
3544 | /*2 |
---|
3545 | *(s[0],h),...,(s[k],h) will be put to the pairset L(via initenterpairs) |
---|
3546 | *superfluous elements in S will be deleted |
---|
3547 | */ |
---|
3548 | void enterpairs (poly h,int k,int ecart,int pos,kStrategy strat, int atR) |
---|
3549 | { |
---|
3550 | int j=pos; |
---|
3551 | |
---|
3552 | #ifdef HAVE_RINGS |
---|
3553 | assume (!rField_is_Ring(currRing)); |
---|
3554 | #endif |
---|
3555 | |
---|
3556 | initenterpairs(h,k,ecart,0,strat, atR); |
---|
3557 | if ( (!strat->fromT) |
---|
3558 | && ((strat->syzComp==0) |
---|
3559 | ||(pGetComp(h)<=strat->syzComp))) |
---|
3560 | { |
---|
3561 | //Print("start clearS k=%d, pos=%d, sl=%d\n",k,pos,strat->sl); |
---|
3562 | unsigned long h_sev = pGetShortExpVector(h); |
---|
3563 | loop |
---|
3564 | { |
---|
3565 | if (j > k) break; |
---|
3566 | clearS(h,h_sev, &j,&k,strat); |
---|
3567 | j++; |
---|
3568 | } |
---|
3569 | //Print("end clearS sl=%d\n",strat->sl); |
---|
3570 | } |
---|
3571 | // PrintS("end enterpairs\n"); |
---|
3572 | } |
---|
3573 | |
---|
3574 | /*2 |
---|
3575 | *(s[0],h),...,(s[k],h) will be put to the pairset L(via initenterpairs) |
---|
3576 | *superfluous elements in S will be deleted |
---|
3577 | *this is a special variant of signature-based algorithms including the |
---|
3578 | *signatures for criteria checks |
---|
3579 | */ |
---|
3580 | void enterpairsSig (poly h,poly hSig,int hFrom,int k,int ecart,int pos,kStrategy strat, int atR) |
---|
3581 | { |
---|
3582 | int j=pos; |
---|
3583 | |
---|
3584 | #ifdef HAVE_RINGS |
---|
3585 | assume (!rField_is_Ring(currRing)); |
---|
3586 | #endif |
---|
3587 | |
---|
3588 | initenterpairsSig(h,hSig,hFrom,k,ecart,0,strat, atR); |
---|
3589 | if ( (!strat->fromT) |
---|
3590 | && ((strat->syzComp==0) |
---|
3591 | ||(pGetComp(h)<=strat->syzComp))) |
---|
3592 | { |
---|
3593 | //Print("start clearS k=%d, pos=%d, sl=%d\n",k,pos,strat->sl); |
---|
3594 | unsigned long h_sev = pGetShortExpVector(h); |
---|
3595 | loop |
---|
3596 | { |
---|
3597 | if (j > k) break; |
---|
3598 | clearS(h,h_sev, &j,&k,strat); |
---|
3599 | j++; |
---|
3600 | } |
---|
3601 | //Print("end clearS sl=%d\n",strat->sl); |
---|
3602 | } |
---|
3603 | // PrintS("end enterpairs\n"); |
---|
3604 | } |
---|
3605 | |
---|
3606 | /*2 |
---|
3607 | *(s[0],h),...,(s[k],h) will be put to the pairset L(via initenterpairs) |
---|
3608 | *superfluous elements in S will be deleted |
---|
3609 | */ |
---|
3610 | void enterpairsSpecial (poly h,int k,int ecart,int pos,kStrategy strat, int atR = -1) |
---|
3611 | { |
---|
3612 | int j; |
---|
3613 | const int iCompH = pGetComp(h); |
---|
3614 | |
---|
3615 | #ifdef HAVE_RINGS |
---|
3616 | if (rField_is_Ring(currRing)) |
---|
3617 | { |
---|
3618 | for (j=0; j<=k; j++) |
---|
3619 | { |
---|
3620 | const int iCompSj = pGetComp(strat->S[j]); |
---|
3621 | if ((iCompH==iCompSj) |
---|
3622 | //|| (0==iCompH) // can only happen,if iCompSj==0 |
---|
3623 | || (0==iCompSj)) |
---|
3624 | { |
---|
3625 | enterOnePairRing(j,h,ecart,FALSE,strat, atR); |
---|
3626 | } |
---|
3627 | } |
---|
3628 | } |
---|
3629 | else |
---|
3630 | #endif |
---|
3631 | for (j=0; j<=k; j++) |
---|
3632 | { |
---|
3633 | const int iCompSj = pGetComp(strat->S[j]); |
---|
3634 | if ((iCompH==iCompSj) |
---|
3635 | //|| (0==iCompH) // can only happen,if iCompSj==0 |
---|
3636 | || (0==iCompSj)) |
---|
3637 | { |
---|
3638 | enterOnePairSpecial(j,h,ecart,strat, atR); |
---|
3639 | } |
---|
3640 | } |
---|
3641 | |
---|
3642 | if (strat->noClearS) return; |
---|
3643 | |
---|
3644 | // #ifdef HAVE_PLURAL |
---|
3645 | /* |
---|
3646 | if (rIsPluralRing(currRing)) |
---|
3647 | { |
---|
3648 | j=pos; |
---|
3649 | loop |
---|
3650 | { |
---|
3651 | if (j > k) break; |
---|
3652 | |
---|
3653 | if (pLmDivisibleBy(h, strat->S[j])) |
---|
3654 | { |
---|
3655 | deleteInS(j, strat); |
---|
3656 | j--; |
---|
3657 | k--; |
---|
3658 | } |
---|
3659 | |
---|
3660 | j++; |
---|
3661 | } |
---|
3662 | } |
---|
3663 | else |
---|
3664 | */ |
---|
3665 | // #endif // ??? Why was the following cancelation disabled for non-commutative rings? |
---|
3666 | { |
---|
3667 | j=pos; |
---|
3668 | loop |
---|
3669 | { |
---|
3670 | unsigned long h_sev = pGetShortExpVector(h); |
---|
3671 | if (j > k) break; |
---|
3672 | clearS(h,h_sev,&j,&k,strat); |
---|
3673 | j++; |
---|
3674 | } |
---|
3675 | } |
---|
3676 | } |
---|
3677 | |
---|
3678 | /*2 |
---|
3679 | *reorders s with respect to posInS, |
---|
3680 | *suc is the first changed index or zero |
---|
3681 | */ |
---|
3682 | |
---|
3683 | void reorderS (int* suc,kStrategy strat) |
---|
3684 | { |
---|
3685 | int i,j,at,ecart, s2r; |
---|
3686 | int fq=0; |
---|
3687 | unsigned long sev; |
---|
3688 | poly p; |
---|
3689 | int new_suc=strat->sl+1; |
---|
3690 | i= *suc; |
---|
3691 | if (i<0) i=0; |
---|
3692 | |
---|
3693 | for (; i<=strat->sl; i++) |
---|
3694 | { |
---|
3695 | at = posInS(strat,i-1,strat->S[i],strat->ecartS[i]); |
---|
3696 | if (at != i) |
---|
3697 | { |
---|
3698 | if (new_suc > at) new_suc = at; |
---|
3699 | p = strat->S[i]; |
---|
3700 | ecart = strat->ecartS[i]; |
---|
3701 | sev = strat->sevS[i]; |
---|
3702 | s2r = strat->S_2_R[i]; |
---|
3703 | if (strat->fromQ!=NULL) fq=strat->fromQ[i]; |
---|
3704 | for (j=i; j>=at+1; j--) |
---|
3705 | { |
---|
3706 | strat->S[j] = strat->S[j-1]; |
---|
3707 | strat->ecartS[j] = strat->ecartS[j-1]; |
---|
3708 | strat->sevS[j] = strat->sevS[j-1]; |
---|
3709 | strat->S_2_R[j] = strat->S_2_R[j-1]; |
---|
3710 | } |
---|
3711 | strat->S[at] = p; |
---|
3712 | strat->ecartS[at] = ecart; |
---|
3713 | strat->sevS[at] = sev; |
---|
3714 | strat->S_2_R[at] = s2r; |
---|
3715 | if (strat->fromQ!=NULL) |
---|
3716 | { |
---|
3717 | for (j=i; j>=at+1; j--) |
---|
3718 | { |
---|
3719 | strat->fromQ[j] = strat->fromQ[j-1]; |
---|
3720 | } |
---|
3721 | strat->fromQ[at]=fq; |
---|
3722 | } |
---|
3723 | } |
---|
3724 | } |
---|
3725 | if (new_suc <= strat->sl) *suc=new_suc; |
---|
3726 | else *suc=-1; |
---|
3727 | } |
---|
3728 | |
---|
3729 | |
---|
3730 | /*2 |
---|
3731 | *looks up the position of p in set |
---|
3732 | *set[0] is the smallest with respect to the ordering-procedure deg/pComp |
---|
3733 | * Assumption: posInS only depends on the leading term |
---|
3734 | * otherwise, bba has to be changed |
---|
3735 | */ |
---|
3736 | int posInS (const kStrategy strat, const int length,const poly p, |
---|
3737 | const int ecart_p) |
---|
3738 | { |
---|
3739 | if(length==-1) return 0; |
---|
3740 | polyset set=strat->S; |
---|
3741 | int i; |
---|
3742 | int an = 0; |
---|
3743 | int en = length; |
---|
3744 | int cmp_int = currRing->OrdSgn; |
---|
3745 | if ((currRing->MixedOrder) |
---|
3746 | #ifdef HAVE_PLURAL |
---|
3747 | && (currRing->real_var_start==0) |
---|
3748 | #endif |
---|
3749 | #if 0 |
---|
3750 | || ((strat->ak>0) && ((currRing->order[0]==ringorder_c)||((currRing->order[0]==ringorder_C)))) |
---|
3751 | #endif |
---|
3752 | ) |
---|
3753 | { |
---|
3754 | int o=p_Deg(p,currRing); |
---|
3755 | int oo=p_Deg(set[length],currRing); |
---|
3756 | |
---|
3757 | if ((oo<o) |
---|
3758 | || ((o==oo) && (pLmCmp(set[length],p)!= cmp_int))) |
---|
3759 | return length+1; |
---|
3760 | |
---|
3761 | loop |
---|
3762 | { |
---|
3763 | if (an >= en-1) |
---|
3764 | { |
---|
3765 | if ((p_Deg(set[an],currRing)>=o) && (pLmCmp(set[an],p) == cmp_int)) |
---|
3766 | { |
---|
3767 | return an; |
---|
3768 | } |
---|
3769 | return en; |
---|
3770 | } |
---|
3771 | i=(an+en) / 2; |
---|
3772 | if ((p_Deg(set[i],currRing)>=o) && (pLmCmp(set[i],p) == cmp_int)) en=i; |
---|
3773 | else an=i; |
---|
3774 | } |
---|
3775 | } |
---|
3776 | else |
---|
3777 | { |
---|
3778 | #ifdef HAVE_RINGS |
---|
3779 | if (rField_is_Ring(currRing)) |
---|
3780 | { |
---|
3781 | if (pLmCmp(set[length],p)== -cmp_int) |
---|
3782 | return length+1; |
---|
3783 | int cmp; |
---|
3784 | loop |
---|
3785 | { |
---|
3786 | if (an >= en-1) |
---|
3787 | { |
---|
3788 | cmp = pLmCmp(set[an],p); |
---|
3789 | if (cmp == cmp_int) return an; |
---|
3790 | if (cmp == -cmp_int) return en; |
---|
3791 | if (n_DivBy(pGetCoeff(p), pGetCoeff(set[an]), currRing->cf)) return en; |
---|
3792 | return an; |
---|
3793 | } |
---|
3794 | i = (an+en) / 2; |
---|
3795 | cmp = pLmCmp(set[i],p); |
---|
3796 | if (cmp == cmp_int) en = i; |
---|
3797 | else if (cmp == -cmp_int) an = i; |
---|
3798 | else |
---|
3799 | { |
---|
3800 | if (n_DivBy(pGetCoeff(p), pGetCoeff(set[i]), currRing->cf)) an = i; |
---|
3801 | else en = i; |
---|
3802 | } |
---|
3803 | } |
---|
3804 | } |
---|
3805 | else |
---|
3806 | #endif |
---|
3807 | if (pLmCmp(set[length],p)== -cmp_int) |
---|
3808 | return length+1; |
---|
3809 | |
---|
3810 | loop |
---|
3811 | { |
---|
3812 | if (an >= en-1) |
---|
3813 | { |
---|
3814 | if (pLmCmp(set[an],p) == cmp_int) return an; |
---|
3815 | if (pLmCmp(set[an],p) == -cmp_int) return en; |
---|
3816 | if ((cmp_int!=1) |
---|
3817 | && ((strat->ecartS[an])>ecart_p)) |
---|
3818 | return an; |
---|
3819 | return en; |
---|
3820 | } |
---|
3821 | i=(an+en) / 2; |
---|
3822 | if (pLmCmp(set[i],p) == cmp_int) en=i; |
---|
3823 | else if (pLmCmp(set[i],p) == -cmp_int) an=i; |
---|
3824 | else |
---|
3825 | { |
---|
3826 | if ((cmp_int!=1) |
---|
3827 | &&((strat->ecartS[i])<ecart_p)) |
---|
3828 | en=i; |
---|
3829 | else |
---|
3830 | an=i; |
---|
3831 | } |
---|
3832 | } |
---|
3833 | } |
---|
3834 | } |
---|
3835 | |
---|
3836 | |
---|
3837 | /*2 |
---|
3838 | * looks up the position of p in set |
---|
3839 | * the position is the last one |
---|
3840 | */ |
---|
3841 | int posInT0 (const TSet,const int length,LObject &) |
---|
3842 | { |
---|
3843 | return (length+1); |
---|
3844 | } |
---|
3845 | |
---|
3846 | |
---|
3847 | /*2 |
---|
3848 | * looks up the position of p in T |
---|
3849 | * set[0] is the smallest with respect to the ordering-procedure |
---|
3850 | * pComp |
---|
3851 | */ |
---|
3852 | int posInT1 (const TSet set,const int length,LObject &p) |
---|
3853 | { |
---|
3854 | if (length==-1) return 0; |
---|
3855 | |
---|
3856 | if (pLmCmp(set[length].p,p.p)!= currRing->OrdSgn) return length+1; |
---|
3857 | |
---|
3858 | int i; |
---|
3859 | int an = 0; |
---|
3860 | int en= length; |
---|
3861 | |
---|
3862 | loop |
---|
3863 | { |
---|
3864 | if (an >= en-1) |
---|
3865 | { |
---|
3866 | if (pLmCmp(set[an].p,p.p) == currRing->OrdSgn) return an; |
---|
3867 | return en; |
---|
3868 | } |
---|
3869 | i=(an+en) / 2; |
---|
3870 | if (pLmCmp(set[i].p,p.p) == currRing->OrdSgn) en=i; |
---|
3871 | else an=i; |
---|
3872 | } |
---|
3873 | } |
---|
3874 | |
---|
3875 | /*2 |
---|
3876 | * looks up the position of p in T |
---|
3877 | * set[0] is the smallest with respect to the ordering-procedure |
---|
3878 | * length |
---|
3879 | */ |
---|
3880 | int posInT2 (const TSet set,const int length,LObject &p) |
---|
3881 | { |
---|
3882 | p.GetpLength(); |
---|
3883 | if (length==-1) |
---|
3884 | return 0; |
---|
3885 | if (set[length].length<p.length) |
---|
3886 | return length+1; |
---|
3887 | |
---|
3888 | int i; |
---|
3889 | int an = 0; |
---|
3890 | int en= length; |
---|
3891 | |
---|
3892 | loop |
---|
3893 | { |
---|
3894 | if (an >= en-1) |
---|
3895 | { |
---|
3896 | if (set[an].length>p.length) return an; |
---|
3897 | return en; |
---|
3898 | } |
---|
3899 | i=(an+en) / 2; |
---|
3900 | if (set[i].length>p.length) en=i; |
---|
3901 | else an=i; |
---|
3902 | } |
---|
3903 | } |
---|
3904 | |
---|
3905 | /*2 |
---|
3906 | * looks up the position of p in T |
---|
3907 | * set[0] is the smallest with respect to the ordering-procedure |
---|
3908 | * totaldegree,pComp |
---|
3909 | */ |
---|
3910 | int posInT11 (const TSet set,const int length,LObject &p) |
---|
3911 | /*{ |
---|
3912 | * int j=0; |
---|
3913 | * int o; |
---|
3914 | * |
---|
3915 | * o = p.GetpFDeg(); |
---|
3916 | * loop |
---|
3917 | * { |
---|
3918 | * if ((pFDeg(set[j].p) > o) |
---|
3919 | * || ((pFDeg(set[j].p) == o) && (pLmCmp(set[j].p,p.p) == currRing->OrdSgn))) |
---|
3920 | * { |
---|
3921 | * return j; |
---|
3922 | * } |
---|
3923 | * j++; |
---|
3924 | * if (j > length) return j; |
---|
3925 | * } |
---|
3926 | *} |
---|
3927 | */ |
---|
3928 | { |
---|
3929 | if (length==-1) return 0; |
---|
3930 | |
---|
3931 | int o = p.GetpFDeg(); |
---|
3932 | int op = set[length].GetpFDeg(); |
---|
3933 | |
---|
3934 | if ((op < o) |
---|
3935 | || ((op == o) && (pLmCmp(set[length].p,p.p) != currRing->OrdSgn))) |
---|
3936 | return length+1; |
---|
3937 | |
---|
3938 | int i; |
---|
3939 | int an = 0; |
---|
3940 | int en= length; |
---|
3941 | |
---|
3942 | loop |
---|
3943 | { |
---|
3944 | if (an >= en-1) |
---|
3945 | { |
---|
3946 | op= set[an].GetpFDeg(); |
---|
3947 | if ((op > o) |
---|
3948 | || (( op == o) && (pLmCmp(set[an].p,p.p) == currRing->OrdSgn))) |
---|
3949 | return an; |
---|
3950 | return en; |
---|
3951 | } |
---|
3952 | i=(an+en) / 2; |
---|
3953 | op = set[i].GetpFDeg(); |
---|
3954 | if (( op > o) |
---|
3955 | || (( op == o) && (pLmCmp(set[i].p,p.p) == currRing->OrdSgn))) |
---|
3956 | en=i; |
---|
3957 | else |
---|
3958 | an=i; |
---|
3959 | } |
---|
3960 | } |
---|
3961 | |
---|
3962 | /*2 Pos for rings T: Here I am |
---|
3963 | * looks up the position of p in T |
---|
3964 | * set[0] is the smallest with respect to the ordering-procedure |
---|
3965 | * totaldegree,pComp |
---|
3966 | */ |
---|
3967 | int posInTrg0 (const TSet set,const int length,LObject &p) |
---|
3968 | { |
---|
3969 | if (length==-1) return 0; |
---|
3970 | int o = p.GetpFDeg(); |
---|
3971 | int op = set[length].GetpFDeg(); |
---|
3972 | int i; |
---|
3973 | int an = 0; |
---|
3974 | int en = length; |
---|
3975 | int cmp_int = currRing->OrdSgn; |
---|
3976 | if ((op < o) || (pLmCmp(set[length].p,p.p)== -cmp_int)) |
---|
3977 | return length+1; |
---|
3978 | int cmp; |
---|
3979 | loop |
---|
3980 | { |
---|
3981 | if (an >= en-1) |
---|
3982 | { |
---|
3983 | op = set[an].GetpFDeg(); |
---|
3984 | if (op > o) return an; |
---|
3985 | if (op < 0) return en; |
---|
3986 | cmp = pLmCmp(set[an].p,p.p); |
---|
3987 | if (cmp == cmp_int) return an; |
---|
3988 | if (cmp == -cmp_int) return en; |
---|
3989 | if (nGreater(pGetCoeff(p.p), pGetCoeff(set[an].p))) return en; |
---|
3990 | return an; |
---|
3991 | } |
---|
3992 | i = (an + en) / 2; |
---|
3993 | op = set[i].GetpFDeg(); |
---|
3994 | if (op > o) en = i; |
---|
3995 | else if (op < o) an = i; |
---|
3996 | else |
---|
3997 | { |
---|
3998 | cmp = pLmCmp(set[i].p,p.p); |
---|
3999 | if (cmp == cmp_int) en = i; |
---|
4000 | else if (cmp == -cmp_int) an = i; |
---|
4001 | else if (nGreater(pGetCoeff(p.p), pGetCoeff(set[i].p))) an = i; |
---|
4002 | else en = i; |
---|
4003 | } |
---|
4004 | } |
---|
4005 | } |
---|
4006 | /* |
---|
4007 | int o = p.GetpFDeg(); |
---|
4008 | int op = set[length].GetpFDeg(); |
---|
4009 | |
---|
4010 | if ((op < o) |
---|
4011 | || ((op == o) && (pLmCmp(set[length].p,p.p) != currRing->OrdSgn))) |
---|
4012 | return length+1; |
---|
4013 | |
---|
4014 | int i; |
---|
4015 | int an = 0; |
---|
4016 | int en= length; |
---|
4017 | |
---|
4018 | loop |
---|
4019 | { |
---|
4020 | if (an >= en-1) |
---|
4021 | { |
---|
4022 | op= set[an].GetpFDeg(); |
---|
4023 | if ((op > o) |
---|
4024 | || (( op == o) && (pLmCmp(set[an].p,p.p) == currRing->OrdSgn))) |
---|
4025 | return an; |
---|
4026 | return en; |
---|
4027 | } |
---|
4028 | i=(an+en) / 2; |
---|
4029 | op = set[i].GetpFDeg(); |
---|
4030 | if (( op > o) |
---|
4031 | || (( op == o) && (pLmCmp(set[i].p,p.p) == currRing->OrdSgn))) |
---|
4032 | en=i; |
---|
4033 | else |
---|
4034 | an=i; |
---|
4035 | } |
---|
4036 | } |
---|
4037 | */ |
---|
4038 | /*2 |
---|
4039 | * looks up the position of p in T |
---|
4040 | * set[0] is the smallest with respect to the ordering-procedure |
---|
4041 | * totaldegree,pComp |
---|
4042 | */ |
---|
4043 | int posInT110 (const TSet set,const int length,LObject &p) |
---|
4044 | { |
---|
4045 | p.GetpLength(); |
---|
4046 | if (length==-1) return 0; |
---|
4047 | |
---|
4048 | int o = p.GetpFDeg(); |
---|
4049 | int op = set[length].GetpFDeg(); |
---|
4050 | |
---|
4051 | if (( op < o) |
---|
4052 | || (( op == o) && (set[length].length<p.length)) |
---|
4053 | || (( op == o) && (set[length].length == p.length) |
---|
4054 | && (pLmCmp(set[length].p,p.p) != currRing->OrdSgn))) |
---|
4055 | return length+1; |
---|
4056 | |
---|
4057 | int i; |
---|
4058 | int an = 0; |
---|
4059 | int en= length; |
---|
4060 | loop |
---|
4061 | { |
---|
4062 | if (an >= en-1) |
---|
4063 | { |
---|
4064 | op = set[an].GetpFDeg(); |
---|
4065 | if (( op > o) |
---|
4066 | || (( op == o) && (set[an].length > p.length)) |
---|
4067 | || (( op == o) && (set[an].length == p.length) |
---|
4068 | && (pLmCmp(set[an].p,p.p) == currRing->OrdSgn))) |
---|
4069 | return an; |
---|
4070 | return en; |
---|
4071 | } |
---|
4072 | i=(an+en) / 2; |
---|
4073 | op = set[i].GetpFDeg(); |
---|
4074 | if (( op > o) |
---|
4075 | || (( op == o) && (set[i].length > p.length)) |
---|
4076 | || (( op == o) && (set[i].length == p.length) |
---|
4077 | && (pLmCmp(set[i].p,p.p) == currRing->OrdSgn))) |
---|
4078 | en=i; |
---|
4079 | else |
---|
4080 | an=i; |
---|
4081 | } |
---|
4082 | } |
---|
4083 | |
---|
4084 | /*2 |
---|
4085 | * looks up the position of p in set |
---|
4086 | * set[0] is the smallest with respect to the ordering-procedure |
---|
4087 | * pFDeg |
---|
4088 | */ |
---|
4089 | int posInT13 (const TSet set,const int length,LObject &p) |
---|
4090 | { |
---|
4091 | if (length==-1) return 0; |
---|
4092 | |
---|
4093 | int o = p.GetpFDeg(); |
---|
4094 | |
---|
4095 | if (set[length].GetpFDeg() <= o) |
---|
4096 | return length+1; |
---|
4097 | |
---|
4098 | int i; |
---|
4099 | int an = 0; |
---|
4100 | int en= length; |
---|
4101 | loop |
---|
4102 | { |
---|
4103 | if (an >= en-1) |
---|
4104 | { |
---|
4105 | if (set[an].GetpFDeg() > o) |
---|
4106 | return an; |
---|
4107 | return en; |
---|
4108 | } |
---|
4109 | i=(an+en) / 2; |
---|
4110 | if (set[i].GetpFDeg() > o) |
---|
4111 | en=i; |
---|
4112 | else |
---|
4113 | an=i; |
---|
4114 | } |
---|
4115 | } |
---|
4116 | |
---|
4117 | // determines the position based on: 1.) Ecart 2.) pLength |
---|
4118 | int posInT_EcartpLength(const TSet set,const int length,LObject &p) |
---|
4119 | { |
---|
4120 | int ol = p.GetpLength(); |
---|
4121 | if (length==-1) return 0; |
---|
4122 | |
---|
4123 | int op=p.ecart; |
---|
4124 | |
---|
4125 | int oo=set[length].ecart; |
---|
4126 | if ((oo < op) || ((oo==op) && (set[length].length < ol))) |
---|
4127 | return length+1; |
---|
4128 | |
---|
4129 | int i; |
---|
4130 | int an = 0; |
---|
4131 | int en= length; |
---|
4132 | loop |
---|
4133 | { |
---|
4134 | if (an >= en-1) |
---|
4135 | { |
---|
4136 | int oo=set[an].ecart; |
---|
4137 | if((oo > op) |
---|
4138 | || ((oo==op) && (set[an].pLength > ol))) |
---|
4139 | return an; |
---|
4140 | return en; |
---|
4141 | } |
---|
4142 | i=(an+en) / 2; |
---|
4143 | int oo=set[i].ecart; |
---|
4144 | if ((oo > op) |
---|
4145 | || ((oo == op) && (set[i].pLength > ol))) |
---|
4146 | en=i; |
---|
4147 | else |
---|
4148 | an=i; |
---|
4149 | } |
---|
4150 | } |
---|
4151 | |
---|
4152 | /*2 |
---|
4153 | * looks up the position of p in set |
---|
4154 | * set[0] is the smallest with respect to the ordering-procedure |
---|
4155 | * maximaldegree, pComp |
---|
4156 | */ |
---|
4157 | int posInT15 (const TSet set,const int length,LObject &p) |
---|
4158 | /*{ |
---|
4159 | *int j=0; |
---|
4160 | * int o; |
---|
4161 | * |
---|
4162 | * o = p.GetpFDeg()+p.ecart; |
---|
4163 | * loop |
---|
4164 | * { |
---|
4165 | * if ((set[j].GetpFDeg()+set[j].ecart > o) |
---|
4166 | * || ((set[j].GetpFDeg()+set[j].ecart == o) |
---|
4167 | * && (pLmCmp(set[j].p,p.p) == currRing->OrdSgn))) |
---|
4168 | * { |
---|
4169 | * return j; |
---|
4170 | * } |
---|
4171 | * j++; |
---|
4172 | * if (j > length) return j; |
---|
4173 | * } |
---|
4174 | *} |
---|
4175 | */ |
---|
4176 | { |
---|
4177 | if (length==-1) return 0; |
---|
4178 | |
---|
4179 | int o = p.GetpFDeg() + p.ecart; |
---|
4180 | int op = set[length].GetpFDeg()+set[length].ecart; |
---|
4181 | |
---|
4182 | if ((op < o) |
---|
4183 | || ((op == o) |
---|
4184 | && (pLmCmp(set[length].p,p.p) != currRing->OrdSgn))) |
---|
4185 | return length+1; |
---|
4186 | |
---|
4187 | int i; |
---|
4188 | int an = 0; |
---|
4189 | int en= length; |
---|
4190 | loop |
---|
4191 | { |
---|
4192 | if (an >= en-1) |
---|
4193 | { |
---|
4194 | op = set[an].GetpFDeg()+set[an].ecart; |
---|
4195 | if (( op > o) |
---|
4196 | || (( op == o) && (pLmCmp(set[an].p,p.p) == currRing->OrdSgn))) |
---|
4197 | return an; |
---|
4198 | return en; |
---|
4199 | } |
---|
4200 | i=(an+en) / 2; |
---|
4201 | op = set[i].GetpFDeg()+set[i].ecart; |
---|
4202 | if (( op > o) |
---|
4203 | || (( op == o) && (pLmCmp(set[i].p,p.p) == currRing->OrdSgn))) |
---|
4204 | en=i; |
---|
4205 | else |
---|
4206 | an=i; |
---|
4207 | } |
---|
4208 | } |
---|
4209 | |
---|
4210 | /*2 |
---|
4211 | * looks up the position of p in set |
---|
4212 | * set[0] is the smallest with respect to the ordering-procedure |
---|
4213 | * pFDeg+ecart, ecart, pComp |
---|
4214 | */ |
---|
4215 | int posInT17 (const TSet set,const int length,LObject &p) |
---|
4216 | /* |
---|
4217 | *{ |
---|
4218 | * int j=0; |
---|
4219 | * int o; |
---|
4220 | * |
---|
4221 | * o = p.GetpFDeg()+p.ecart; |
---|
4222 | * loop |
---|
4223 | * { |
---|
4224 | * if ((pFDeg(set[j].p)+set[j].ecart > o) |
---|
4225 | * || (((pFDeg(set[j].p)+set[j].ecart == o) |
---|
4226 | * && (set[j].ecart < p.ecart))) |
---|
4227 | * || ((pFDeg(set[j].p)+set[j].ecart == o) |
---|
4228 | * && (set[j].ecart==p.ecart) |
---|
4229 | * && (pLmCmp(set[j].p,p.p)==currRing->OrdSgn))) |
---|
4230 | * return j; |
---|
4231 | * j++; |
---|
4232 | * if (j > length) return j; |
---|
4233 | * } |
---|
4234 | * } |
---|
4235 | */ |
---|
4236 | { |
---|
4237 | if (length==-1) return 0; |
---|
4238 | |
---|
4239 | int o = p.GetpFDeg() + p.ecart; |
---|
4240 | int op = set[length].GetpFDeg()+set[length].ecart; |
---|
4241 | |
---|
4242 | if ((op < o) |
---|
4243 | || (( op == o) && (set[length].ecart > p.ecart)) |
---|
4244 | || (( op == o) && (set[length].ecart==p.ecart) |
---|
4245 | && (pLmCmp(set[length].p,p.p) != currRing->OrdSgn))) |
---|
4246 | return length+1; |
---|
4247 | |
---|
4248 | int i; |
---|
4249 | int an = 0; |
---|
4250 | int en= length; |
---|
4251 | loop |
---|
4252 | { |
---|
4253 | if (an >= en-1) |
---|
4254 | { |
---|
4255 | op = set[an].GetpFDeg()+set[an].ecart; |
---|
4256 | if (( op > o) |
---|
4257 | || (( op == o) && (set[an].ecart < p.ecart)) |
---|
4258 | || (( op == o) && (set[an].ecart==p.ecart) |
---|
4259 | && (pLmCmp(set[an].p,p.p) == currRing->OrdSgn))) |
---|
4260 | return an; |
---|
4261 | return en; |
---|
4262 | } |
---|
4263 | i=(an+en) / 2; |
---|
4264 | op = set[i].GetpFDeg()+set[i].ecart; |
---|
4265 | if ((op > o) |
---|
4266 | || (( op == o) && (set[i].ecart < p.ecart)) |
---|
4267 | || (( op == o) && (set[i].ecart == p.ecart) |
---|
4268 | && (pLmCmp(set[i].p,p.p) == currRing->OrdSgn))) |
---|
4269 | en=i; |
---|
4270 | else |
---|
4271 | an=i; |
---|
4272 | } |
---|
4273 | } |
---|
4274 | /*2 |
---|
4275 | * looks up the position of p in set |
---|
4276 | * set[0] is the smallest with respect to the ordering-procedure |
---|
4277 | * pGetComp, pFDeg+ecart, ecart, pComp |
---|
4278 | */ |
---|
4279 | int posInT17_c (const TSet set,const int length,LObject &p) |
---|
4280 | { |
---|
4281 | if (length==-1) return 0; |
---|
4282 | |
---|
4283 | int cc = (-1+2*currRing->order[0]==ringorder_c); |
---|
4284 | /* cc==1 for (c,..), cc==-1 for (C,..) */ |
---|
4285 | int o = p.GetpFDeg() + p.ecart; |
---|
4286 | unsigned long c = pGetComp(p.p)*cc; |
---|
4287 | |
---|
4288 | if (pGetComp(set[length].p)*cc < c) |
---|
4289 | return length+1; |
---|
4290 | if (pGetComp(set[length].p)*cc == c) |
---|
4291 | { |
---|
4292 | int op = set[length].GetpFDeg()+set[length].ecart; |
---|
4293 | if ((op < o) |
---|
4294 | || ((op == o) && (set[length].ecart > p.ecart)) |
---|
4295 | || ((op == o) && (set[length].ecart==p.ecart) |
---|
4296 | && (pLmCmp(set[length].p,p.p) != currRing->OrdSgn))) |
---|
4297 | return length+1; |
---|
4298 | } |
---|
4299 | |
---|
4300 | int i; |
---|
4301 | int an = 0; |
---|
4302 | int en= length; |
---|
4303 | loop |
---|
4304 | { |
---|
4305 | if (an >= en-1) |
---|
4306 | { |
---|
4307 | if (pGetComp(set[an].p)*cc < c) |
---|
4308 | return en; |
---|
4309 | if (pGetComp(set[an].p)*cc == c) |
---|
4310 | { |
---|
4311 | int op = set[an].GetpFDeg()+set[an].ecart; |
---|
4312 | if ((op > o) |
---|
4313 | || ((op == o) && (set[an].ecart < p.ecart)) |
---|
4314 | || ((op == o) && (set[an].ecart==p.ecart) |
---|
4315 | && (pLmCmp(set[an].p,p.p) == currRing->OrdSgn))) |
---|
4316 | return an; |
---|
4317 | } |
---|
4318 | return en; |
---|
4319 | } |
---|
4320 | i=(an+en) / 2; |
---|
4321 | if (pGetComp(set[i].p)*cc > c) |
---|
4322 | en=i; |
---|
4323 | else if (pGetComp(set[i].p)*cc == c) |
---|
4324 | { |
---|
4325 | int op = set[i].GetpFDeg()+set[i].ecart; |
---|
4326 | if ((op > o) |
---|
4327 | || ((op == o) && (set[i].ecart < p.ecart)) |
---|
4328 | || ((op == o) && (set[i].ecart == p.ecart) |
---|
4329 | && (pLmCmp(set[i].p,p.p) == currRing->OrdSgn))) |
---|
4330 | en=i; |
---|
4331 | else |
---|
4332 | an=i; |
---|
4333 | } |
---|
4334 | else |
---|
4335 | an=i; |
---|
4336 | } |
---|
4337 | } |
---|
4338 | |
---|
4339 | /*2 |
---|
4340 | * looks up the position of p in set |
---|
4341 | * set[0] is the smallest with respect to |
---|
4342 | * ecart, pFDeg, length |
---|
4343 | */ |
---|
4344 | int posInT19 (const TSet set,const int length,LObject &p) |
---|
4345 | { |
---|
4346 | p.GetpLength(); |
---|
4347 | if (length==-1) return 0; |
---|
4348 | |
---|
4349 | int o = p.ecart; |
---|
4350 | int op=p.GetpFDeg(); |
---|
4351 | |
---|
4352 | if (set[length].ecart < o) |
---|
4353 | return length+1; |
---|
4354 | if (set[length].ecart == o) |
---|
4355 | { |
---|
4356 | int oo=set[length].GetpFDeg(); |
---|
4357 | if ((oo < op) || ((oo==op) && (set[length].length < p.length))) |
---|
4358 | return length+1; |
---|
4359 | } |
---|
4360 | |
---|
4361 | int i; |
---|
4362 | int an = 0; |
---|
4363 | int en= length; |
---|
4364 | loop |
---|
4365 | { |
---|
4366 | if (an >= en-1) |
---|
4367 | { |
---|
4368 | if (set[an].ecart > o) |
---|
4369 | return an; |
---|
4370 | if (set[an].ecart == o) |
---|
4371 | { |
---|
4372 | int oo=set[an].GetpFDeg(); |
---|
4373 | if((oo > op) |
---|
4374 | || ((oo==op) && (set[an].length > p.length))) |
---|
4375 | return an; |
---|
4376 | } |
---|
4377 | return en; |
---|
4378 | } |
---|
4379 | i=(an+en) / 2; |
---|
4380 | if (set[i].ecart > o) |
---|
4381 | en=i; |
---|
4382 | else if (set[i].ecart == o) |
---|
4383 | { |
---|
4384 | int oo=set[i].GetpFDeg(); |
---|
4385 | if ((oo > op) |
---|
4386 | || ((oo == op) && (set[i].length > p.length))) |
---|
4387 | en=i; |
---|
4388 | else |
---|
4389 | an=i; |
---|
4390 | } |
---|
4391 | else |
---|
4392 | an=i; |
---|
4393 | } |
---|
4394 | } |
---|
4395 | |
---|
4396 | /*2 |
---|
4397 | *looks up the position of polynomial p in set |
---|
4398 | *set[length] is the smallest element in set with respect |
---|
4399 | *to the ordering-procedure pComp |
---|
4400 | */ |
---|
4401 | int posInLSpecial (const LSet set, const int length, |
---|
4402 | LObject *p,const kStrategy) |
---|
4403 | { |
---|
4404 | if (length<0) return 0; |
---|
4405 | |
---|
4406 | int d=p->GetpFDeg(); |
---|
4407 | int op=set[length].GetpFDeg(); |
---|
4408 | |
---|
4409 | if ((op > d) |
---|
4410 | || ((op == d) && (p->p1!=NULL)&&(set[length].p1==NULL)) |
---|
4411 | || (pLmCmp(set[length].p,p->p)== currRing->OrdSgn)) |
---|
4412 | return length+1; |
---|
4413 | |
---|
4414 | int i; |
---|
4415 | int an = 0; |
---|
4416 | int en= length; |
---|
4417 | loop |
---|
4418 | { |
---|
4419 | if (an >= en-1) |
---|
4420 | { |
---|
4421 | op=set[an].GetpFDeg(); |
---|
4422 | if ((op > d) |
---|
4423 | || ((op == d) && (p->p1!=NULL) && (set[an].p1==NULL)) |
---|
4424 | || (pLmCmp(set[an].p,p->p)== currRing->OrdSgn)) |
---|
4425 | return en; |
---|
4426 | return an; |
---|
4427 | } |
---|
4428 | i=(an+en) / 2; |
---|
4429 | op=set[i].GetpFDeg(); |
---|
4430 | if ((op>d) |
---|
4431 | || ((op==d) && (p->p1!=NULL) && (set[i].p1==NULL)) |
---|
4432 | || (pLmCmp(set[i].p,p->p) == currRing->OrdSgn)) |
---|
4433 | an=i; |
---|
4434 | else |
---|
4435 | en=i; |
---|
4436 | } |
---|
4437 | } |
---|
4438 | |
---|
4439 | /*2 |
---|
4440 | *looks up the position of polynomial p in set |
---|
4441 | *set[length] is the smallest element in set with respect |
---|
4442 | *to the ordering-procedure pComp |
---|
4443 | */ |
---|
4444 | int posInL0 (const LSet set, const int length, |
---|
4445 | LObject* p,const kStrategy) |
---|
4446 | { |
---|
4447 | if (length<0) return 0; |
---|
4448 | |
---|
4449 | if (pLmCmp(set[length].p,p->p)== currRing->OrdSgn) |
---|
4450 | return length+1; |
---|
4451 | |
---|
4452 | int i; |
---|
4453 | int an = 0; |
---|
4454 | int en= length; |
---|
4455 | loop |
---|
4456 | { |
---|
4457 | if (an >= en-1) |
---|
4458 | { |
---|
4459 | if (pLmCmp(set[an].p,p->p) == currRing->OrdSgn) return en; |
---|
4460 | return an; |
---|
4461 | } |
---|
4462 | i=(an+en) / 2; |
---|
4463 | if (pLmCmp(set[i].p,p->p) == currRing->OrdSgn) an=i; |
---|
4464 | else en=i; |
---|
4465 | /*aend. fuer lazy == in !=- machen */ |
---|
4466 | } |
---|
4467 | } |
---|
4468 | |
---|
4469 | /*2 |
---|
4470 | * looks up the position of polynomial p in set |
---|
4471 | * e is the ecart of p |
---|
4472 | * set[length] is the smallest element in set with respect |
---|
4473 | * to the signature order |
---|
4474 | */ |
---|
4475 | int posInLSig (const LSet set, const int length, |
---|
4476 | LObject* p,const kStrategy strat) |
---|
4477 | { |
---|
4478 | if (length<0) return 0; |
---|
4479 | if (pLmCmp(set[length].sig,p->sig)== currRing->OrdSgn) |
---|
4480 | return length+1; |
---|
4481 | |
---|
4482 | int i; |
---|
4483 | int an = 0; |
---|
4484 | int en= length; |
---|
4485 | loop |
---|
4486 | { |
---|
4487 | if (an >= en-1) |
---|
4488 | { |
---|
4489 | if (pLmCmp(set[an].sig,p->sig) == currRing->OrdSgn) return en; |
---|
4490 | return an; |
---|
4491 | } |
---|
4492 | i=(an+en) / 2; |
---|
4493 | if (pLmCmp(set[i].sig,p->sig) == currRing->OrdSgn) an=i; |
---|
4494 | else en=i; |
---|
4495 | /*aend. fuer lazy == in !=- machen */ |
---|
4496 | } |
---|
4497 | } |
---|
4498 | |
---|
4499 | /*2 |
---|
4500 | * |
---|
4501 | * is only used in F5C, must ensure that the interreduction process does add new |
---|
4502 | * critical pairs to strat->L only behind all other critical pairs which are |
---|
4503 | * still in strat->L! |
---|
4504 | */ |
---|
4505 | int posInLF5C (const LSet set, const int length, |
---|
4506 | LObject* p,const kStrategy strat) |
---|
4507 | { |
---|
4508 | return strat->Ll+1; |
---|
4509 | } |
---|
4510 | |
---|
4511 | /*2 |
---|
4512 | * looks up the position of polynomial p in set |
---|
4513 | * e is the ecart of p |
---|
4514 | * set[length] is the smallest element in set with respect |
---|
4515 | * to the ordering-procedure totaldegree,pComp |
---|
4516 | */ |
---|
4517 | int posInL11 (const LSet set, const int length, |
---|
4518 | LObject* p,const kStrategy) |
---|
4519 | /*{ |
---|
4520 | * int j=0; |
---|
4521 | * int o; |
---|
4522 | * |
---|
4523 | * o = p->GetpFDeg(); |
---|
4524 | * loop |
---|
4525 | * { |
---|
4526 | * if (j > length) return j; |
---|
4527 | * if ((set[j].GetpFDeg() < o)) return j; |
---|
4528 | * if ((set[j].GetpFDeg() == o) && (pLmCmp(set[j].p,p->p) == -currRing->OrdSgn)) |
---|
4529 | * { |
---|
4530 | * return j; |
---|
4531 | * } |
---|
4532 | * j++; |
---|
4533 | * } |
---|
4534 | *} |
---|
4535 | */ |
---|
4536 | { |
---|
4537 | if (length<0) return 0; |
---|
4538 | |
---|
4539 | int o = p->GetpFDeg(); |
---|
4540 | int op = set[length].GetpFDeg(); |
---|
4541 | |
---|
4542 | if ((op > o) |
---|
4543 | || ((op == o) && (pLmCmp(set[length].p,p->p) != -currRing->OrdSgn))) |
---|
4544 | return length+1; |
---|
4545 | int i; |
---|
4546 | int an = 0; |
---|
4547 | int en= length; |
---|
4548 | loop |
---|
4549 | { |
---|
4550 | if (an >= en-1) |
---|
4551 | { |
---|
4552 | op = set[an].GetpFDeg(); |
---|
4553 | if ((op > o) |
---|
4554 | || ((op == o) && (pLmCmp(set[an].p,p->p) != -currRing->OrdSgn))) |
---|
4555 | return en; |
---|
4556 | return an; |
---|
4557 | } |
---|
4558 | i=(an+en) / 2; |
---|
4559 | op = set[i].GetpFDeg(); |
---|
4560 | if ((op > o) |
---|
4561 | || ((op == o) && (pLmCmp(set[i].p,p->p) != -currRing->OrdSgn))) |
---|
4562 | an=i; |
---|
4563 | else |
---|
4564 | en=i; |
---|
4565 | } |
---|
4566 | } |
---|
4567 | |
---|
4568 | /*2 Position for rings L: Here I am |
---|
4569 | * looks up the position of polynomial p in set |
---|
4570 | * e is the ecart of p |
---|
4571 | * set[length] is the smallest element in set with respect |
---|
4572 | * to the ordering-procedure totaldegree,pComp |
---|
4573 | */ |
---|
4574 | inline int getIndexRng(long coeff) |
---|
4575 | { |
---|
4576 | if (coeff == 0) return -1; |
---|
4577 | long tmp = coeff; |
---|
4578 | int ind = 0; |
---|
4579 | while (tmp % 2 == 0) |
---|
4580 | { |
---|
4581 | tmp = tmp / 2; |
---|
4582 | ind++; |
---|
4583 | } |
---|
4584 | return ind; |
---|
4585 | } |
---|
4586 | |
---|
4587 | int posInLrg0 (const LSet set, const int length, |
---|
4588 | LObject* p,const kStrategy) |
---|
4589 | /* if (nGreater(pGetCoeff(p), pGetCoeff(set[an]))) return en; |
---|
4590 | if (pLmCmp(set[i],p) == cmp_int) en = i; |
---|
4591 | else if (pLmCmp(set[i],p) == -cmp_int) an = i; |
---|
4592 | else |
---|
4593 | { |
---|
4594 | if (nGreater(pGetCoeff(p), pGetCoeff(set[i]))) an = i; |
---|
4595 | else en = i; |
---|
4596 | }*/ |
---|
4597 | { |
---|
4598 | if (length < 0) return 0; |
---|
4599 | |
---|
4600 | int o = p->GetpFDeg(); |
---|
4601 | int op = set[length].GetpFDeg(); |
---|
4602 | |
---|
4603 | if ((op > o) || ((op == o) && (pLmCmp(set[length].p,p->p) != -currRing->OrdSgn))) |
---|
4604 | return length + 1; |
---|
4605 | int i; |
---|
4606 | int an = 0; |
---|
4607 | int en = length; |
---|
4608 | loop |
---|
4609 | { |
---|
4610 | if (an >= en - 1) |
---|
4611 | { |
---|
4612 | op = set[an].GetpFDeg(); |
---|
4613 | if ((op > o) || ((op == o) && (pLmCmp(set[an].p,p->p) != -currRing->OrdSgn))) |
---|
4614 | return en; |
---|
4615 | return an; |
---|
4616 | } |
---|
4617 | i = (an+en) / 2; |
---|
4618 | op = set[i].GetpFDeg(); |
---|
4619 | if ((op > o) || ((op == o) && (pLmCmp(set[i].p,p->p) != -currRing->OrdSgn))) |
---|
4620 | an = i; |
---|
4621 | else |
---|
4622 | en = i; |
---|
4623 | } |
---|
4624 | } |
---|
4625 | |
---|
4626 | /*{ |
---|
4627 | if (length < 0) return 0; |
---|
4628 | |
---|
4629 | int o = p->GetpFDeg(); |
---|
4630 | int op = set[length].GetpFDeg(); |
---|
4631 | |
---|
4632 | int inde = getIndexRng((unsigned long) pGetCoeff(set[length].p)); |
---|
4633 | int indp = getIndexRng((unsigned long) pGetCoeff(p->p)); |
---|
4634 | int inda; |
---|
4635 | int indi; |
---|
4636 | |
---|
4637 | if ((inda > indp) || ((inda == inde) && ((op > o) || ((op == o) && (pLmCmp(set[length].p,p->p) != -currRing->OrdSgn))))) |
---|
4638 | return length + 1; |
---|
4639 | int i; |
---|
4640 | int an = 0; |
---|
4641 | inda = getIndexRng((unsigned long) pGetCoeff(set[an].p)); |
---|
4642 | int en = length; |
---|
4643 | loop |
---|
4644 | { |
---|
4645 | if (an >= en-1) |
---|
4646 | { |
---|
4647 | op = set[an].GetpFDeg(); |
---|
4648 | if ((indp > inda) || ((indp == inda) && ((op > o) || ((op == o) && (pLmCmp(set[an].p,p->p) != -currRing->OrdSgn))))) |
---|
4649 | return en; |
---|
4650 | return an; |
---|
4651 | } |
---|
4652 | i = (an + en) / 2; |
---|
4653 | indi = getIndexRng((unsigned long) pGetCoeff(set[i].p)); |
---|
4654 | op = set[i].GetpFDeg(); |
---|
4655 | if ((indi > indp) || ((indi == indp) && ((op > o) || ((op == o) && (pLmCmp(set[i].p,p->p) != -currRing->OrdSgn))))) |
---|
4656 | // if ((op > o) || ((op == o) && (pLmCmp(set[i].p,p->p) != -currRing->OrdSgn))) |
---|
4657 | { |
---|
4658 | an = i; |
---|
4659 | inda = getIndexRng((unsigned long) pGetCoeff(set[an].p)); |
---|
4660 | } |
---|
4661 | else |
---|
4662 | en = i; |
---|
4663 | } |
---|
4664 | } */ |
---|
4665 | |
---|
4666 | /*2 |
---|
4667 | * looks up the position of polynomial p in set |
---|
4668 | * set[length] is the smallest element in set with respect |
---|
4669 | * to the ordering-procedure totaldegree,pLength0 |
---|
4670 | */ |
---|
4671 | int posInL110 (const LSet set, const int length, |
---|
4672 | LObject* p,const kStrategy) |
---|
4673 | { |
---|
4674 | if (length<0) return 0; |
---|
4675 | |
---|
4676 | int o = p->GetpFDeg(); |
---|
4677 | int op = set[length].GetpFDeg(); |
---|
4678 | |
---|
4679 | if ((op > o) |
---|
4680 | || ((op == o) && (set[length].length >p->length)) |
---|
4681 | || ((op == o) && (set[length].length <= p->length) |
---|
4682 | && (pLmCmp(set[length].p,p->p) != -currRing->OrdSgn))) |
---|
4683 | return length+1; |
---|
4684 | int i; |
---|
4685 | int an = 0; |
---|
4686 | int en= length; |
---|
4687 | loop |
---|
4688 | { |
---|
4689 | if (an >= en-1) |
---|
4690 | { |
---|
4691 | op = set[an].GetpFDeg(); |
---|
4692 | if ((op > o) |
---|
4693 | || ((op == o) && (set[an].length >p->length)) |
---|
4694 | || ((op == o) && (set[an].length <=p->length) |
---|
4695 | && (pLmCmp(set[an].p,p->p) != -currRing->OrdSgn))) |
---|
4696 | return en; |
---|
4697 | return an; |
---|
4698 | } |
---|
4699 | i=(an+en) / 2; |
---|
4700 | op = set[i].GetpFDeg(); |
---|
4701 | if ((op > o) |
---|
4702 | || ((op == o) && (set[i].length > p->length)) |
---|
4703 | || ((op == o) && (set[i].length <= p->length) |
---|
4704 | && (pLmCmp(set[i].p,p->p) != -currRing->OrdSgn))) |
---|
4705 | an=i; |
---|
4706 | else |
---|
4707 | en=i; |
---|
4708 | } |
---|
4709 | } |
---|
4710 | |
---|
4711 | /*2 |
---|
4712 | * looks up the position of polynomial p in set |
---|
4713 | * e is the ecart of p |
---|
4714 | * set[length] is the smallest element in set with respect |
---|
4715 | * to the ordering-procedure totaldegree |
---|
4716 | */ |
---|
4717 | int posInL13 (const LSet set, const int length, |
---|
4718 | LObject* p,const kStrategy) |
---|
4719 | { |
---|
4720 | if (length<0) return 0; |
---|
4721 | |
---|
4722 | int o = p->GetpFDeg(); |
---|
4723 | |
---|
4724 | if (set[length].GetpFDeg() > o) |
---|
4725 | return length+1; |
---|
4726 | |
---|
4727 | int i; |
---|
4728 | int an = 0; |
---|
4729 | int en= length; |
---|
4730 | loop |
---|
4731 | { |
---|
4732 | if (an >= en-1) |
---|
4733 | { |
---|
4734 | if (set[an].GetpFDeg() >= o) |
---|
4735 | return en; |
---|
4736 | return an; |
---|
4737 | } |
---|
4738 | i=(an+en) / 2; |
---|
4739 | if (set[i].GetpFDeg() >= o) |
---|
4740 | an=i; |
---|
4741 | else |
---|
4742 | en=i; |
---|
4743 | } |
---|
4744 | } |
---|
4745 | |
---|
4746 | /*2 |
---|
4747 | * looks up the position of polynomial p in set |
---|
4748 | * e is the ecart of p |
---|
4749 | * set[length] is the smallest element in set with respect |
---|
4750 | * to the ordering-procedure maximaldegree,pComp |
---|
4751 | */ |
---|
4752 | int posInL15 (const LSet set, const int length, |
---|
4753 | LObject* p,const kStrategy) |
---|
4754 | /*{ |
---|
4755 | * int j=0; |
---|
4756 | * int o; |
---|
4757 | * |
---|
4758 | * o = p->ecart+p->GetpFDeg(); |
---|
4759 | * loop |
---|
4760 | * { |
---|
4761 | * if (j > length) return j; |
---|
4762 | * if (set[j].GetpFDeg()+set[j].ecart < o) return j; |
---|
4763 | * if ((set[j].GetpFDeg()+set[j].ecart == o) |
---|
4764 | * && (pLmCmp(set[j].p,p->p) == -currRing->OrdSgn)) |
---|
4765 | * { |
---|
4766 | * return j; |
---|
4767 | * } |
---|
4768 | * j++; |
---|
4769 | * } |
---|
4770 | *} |
---|
4771 | */ |
---|
4772 | { |
---|
4773 | if (length<0) return 0; |
---|
4774 | |
---|
4775 | int o = p->GetpFDeg() + p->ecart; |
---|
4776 | int op = set[length].GetpFDeg() + set[length].ecart; |
---|
4777 | |
---|
4778 | if ((op > o) |
---|
4779 | || ((op == o) && (pLmCmp(set[length].p,p->p) != -currRing->OrdSgn))) |
---|
4780 | return length+1; |
---|
4781 | int i; |
---|
4782 | int an = 0; |
---|
4783 | int en= length; |
---|
4784 | loop |
---|
4785 | { |
---|
4786 | if (an >= en-1) |
---|
4787 | { |
---|
4788 | op = set[an].GetpFDeg() + set[an].ecart; |
---|
4789 | if ((op > o) |
---|
4790 | || ((op == o) && (pLmCmp(set[an].p,p->p) != -currRing->OrdSgn))) |
---|
4791 | return en; |
---|
4792 | return an; |
---|
4793 | } |
---|
4794 | i=(an+en) / 2; |
---|
4795 | op = set[i].GetpFDeg() + set[i].ecart; |
---|
4796 | if ((op > o) |
---|
4797 | || ((op == o) && (pLmCmp(set[i].p,p->p) != -currRing->OrdSgn))) |
---|
4798 | an=i; |
---|
4799 | else |
---|
4800 | en=i; |
---|
4801 | } |
---|
4802 | } |
---|
4803 | |
---|
4804 | /*2 |
---|
4805 | * looks up the position of polynomial p in set |
---|
4806 | * e is the ecart of p |
---|
4807 | * set[length] is the smallest element in set with respect |
---|
4808 | * to the ordering-procedure totaldegree |
---|
4809 | */ |
---|
4810 | int posInL17 (const LSet set, const int length, |
---|
4811 | LObject* p,const kStrategy) |
---|
4812 | { |
---|
4813 | if (length<0) return 0; |
---|
4814 | |
---|
4815 | int o = p->GetpFDeg() + p->ecart; |
---|
4816 | |
---|
4817 | if ((set[length].GetpFDeg() + set[length].ecart > o) |
---|
4818 | || ((set[length].GetpFDeg() + set[length].ecart == o) |
---|
4819 | && (set[length].ecart > p->ecart)) |
---|
4820 | || ((set[length].GetpFDeg() + set[length].ecart == o) |
---|
4821 | && (set[length].ecart == p->ecart) |
---|
4822 | && (pLmCmp(set[length].p,p->p) != -currRing->OrdSgn))) |
---|
4823 | return length+1; |
---|
4824 | int i; |
---|
4825 | int an = 0; |
---|
4826 | int en= length; |
---|
4827 | loop |
---|
4828 | { |
---|
4829 | if (an >= en-1) |
---|
4830 | { |
---|
4831 | if ((set[an].GetpFDeg() + set[an].ecart > o) |
---|
4832 | || ((set[an].GetpFDeg() + set[an].ecart == o) |
---|
4833 | && (set[an].ecart > p->ecart)) |
---|
4834 | || ((set[an].GetpFDeg() + set[an].ecart == o) |
---|
4835 | && (set[an].ecart == p->ecart) |
---|
4836 | && (pLmCmp(set[an].p,p->p) != -currRing->OrdSgn))) |
---|
4837 | return en; |
---|
4838 | return an; |
---|
4839 | } |
---|
4840 | i=(an+en) / 2; |
---|
4841 | if ((set[i].GetpFDeg() + set[i].ecart > o) |
---|
4842 | || ((set[i].GetpFDeg() + set[i].ecart == o) |
---|
4843 | && (set[i].ecart > p->ecart)) |
---|
4844 | || ((set[i].GetpFDeg() +set[i].ecart == o) |
---|
4845 | && (set[i].ecart == p->ecart) |
---|
4846 | && (pLmCmp(set[i].p,p->p) != -currRing->OrdSgn))) |
---|
4847 | an=i; |
---|
4848 | else |
---|
4849 | en=i; |
---|
4850 | } |
---|
4851 | } |
---|
4852 | /*2 |
---|
4853 | * looks up the position of polynomial p in set |
---|
4854 | * e is the ecart of p |
---|
4855 | * set[length] is the smallest element in set with respect |
---|
4856 | * to the ordering-procedure pComp |
---|
4857 | */ |
---|
4858 | int posInL17_c (const LSet set, const int length, |
---|
4859 | LObject* p,const kStrategy) |
---|
4860 | { |
---|
4861 | if (length<0) return 0; |
---|
4862 | |
---|
4863 | int cc = (-1+2*currRing->order[0]==ringorder_c); |
---|
4864 | /* cc==1 for (c,..), cc==-1 for (C,..) */ |
---|
4865 | unsigned long c = pGetComp(p->p)*cc; |
---|
4866 | int o = p->GetpFDeg() + p->ecart; |
---|
4867 | |
---|
4868 | if (pGetComp(set[length].p)*cc > c) |
---|
4869 | return length+1; |
---|
4870 | if (pGetComp(set[length].p)*cc == c) |
---|
4871 | { |
---|
4872 | if ((set[length].GetpFDeg() + set[length].ecart > o) |
---|
4873 | || ((set[length].GetpFDeg() + set[length].ecart == o) |
---|
4874 | && (set[length].ecart > p->ecart)) |
---|
4875 | || ((set[length].GetpFDeg() + set[length].ecart == o) |
---|
4876 | && (set[length].ecart == p->ecart) |
---|
4877 | && (pLmCmp(set[length].p,p->p) != -currRing->OrdSgn))) |
---|
4878 | return length+1; |
---|
4879 | } |
---|
4880 | int i; |
---|
4881 | int an = 0; |
---|
4882 | int en= length; |
---|
4883 | loop |
---|
4884 | { |
---|
4885 | if (an >= en-1) |
---|
4886 | { |
---|
4887 | if (pGetComp(set[an].p)*cc > c) |
---|
4888 | return en; |
---|
4889 | if (pGetComp(set[an].p)*cc == c) |
---|
4890 | { |
---|
4891 | if ((set[an].GetpFDeg() + set[an].ecart > o) |
---|
4892 | || ((set[an].GetpFDeg() + set[an].ecart == o) |
---|
4893 | && (set[an].ecart > p->ecart)) |
---|
4894 | || ((set[an].GetpFDeg() + set[an].ecart == o) |
---|
4895 | && (set[an].ecart == p->ecart) |
---|
4896 | && (pLmCmp(set[an].p,p->p) != -currRing->OrdSgn))) |
---|
4897 | return en; |
---|
4898 | } |
---|
4899 | return an; |
---|
4900 | } |
---|
4901 | i=(an+en) / 2; |
---|
4902 | if (pGetComp(set[i].p)*cc > c) |
---|
4903 | an=i; |
---|
4904 | else if (pGetComp(set[i].p)*cc == c) |
---|
4905 | { |
---|
4906 | if ((set[i].GetpFDeg() + set[i].ecart > o) |
---|
4907 | || ((set[i].GetpFDeg() + set[i].ecart == o) |
---|
4908 | && (set[i].ecart > p->ecart)) |
---|
4909 | || ((set[i].GetpFDeg() +set[i].ecart == o) |
---|
4910 | && (set[i].ecart == p->ecart) |
---|
4911 | && (pLmCmp(set[i].p,p->p) != -currRing->OrdSgn))) |
---|
4912 | an=i; |
---|
4913 | else |
---|
4914 | en=i; |
---|
4915 | } |
---|
4916 | else |
---|
4917 | en=i; |
---|
4918 | } |
---|
4919 | } |
---|
4920 | |
---|
4921 | /* |
---|
4922 | * SYZYGY CRITERION for signature-based standard basis algorithms |
---|
4923 | */ |
---|
4924 | BOOLEAN syzCriterion(poly sig, unsigned long not_sevSig, kStrategy strat) |
---|
4925 | { |
---|
4926 | //#if 1 |
---|
4927 | #ifdef DEBUGF5 |
---|
4928 | Print("syzygy criterion checks: "); |
---|
4929 | pWrite(sig); |
---|
4930 | #endif |
---|
4931 | for (int k=0; k<strat->syzl; k++) |
---|
4932 | { |
---|
4933 | //#if 1 |
---|
4934 | #ifdef DEBUGF5 |
---|
4935 | Print("checking with: %d -- ",k); |
---|
4936 | pWrite(pHead(strat->syz[k])); |
---|
4937 | #endif |
---|
4938 | if (p_LmShortDivisibleBy(strat->syz[k], strat->sevSyz[k], sig, not_sevSig, currRing)) |
---|
4939 | { |
---|
4940 | //#if 1 |
---|
4941 | #ifdef DEBUGF5 |
---|
4942 | printf("DELETE!\n"); |
---|
4943 | #endif |
---|
4944 | return TRUE; |
---|
4945 | } |
---|
4946 | } |
---|
4947 | return FALSE; |
---|
4948 | } |
---|
4949 | |
---|
4950 | /* |
---|
4951 | * SYZYGY CRITERION for signature-based standard basis algorithms |
---|
4952 | */ |
---|
4953 | BOOLEAN syzCriterionInc(poly sig, unsigned long not_sevSig, kStrategy strat) |
---|
4954 | { |
---|
4955 | //#if 1 |
---|
4956 | #ifdef DEBUGF5 |
---|
4957 | Print("syzygy criterion checks: "); |
---|
4958 | pWrite(sig); |
---|
4959 | #endif |
---|
4960 | int comp = p_GetComp(sig, currRing); |
---|
4961 | int min, max; |
---|
4962 | if (comp<=1) |
---|
4963 | return FALSE; |
---|
4964 | else |
---|
4965 | { |
---|
4966 | min = strat->syzIdx[comp-2]; |
---|
4967 | //printf("SYZIDX %d/%d\n",strat->syzIdx[comp-2],comp-2); |
---|
4968 | //printf("SYZIDX %d/%d\n",strat->syzIdx[comp-1],comp-1); |
---|
4969 | //printf("SYZIDX %d/%d\n",strat->syzIdx[comp],comp); |
---|
4970 | if (comp == strat->currIdx) |
---|
4971 | { |
---|
4972 | max = strat->syzl; |
---|
4973 | } |
---|
4974 | else |
---|
4975 | { |
---|
4976 | max = strat->syzIdx[comp-1]; |
---|
4977 | } |
---|
4978 | for (int k=min; k<max; k++) |
---|
4979 | { |
---|
4980 | #ifdef DEBUGF5 |
---|
4981 | printf("COMP %d/%d - MIN %d - MAX %d - SYZL %ld\n",comp,strat->currIdx,min,max,strat->syzl); |
---|
4982 | Print("checking with: %d -- ",k); |
---|
4983 | pWrite(pHead(strat->syz[k])); |
---|
4984 | #endif |
---|
4985 | if (p_LmShortDivisibleBy(strat->syz[k], strat->sevSyz[k], sig, not_sevSig, currRing)) |
---|
4986 | return TRUE; |
---|
4987 | } |
---|
4988 | return FALSE; |
---|
4989 | } |
---|
4990 | } |
---|
4991 | |
---|
4992 | /* |
---|
4993 | * REWRITTEN CRITERION for signature-based standard basis algorithms |
---|
4994 | */ |
---|
4995 | BOOLEAN faugereRewCriterion(poly sig, unsigned long not_sevSig, kStrategy strat, int start=0) |
---|
4996 | { |
---|
4997 | //printf("Faugere Rewritten Criterion\n"); |
---|
4998 | //#if 1 |
---|
4999 | #ifdef DEBUGF5 |
---|
5000 | printf("rewritten criterion checks: "); |
---|
5001 | pWrite(sig); |
---|
5002 | #endif |
---|
5003 | //for(int k = start; k<strat->sl+1; k++) |
---|
5004 | for(int k = strat->sl; k>start; k--) |
---|
5005 | { |
---|
5006 | //#if 1 |
---|
5007 | #ifdef DEBUGF5 |
---|
5008 | Print("checking with: "); |
---|
5009 | pWrite(strat->sig[k]); |
---|
5010 | pWrite(pHead(strat->S[k])); |
---|
5011 | #endif |
---|
5012 | if (p_LmShortDivisibleBy(strat->sig[k], strat->sevSig[k], sig, not_sevSig, currRing)) |
---|
5013 | //if (p_LmEqual(strat->sig[k], sig, currRing)) |
---|
5014 | { |
---|
5015 | //#if 1 |
---|
5016 | #ifdef DEBUGF5 |
---|
5017 | printf("DELETE!\n"); |
---|
5018 | #endif |
---|
5019 | return TRUE; |
---|
5020 | } |
---|
5021 | } |
---|
5022 | #ifdef DEBUGF5 |
---|
5023 | Print("ALL ELEMENTS OF S\n----------------------------------------\n"); |
---|
5024 | for(int kk = 0; kk<strat->sl+1; kk++) |
---|
5025 | { |
---|
5026 | pWrite(pHead(strat->S[kk])); |
---|
5027 | } |
---|
5028 | Print("------------------------------\n"); |
---|
5029 | #endif |
---|
5030 | return FALSE; |
---|
5031 | } |
---|
5032 | |
---|
5033 | /* |
---|
5034 | * REWRITTEN CRITERION for signature-based standard basis algorithms |
---|
5035 | *************************************************************************** |
---|
5036 | * TODO:This should become the version of Arri/Perry resp. Bjarke/Stillman * |
---|
5037 | *************************************************************************** |
---|
5038 | */ |
---|
5039 | |
---|
5040 | // real implementation of arri's rewritten criterion, only called once in |
---|
5041 | // kstd2.cc, right before starting reduction |
---|
5042 | // IDEA: Arri says that it is enough to consider 1 polynomial for each unique |
---|
5043 | // signature appearing during the computations. Thus we first of all go |
---|
5044 | // through strat->L and delete all other pairs of the same signature, |
---|
5045 | // keeping only the one with least possible leading monomial. After this |
---|
5046 | // we check if we really need to compute this critical pair at all: There |
---|
5047 | // can be elements already in strat->S whose signatures divide the |
---|
5048 | // signature of the critical pair in question and whose multiplied |
---|
5049 | // leading monomials are smaller than the leading monomial of the |
---|
5050 | // critical pair. In this situation we can discard the critical pair |
---|
5051 | // completely. |
---|
5052 | BOOLEAN arriRewCriterion(poly sig, unsigned long /*not_sevSig*/, kStrategy strat, int start=0) |
---|
5053 | { |
---|
5054 | //printf("Arri Rewritten Criterion\n"); |
---|
5055 | while (strat->Ll > 0 && pLmEqual(strat->L[strat->Ll].sig,strat->P.sig)) |
---|
5056 | { |
---|
5057 | // deletes the short spoly |
---|
5058 | #ifdef HAVE_RINGS |
---|
5059 | if (rField_is_Ring(currRing)) |
---|
5060 | pLmDelete(strat->L[strat->Ll].p); |
---|
5061 | else |
---|
5062 | #endif |
---|
5063 | pLmFree(strat->L[strat->Ll].p); |
---|
5064 | |
---|
5065 | // TODO: needs some masking |
---|
5066 | // TODO: masking needs to vanish once the signature |
---|
5067 | // sutff is completely implemented |
---|
5068 | strat->L[strat->Ll].p = NULL; |
---|
5069 | poly m1 = NULL, m2 = NULL; |
---|
5070 | |
---|
5071 | // check that spoly creation is ok |
---|
5072 | while (strat->tailRing != currRing && |
---|
5073 | !kCheckSpolyCreation(&(strat->L[strat->Ll]), strat, m1, m2)) |
---|
5074 | { |
---|
5075 | assume(m1 == NULL && m2 == NULL); |
---|
5076 | // if not, change to a ring where exponents are at least |
---|
5077 | // large enough |
---|
5078 | if (!kStratChangeTailRing(strat)) |
---|
5079 | { |
---|
5080 | WerrorS("OVERFLOW..."); |
---|
5081 | break; |
---|
5082 | } |
---|
5083 | } |
---|
5084 | // create the real one |
---|
5085 | ksCreateSpoly(&(strat->L[strat->Ll]), NULL, strat->use_buckets, |
---|
5086 | strat->tailRing, m1, m2, strat->R); |
---|
5087 | if (strat->P.GetLmCurrRing() == NULL) |
---|
5088 | { |
---|
5089 | deleteInL(strat->L,&strat->Ll,strat->Ll,strat); |
---|
5090 | } |
---|
5091 | if (strat->L[strat->Ll].GetLmCurrRing() == NULL) |
---|
5092 | { |
---|
5093 | strat->P.Delete(); |
---|
5094 | strat->P = strat->L[strat->Ll]; |
---|
5095 | strat->Ll--; |
---|
5096 | } |
---|
5097 | |
---|
5098 | if (strat->P.GetLmCurrRing() != NULL && strat->L[strat->Ll].GetLmCurrRing() != NULL) |
---|
5099 | { |
---|
5100 | if (pLmCmp(strat->P.GetLmCurrRing(),strat->L[strat->Ll].GetLmCurrRing()) == -1) |
---|
5101 | { |
---|
5102 | deleteInL(strat->L,&strat->Ll,strat->Ll,strat); |
---|
5103 | } |
---|
5104 | else |
---|
5105 | { |
---|
5106 | strat->P.Delete(); |
---|
5107 | strat->P = strat->L[strat->Ll]; |
---|
5108 | strat->Ll--; |
---|
5109 | } |
---|
5110 | } |
---|
5111 | } |
---|
5112 | for (int ii=strat->sl; ii>-1; ii--) |
---|
5113 | { |
---|
5114 | if (p_LmShortDivisibleBy(strat->sig[ii], strat->sevSig[ii], strat->P.sig, ~strat->P.sevSig, currRing)) |
---|
5115 | { |
---|
5116 | if (!(pLmCmp(ppMult_mm(strat->P.sig,pHead(strat->S[ii])),ppMult_mm(strat->sig[ii],strat->P.GetLmCurrRing())) == 1)) |
---|
5117 | { |
---|
5118 | strat->P.Delete(); |
---|
5119 | return TRUE; |
---|
5120 | } |
---|
5121 | } |
---|
5122 | } |
---|
5123 | return FALSE; |
---|
5124 | } |
---|
5125 | |
---|
5126 | /*************************************************************** |
---|
5127 | * |
---|
5128 | * Tail reductions |
---|
5129 | * |
---|
5130 | ***************************************************************/ |
---|
5131 | TObject* |
---|
5132 | kFindDivisibleByInS(kStrategy strat, int pos, LObject* L, TObject *T, |
---|
5133 | long ecart) |
---|
5134 | { |
---|
5135 | int j = 0; |
---|
5136 | const unsigned long not_sev = ~L->sev; |
---|
5137 | const unsigned long* sev = strat->sevS; |
---|
5138 | poly p; |
---|
5139 | ring r; |
---|
5140 | L->GetLm(p, r); |
---|
5141 | |
---|
5142 | assume(~not_sev == p_GetShortExpVector(p, r)); |
---|
5143 | |
---|
5144 | if (r == currRing) |
---|
5145 | { |
---|
5146 | loop |
---|
5147 | { |
---|
5148 | if (j > pos) return NULL; |
---|
5149 | #if defined(PDEBUG) || defined(PDIV_DEBUG) |
---|
5150 | if (p_LmShortDivisibleBy(strat->S[j], sev[j], p, not_sev, r) && |
---|
5151 | (ecart== LONG_MAX || ecart>= strat->ecartS[j])) |
---|
5152 | break; |
---|
5153 | #else |
---|
5154 | if (!(sev[j] & not_sev) && |
---|
5155 | (ecart== LONG_MAX || ecart>= strat->ecartS[j]) && |
---|
5156 | p_LmDivisibleBy(strat->S[j], p, r)) |
---|
5157 | break; |
---|
5158 | |
---|
5159 | #endif |
---|
5160 | j++; |
---|
5161 | } |
---|
5162 | // if called from NF, T objects do not exist: |
---|
5163 | if (strat->tl < 0 || strat->S_2_R[j] == -1) |
---|
5164 | { |
---|
5165 | T->Set(strat->S[j], r, strat->tailRing); |
---|
5166 | return T; |
---|
5167 | } |
---|
5168 | else |
---|
5169 | { |
---|
5170 | ///// assume (j >= 0 && j <= strat->tl && strat->S_2_T(j) != NULL |
---|
5171 | ///// && strat->S_2_T(j)->p == strat->S[j]); // wrong? |
---|
5172 | // assume (j >= 0 && j <= strat->sl && strat->S_2_T(j) != NULL && strat->S_2_T(j)->p == strat->S[j]); |
---|
5173 | return strat->S_2_T(j); |
---|
5174 | } |
---|
5175 | } |
---|
5176 | else |
---|
5177 | { |
---|
5178 | TObject* t; |
---|
5179 | loop |
---|
5180 | { |
---|
5181 | if (j > pos) return NULL; |
---|
5182 | assume(strat->S_2_R[j] != -1); |
---|
5183 | #if defined(PDEBUG) || defined(PDIV_DEBUG) |
---|
5184 | t = strat->S_2_T(j); |
---|
5185 | assume(t != NULL && t->t_p != NULL && t->tailRing == r); |
---|
5186 | if (p_LmShortDivisibleBy(t->t_p, sev[j], p, not_sev, r) && |
---|
5187 | (ecart== LONG_MAX || ecart>= strat->ecartS[j])) |
---|
5188 | return t; |
---|
5189 | #else |
---|
5190 | if (! (sev[j] & not_sev) && (ecart== LONG_MAX || ecart>= strat->ecartS[j])) |
---|
5191 | { |
---|
5192 | t = strat->S_2_T(j); |
---|
5193 | assume(t != NULL && t->t_p != NULL && t->tailRing == r && t->p == strat->S[j]); |
---|
5194 | if (p_LmDivisibleBy(t->t_p, p, r)) return t; |
---|
5195 | } |
---|
5196 | #endif |
---|
5197 | j++; |
---|
5198 | } |
---|
5199 | } |
---|
5200 | } |
---|
5201 | |
---|
5202 | poly redtail (LObject* L, int pos, kStrategy strat) |
---|
5203 | { |
---|
5204 | poly h, hn; |
---|
5205 | strat->redTailChange=FALSE; |
---|
5206 | |
---|
5207 | poly p = L->p; |
---|
5208 | if (strat->noTailReduction || pNext(p) == NULL) |
---|
5209 | return p; |
---|
5210 | |
---|
5211 | LObject Ln(strat->tailRing); |
---|
5212 | TObject* With; |
---|
5213 | // placeholder in case strat->tl < 0 |
---|
5214 | TObject With_s(strat->tailRing); |
---|
5215 | h = p; |
---|
5216 | hn = pNext(h); |
---|
5217 | long op = strat->tailRing->pFDeg(hn, strat->tailRing); |
---|
5218 | long e; |
---|
5219 | int l; |
---|
5220 | BOOLEAN save_HE=strat->kHEdgeFound; |
---|
5221 | strat->kHEdgeFound |= |
---|
5222 | ((Kstd1_deg>0) && (op<=Kstd1_deg)) || TEST_OPT_INFREDTAIL; |
---|
5223 | |
---|
5224 | while(hn != NULL) |
---|
5225 | { |
---|
5226 | op = strat->tailRing->pFDeg(hn, strat->tailRing); |
---|
5227 | if ((Kstd1_deg>0)&&(op>Kstd1_deg)) goto all_done; |
---|
5228 | e = strat->tailRing->pLDeg(hn, &l, strat->tailRing) - op; |
---|
5229 | loop |
---|
5230 | { |
---|
5231 | Ln.Set(hn, strat->tailRing); |
---|
5232 | Ln.sev = p_GetShortExpVector(hn, strat->tailRing); |
---|
5233 | if (strat->kHEdgeFound) |
---|
5234 | With = kFindDivisibleByInS(strat, pos, &Ln, &With_s); |
---|
5235 | else |
---|
5236 | With = kFindDivisibleByInS(strat, pos, &Ln, &With_s, e); |
---|
5237 | if (With == NULL) break; |
---|
5238 | With->length=0; |
---|
5239 | With->pLength=0; |
---|
5240 | strat->redTailChange=TRUE; |
---|
5241 | if (ksReducePolyTail(L, With, h, strat->kNoetherTail())) |
---|
5242 | { |
---|
5243 | // reducing the tail would violate the exp bound |
---|
5244 | if (kStratChangeTailRing(strat, L)) |
---|
5245 | { |
---|
5246 | strat->kHEdgeFound = save_HE; |
---|
5247 | return redtail(L, pos, strat); |
---|
5248 | } |
---|
5249 | else |
---|
5250 | return NULL; |
---|
5251 | } |
---|
5252 | hn = pNext(h); |
---|
5253 | if (hn == NULL) goto all_done; |
---|
5254 | op = strat->tailRing->pFDeg(hn, strat->tailRing); |
---|
5255 | if ((Kstd1_deg>0)&&(op>Kstd1_deg)) goto all_done; |
---|
5256 | e = strat->tailRing->pLDeg(hn, &l, strat->tailRing) - op; |
---|
5257 | } |
---|
5258 | h = hn; |
---|
5259 | hn = pNext(h); |
---|
5260 | } |
---|
5261 | |
---|
5262 | all_done: |
---|
5263 | if (strat->redTailChange) |
---|
5264 | { |
---|
5265 | L->pLength = 0; |
---|
5266 | } |
---|
5267 | strat->kHEdgeFound = save_HE; |
---|
5268 | return p; |
---|
5269 | } |
---|
5270 | |
---|
5271 | poly redtail (poly p, int pos, kStrategy strat) |
---|
5272 | { |
---|
5273 | LObject L(p, currRing); |
---|
5274 | return redtail(&L, pos, strat); |
---|
5275 | } |
---|
5276 | |
---|
5277 | poly redtailBba (LObject* L, int pos, kStrategy strat, BOOLEAN withT, BOOLEAN normalize) |
---|
5278 | { |
---|
5279 | #define REDTAIL_CANONICALIZE 100 |
---|
5280 | strat->redTailChange=FALSE; |
---|
5281 | if (strat->noTailReduction) return L->GetLmCurrRing(); |
---|
5282 | poly h, p; |
---|
5283 | p = h = L->GetLmTailRing(); |
---|
5284 | if ((h==NULL) || (pNext(h)==NULL)) |
---|
5285 | return L->GetLmCurrRing(); |
---|
5286 | |
---|
5287 | TObject* With; |
---|
5288 | // placeholder in case strat->tl < 0 |
---|
5289 | TObject With_s(strat->tailRing); |
---|
5290 | |
---|
5291 | LObject Ln(pNext(h), strat->tailRing); |
---|
5292 | Ln.pLength = L->GetpLength() - 1; |
---|
5293 | |
---|
5294 | pNext(h) = NULL; |
---|
5295 | if (L->p != NULL) pNext(L->p) = NULL; |
---|
5296 | L->pLength = 1; |
---|
5297 | |
---|
5298 | Ln.PrepareRed(strat->use_buckets); |
---|
5299 | |
---|
5300 | int cnt=REDTAIL_CANONICALIZE; |
---|
5301 | while(!Ln.IsNull()) |
---|
5302 | { |
---|
5303 | loop |
---|
5304 | { |
---|
5305 | Ln.SetShortExpVector(); |
---|
5306 | if (withT) |
---|
5307 | { |
---|
5308 | int j; |
---|
5309 | j = kFindDivisibleByInT(strat->T, strat->sevT, strat->tl, &Ln); |
---|
5310 | if (j < 0) break; |
---|
5311 | With = &(strat->T[j]); |
---|
5312 | } |
---|
5313 | else |
---|
5314 | { |
---|
5315 | With = kFindDivisibleByInS(strat, pos, &Ln, &With_s); |
---|
5316 | if (With == NULL) break; |
---|
5317 | } |
---|
5318 | cnt--; |
---|
5319 | if (cnt==0) |
---|
5320 | { |
---|
5321 | cnt=REDTAIL_CANONICALIZE; |
---|
5322 | /*poly tmp=*/Ln.CanonicalizeP(); |
---|
5323 | if (normalize) |
---|
5324 | { |
---|
5325 | Ln.Normalize(); |
---|
5326 | //pNormalize(tmp); |
---|
5327 | //if (TEST_OPT_PROT) { PrintS("n"); mflush(); } |
---|
5328 | } |
---|
5329 | } |
---|
5330 | if (normalize && (!TEST_OPT_INTSTRATEGY) && (!nIsOne(pGetCoeff(With->p)))) |
---|
5331 | { |
---|
5332 | With->pNorm(); |
---|
5333 | } |
---|
5334 | strat->redTailChange=TRUE; |
---|
5335 | if (ksReducePolyTail(L, With, &Ln)) |
---|
5336 | { |
---|
5337 | // reducing the tail would violate the exp bound |
---|
5338 | // set a flag and hope for a retry (in bba) |
---|
5339 | strat->completeReduce_retry=TRUE; |
---|
5340 | if ((Ln.p != NULL) && (Ln.t_p != NULL)) Ln.p=NULL; |
---|
5341 | do |
---|
5342 | { |
---|
5343 | pNext(h) = Ln.LmExtractAndIter(); |
---|
5344 | pIter(h); |
---|
5345 | L->pLength++; |
---|
5346 | } while (!Ln.IsNull()); |
---|
5347 | goto all_done; |
---|
5348 | } |
---|
5349 | if (Ln.IsNull()) goto all_done; |
---|
5350 | if (! withT) With_s.Init(currRing); |
---|
5351 | } |
---|
5352 | pNext(h) = Ln.LmExtractAndIter(); |
---|
5353 | pIter(h); |
---|
5354 | pNormalize(h); |
---|
5355 | L->pLength++; |
---|
5356 | } |
---|
5357 | |
---|
5358 | all_done: |
---|
5359 | Ln.Delete(); |
---|
5360 | if (L->p != NULL) pNext(L->p) = pNext(p); |
---|
5361 | |
---|
5362 | if (strat->redTailChange) |
---|
5363 | { |
---|
5364 | L->length = 0; |
---|
5365 | } |
---|
5366 | |
---|
5367 | //if (TEST_OPT_PROT) { PrintS("N"); mflush(); } |
---|
5368 | //L->Normalize(); // HANNES: should have a test |
---|
5369 | kTest_L(L); |
---|
5370 | return L->GetLmCurrRing(); |
---|
5371 | } |
---|
5372 | |
---|
5373 | #ifdef HAVE_RINGS |
---|
5374 | poly redtailBba_Z (LObject* L, int pos, kStrategy strat ) |
---|
5375 | // normalize=FALSE, withT=FALSE, coeff=Z |
---|
5376 | { |
---|
5377 | strat->redTailChange=FALSE; |
---|
5378 | if (strat->noTailReduction) return L->GetLmCurrRing(); |
---|
5379 | poly h, p; |
---|
5380 | p = h = L->GetLmTailRing(); |
---|
5381 | if ((h==NULL) || (pNext(h)==NULL)) |
---|
5382 | return L->GetLmCurrRing(); |
---|
5383 | |
---|
5384 | TObject* With; |
---|
5385 | // placeholder in case strat->tl < 0 |
---|
5386 | TObject With_s(strat->tailRing); |
---|
5387 | |
---|
5388 | LObject Ln(pNext(h), strat->tailRing); |
---|
5389 | Ln.pLength = L->GetpLength() - 1; |
---|
5390 | |
---|
5391 | pNext(h) = NULL; |
---|
5392 | if (L->p != NULL) pNext(L->p) = NULL; |
---|
5393 | L->pLength = 1; |
---|
5394 | |
---|
5395 | Ln.PrepareRed(strat->use_buckets); |
---|
5396 | |
---|
5397 | int cnt=REDTAIL_CANONICALIZE; |
---|
5398 | while(!Ln.IsNull()) |
---|
5399 | { |
---|
5400 | loop |
---|
5401 | { |
---|
5402 | Ln.SetShortExpVector(); |
---|
5403 | With = kFindDivisibleByInS(strat, pos, &Ln, &With_s); |
---|
5404 | if (With == NULL) break; |
---|
5405 | cnt--; |
---|
5406 | if (cnt==0) |
---|
5407 | { |
---|
5408 | cnt=REDTAIL_CANONICALIZE; |
---|
5409 | /*poly tmp=*/Ln.CanonicalizeP(); |
---|
5410 | } |
---|
5411 | // we are in Z, do not call pNorm |
---|
5412 | strat->redTailChange=TRUE; |
---|
5413 | // test divisibility of coefs: |
---|
5414 | poly p_Ln=Ln.GetLmCurrRing(); |
---|
5415 | poly p_With=With->GetLmCurrRing(); |
---|
5416 | number z=n_IntMod(pGetCoeff(p_Ln),pGetCoeff(p_With), currRing->cf); |
---|
5417 | if (!nIsZero(z)) |
---|
5418 | { |
---|
5419 | // subtract z*Ln, add z.Ln to L |
---|
5420 | poly m=pHead(p_Ln); |
---|
5421 | pSetCoeff(m,z); |
---|
5422 | poly mm=pHead(m); |
---|
5423 | pNext(h) = m; |
---|
5424 | pIter(h); |
---|
5425 | L->pLength++; |
---|
5426 | mm=pNeg(mm); |
---|
5427 | if (Ln.bucket!=NULL) |
---|
5428 | { |
---|
5429 | int dummy=1; |
---|
5430 | kBucket_Add_q(Ln.bucket,mm,&dummy); |
---|
5431 | } |
---|
5432 | else |
---|
5433 | { |
---|
5434 | if (Ln.p!=NULL) Ln.p=pAdd(Ln.p,mm); |
---|
5435 | else if (Ln.t_p!=NULL) Ln.t_p=p_Add_q(Ln.t_p,mm,strat->tailRing); |
---|
5436 | } |
---|
5437 | } |
---|
5438 | else |
---|
5439 | nDelete(&z); |
---|
5440 | |
---|
5441 | if (ksReducePolyTail(L, With, &Ln)) |
---|
5442 | { |
---|
5443 | // reducing the tail would violate the exp bound |
---|
5444 | // set a flag and hope for a retry (in bba) |
---|
5445 | strat->completeReduce_retry=TRUE; |
---|
5446 | if ((Ln.p != NULL) && (Ln.t_p != NULL)) Ln.p=NULL; |
---|
5447 | do |
---|
5448 | { |
---|
5449 | pNext(h) = Ln.LmExtractAndIter(); |
---|
5450 | pIter(h); |
---|
5451 | L->pLength++; |
---|
5452 | } while (!Ln.IsNull()); |
---|
5453 | goto all_done; |
---|
5454 | } |
---|
5455 | if (Ln.IsNull()) goto all_done; |
---|
5456 | With_s.Init(currRing); |
---|
5457 | } |
---|
5458 | pNext(h) = Ln.LmExtractAndIter(); |
---|
5459 | pIter(h); |
---|
5460 | pNormalize(h); |
---|
5461 | L->pLength++; |
---|
5462 | } |
---|
5463 | |
---|
5464 | all_done: |
---|
5465 | Ln.Delete(); |
---|
5466 | if (L->p != NULL) pNext(L->p) = pNext(p); |
---|
5467 | |
---|
5468 | if (strat->redTailChange) |
---|
5469 | { |
---|
5470 | L->length = 0; |
---|
5471 | } |
---|
5472 | |
---|
5473 | //if (TEST_OPT_PROT) { PrintS("N"); mflush(); } |
---|
5474 | //L->Normalize(); // HANNES: should have a test |
---|
5475 | kTest_L(L); |
---|
5476 | return L->GetLmCurrRing(); |
---|
5477 | } |
---|
5478 | #endif |
---|
5479 | |
---|
5480 | /*2 |
---|
5481 | *checks the change degree and write progress report |
---|
5482 | */ |
---|
5483 | void message (int i,int* reduc,int* olddeg,kStrategy strat, int red_result) |
---|
5484 | { |
---|
5485 | if (i != *olddeg) |
---|
5486 | { |
---|
5487 | Print("%d",i); |
---|
5488 | *olddeg = i; |
---|
5489 | } |
---|
5490 | if (TEST_OPT_OLDSTD) |
---|
5491 | { |
---|
5492 | if (strat->Ll != *reduc) |
---|
5493 | { |
---|
5494 | if (strat->Ll != *reduc-1) |
---|
5495 | Print("(%d)",strat->Ll+1); |
---|
5496 | else |
---|
5497 | PrintS("-"); |
---|
5498 | *reduc = strat->Ll; |
---|
5499 | } |
---|
5500 | else |
---|
5501 | PrintS("."); |
---|
5502 | mflush(); |
---|
5503 | } |
---|
5504 | else |
---|
5505 | { |
---|
5506 | if (red_result == 0) |
---|
5507 | PrintS("-"); |
---|
5508 | else if (red_result < 0) |
---|
5509 | PrintS("."); |
---|
5510 | if ((red_result > 0) || ((strat->Ll % 100)==99)) |
---|
5511 | { |
---|
5512 | if (strat->Ll != *reduc && strat->Ll > 0) |
---|
5513 | { |
---|
5514 | Print("(%d)",strat->Ll+1); |
---|
5515 | *reduc = strat->Ll; |
---|
5516 | } |
---|
5517 | } |
---|
5518 | } |
---|
5519 | } |
---|
5520 | |
---|
5521 | /*2 |
---|
5522 | *statistics |
---|
5523 | */ |
---|
5524 | void messageStat (int hilbcount,kStrategy strat) |
---|
5525 | { |
---|
5526 | //PrintS("\nUsage/Allocation of temporary storage:\n"); |
---|
5527 | //Print("%d/%d polynomials in standard base\n",srmax,IDELEMS(Shdl)); |
---|
5528 | //Print("%d/%d polynomials in set L (for lazy alg.)",lrmax+1,strat->Lmax); |
---|
5529 | Print("product criterion:%d chain criterion:%d\n",strat->cp,strat->c3); |
---|
5530 | if (hilbcount!=0) Print("hilbert series criterion:%d\n",hilbcount); |
---|
5531 | /* in usual case strat->cv is 0, it gets changed only in shift routines */ |
---|
5532 | if (strat->cv!=0) Print("shift V criterion:%d\n",strat->cv); |
---|
5533 | /*mflush();*/ |
---|
5534 | } |
---|
5535 | |
---|
5536 | #ifdef KDEBUG |
---|
5537 | /*2 |
---|
5538 | *debugging output: all internal sets, if changed |
---|
5539 | *for testing purpuse only/has to be changed for later use |
---|
5540 | */ |
---|
5541 | void messageSets (kStrategy strat) |
---|
5542 | { |
---|
5543 | int i; |
---|
5544 | if (strat->news) |
---|
5545 | { |
---|
5546 | PrintS("set S"); |
---|
5547 | for (i=0; i<=strat->sl; i++) |
---|
5548 | { |
---|
5549 | Print("\n %d:",i); |
---|
5550 | p_wrp(strat->S[i], currRing, strat->tailRing); |
---|
5551 | } |
---|
5552 | strat->news = FALSE; |
---|
5553 | } |
---|
5554 | if (strat->newt) |
---|
5555 | { |
---|
5556 | PrintS("\nset T"); |
---|
5557 | for (i=0; i<=strat->tl; i++) |
---|
5558 | { |
---|
5559 | Print("\n %d:",i); |
---|
5560 | strat->T[i].wrp(); |
---|
5561 | Print(" o:%ld e:%d l:%d", |
---|
5562 | strat->T[i].pFDeg(),strat->T[i].ecart,strat->T[i].length); |
---|
5563 | } |
---|
5564 | strat->newt = FALSE; |
---|
5565 | } |
---|
5566 | PrintS("\nset L"); |
---|
5567 | for (i=strat->Ll; i>=0; i--) |
---|
5568 | { |
---|
5569 | Print("\n%d:",i); |
---|
5570 | p_wrp(strat->L[i].p1, currRing, strat->tailRing); |
---|
5571 | PrintS(" "); |
---|
5572 | p_wrp(strat->L[i].p2, currRing, strat->tailRing); |
---|
5573 | PrintS(" lcm: ");p_wrp(strat->L[i].lcm, currRing); |
---|
5574 | PrintS("\n p : "); |
---|
5575 | strat->L[i].wrp(); |
---|
5576 | Print(" o:%ld e:%d l:%d", |
---|
5577 | strat->L[i].pFDeg(),strat->L[i].ecart,strat->L[i].length); |
---|
5578 | } |
---|
5579 | PrintLn(); |
---|
5580 | } |
---|
5581 | |
---|
5582 | #endif |
---|
5583 | |
---|
5584 | |
---|
5585 | /*2 |
---|
5586 | *construct the set s from F |
---|
5587 | */ |
---|
5588 | void initS (ideal F, ideal Q, kStrategy strat) |
---|
5589 | { |
---|
5590 | int i,pos; |
---|
5591 | |
---|
5592 | if (Q!=NULL) i=((IDELEMS(F)+IDELEMS(Q)+(setmaxTinc-1))/setmaxTinc)*setmaxTinc; |
---|
5593 | else i=((IDELEMS(F)+(setmaxTinc-1))/setmaxTinc)*setmaxTinc; |
---|
5594 | strat->ecartS=initec(i); |
---|
5595 | strat->sevS=initsevS(i); |
---|
5596 | strat->S_2_R=initS_2_R(i); |
---|
5597 | strat->fromQ=NULL; |
---|
5598 | strat->Shdl=idInit(i,F->rank); |
---|
5599 | strat->S=strat->Shdl->m; |
---|
5600 | /*- put polys into S -*/ |
---|
5601 | if (Q!=NULL) |
---|
5602 | { |
---|
5603 | strat->fromQ=initec(i); |
---|
5604 | memset(strat->fromQ,0,i*sizeof(int)); |
---|
5605 | for (i=0; i<IDELEMS(Q); i++) |
---|
5606 | { |
---|
5607 | if (Q->m[i]!=NULL) |
---|
5608 | { |
---|
5609 | LObject h; |
---|
5610 | h.p = pCopy(Q->m[i]); |
---|
5611 | if (TEST_OPT_INTSTRATEGY) |
---|
5612 | { |
---|
5613 | //pContent(h.p); |
---|
5614 | h.pCleardenom(); // also does a pContent |
---|
5615 | } |
---|
5616 | else |
---|
5617 | { |
---|
5618 | h.pNorm(); |
---|
5619 | } |
---|
5620 | if (currRing->OrdSgn==-1) |
---|
5621 | { |
---|
5622 | deleteHC(&h, strat); |
---|
5623 | } |
---|
5624 | if (h.p!=NULL) |
---|
5625 | { |
---|
5626 | strat->initEcart(&h); |
---|
5627 | if (strat->sl==-1) |
---|
5628 | pos =0; |
---|
5629 | else |
---|
5630 | { |
---|
5631 | pos = posInS(strat,strat->sl,h.p,h.ecart); |
---|
5632 | } |
---|
5633 | h.sev = pGetShortExpVector(h.p); |
---|
5634 | strat->enterS(h,pos,strat,-1); |
---|
5635 | strat->fromQ[pos]=1; |
---|
5636 | } |
---|
5637 | } |
---|
5638 | } |
---|
5639 | } |
---|
5640 | for (i=0; i<IDELEMS(F); i++) |
---|
5641 | { |
---|
5642 | if (F->m[i]!=NULL) |
---|
5643 | { |
---|
5644 | LObject h; |
---|
5645 | h.p = pCopy(F->m[i]); |
---|
5646 | if (currRing->OrdSgn==-1) |
---|
5647 | { |
---|
5648 | cancelunit(&h); /*- tries to cancel a unit -*/ |
---|
5649 | deleteHC(&h, strat); |
---|
5650 | } |
---|
5651 | if (h.p!=NULL) |
---|
5652 | // do not rely on the input being a SB! |
---|
5653 | { |
---|
5654 | if (TEST_OPT_INTSTRATEGY) |
---|
5655 | { |
---|
5656 | //pContent(h.p); |
---|
5657 | h.pCleardenom(); // also does a pContent |
---|
5658 | } |
---|
5659 | else |
---|
5660 | { |
---|
5661 | h.pNorm(); |
---|
5662 | } |
---|
5663 | strat->initEcart(&h); |
---|
5664 | if (strat->sl==-1) |
---|
5665 | pos =0; |
---|
5666 | else |
---|
5667 | pos = posInS(strat,strat->sl,h.p,h.ecart); |
---|
5668 | h.sev = pGetShortExpVector(h.p); |
---|
5669 | strat->enterS(h,pos,strat,-1); |
---|
5670 | } |
---|
5671 | } |
---|
5672 | } |
---|
5673 | /*- test, if a unit is in F -*/ |
---|
5674 | if ((strat->sl>=0) |
---|
5675 | #ifdef HAVE_RINGS |
---|
5676 | && n_IsUnit(pGetCoeff(strat->S[0]),currRing->cf) |
---|
5677 | #endif |
---|
5678 | && pIsConstant(strat->S[0])) |
---|
5679 | { |
---|
5680 | while (strat->sl>0) deleteInS(strat->sl,strat); |
---|
5681 | } |
---|
5682 | } |
---|
5683 | |
---|
5684 | void initSL (ideal F, ideal Q,kStrategy strat) |
---|
5685 | { |
---|
5686 | int i,pos; |
---|
5687 | |
---|
5688 | if (Q!=NULL) i=((IDELEMS(Q)+(setmaxTinc-1))/setmaxTinc)*setmaxTinc; |
---|
5689 | else i=setmaxT; |
---|
5690 | strat->ecartS=initec(i); |
---|
5691 | strat->sevS=initsevS(i); |
---|
5692 | strat->S_2_R=initS_2_R(i); |
---|
5693 | strat->fromQ=NULL; |
---|
5694 | strat->Shdl=idInit(i,F->rank); |
---|
5695 | strat->S=strat->Shdl->m; |
---|
5696 | /*- put polys into S -*/ |
---|
5697 | if (Q!=NULL) |
---|
5698 | { |
---|
5699 | strat->fromQ=initec(i); |
---|
5700 | memset(strat->fromQ,0,i*sizeof(int)); |
---|
5701 | for (i=0; i<IDELEMS(Q); i++) |
---|
5702 | { |
---|
5703 | if (Q->m[i]!=NULL) |
---|
5704 | { |
---|
5705 | LObject h; |
---|
5706 | h.p = pCopy(Q->m[i]); |
---|
5707 | if (currRing->OrdSgn==-1) |
---|
5708 | { |
---|
5709 | deleteHC(&h,strat); |
---|
5710 | } |
---|
5711 | if (TEST_OPT_INTSTRATEGY) |
---|
5712 | { |
---|
5713 | //pContent(h.p); |
---|
5714 | h.pCleardenom(); // also does a pContent |
---|
5715 | } |
---|
5716 | else |
---|
5717 | { |
---|
5718 | h.pNorm(); |
---|
5719 | } |
---|
5720 | if (h.p!=NULL) |
---|
5721 | { |
---|
5722 | strat->initEcart(&h); |
---|
5723 | if (strat->sl==-1) |
---|
5724 | pos =0; |
---|
5725 | else |
---|
5726 | { |
---|
5727 | pos = posInS(strat,strat->sl,h.p,h.ecart); |
---|
5728 | } |
---|
5729 | h.sev = pGetShortExpVector(h.p); |
---|
5730 | strat->enterS(h,pos,strat,-1); |
---|
5731 | strat->fromQ[pos]=1; |
---|
5732 | } |
---|
5733 | } |
---|
5734 | } |
---|
5735 | } |
---|
5736 | for (i=0; i<IDELEMS(F); i++) |
---|
5737 | { |
---|
5738 | if (F->m[i]!=NULL) |
---|
5739 | { |
---|
5740 | LObject h; |
---|
5741 | h.p = pCopy(F->m[i]); |
---|
5742 | if (h.p!=NULL) |
---|
5743 | { |
---|
5744 | if (currRing->OrdSgn==-1) |
---|
5745 | { |
---|
5746 | cancelunit(&h); /*- tries to cancel a unit -*/ |
---|
5747 | deleteHC(&h, strat); |
---|
5748 | } |
---|
5749 | if (h.p!=NULL) |
---|
5750 | { |
---|
5751 | if (TEST_OPT_INTSTRATEGY) |
---|
5752 | { |
---|
5753 | //pContent(h.p); |
---|
5754 | h.pCleardenom(); // also does a pContent |
---|
5755 | } |
---|
5756 | else |
---|
5757 | { |
---|
5758 | h.pNorm(); |
---|
5759 | } |
---|
5760 | strat->initEcart(&h); |
---|
5761 | if (strat->Ll==-1) |
---|
5762 | pos =0; |
---|
5763 | else |
---|
5764 | pos = strat->posInL(strat->L,strat->Ll,&h,strat); |
---|
5765 | h.sev = pGetShortExpVector(h.p); |
---|
5766 | enterL(&strat->L,&strat->Ll,&strat->Lmax,h,pos); |
---|
5767 | } |
---|
5768 | } |
---|
5769 | } |
---|
5770 | } |
---|
5771 | /*- test, if a unit is in F -*/ |
---|
5772 | |
---|
5773 | if ((strat->Ll>=0) |
---|
5774 | #ifdef HAVE_RINGS |
---|
5775 | && n_IsUnit(pGetCoeff(strat->L[strat->Ll].p), currRing->cf) |
---|
5776 | #endif |
---|
5777 | && pIsConstant(strat->L[strat->Ll].p)) |
---|
5778 | { |
---|
5779 | while (strat->Ll>0) deleteInL(strat->L,&strat->Ll,strat->Ll-1,strat); |
---|
5780 | } |
---|
5781 | } |
---|
5782 | |
---|
5783 | void initSLSba (ideal F, ideal Q,kStrategy strat) |
---|
5784 | { |
---|
5785 | int i,pos; |
---|
5786 | if (Q!=NULL) i=((IDELEMS(Q)+(setmaxTinc-1))/setmaxTinc)*setmaxTinc; |
---|
5787 | else i=setmaxT; |
---|
5788 | strat->ecartS = initec(i); |
---|
5789 | strat->fromS = initec(i); |
---|
5790 | strat->sevS = initsevS(i); |
---|
5791 | strat->sevSig = initsevS(i); |
---|
5792 | strat->S_2_R = initS_2_R(i); |
---|
5793 | strat->fromQ = NULL; |
---|
5794 | strat->Shdl = idInit(i,F->rank); |
---|
5795 | strat->S = strat->Shdl->m; |
---|
5796 | strat->sig = (poly *)omAlloc0(i*sizeof(poly)); |
---|
5797 | if (!strat->incremental) |
---|
5798 | { |
---|
5799 | strat->syz = (poly *)omAlloc0(i*sizeof(poly)); |
---|
5800 | strat->sevSyz = initsevS(i); |
---|
5801 | strat->syzmax = i; |
---|
5802 | strat->syzl = 0; |
---|
5803 | } |
---|
5804 | /*- put polys into S -*/ |
---|
5805 | if (Q!=NULL) |
---|
5806 | { |
---|
5807 | strat->fromQ=initec(i); |
---|
5808 | memset(strat->fromQ,0,i*sizeof(int)); |
---|
5809 | for (i=0; i<IDELEMS(Q); i++) |
---|
5810 | { |
---|
5811 | if (Q->m[i]!=NULL) |
---|
5812 | { |
---|
5813 | LObject h; |
---|
5814 | h.p = pCopy(Q->m[i]); |
---|
5815 | if (currRing->OrdSgn==-1) |
---|
5816 | { |
---|
5817 | deleteHC(&h,strat); |
---|
5818 | } |
---|
5819 | if (TEST_OPT_INTSTRATEGY) |
---|
5820 | { |
---|
5821 | //pContent(h.p); |
---|
5822 | h.pCleardenom(); // also does a pContent |
---|
5823 | } |
---|
5824 | else |
---|
5825 | { |
---|
5826 | h.pNorm(); |
---|
5827 | } |
---|
5828 | if (h.p!=NULL) |
---|
5829 | { |
---|
5830 | strat->initEcart(&h); |
---|
5831 | if (strat->sl==-1) |
---|
5832 | pos =0; |
---|
5833 | else |
---|
5834 | { |
---|
5835 | pos = posInS(strat,strat->sl,h.p,h.ecart); |
---|
5836 | } |
---|
5837 | h.sev = pGetShortExpVector(h.p); |
---|
5838 | strat->enterS(h,pos,strat,-1); |
---|
5839 | strat->fromQ[pos]=1; |
---|
5840 | } |
---|
5841 | } |
---|
5842 | } |
---|
5843 | } |
---|
5844 | for (i=0; i<IDELEMS(F); i++) |
---|
5845 | { |
---|
5846 | if (F->m[i]!=NULL) |
---|
5847 | { |
---|
5848 | LObject h; |
---|
5849 | h.p = pCopy(F->m[i]); |
---|
5850 | h.sig = pOne(); |
---|
5851 | //h.sig = pInit(); |
---|
5852 | //p_SetCoeff(h.sig,nInit(1),currRing); |
---|
5853 | p_SetComp(h.sig,i+1,currRing); |
---|
5854 | // if we are working with the Schreyer order we generate it |
---|
5855 | // by multiplying the initial signatures with the leading monomial |
---|
5856 | // of the corresponding initial polynomials generating the ideal |
---|
5857 | // => we can keep the underlying monomial order and get a Schreyer |
---|
5858 | // order without any bigger overhead |
---|
5859 | if (!strat->incremental) |
---|
5860 | { |
---|
5861 | p_ExpVectorAdd (h.sig,F->m[i],currRing); |
---|
5862 | } |
---|
5863 | h.sevSig = pGetShortExpVector(h.sig); |
---|
5864 | #ifdef DEBUGF5 |
---|
5865 | pWrite(h.p); |
---|
5866 | pWrite(h.sig); |
---|
5867 | #endif |
---|
5868 | if (h.p!=NULL) |
---|
5869 | { |
---|
5870 | if (currRing->OrdSgn==-1) |
---|
5871 | { |
---|
5872 | cancelunit(&h); /*- tries to cancel a unit -*/ |
---|
5873 | deleteHC(&h, strat); |
---|
5874 | } |
---|
5875 | if (h.p!=NULL) |
---|
5876 | { |
---|
5877 | if (TEST_OPT_INTSTRATEGY) |
---|
5878 | { |
---|
5879 | //pContent(h.p); |
---|
5880 | h.pCleardenom(); // also does a pContent |
---|
5881 | } |
---|
5882 | else |
---|
5883 | { |
---|
5884 | h.pNorm(); |
---|
5885 | } |
---|
5886 | strat->initEcart(&h); |
---|
5887 | if (strat->Ll==-1) |
---|
5888 | pos =0; |
---|
5889 | else |
---|
5890 | pos = strat->posInLSba(strat->L,strat->Ll,&h,strat); |
---|
5891 | h.sev = pGetShortExpVector(h.p); |
---|
5892 | enterL(&strat->L,&strat->Ll,&strat->Lmax,h,pos); |
---|
5893 | } |
---|
5894 | } |
---|
5895 | /* |
---|
5896 | if (!strat->incremental) |
---|
5897 | { |
---|
5898 | for(j=0;j<i;j++) |
---|
5899 | { |
---|
5900 | strat->syz[ctr] = pCopy(F->m[j]); |
---|
5901 | p_SetCompP(strat->syz[ctr],i+1,currRing); |
---|
5902 | // add LM(F->m[i]) to the signature to get a Schreyer order |
---|
5903 | // without changing the underlying polynomial ring at all |
---|
5904 | p_ExpVectorAdd (strat->syz[ctr],F->m[i],currRing); |
---|
5905 | // since p_Add_q() destroys all input |
---|
5906 | // data we need to recreate help |
---|
5907 | // each time |
---|
5908 | poly help = pCopy(F->m[i]); |
---|
5909 | p_SetCompP(help,j+1,currRing); |
---|
5910 | pWrite(strat->syz[ctr]); |
---|
5911 | pWrite(help); |
---|
5912 | printf("%d\n",pLmCmp(strat->syz[ctr],help)); |
---|
5913 | strat->syz[ctr] = p_Add_q(strat->syz[ctr],help,currRing); |
---|
5914 | printf("%d. SYZ ",ctr); |
---|
5915 | pWrite(strat->syz[ctr]); |
---|
5916 | strat->sevSyz[ctr] = p_GetShortExpVector(strat->syz[ctr],currRing); |
---|
5917 | ctr++; |
---|
5918 | } |
---|
5919 | strat->syzl = ps; |
---|
5920 | } |
---|
5921 | */ |
---|
5922 | } |
---|
5923 | } |
---|
5924 | /*- test, if a unit is in F -*/ |
---|
5925 | |
---|
5926 | if ((strat->Ll>=0) |
---|
5927 | #ifdef HAVE_RINGS |
---|
5928 | && n_IsUnit(pGetCoeff(strat->L[strat->Ll].p), currRing->cf) |
---|
5929 | #endif |
---|
5930 | && pIsConstant(strat->L[strat->Ll].p)) |
---|
5931 | { |
---|
5932 | while (strat->Ll>0) deleteInL(strat->L,&strat->Ll,strat->Ll-1,strat); |
---|
5933 | } |
---|
5934 | } |
---|
5935 | |
---|
5936 | void initSyzRules (kStrategy strat) |
---|
5937 | { |
---|
5938 | if( strat->S[0] ) |
---|
5939 | { |
---|
5940 | if( strat->S[1] ) |
---|
5941 | { |
---|
5942 | omFreeSize(strat->syzIdx,(strat->syzidxmax)*sizeof(int)); |
---|
5943 | omFreeSize(strat->sevSyz,(strat->syzmax)*sizeof(unsigned long)); |
---|
5944 | omFreeSize(strat->syz,(strat->syzmax)*sizeof(poly)); |
---|
5945 | } |
---|
5946 | int i, j, k, diff, comp, comp_old, ps=0, ctr=0; |
---|
5947 | /************************************************************ |
---|
5948 | * computing the length of the syzygy array needed |
---|
5949 | ***********************************************************/ |
---|
5950 | for(i=1; i<=strat->sl; i++) |
---|
5951 | { |
---|
5952 | if (pGetComp(strat->sig[i-1]) != pGetComp(strat->sig[i])) |
---|
5953 | { |
---|
5954 | ps += i; |
---|
5955 | } |
---|
5956 | } |
---|
5957 | ps += strat->sl+1; |
---|
5958 | //comp = pGetComp (strat->P.sig); |
---|
5959 | comp = strat->currIdx; |
---|
5960 | strat->syzIdx = initec(comp); |
---|
5961 | strat->sevSyz = initsevS(ps); |
---|
5962 | strat->syz = (poly *)omAlloc(ps*sizeof(poly)); |
---|
5963 | strat->syzl = strat->syzmax = ps; |
---|
5964 | strat->syzidxmax = comp; |
---|
5965 | #if defined(DEBUGF5) || defined(DEBUGF51) |
---|
5966 | printf("------------- GENERATING SYZ RULES NEW ---------------\n"); |
---|
5967 | #endif |
---|
5968 | i = 1; |
---|
5969 | j = 0; |
---|
5970 | /************************************************************ |
---|
5971 | * generating the leading terms of the principal syzygies |
---|
5972 | ***********************************************************/ |
---|
5973 | while (i <= strat->sl) |
---|
5974 | { |
---|
5975 | /********************************************************** |
---|
5976 | * principal syzygies start with component index 2 |
---|
5977 | * the array syzIdx starts with index 0 |
---|
5978 | * => the rules for a signature with component comp start |
---|
5979 | * at strat->syz[strat->syzIdx[comp-2]] ! |
---|
5980 | *********************************************************/ |
---|
5981 | if (pGetComp(strat->sig[i-1]) != pGetComp(strat->sig[i])) |
---|
5982 | { |
---|
5983 | comp = pGetComp(strat->sig[i]); |
---|
5984 | comp_old = pGetComp(strat->sig[i-1]); |
---|
5985 | diff = comp - comp_old - 1; |
---|
5986 | // diff should be zero, but sometimes also the initial generating |
---|
5987 | // elements of the input ideal reduce to zero. then there is an |
---|
5988 | // index-gap between the signatures. for these inbetween signatures we |
---|
5989 | // can safely set syzIdx[j] = 0 as no such element will be ever computed |
---|
5990 | // in the following. |
---|
5991 | // doing this, we keep the relation "j = comp - 2" alive, which makes |
---|
5992 | // jumps way easier when checking criteria |
---|
5993 | while (diff>0) |
---|
5994 | { |
---|
5995 | strat->syzIdx[j] = 0; |
---|
5996 | diff--; |
---|
5997 | j++; |
---|
5998 | } |
---|
5999 | strat->syzIdx[j] = ctr; |
---|
6000 | j++; |
---|
6001 | for (k = 0; k<i; k++) |
---|
6002 | { |
---|
6003 | poly p = pOne(); |
---|
6004 | pLcm(strat->S[k],strat->S[i],p); |
---|
6005 | strat->syz[ctr] = p; |
---|
6006 | p_SetCompP (strat->syz[ctr], comp, currRing); |
---|
6007 | poly q = p_Copy(p, currRing); |
---|
6008 | q = p_Neg (q, currRing); |
---|
6009 | p_SetCompP (q, p_GetComp(strat->sig[k], currRing), currRing); |
---|
6010 | strat->syz[ctr] = p_Add_q (strat->syz[ctr], q, currRing); |
---|
6011 | #if defined(DEBUGF5) || defined(DEBUGF51) |
---|
6012 | pWrite(strat->syz[ctr]); |
---|
6013 | #endif |
---|
6014 | strat->sevSyz[ctr] = p_GetShortExpVector(strat->syz[ctr],currRing); |
---|
6015 | ctr++; |
---|
6016 | } |
---|
6017 | } |
---|
6018 | i++; |
---|
6019 | } |
---|
6020 | /************************************************************** |
---|
6021 | * add syzygies for upcoming first element of new iteration step |
---|
6022 | **************************************************************/ |
---|
6023 | comp = strat->currIdx; |
---|
6024 | comp_old = pGetComp(strat->sig[i-1]); |
---|
6025 | diff = comp - comp_old - 1; |
---|
6026 | // diff should be zero, but sometimes also the initial generating |
---|
6027 | // elements of the input ideal reduce to zero. then there is an |
---|
6028 | // index-gap between the signatures. for these inbetween signatures we |
---|
6029 | // can safely set syzIdx[j] = 0 as no such element will be ever computed |
---|
6030 | // in the following. |
---|
6031 | // doing this, we keep the relation "j = comp - 2" alive, which makes |
---|
6032 | // jumps way easier when checking criteria |
---|
6033 | while (diff>0) |
---|
6034 | { |
---|
6035 | strat->syzIdx[j] = 0; |
---|
6036 | diff--; |
---|
6037 | j++; |
---|
6038 | } |
---|
6039 | strat->syzIdx[j] = ctr; |
---|
6040 | for (k = 0; k<strat->sl+1; k++) |
---|
6041 | { |
---|
6042 | strat->syz[ctr] = p_Copy (pHead(strat->S[k]), currRing); |
---|
6043 | p_SetCompP (strat->syz[ctr], comp, currRing); |
---|
6044 | poly q = p_Copy (pHead(strat->L[strat->Ll].p), currRing); |
---|
6045 | q = p_Neg (q, currRing); |
---|
6046 | p_SetCompP (q, p_GetComp(strat->sig[k], currRing), currRing); |
---|
6047 | strat->syz[ctr] = p_Add_q (strat->syz[ctr], q, currRing); |
---|
6048 | //#if 1 |
---|
6049 | #if DEBUGF5 || DEBUGF51 |
---|
6050 | printf(".."); |
---|
6051 | pWrite(strat->syz[ctr]); |
---|
6052 | #endif |
---|
6053 | strat->sevSyz[ctr] = p_GetShortExpVector(strat->syz[ctr],currRing); |
---|
6054 | ctr++; |
---|
6055 | } |
---|
6056 | //#if 1 |
---|
6057 | #ifdef DEBUGF5 |
---|
6058 | Print("Principal syzygies:\n"); |
---|
6059 | Print("--------------------------------\n"); |
---|
6060 | for(i=0;i<=ps-1;i++) |
---|
6061 | { |
---|
6062 | pWrite(strat->syz[i]); |
---|
6063 | } |
---|
6064 | Print("--------------------------------\n"); |
---|
6065 | #endif |
---|
6066 | |
---|
6067 | } |
---|
6068 | } |
---|
6069 | |
---|
6070 | |
---|
6071 | |
---|
6072 | /*2 |
---|
6073 | *construct the set s from F and {P} |
---|
6074 | */ |
---|
6075 | void initSSpecial (ideal F, ideal Q, ideal P,kStrategy strat) |
---|
6076 | { |
---|
6077 | < |
---|