1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* $Id: kutil.cc,v 1.46 2007-02-01 16:20:44 Singular Exp $ */ |
---|
5 | /* |
---|
6 | * ABSTRACT: kernel: utils for kStd |
---|
7 | */ |
---|
8 | |
---|
9 | #ifndef KUTIL_CC |
---|
10 | #define KUTIL_CC |
---|
11 | |
---|
12 | // #define PDEBUG 2 |
---|
13 | // #define PDIV_DEBUG |
---|
14 | #include <stdlib.h> |
---|
15 | #include <string.h> |
---|
16 | #include "mod2.h" |
---|
17 | #include <mylimits.h> |
---|
18 | #include "structs.h" |
---|
19 | #include "gring.h" |
---|
20 | #include "sca.h" |
---|
21 | #ifdef KDEBUG |
---|
22 | #undef KDEBUG |
---|
23 | #define KDEBUG 2 |
---|
24 | #endif |
---|
25 | |
---|
26 | #ifdef HAVE_RING2TOM |
---|
27 | #include "ideals.h" |
---|
28 | #endif |
---|
29 | |
---|
30 | // define if enterL, enterT should use memmove instead of doing it manually |
---|
31 | // on topgun, this is slightly faster (see monodromy_l.tst, homog_gonnet.sing) |
---|
32 | #ifndef SunOS_4 |
---|
33 | #define ENTER_USE_MEMMOVE |
---|
34 | #endif |
---|
35 | |
---|
36 | // define, if the my_memmove inlines should be used instead of |
---|
37 | // system memmove -- it does not seem to pay off, though |
---|
38 | // #define ENTER_USE_MYMEMMOVE |
---|
39 | |
---|
40 | #include "kutil.h" |
---|
41 | #include "febase.h" |
---|
42 | #include "omalloc.h" |
---|
43 | #include "numbers.h" |
---|
44 | #include "polys.h" |
---|
45 | #include "ring.h" |
---|
46 | #include "ideals.h" |
---|
47 | #include "timer.h" |
---|
48 | //#include "cntrlc.h" |
---|
49 | #include "stairc.h" |
---|
50 | #include "kstd1.h" |
---|
51 | #include "pShallowCopyDelete.h" |
---|
52 | |
---|
53 | #ifdef KDEBUG |
---|
54 | #undef KDEBUG |
---|
55 | #define KDEBUG 2 |
---|
56 | #endif |
---|
57 | |
---|
58 | |
---|
59 | #ifdef ENTER_USE_MYMEMMOVE |
---|
60 | inline void _my_memmove_d_gt_s(unsigned long* d, unsigned long* s, long l) |
---|
61 | { |
---|
62 | register unsigned long* _dl = (unsigned long*) d; |
---|
63 | register unsigned long* _sl = (unsigned long*) s; |
---|
64 | register long _i = l - 1; |
---|
65 | |
---|
66 | do |
---|
67 | { |
---|
68 | _dl[_i] = _sl[_i]; |
---|
69 | _i--; |
---|
70 | } |
---|
71 | while (_i >= 0); |
---|
72 | } |
---|
73 | |
---|
74 | inline void _my_memmove_d_lt_s(unsigned long* d, unsigned long* s, long l) |
---|
75 | { |
---|
76 | register long _ll = l; |
---|
77 | register unsigned long* _dl = (unsigned long*) d; |
---|
78 | register unsigned long* _sl = (unsigned long*) s; |
---|
79 | register long _i = 0; |
---|
80 | |
---|
81 | do |
---|
82 | { |
---|
83 | _dl[_i] = _sl[_i]; |
---|
84 | _i++; |
---|
85 | } |
---|
86 | while (_i < _ll); |
---|
87 | } |
---|
88 | |
---|
89 | inline void _my_memmove(void* d, void* s, long l) |
---|
90 | { |
---|
91 | unsigned long _d = (unsigned long) d; |
---|
92 | unsigned long _s = (unsigned long) s; |
---|
93 | unsigned long _l = ((l) + SIZEOF_LONG - 1) >> LOG_SIZEOF_LONG; |
---|
94 | |
---|
95 | if (_d > _s) _my_memmove_d_gt_s(_d, _s, _l); |
---|
96 | else _my_memmove_d_lt_s(_d, _s, _l); |
---|
97 | } |
---|
98 | |
---|
99 | #undef memmove |
---|
100 | #define memmove(d,s,l) _my_memmove(d, s, l) |
---|
101 | #endif |
---|
102 | |
---|
103 | static poly redMora (poly h,int maxIndex,kStrategy strat); |
---|
104 | static poly redBba (poly h,int maxIndex,kStrategy strat); |
---|
105 | |
---|
106 | #ifdef HAVE_RING2TOM |
---|
107 | #define pDivComp_EQUAL 2 |
---|
108 | #define pDivComp_LESS 1 |
---|
109 | #define pDivComp_GREATER -1 |
---|
110 | #define pDivComp_INCOMP 0 |
---|
111 | /* Checks the relation of LM(p) and LM(q) |
---|
112 | LM(p) = LM(q) => return pDivComp_EQUAL |
---|
113 | LM(p) | LM(q) => return pDivComp_LESS |
---|
114 | LM(q) | LM(p) => return pDivComp_GREATER |
---|
115 | else return pDivComp_INCOMP */ |
---|
116 | static inline int pDivCompRing(poly p, poly q) |
---|
117 | { |
---|
118 | if (pGetComp(p) == pGetComp(q)) |
---|
119 | { |
---|
120 | BOOLEAN a=FALSE, b=FALSE; |
---|
121 | int i; |
---|
122 | unsigned long la, lb; |
---|
123 | unsigned long divmask = currRing->divmask; |
---|
124 | for (i=0; i<currRing->VarL_Size; i++) |
---|
125 | { |
---|
126 | la = p->exp[currRing->VarL_Offset[i]]; |
---|
127 | lb = q->exp[currRing->VarL_Offset[i]]; |
---|
128 | if (la != lb) |
---|
129 | { |
---|
130 | if (la < lb) |
---|
131 | { |
---|
132 | if (b) return 0; |
---|
133 | if (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask)) |
---|
134 | return 0; |
---|
135 | a = TRUE; |
---|
136 | } |
---|
137 | else |
---|
138 | { |
---|
139 | if (a) return 0; |
---|
140 | if (((la & divmask) ^ (lb & divmask)) != ((la - lb) & divmask)) |
---|
141 | return 0; |
---|
142 | b = TRUE; |
---|
143 | } |
---|
144 | } |
---|
145 | } |
---|
146 | if (a) return 1; |
---|
147 | if (b) return -1; |
---|
148 | if (!a & !b) return pDivComp_EQUAL; |
---|
149 | } |
---|
150 | return 0; |
---|
151 | } |
---|
152 | #endif |
---|
153 | |
---|
154 | static inline int pDivComp(poly p, poly q) |
---|
155 | { |
---|
156 | if (pGetComp(p) == pGetComp(q)) |
---|
157 | { |
---|
158 | BOOLEAN a=FALSE, b=FALSE; |
---|
159 | int i; |
---|
160 | unsigned long la, lb; |
---|
161 | unsigned long divmask = currRing->divmask; |
---|
162 | for (i=0; i<currRing->VarL_Size; i++) |
---|
163 | { |
---|
164 | la = p->exp[currRing->VarL_Offset[i]]; |
---|
165 | lb = q->exp[currRing->VarL_Offset[i]]; |
---|
166 | if (la != lb) |
---|
167 | { |
---|
168 | if (la < lb) |
---|
169 | { |
---|
170 | if (b) return 0; |
---|
171 | if (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask)) |
---|
172 | return 0; |
---|
173 | a = TRUE; |
---|
174 | } |
---|
175 | else |
---|
176 | { |
---|
177 | if (a) return 0; |
---|
178 | if (((la & divmask) ^ (lb & divmask)) != ((la - lb) & divmask)) |
---|
179 | return 0; |
---|
180 | b = TRUE; |
---|
181 | } |
---|
182 | } |
---|
183 | } |
---|
184 | if (a) return 1; |
---|
185 | if (b) return -1; |
---|
186 | } |
---|
187 | return 0; |
---|
188 | } |
---|
189 | |
---|
190 | |
---|
191 | BITSET test=(BITSET)0; |
---|
192 | int HCord; |
---|
193 | int Kstd1_deg; |
---|
194 | int mu=32000; |
---|
195 | |
---|
196 | /*2 |
---|
197 | *deletes higher monomial of p, re-compute ecart and length |
---|
198 | *works only for orderings with ecart =pFDeg(end)-pFDeg(start) |
---|
199 | */ |
---|
200 | void deleteHC(LObject *L, kStrategy strat, BOOLEAN fromNext) |
---|
201 | { |
---|
202 | if (strat->kHEdgeFound) |
---|
203 | { |
---|
204 | kTest_L(L); |
---|
205 | poly p1; |
---|
206 | poly p = L->GetLmTailRing(); |
---|
207 | int l = 1; |
---|
208 | kBucket_pt bucket = NULL; |
---|
209 | if (L->bucket != NULL) |
---|
210 | { |
---|
211 | kBucketClear(L->bucket, &pNext(p), &L->pLength); |
---|
212 | L->pLength++; |
---|
213 | bucket = L->bucket; |
---|
214 | L->bucket = NULL; |
---|
215 | L->last = NULL; |
---|
216 | } |
---|
217 | |
---|
218 | if (!fromNext && p_Cmp(p,strat->kNoetherTail(), L->tailRing) == -1) |
---|
219 | { |
---|
220 | L->Delete(); |
---|
221 | L->Clear(); |
---|
222 | L->ecart = -1; |
---|
223 | if (bucket != NULL) kBucketDestroy(&bucket); |
---|
224 | return; |
---|
225 | } |
---|
226 | p1 = p; |
---|
227 | while (pNext(p1)!=NULL) |
---|
228 | { |
---|
229 | if (p_LmCmp(pNext(p1), strat->kNoetherTail(), L->tailRing) == -1) |
---|
230 | { |
---|
231 | L->last = p1; |
---|
232 | p_Delete(&pNext(p1), L->tailRing); |
---|
233 | if (p1 == p) |
---|
234 | { |
---|
235 | if (L->t_p != NULL) |
---|
236 | { |
---|
237 | assume(L->p != NULL && p == L->t_p); |
---|
238 | pNext(L->p) = NULL; |
---|
239 | } |
---|
240 | L->max = NULL; |
---|
241 | } |
---|
242 | else if (fromNext) |
---|
243 | L->max = p_GetMaxExpP(pNext(L->p), L->tailRing ); // p1; |
---|
244 | //if (L->pLength != 0) |
---|
245 | L->pLength = l; |
---|
246 | // Hmmm when called from updateT, then only |
---|
247 | // reset ecart when cut |
---|
248 | if (fromNext) |
---|
249 | L->ecart = L->pLDeg() - L->GetpFDeg(); |
---|
250 | break; |
---|
251 | } |
---|
252 | l++; |
---|
253 | pIter(p1); |
---|
254 | } |
---|
255 | if (! fromNext) |
---|
256 | { |
---|
257 | L->SetpFDeg(); |
---|
258 | L->ecart = L->pLDeg(strat->LDegLast) - L->GetpFDeg(); |
---|
259 | } |
---|
260 | if (bucket != NULL) |
---|
261 | { |
---|
262 | if (L->pLength > 1) |
---|
263 | { |
---|
264 | kBucketInit(bucket, pNext(p), L->pLength - 1); |
---|
265 | pNext(p) = NULL; |
---|
266 | if (L->t_p != NULL) pNext(L->t_p) = NULL; |
---|
267 | L->pLength = 0; |
---|
268 | L->bucket = bucket; |
---|
269 | L->last = NULL; |
---|
270 | } |
---|
271 | else |
---|
272 | kBucketDestroy(&bucket); |
---|
273 | } |
---|
274 | kTest_L(L); |
---|
275 | } |
---|
276 | } |
---|
277 | |
---|
278 | void deleteHC(poly* p, int* e, int* l,kStrategy strat) |
---|
279 | { |
---|
280 | LObject L(*p, currRing, strat->tailRing); |
---|
281 | |
---|
282 | deleteHC(&L, strat); |
---|
283 | *p = L.p; |
---|
284 | *e = L.ecart; |
---|
285 | *l = L.length; |
---|
286 | if (L.t_p != NULL) p_LmFree(L.t_p, strat->tailRing); |
---|
287 | } |
---|
288 | |
---|
289 | /*2 |
---|
290 | *tests if p.p=monomial*unit and cancels the unit |
---|
291 | */ |
---|
292 | void cancelunit (LObject* L) |
---|
293 | { |
---|
294 | int i; |
---|
295 | poly h; |
---|
296 | |
---|
297 | if(currRing->OrdSgn != -1) return; |
---|
298 | if(TEST_OPT_CANCELUNIT) return; |
---|
299 | |
---|
300 | ring r = L->tailRing; |
---|
301 | poly p = L->GetLmTailRing(); |
---|
302 | |
---|
303 | if(p_GetComp(p, r) != 0 && !p_OneComp(p, r)) return; |
---|
304 | |
---|
305 | if (L->ecart != 0) |
---|
306 | { |
---|
307 | // for(i=r->N;i>0;i--) |
---|
308 | // { |
---|
309 | // if ((p_GetExp(p,i,r)>0) && (rIsPolyVar(i, r)==TRUE)) return; |
---|
310 | // } |
---|
311 | h = pNext(p); |
---|
312 | loop |
---|
313 | { |
---|
314 | if (h==NULL) |
---|
315 | { |
---|
316 | p_Delete(&pNext(p), r); |
---|
317 | number eins=nInit(1); |
---|
318 | if (L->p != NULL) pSetCoeff(L->p,eins); |
---|
319 | else if (L->t_p != NULL) nDelete(&pGetCoeff(L->t_p)); |
---|
320 | if (L->t_p != NULL) pSetCoeff0(L->t_p,eins); |
---|
321 | L->ecart = 0; |
---|
322 | L->length = 1; |
---|
323 | //if (L->pLength > 0) |
---|
324 | L->pLength = 1; |
---|
325 | if (L->last != NULL) L->last = p; |
---|
326 | |
---|
327 | if (L->t_p != NULL && pNext(L->t_p) != NULL) |
---|
328 | pNext(L->t_p) = NULL; |
---|
329 | if (L->p != NULL && pNext(L->p) != NULL) |
---|
330 | pNext(L->p) = NULL; |
---|
331 | return; |
---|
332 | } |
---|
333 | i = 0; |
---|
334 | loop |
---|
335 | { |
---|
336 | i++; |
---|
337 | if (p_GetExp(p,i,r) > p_GetExp(h,i,r)) return ; // does not divide |
---|
338 | if (i == r->N) break; // does divide, try next monom |
---|
339 | } |
---|
340 | pIter(h); |
---|
341 | } |
---|
342 | } |
---|
343 | } |
---|
344 | |
---|
345 | /*2 |
---|
346 | *pp is the new element in s |
---|
347 | *returns TRUE (in strat->kHEdgeFound) if |
---|
348 | *-HEcke is allowed |
---|
349 | *-we are in the last componente of the vector |
---|
350 | *-on all axis are monomials (all elements in NotUsedAxis are FALSE) |
---|
351 | *returns FALSE for pLexOrderings, |
---|
352 | *assumes in module case an ordering of type c* !! |
---|
353 | * HEckeTest is only called with strat->kHEdgeFound==FALSE ! |
---|
354 | */ |
---|
355 | void HEckeTest (poly pp,kStrategy strat) |
---|
356 | { |
---|
357 | int j,k,p; |
---|
358 | |
---|
359 | strat->kHEdgeFound=FALSE; |
---|
360 | if (pLexOrder || currRing->MixedOrder) |
---|
361 | { |
---|
362 | return; |
---|
363 | } |
---|
364 | if (strat->ak > 1) /*we are in the module case*/ |
---|
365 | { |
---|
366 | return; // until .... |
---|
367 | //if (!pVectorOut) /*pVectorOut <=> order = c,* */ |
---|
368 | // return FALSE; |
---|
369 | //if (pGetComp(pp) < strat->ak) /* ak is the number of the last component */ |
---|
370 | // return FALSE; |
---|
371 | } |
---|
372 | k = 0; |
---|
373 | p=pIsPurePower(pp); |
---|
374 | if (p!=0) strat->NotUsedAxis[p] = FALSE; |
---|
375 | /*- the leading term of pp is a power of the p-th variable -*/ |
---|
376 | for (j=pVariables;j>0; j--) |
---|
377 | { |
---|
378 | if (strat->NotUsedAxis[j]) |
---|
379 | { |
---|
380 | return; |
---|
381 | } |
---|
382 | } |
---|
383 | strat->kHEdgeFound=TRUE; |
---|
384 | } |
---|
385 | |
---|
386 | /*2 |
---|
387 | *utilities for TSet, LSet |
---|
388 | */ |
---|
389 | inline static intset initec (const int maxnr) |
---|
390 | { |
---|
391 | return (intset)omAlloc(maxnr*sizeof(int)); |
---|
392 | } |
---|
393 | |
---|
394 | inline static unsigned long* initsevS (const int maxnr) |
---|
395 | { |
---|
396 | return (unsigned long*)omAlloc0(maxnr*sizeof(unsigned long)); |
---|
397 | } |
---|
398 | inline static int* initS_2_R (const int maxnr) |
---|
399 | { |
---|
400 | return (int*)omAlloc0(maxnr*sizeof(int)); |
---|
401 | } |
---|
402 | |
---|
403 | static inline void enlargeT (TSet &T, TObject** &R, unsigned long* &sevT, |
---|
404 | int &length, const int incr) |
---|
405 | { |
---|
406 | assume(T!=NULL); |
---|
407 | assume(sevT!=NULL); |
---|
408 | assume(R!=NULL); |
---|
409 | assume((length+incr) > 0); |
---|
410 | |
---|
411 | int i; |
---|
412 | T = (TSet)omRealloc0Size(T, length*sizeof(TObject), |
---|
413 | (length+incr)*sizeof(TObject)); |
---|
414 | |
---|
415 | sevT = (unsigned long*) omReallocSize(sevT, length*sizeof(long*), |
---|
416 | (length+incr)*sizeof(long*)); |
---|
417 | |
---|
418 | R = (TObject**)omRealloc0Size(R,length*sizeof(TObject*), |
---|
419 | (length+incr)*sizeof(TObject*)); |
---|
420 | for (i=length-1;i>=0;i--) R[T[i].i_r] = &(T[i]); |
---|
421 | length += incr; |
---|
422 | } |
---|
423 | |
---|
424 | void cleanT (kStrategy strat) |
---|
425 | { |
---|
426 | int i,j; |
---|
427 | poly p; |
---|
428 | assume(currRing == strat->tailRing || strat->tailRing != NULL); |
---|
429 | |
---|
430 | pShallowCopyDeleteProc p_shallow_copy_delete = |
---|
431 | (strat->tailRing != currRing ? |
---|
432 | pGetShallowCopyDeleteProc(strat->tailRing, currRing) : |
---|
433 | NULL); |
---|
434 | |
---|
435 | for (j=0; j<=strat->tl; j++) |
---|
436 | { |
---|
437 | p = strat->T[j].p; |
---|
438 | strat->T[j].p=NULL; |
---|
439 | if (strat->T[j].max != NULL) |
---|
440 | p_LmFree(strat->T[j].max, strat->tailRing); |
---|
441 | i = -1; |
---|
442 | loop |
---|
443 | { |
---|
444 | i++; |
---|
445 | if (i>strat->sl) |
---|
446 | { |
---|
447 | if (strat->T[j].t_p != NULL) |
---|
448 | { |
---|
449 | p_Delete(&(strat->T[j].t_p), strat->tailRing); |
---|
450 | p_LmFree(p, currRing); |
---|
451 | } |
---|
452 | else |
---|
453 | pDelete(&p); |
---|
454 | break; |
---|
455 | } |
---|
456 | if (p == strat->S[i]) |
---|
457 | { |
---|
458 | if (strat->T[j].t_p != NULL) |
---|
459 | { |
---|
460 | assume(p_shallow_copy_delete != NULL); |
---|
461 | pNext(p) = p_shallow_copy_delete(pNext(p),strat->tailRing,currRing, |
---|
462 | currRing->PolyBin); |
---|
463 | p_LmFree(strat->T[j].t_p, strat->tailRing); |
---|
464 | } |
---|
465 | break; |
---|
466 | } |
---|
467 | } |
---|
468 | } |
---|
469 | strat->tl=-1; |
---|
470 | } |
---|
471 | |
---|
472 | //LSet initL () |
---|
473 | //{ |
---|
474 | // int i; |
---|
475 | // LSet l = (LSet)omAlloc(setmaxL*sizeof(LObject)); |
---|
476 | // return l; |
---|
477 | //} |
---|
478 | |
---|
479 | static inline void enlargeL (LSet* L,int* length,const int incr) |
---|
480 | { |
---|
481 | assume((*L)!=NULL); |
---|
482 | assume((length+incr)>0); |
---|
483 | |
---|
484 | *L = (LSet)omReallocSize((*L),(*length)*sizeof(LObject), |
---|
485 | ((*length)+incr)*sizeof(LObject)); |
---|
486 | (*length) += incr; |
---|
487 | } |
---|
488 | |
---|
489 | void initPairtest(kStrategy strat) |
---|
490 | { |
---|
491 | strat->pairtest = (BOOLEAN *)omAlloc0((strat->sl+2)*sizeof(BOOLEAN)); |
---|
492 | } |
---|
493 | |
---|
494 | #ifdef HAVE_RING2TOM |
---|
495 | //void initLMtest(kStrategy strat) |
---|
496 | //{ |
---|
497 | // strat->lmtest = (unsigned int *)omAlloc0((strat->sl*strat->sl/2+2)*sizeof(BOOLEAN)); |
---|
498 | //} |
---|
499 | #endif |
---|
500 | |
---|
501 | /*2 |
---|
502 | *test whether (p1,p2) or (p2,p1) is in L up position length |
---|
503 | *it returns TRUE if yes and the position k |
---|
504 | */ |
---|
505 | BOOLEAN isInPairsetL(int length,poly p1,poly p2,int* k,kStrategy strat) |
---|
506 | { |
---|
507 | LObject *p=&(strat->L[length]); |
---|
508 | |
---|
509 | *k = length; |
---|
510 | loop |
---|
511 | { |
---|
512 | if ((*k) < 0) return FALSE; |
---|
513 | if (((p1 == (*p).p1) && (p2 == (*p).p2)) |
---|
514 | || ((p1 == (*p).p2) && (p2 == (*p).p1))) |
---|
515 | return TRUE; |
---|
516 | (*k)--; |
---|
517 | p--; |
---|
518 | } |
---|
519 | } |
---|
520 | |
---|
521 | /*2 |
---|
522 | *in B all pairs have the same element p on the right |
---|
523 | *it tests whether (q,p) is in B and returns TRUE if yes |
---|
524 | *and the position k |
---|
525 | */ |
---|
526 | BOOLEAN isInPairsetB(poly q,int* k,kStrategy strat) |
---|
527 | { |
---|
528 | LObject *p=&(strat->B[strat->Bl]); |
---|
529 | |
---|
530 | *k = strat->Bl; |
---|
531 | loop |
---|
532 | { |
---|
533 | if ((*k) < 0) return FALSE; |
---|
534 | if (q == (*p).p1) |
---|
535 | return TRUE; |
---|
536 | (*k)--; |
---|
537 | p--; |
---|
538 | } |
---|
539 | } |
---|
540 | |
---|
541 | int kFindInT(poly p, TSet T, int tlength) |
---|
542 | { |
---|
543 | int i; |
---|
544 | |
---|
545 | for (i=0; i<=tlength; i++) |
---|
546 | { |
---|
547 | if (T[i].p == p) return i; |
---|
548 | } |
---|
549 | return -1; |
---|
550 | } |
---|
551 | |
---|
552 | int kFindInT(poly p, kStrategy strat) |
---|
553 | { |
---|
554 | int i; |
---|
555 | do |
---|
556 | { |
---|
557 | i = kFindInT(p, strat->T, strat->tl); |
---|
558 | if (i >= 0) return i; |
---|
559 | strat = strat->next; |
---|
560 | } |
---|
561 | while (strat != NULL); |
---|
562 | return -1; |
---|
563 | } |
---|
564 | |
---|
565 | #ifdef KDEBUG |
---|
566 | |
---|
567 | void sTObject::wrp() |
---|
568 | { |
---|
569 | if (t_p != NULL) p_wrp(t_p, tailRing); |
---|
570 | else if (p != NULL) p_wrp(p, currRing, tailRing); |
---|
571 | else ::wrp(NULL); |
---|
572 | } |
---|
573 | |
---|
574 | #define kFalseReturn(x) do { if (!x) return FALSE;} while (0) |
---|
575 | |
---|
576 | // check that Lm's of a poly from T are "equal" |
---|
577 | static const char* kTest_LmEqual(poly p, poly t_p, ring tailRing) |
---|
578 | { |
---|
579 | int i; |
---|
580 | for (i=1; i<=tailRing->N; i++) |
---|
581 | { |
---|
582 | if (p_GetExp(p, i, currRing) != p_GetExp(t_p, i, tailRing)) |
---|
583 | return "Lm[i] different"; |
---|
584 | } |
---|
585 | if (p_GetComp(p, currRing) != p_GetComp(t_p, tailRing)) |
---|
586 | return "Lm[0] different"; |
---|
587 | if (pNext(p) != pNext(t_p)) |
---|
588 | return "Lm.next different"; |
---|
589 | if (pGetCoeff(p) != pGetCoeff(t_p)) |
---|
590 | return "Lm.coeff different"; |
---|
591 | return NULL; |
---|
592 | } |
---|
593 | |
---|
594 | static BOOLEAN sloppy_max = FALSE; |
---|
595 | BOOLEAN kTest_T(TObject * T, ring strat_tailRing, int i, char TN) |
---|
596 | { |
---|
597 | ring tailRing = T->tailRing; |
---|
598 | if (strat_tailRing == NULL) strat_tailRing = tailRing; |
---|
599 | r_assume(strat_tailRing == tailRing); |
---|
600 | |
---|
601 | poly p = T->p; |
---|
602 | ring r = currRing; |
---|
603 | |
---|
604 | if (T->p == NULL && T->t_p == NULL && i >= 0) |
---|
605 | return dReportError("%c[%d].poly is NULL", TN, i); |
---|
606 | |
---|
607 | if (T->tailRing != currRing) |
---|
608 | { |
---|
609 | if (T->t_p == NULL && i > 0) |
---|
610 | return dReportError("%c[%d].t_p is NULL", TN, i); |
---|
611 | pFalseReturn(p_Test(T->t_p, T->tailRing)); |
---|
612 | if (T->p != NULL) pFalseReturn(p_LmTest(T->p, currRing)); |
---|
613 | if (T->p != NULL && T->t_p != NULL) |
---|
614 | { |
---|
615 | const char* msg = kTest_LmEqual(T->p, T->t_p, T->tailRing); |
---|
616 | if (msg != NULL) |
---|
617 | return dReportError("%c[%d] %s", TN, i, msg); |
---|
618 | r = T->tailRing; |
---|
619 | p = T->t_p; |
---|
620 | } |
---|
621 | if (T->p == NULL) |
---|
622 | { |
---|
623 | p = T->t_p; |
---|
624 | r = T->tailRing; |
---|
625 | } |
---|
626 | if (T->t_p != NULL && i >= 0 && TN == 'T') |
---|
627 | { |
---|
628 | if (pNext(T->t_p) == NULL) |
---|
629 | { |
---|
630 | if (T->max != NULL) |
---|
631 | return dReportError("%c[%d].max is not NULL as it should be", TN, i); |
---|
632 | } |
---|
633 | else |
---|
634 | { |
---|
635 | if (T->max == NULL) |
---|
636 | return dReportError("%c[%d].max is NULL", TN, i); |
---|
637 | if (pNext(T->max) != NULL) |
---|
638 | return dReportError("pNext(%c[%d].max) != NULL", TN, i); |
---|
639 | |
---|
640 | pFalseReturn(p_CheckPolyRing(T->max, tailRing)); |
---|
641 | omCheckBinAddrSize(T->max, (tailRing->PolyBin->sizeW)*SIZEOF_LONG); |
---|
642 | #if KDEBUG > 0 |
---|
643 | if (! sloppy_max) |
---|
644 | { |
---|
645 | poly test_max = p_GetMaxExpP(pNext(T->t_p), tailRing); |
---|
646 | p_Setm(T->max, tailRing); |
---|
647 | p_Setm(test_max, tailRing); |
---|
648 | BOOLEAN equal = p_ExpVectorEqual(T->max, test_max, tailRing); |
---|
649 | if (! equal) |
---|
650 | return dReportError("%c[%d].max out of sync", TN, i); |
---|
651 | p_LmFree(test_max, tailRing); |
---|
652 | } |
---|
653 | #endif |
---|
654 | } |
---|
655 | } |
---|
656 | } |
---|
657 | else |
---|
658 | { |
---|
659 | if (T->max != NULL) |
---|
660 | return dReportError("%c[%d].max != NULL but tailRing == currRing",TN,i); |
---|
661 | if (T->t_p != NULL) |
---|
662 | return dReportError("%c[%d].t_p != NULL but tailRing == currRing",TN,i); |
---|
663 | if (T->p == NULL && i > 0) |
---|
664 | return dReportError("%c[%d].p is NULL", TN, i); |
---|
665 | pFalseReturn(p_Test(T->p, currRing)); |
---|
666 | } |
---|
667 | |
---|
668 | if (i >= 0 && T->pLength != 0 && T->pLength != pLength(p)) |
---|
669 | { |
---|
670 | return dReportError("%c[%d] pLength error: has %d, specified to have %d", |
---|
671 | TN, i , pLength(p), T->pLength); |
---|
672 | } |
---|
673 | |
---|
674 | // check FDeg, for elements in L and T |
---|
675 | if (i >= 0 && (TN == 'T' || TN == 'L')) |
---|
676 | { |
---|
677 | // FDeg has ir element from T of L set |
---|
678 | if (T->FDeg != T->pFDeg()) |
---|
679 | return dReportError("%c[%d] FDeg error: has %d, specified to have %d", |
---|
680 | TN, i , T->pFDeg(), T->FDeg); |
---|
681 | } |
---|
682 | |
---|
683 | // check is_normalized for elements in T |
---|
684 | if (i >= 0 && TN == 'T') |
---|
685 | { |
---|
686 | if (T->is_normalized && ! nIsOne(pGetCoeff(p))) |
---|
687 | return dReportError("T[%d] is_normalized error", i); |
---|
688 | |
---|
689 | } |
---|
690 | return TRUE; |
---|
691 | } |
---|
692 | |
---|
693 | BOOLEAN kTest_L(LObject *L, ring strat_tailRing, |
---|
694 | BOOLEAN testp, int lpos, TSet T, int tlength) |
---|
695 | { |
---|
696 | if (testp) |
---|
697 | { |
---|
698 | poly pn = NULL; |
---|
699 | if (L->bucket != NULL) |
---|
700 | { |
---|
701 | kFalseReturn(kbTest(L->bucket)); |
---|
702 | r_assume(L->bucket->bucket_ring == L->tailRing); |
---|
703 | if (L->p != NULL && pNext(L->p) != NULL) |
---|
704 | { |
---|
705 | pn = pNext(L->p); |
---|
706 | pNext(L->p) = NULL; |
---|
707 | } |
---|
708 | } |
---|
709 | kFalseReturn(kTest_T(L, strat_tailRing, lpos, 'L')); |
---|
710 | if (pn != NULL) |
---|
711 | pNext(L->p) = pn; |
---|
712 | |
---|
713 | ring r; |
---|
714 | poly p; |
---|
715 | L->GetLm(p, r); |
---|
716 | if (L->sev != 0 && p_GetShortExpVector(p, r) != L->sev) |
---|
717 | { |
---|
718 | return dReportError("L[%d] wrong sev: has %o, specified to have %o", |
---|
719 | lpos, p_GetShortExpVector(p, r), L->sev); |
---|
720 | } |
---|
721 | if (lpos > 0 && L->last != NULL && pLast(p) != L->last) |
---|
722 | { |
---|
723 | return dReportError("L[%d] last wrong: has %p specified to have %p", |
---|
724 | lpos, pLast(p), L->last); |
---|
725 | } |
---|
726 | } |
---|
727 | if (L->p1 == NULL) |
---|
728 | { |
---|
729 | // L->p2 either NULL or "normal" poly |
---|
730 | pFalseReturn(pp_Test(L->p2, currRing, L->tailRing)); |
---|
731 | } |
---|
732 | else if (tlength > 0 && T != NULL && (lpos >=0)) |
---|
733 | { |
---|
734 | // now p1 and p2 must be != NULL and must be contained in T |
---|
735 | int i; |
---|
736 | i = kFindInT(L->p1, T, tlength); |
---|
737 | if (i < 0) |
---|
738 | return dReportError("L[%d].p1 not in T",lpos); |
---|
739 | i = kFindInT(L->p2, T, tlength); |
---|
740 | if (i < 0) |
---|
741 | return dReportError("L[%d].p2 not in T",lpos); |
---|
742 | } |
---|
743 | return TRUE; |
---|
744 | } |
---|
745 | |
---|
746 | BOOLEAN kTest (kStrategy strat) |
---|
747 | { |
---|
748 | int i; |
---|
749 | |
---|
750 | // test P |
---|
751 | kFalseReturn(kTest_L(&(strat->P), strat->tailRing, |
---|
752 | (strat->P.p != NULL && pNext(strat->P.p)!=strat->tail), |
---|
753 | -1, strat->T, strat->tl)); |
---|
754 | |
---|
755 | // test T |
---|
756 | if (strat->T != NULL) |
---|
757 | { |
---|
758 | for (i=0; i<=strat->tl; i++) |
---|
759 | { |
---|
760 | kFalseReturn(kTest_T(&(strat->T[i]), strat->tailRing, i, 'T')); |
---|
761 | if (strat->sevT[i] != pGetShortExpVector(strat->T[i].p)) |
---|
762 | return dReportError("strat->sevT[%d] out of sync", i); |
---|
763 | } |
---|
764 | } |
---|
765 | |
---|
766 | // test L |
---|
767 | if (strat->L != NULL) |
---|
768 | { |
---|
769 | for (i=0; i<=strat->Ll; i++) |
---|
770 | { |
---|
771 | kFalseReturn(kTest_L(&(strat->L[i]), strat->tailRing, |
---|
772 | strat->L[i].Next() != strat->tail, i, |
---|
773 | strat->T, strat->tl)); |
---|
774 | if (strat->use_buckets && strat->L[i].Next() != strat->tail && |
---|
775 | strat->L[i].Next() != NULL && strat->L[i].p1 != NULL) |
---|
776 | { |
---|
777 | assume(strat->L[i].bucket != NULL); |
---|
778 | } |
---|
779 | } |
---|
780 | } |
---|
781 | |
---|
782 | // test S |
---|
783 | if (strat->S != NULL) |
---|
784 | kFalseReturn(kTest_S(strat)); |
---|
785 | |
---|
786 | return TRUE; |
---|
787 | } |
---|
788 | |
---|
789 | BOOLEAN kTest_S(kStrategy strat) |
---|
790 | { |
---|
791 | int i; |
---|
792 | BOOLEAN ret = TRUE; |
---|
793 | for (i=0; i<=strat->sl; i++) |
---|
794 | { |
---|
795 | if (strat->S[i] != NULL && |
---|
796 | strat->sevS[i] != pGetShortExpVector(strat->S[i])) |
---|
797 | { |
---|
798 | return dReportError("S[%d] wrong sev: has %o, specified to have %o", |
---|
799 | i , pGetShortExpVector(strat->S[i]), strat->sevS[i]); |
---|
800 | } |
---|
801 | } |
---|
802 | return ret; |
---|
803 | } |
---|
804 | |
---|
805 | |
---|
806 | |
---|
807 | BOOLEAN kTest_TS(kStrategy strat) |
---|
808 | { |
---|
809 | int i, j; |
---|
810 | BOOLEAN ret = TRUE; |
---|
811 | kFalseReturn(kTest(strat)); |
---|
812 | |
---|
813 | // test strat->R, strat->T[i].i_r |
---|
814 | for (i=0; i<=strat->tl; i++) |
---|
815 | { |
---|
816 | if (strat->T[i].i_r < 0 || strat->T[i].i_r > strat->tl) |
---|
817 | return dReportError("strat->T[%d].i_r == %d out of bounds", i, |
---|
818 | strat->T[i].i_r); |
---|
819 | if (strat->R[strat->T[i].i_r] != &(strat->T[i])) |
---|
820 | return dReportError("T[%d].i_r with R out of sync", i); |
---|
821 | } |
---|
822 | // test containment of S inT |
---|
823 | if (strat->S != NULL) |
---|
824 | { |
---|
825 | for (i=0; i<=strat->sl; i++) |
---|
826 | { |
---|
827 | j = kFindInT(strat->S[i], strat->T, strat->tl); |
---|
828 | if (j < 0) |
---|
829 | return dReportError("S[%d] not in T", i); |
---|
830 | if (strat->S_2_R[i] != strat->T[j].i_r) |
---|
831 | return dReportError("S_2_R[%d]=%d != T[%d].i_r=%d\n", |
---|
832 | i, strat->S_2_R[i], j, strat->T[j].i_r); |
---|
833 | } |
---|
834 | } |
---|
835 | // test strat->L[i].i_r1 |
---|
836 | for (i=0; i<=strat->Ll; i++) |
---|
837 | { |
---|
838 | if (strat->L[i].p1 != NULL && strat->L[i].p2) |
---|
839 | { |
---|
840 | if (strat->L[i].i_r1 < 0 || |
---|
841 | strat->L[i].i_r1 > strat->tl || |
---|
842 | strat->L[i].T_1(strat)->p != strat->L[i].p1) |
---|
843 | return dReportError("L[%d].i_r1 out of sync", i); |
---|
844 | if (strat->L[i].i_r2 < 0 || |
---|
845 | strat->L[i].i_r2 > strat->tl || |
---|
846 | strat->L[i].T_2(strat)->p != strat->L[i].p2); |
---|
847 | } |
---|
848 | else |
---|
849 | { |
---|
850 | if (strat->L[i].i_r1 != -1) |
---|
851 | return dReportError("L[%d].i_r1 out of sync", i); |
---|
852 | if (strat->L[i].i_r2 != -1) |
---|
853 | return dReportError("L[%d].i_r2 out of sync", i); |
---|
854 | } |
---|
855 | if (strat->L[i].i_r != -1) |
---|
856 | return dReportError("L[%d].i_r out of sync", i); |
---|
857 | } |
---|
858 | return TRUE; |
---|
859 | } |
---|
860 | |
---|
861 | #endif // KDEBUG |
---|
862 | |
---|
863 | /*2 |
---|
864 | *cancels the i-th polynomial in the standardbase s |
---|
865 | */ |
---|
866 | void deleteInS (int i,kStrategy strat) |
---|
867 | { |
---|
868 | #ifdef ENTER_USE_MEMMOVE |
---|
869 | memmove(&(strat->S[i]), &(strat->S[i+1]), (strat->sl - i)*sizeof(poly)); |
---|
870 | memmove(&(strat->ecartS[i]),&(strat->ecartS[i+1]),(strat->sl - i)*sizeof(int)); |
---|
871 | memmove(&(strat->sevS[i]),&(strat->sevS[i+1]),(strat->sl - i)*sizeof(long)); |
---|
872 | memmove(&(strat->S_2_R[i]),&(strat->S_2_R[i+1]),(strat->sl - i)*sizeof(int)); |
---|
873 | #else |
---|
874 | int j; |
---|
875 | for (j=i; j<strat->sl; j++) |
---|
876 | { |
---|
877 | strat->S[j] = strat->S[j+1]; |
---|
878 | strat->ecartS[j] = strat->ecartS[j+1]; |
---|
879 | strat->sevS[j] = strat->sevS[j+1]; |
---|
880 | strat->S_2_R[j] = strat->S_2_R[j+1]; |
---|
881 | } |
---|
882 | #endif |
---|
883 | if (strat->lenS!=NULL) |
---|
884 | { |
---|
885 | #ifdef ENTER_USE_MEMMOVE |
---|
886 | memmove(&(strat->lenS[i]),&(strat->lenS[i+1]),(strat->sl - i)*sizeof(int)); |
---|
887 | #else |
---|
888 | for (j=i; j<strat->sl; j++) strat->lenS[j] = strat->lenS[j+1]; |
---|
889 | #endif |
---|
890 | } |
---|
891 | if (strat->lenSw!=NULL) |
---|
892 | { |
---|
893 | #ifdef ENTER_USE_MEMMOVE |
---|
894 | memmove(&(strat->lenSw[i]),&(strat->lenSw[i+1]),(strat->sl - i)*sizeof(wlen_type)); |
---|
895 | #else |
---|
896 | for (j=i; j<strat->sl; j++) strat->lenSw[j] = strat->lenSw[j+1]; |
---|
897 | #endif |
---|
898 | } |
---|
899 | if (strat->fromQ!=NULL) |
---|
900 | { |
---|
901 | #ifdef ENTER_USE_MEMMOVE |
---|
902 | memmove(&(strat->fromQ[i]),&(strat->fromQ[i+1]),(strat->sl - i)*sizeof(int)); |
---|
903 | #else |
---|
904 | for (j=i; j<strat->sl; j++) |
---|
905 | { |
---|
906 | strat->fromQ[j] = strat->fromQ[j+1]; |
---|
907 | } |
---|
908 | #endif |
---|
909 | } |
---|
910 | strat->S[strat->sl] = NULL; |
---|
911 | strat->sl--; |
---|
912 | } |
---|
913 | |
---|
914 | /*2 |
---|
915 | *cancels the j-th polynomial in the set |
---|
916 | */ |
---|
917 | void deleteInL (LSet set, int *length, int j,kStrategy strat) |
---|
918 | { |
---|
919 | if (set[j].lcm!=NULL) |
---|
920 | pLmFree(set[j].lcm); |
---|
921 | if (set[j].p!=NULL) |
---|
922 | { |
---|
923 | if (pNext(set[j].p) == strat->tail) |
---|
924 | { |
---|
925 | pLmFree(set[j].p); |
---|
926 | /*- tail belongs to several int spolys -*/ |
---|
927 | } |
---|
928 | else |
---|
929 | { |
---|
930 | // search p in T, if it is there, do not delete it |
---|
931 | if (pOrdSgn != -1 || kFindInT(set[j].p, strat) < 0) |
---|
932 | { |
---|
933 | // assure that for global orderings kFindInT fails |
---|
934 | assume(pOrdSgn == -1 || kFindInT(set[j].p, strat) < 0); |
---|
935 | set[j].Delete(); |
---|
936 | } |
---|
937 | } |
---|
938 | } |
---|
939 | if (*length > 0 && j < *length) |
---|
940 | { |
---|
941 | #ifdef ENTER_USE_MEMMOVE |
---|
942 | memmove(&(set[j]), &(set[j+1]), (*length - j)*sizeof(LObject)); |
---|
943 | #else |
---|
944 | int i; |
---|
945 | for (i=j; i < (*length); i++) |
---|
946 | set[i] = set[i+1]; |
---|
947 | #endif |
---|
948 | } |
---|
949 | #ifdef KDEBUG |
---|
950 | memset(&(set[*length]),0,sizeof(LObject)); |
---|
951 | #endif |
---|
952 | (*length)--; |
---|
953 | } |
---|
954 | |
---|
955 | /*2 |
---|
956 | *is used after updating the pairset,if the leading term of p |
---|
957 | *divides the leading term of some S[i] it will be canceled |
---|
958 | */ |
---|
959 | static inline void clearS (poly p, unsigned long p_sev, int* at, int* k, |
---|
960 | kStrategy strat) |
---|
961 | { |
---|
962 | assume(p_sev == pGetShortExpVector(p)); |
---|
963 | if (strat->noClearS) return; |
---|
964 | if (!pLmShortDivisibleBy(p,p_sev, strat->S[*at], ~ strat->sevS[*at])) return; |
---|
965 | deleteInS((*at),strat); |
---|
966 | (*at)--; |
---|
967 | (*k)--; |
---|
968 | } |
---|
969 | |
---|
970 | /*2 |
---|
971 | *enters p at position at in L |
---|
972 | */ |
---|
973 | void enterL (LSet *set,int *length, int *LSetmax, LObject p,int at) |
---|
974 | { |
---|
975 | #ifdef PDEBUG |
---|
976 | /* zaehler++; */ |
---|
977 | #endif /*PDEBUG*/ |
---|
978 | int i; |
---|
979 | // this should be corrected |
---|
980 | assume(p.FDeg == p.pFDeg()); |
---|
981 | |
---|
982 | if ((*length)>=0) |
---|
983 | { |
---|
984 | if ((*length) == (*LSetmax)-1) enlargeL(set,LSetmax,setmaxLinc); |
---|
985 | if (at <= (*length)) |
---|
986 | #ifdef ENTER_USE_MEMMOVE |
---|
987 | memmove(&((*set)[at+1]), &((*set)[at]), ((*length)-at+1)*sizeof(LObject)); |
---|
988 | #else |
---|
989 | for (i=(*length)+1; i>=at+1; i--) (*set)[i] = (*set)[i-1]; |
---|
990 | #endif |
---|
991 | } |
---|
992 | else at = 0; |
---|
993 | (*set)[at] = p; |
---|
994 | (*length)++; |
---|
995 | } |
---|
996 | |
---|
997 | /*2 |
---|
998 | * computes the normal ecart; |
---|
999 | * used in mora case and if pLexOrder & sugar in bba case |
---|
1000 | */ |
---|
1001 | void initEcartNormal (LObject* h) |
---|
1002 | { |
---|
1003 | h->FDeg = h->pFDeg(); |
---|
1004 | h->ecart = h->pLDeg() - h->FDeg; |
---|
1005 | // h->length is set by h->pLDeg |
---|
1006 | h->length=h->pLength=pLength(h->p); |
---|
1007 | } |
---|
1008 | |
---|
1009 | void initEcartBBA (LObject* h) |
---|
1010 | { |
---|
1011 | h->FDeg = h->pFDeg(); |
---|
1012 | (*h).ecart = 0; |
---|
1013 | h->length=h->pLength=pLength(h->p); |
---|
1014 | } |
---|
1015 | |
---|
1016 | void initEcartPairBba (LObject* Lp,poly f,poly g,int ecartF,int ecartG) |
---|
1017 | { |
---|
1018 | Lp->FDeg = Lp->pFDeg(); |
---|
1019 | (*Lp).ecart = 0; |
---|
1020 | (*Lp).length = 0; |
---|
1021 | } |
---|
1022 | |
---|
1023 | void initEcartPairMora (LObject* Lp,poly f,poly g,int ecartF,int ecartG) |
---|
1024 | { |
---|
1025 | Lp->FDeg = Lp->pFDeg(); |
---|
1026 | (*Lp).ecart = si_max(ecartF,ecartG); |
---|
1027 | (*Lp).ecart = (*Lp).ecart- (Lp->FDeg -pFDeg((*Lp).lcm,currRing)); |
---|
1028 | (*Lp).length = 0; |
---|
1029 | } |
---|
1030 | |
---|
1031 | /*2 |
---|
1032 | *if ecart1<=ecart2 it returns TRUE |
---|
1033 | */ |
---|
1034 | static inline BOOLEAN sugarDivisibleBy(int ecart1, int ecart2) |
---|
1035 | { |
---|
1036 | return (ecart1 <= ecart2); |
---|
1037 | } |
---|
1038 | |
---|
1039 | #ifdef HAVE_RING2TOM |
---|
1040 | /* TODO move to numbers.cc |
---|
1041 | */ |
---|
1042 | inline int nComp(long a, long b) |
---|
1043 | { |
---|
1044 | assume(a != 0 && b != 0); |
---|
1045 | while (a % 2 == 0 && b % 2 == 0) |
---|
1046 | { |
---|
1047 | a = a / 2; |
---|
1048 | b = b / 2; |
---|
1049 | } |
---|
1050 | if (a % 2 == 0) |
---|
1051 | { |
---|
1052 | return -1; |
---|
1053 | } |
---|
1054 | else |
---|
1055 | { |
---|
1056 | if (b % 2 == 1) |
---|
1057 | { |
---|
1058 | return 0; |
---|
1059 | } |
---|
1060 | else |
---|
1061 | { |
---|
1062 | return 1; |
---|
1063 | } |
---|
1064 | } |
---|
1065 | } |
---|
1066 | |
---|
1067 | /*2 |
---|
1068 | * put the pair (s[i],p) into the set B, ecart=ecart(p) (ring case) |
---|
1069 | */ |
---|
1070 | void enterOnePairRing (int i,poly p,int ecart, int isFromQ,kStrategy strat, int atR = -1) |
---|
1071 | { |
---|
1072 | assume(i<=strat->sl); |
---|
1073 | int l,j,compare,compareCoeff; |
---|
1074 | LObject Lp; |
---|
1075 | |
---|
1076 | if (strat->interred_flag) return; |
---|
1077 | #ifdef KDEBUG |
---|
1078 | Lp.ecart=0; Lp.length=0; |
---|
1079 | #endif |
---|
1080 | /*- computes the lcm(s[i],p) -*/ |
---|
1081 | Lp.lcm = pInit(); |
---|
1082 | |
---|
1083 | pLcm(p,strat->S[i],Lp.lcm); |
---|
1084 | pSetm(Lp.lcm); |
---|
1085 | pSetCoeff(Lp.lcm, nLcm(pGetCoeff(p), pGetCoeff(strat->S[i]), currRing)); |
---|
1086 | assume(!strat->sugarCrit); |
---|
1087 | // basic product criterion |
---|
1088 | if (pHasNotCF(p,strat->S[i]) && (long) pGetCoeff(p) % 2 == 1 && (long) pGetCoeff(strat->S[i]) % 2 == 1) |
---|
1089 | { |
---|
1090 | strat->cp++; |
---|
1091 | pLmFree(Lp.lcm); |
---|
1092 | Lp.lcm=NULL; |
---|
1093 | return; |
---|
1094 | } |
---|
1095 | assume(!strat->fromT); |
---|
1096 | /* |
---|
1097 | *the set B collects the pairs of type (S[j],p) |
---|
1098 | *suppose (r,p) is in B and (s,p) is the new pair and lcm(s,p) != lcm(r,p) |
---|
1099 | *if the leading term of s devides lcm(r,p) then (r,p) will be canceled |
---|
1100 | *if the leading term of r devides lcm(s,p) then (s,p) will not enter B |
---|
1101 | */ |
---|
1102 | for(j = strat->Bl;j>=0;j--) |
---|
1103 | { |
---|
1104 | compare=pDivCompRing(strat->B[j].lcm,Lp.lcm); |
---|
1105 | compareCoeff = nComp((long) pGetCoeff(strat->B[j].lcm), (long) pGetCoeff(Lp.lcm)); |
---|
1106 | if (compareCoeff == 0 || compare == compareCoeff) |
---|
1107 | { |
---|
1108 | if (compare == 1) |
---|
1109 | { |
---|
1110 | strat->c3++; |
---|
1111 | if ((strat->fromQ==NULL) || (isFromQ==0) || (strat->fromQ[i]==0)) |
---|
1112 | { |
---|
1113 | pLmFree(Lp.lcm); |
---|
1114 | return; |
---|
1115 | } |
---|
1116 | break; |
---|
1117 | } |
---|
1118 | else |
---|
1119 | if (compare == -1) |
---|
1120 | { |
---|
1121 | deleteInL(strat->B,&strat->Bl,j,strat); |
---|
1122 | strat->c3++; |
---|
1123 | } |
---|
1124 | } |
---|
1125 | if (compare == pDivComp_EQUAL) |
---|
1126 | { |
---|
1127 | // Add hint for same LM and direction of LC (later) (TODO Oliver) |
---|
1128 | if (compareCoeff == 1) |
---|
1129 | { |
---|
1130 | strat->c3++; |
---|
1131 | if ((strat->fromQ==NULL) || (isFromQ==0) || (strat->fromQ[i]==0)) |
---|
1132 | { |
---|
1133 | pLmFree(Lp.lcm); |
---|
1134 | return; |
---|
1135 | } |
---|
1136 | break; |
---|
1137 | } |
---|
1138 | else |
---|
1139 | if (compareCoeff == -1) |
---|
1140 | { |
---|
1141 | deleteInL(strat->B,&strat->Bl,j,strat); |
---|
1142 | strat->c3++; |
---|
1143 | } |
---|
1144 | } |
---|
1145 | } |
---|
1146 | /* |
---|
1147 | *the pair (S[i],p) enters B if the spoly != 0 |
---|
1148 | */ |
---|
1149 | /*- compute the short s-polynomial -*/ |
---|
1150 | if ((strat->S[i]==NULL) || (p==NULL)) return; |
---|
1151 | pNorm(p); |
---|
1152 | if ((strat->fromQ!=NULL) && (isFromQ!=0) && (strat->fromQ[i]!=0)) |
---|
1153 | { |
---|
1154 | // Is from a previous computed GB, therefore we know that spoly will |
---|
1155 | // reduce to zero. Oliver. |
---|
1156 | Lp.p=NULL; |
---|
1157 | } |
---|
1158 | else |
---|
1159 | { |
---|
1160 | Lp.p = ksCreateShortSpoly(strat->S[i], p, strat->tailRing); |
---|
1161 | } |
---|
1162 | if (Lp.p == NULL) |
---|
1163 | { |
---|
1164 | /*- the case that the s-poly is 0 -*/ |
---|
1165 | if (strat->pairtest==NULL) initPairtest(strat); |
---|
1166 | strat->pairtest[i] = TRUE;/*- hint for spoly(S^[i],p)=0 -*/ |
---|
1167 | strat->pairtest[strat->sl+1] = TRUE; |
---|
1168 | /*hint for spoly(S[i],p) == 0 for some i,0 <= i <= sl*/ |
---|
1169 | /* |
---|
1170 | *suppose we have (s,r),(r,p),(s,p) and spoly(s,p) == 0 and (r,p) is |
---|
1171 | *still in B (i.e. lcm(r,p) == lcm(s,p) or the leading term of s does not |
---|
1172 | *devide lcm(r,p)). In the last case (s,r) can be canceled if the leading |
---|
1173 | *term of p devides the lcm(s,r) |
---|
1174 | *(this canceling should be done here because |
---|
1175 | *the case lcm(s,p) == lcm(s,r) is not covered in chainCrit) |
---|
1176 | *the first case is handeled in chainCrit |
---|
1177 | */ |
---|
1178 | if (Lp.lcm!=NULL) pLmFree(Lp.lcm); |
---|
1179 | } |
---|
1180 | else |
---|
1181 | { |
---|
1182 | /*- the pair (S[i],p) enters B -*/ |
---|
1183 | Lp.p1 = strat->S[i]; |
---|
1184 | Lp.p2 = p; |
---|
1185 | |
---|
1186 | pNext(Lp.p) = strat->tail; |
---|
1187 | |
---|
1188 | if (atR >= 0) |
---|
1189 | { |
---|
1190 | Lp.i_r2 = atR; |
---|
1191 | Lp.i_r1 = strat->S_2_R[i]; |
---|
1192 | } |
---|
1193 | strat->initEcartPair(&Lp,strat->S[i],p,strat->ecartS[i],ecart); |
---|
1194 | l = strat->posInL(strat->B,strat->Bl,&Lp,strat); |
---|
1195 | enterL(&strat->B,&strat->Bl,&strat->Bmax,Lp,l); |
---|
1196 | } |
---|
1197 | } |
---|
1198 | #endif |
---|
1199 | |
---|
1200 | /*2 |
---|
1201 | * put the pair (s[i],p) into the set B, ecart=ecart(p) |
---|
1202 | */ |
---|
1203 | |
---|
1204 | void enterOnePair (int i,poly p,int ecart, int isFromQ,kStrategy strat, int atR = -1) |
---|
1205 | { |
---|
1206 | assume(i<=strat->sl); |
---|
1207 | if (strat->interred_flag) return; |
---|
1208 | |
---|
1209 | int l,j,compare; |
---|
1210 | LObject Lp; |
---|
1211 | Lp.i_r = -1; |
---|
1212 | |
---|
1213 | #ifdef KDEBUG |
---|
1214 | Lp.ecart=0; Lp.length=0; |
---|
1215 | #endif |
---|
1216 | /*- computes the lcm(s[i],p) -*/ |
---|
1217 | Lp.lcm = pInit(); |
---|
1218 | |
---|
1219 | pLcm(p,strat->S[i],Lp.lcm); |
---|
1220 | pSetm(Lp.lcm); |
---|
1221 | |
---|
1222 | #ifdef HAVE_PLURAL |
---|
1223 | const BOOLEAN bIsPluralRing = rIsPluralRing(currRing); |
---|
1224 | const BOOLEAN bIsSCA = rIsSCA(currRing) && strat->homog; // for prod-crit |
---|
1225 | const BOOLEAN bNCProdCrit = ( !bIsPluralRing || bIsSCA ); // commutative or homogeneous SCA |
---|
1226 | #else |
---|
1227 | const BOOLEAN bIsPluralRing = FALSE; |
---|
1228 | const BOOLEAN bIsSCA = FALSE; |
---|
1229 | const BOOLEAN bNCProdCrit = TRUE; |
---|
1230 | #endif |
---|
1231 | |
---|
1232 | if (strat->sugarCrit && bNCProdCrit) |
---|
1233 | { |
---|
1234 | if((!((strat->ecartS[i]>0)&&(ecart>0))) |
---|
1235 | && pHasNotCF(p,strat->S[i])) |
---|
1236 | { |
---|
1237 | /* |
---|
1238 | *the product criterion has applied for (s,p), |
---|
1239 | *i.e. lcm(s,p)=product of the leading terms of s and p. |
---|
1240 | *Suppose (s,r) is in L and the leading term |
---|
1241 | *of p divides lcm(s,r) |
---|
1242 | *(==> the leading term of p divides the leading term of r) |
---|
1243 | *but the leading term of s does not divide the leading term of r |
---|
1244 | *(notice that tis condition is automatically satisfied if r is still |
---|
1245 | *in S), then (s,r) can be cancelled. |
---|
1246 | *This should be done here because the |
---|
1247 | *case lcm(s,r)=lcm(s,p) is not covered by chainCrit. |
---|
1248 | * |
---|
1249 | *Moreover, skipping (s,r) holds also for the noncommutative case. |
---|
1250 | */ |
---|
1251 | strat->cp++; |
---|
1252 | pLmFree(Lp.lcm); |
---|
1253 | Lp.lcm=NULL; |
---|
1254 | return; |
---|
1255 | } |
---|
1256 | else |
---|
1257 | Lp.ecart = si_max(ecart,strat->ecartS[i]); |
---|
1258 | if (strat->fromT && (strat->ecartS[i]>ecart)) |
---|
1259 | { |
---|
1260 | pLmFree(Lp.lcm); |
---|
1261 | Lp.lcm=NULL; |
---|
1262 | return; |
---|
1263 | /*the pair is (s[i],t[.]), discard it if the ecart is too big*/ |
---|
1264 | } |
---|
1265 | /* |
---|
1266 | *the set B collects the pairs of type (S[j],p) |
---|
1267 | *suppose (r,p) is in B and (s,p) is the new pair and lcm(s,p)#lcm(r,p) |
---|
1268 | *if the leading term of s devides lcm(r,p) then (r,p) will be canceled |
---|
1269 | *if the leading term of r devides lcm(s,p) then (s,p) will not enter B |
---|
1270 | */ |
---|
1271 | { |
---|
1272 | j = strat->Bl; |
---|
1273 | loop |
---|
1274 | { |
---|
1275 | if (j < 0) break; |
---|
1276 | compare=pDivComp(strat->B[j].lcm,Lp.lcm); |
---|
1277 | if ((compare==1) |
---|
1278 | &&(sugarDivisibleBy(strat->B[j].ecart,Lp.ecart))) |
---|
1279 | { |
---|
1280 | strat->c3++; |
---|
1281 | if ((strat->fromQ==NULL) || (isFromQ==0) || (strat->fromQ[i]==0)) |
---|
1282 | { |
---|
1283 | pLmFree(Lp.lcm); |
---|
1284 | return; |
---|
1285 | } |
---|
1286 | break; |
---|
1287 | } |
---|
1288 | else |
---|
1289 | if ((compare ==-1) |
---|
1290 | && sugarDivisibleBy(Lp.ecart,strat->B[j].ecart)) |
---|
1291 | { |
---|
1292 | deleteInL(strat->B,&strat->Bl,j,strat); |
---|
1293 | strat->c3++; |
---|
1294 | } |
---|
1295 | j--; |
---|
1296 | } |
---|
1297 | } |
---|
1298 | } |
---|
1299 | else /*sugarcrit*/ |
---|
1300 | { |
---|
1301 | if (bNCProdCrit) |
---|
1302 | { |
---|
1303 | // if currRing->nc_type!=quasi (or skew) |
---|
1304 | // TODO: enable productCrit for super commutative algebras... |
---|
1305 | if(/*(strat->ak==0) && productCrit(p,strat->S[i])*/ |
---|
1306 | pHasNotCF(p,strat->S[i])) |
---|
1307 | { |
---|
1308 | /* |
---|
1309 | *the product criterion has applied for (s,p), |
---|
1310 | *i.e. lcm(s,p)=product of the leading terms of s and p. |
---|
1311 | *Suppose (s,r) is in L and the leading term |
---|
1312 | *of p devides lcm(s,r) |
---|
1313 | *(==> the leading term of p devides the leading term of r) |
---|
1314 | *but the leading term of s does not devide the leading term of r |
---|
1315 | *(notice that tis condition is automatically satisfied if r is still |
---|
1316 | *in S), then (s,r) can be canceled. |
---|
1317 | *This should be done here because the |
---|
1318 | *case lcm(s,r)=lcm(s,p) is not covered by chainCrit. |
---|
1319 | */ |
---|
1320 | strat->cp++; |
---|
1321 | pLmFree(Lp.lcm); |
---|
1322 | Lp.lcm=NULL; |
---|
1323 | return; |
---|
1324 | } |
---|
1325 | if (strat->fromT && (strat->ecartS[i]>ecart)) |
---|
1326 | { |
---|
1327 | pLmFree(Lp.lcm); |
---|
1328 | Lp.lcm=NULL; |
---|
1329 | return; |
---|
1330 | /*the pair is (s[i],t[.]), discard it if the ecart is too big*/ |
---|
1331 | } |
---|
1332 | /* |
---|
1333 | *the set B collects the pairs of type (S[j],p) |
---|
1334 | *suppose (r,p) is in B and (s,p) is the new pair and lcm(s,p)#lcm(r,p) |
---|
1335 | *if the leading term of s devides lcm(r,p) then (r,p) will be canceled |
---|
1336 | *if the leading term of r devides lcm(s,p) then (s,p) will not enter B |
---|
1337 | */ |
---|
1338 | for(j = strat->Bl;j>=0;j--) |
---|
1339 | { |
---|
1340 | compare=pDivComp(strat->B[j].lcm,Lp.lcm); |
---|
1341 | if (compare==1) |
---|
1342 | { |
---|
1343 | strat->c3++; |
---|
1344 | if ((strat->fromQ==NULL) || (isFromQ==0) || (strat->fromQ[i]==0)) |
---|
1345 | { |
---|
1346 | pLmFree(Lp.lcm); |
---|
1347 | return; |
---|
1348 | } |
---|
1349 | break; |
---|
1350 | } |
---|
1351 | else |
---|
1352 | if (compare ==-1) |
---|
1353 | { |
---|
1354 | deleteInL(strat->B,&strat->Bl,j,strat); |
---|
1355 | strat->c3++; |
---|
1356 | } |
---|
1357 | } |
---|
1358 | } |
---|
1359 | } |
---|
1360 | /* |
---|
1361 | *the pair (S[i],p) enters B if the spoly != 0 |
---|
1362 | */ |
---|
1363 | /*- compute the short s-polynomial -*/ |
---|
1364 | if (strat->fromT && !TEST_OPT_INTSTRATEGY) |
---|
1365 | pNorm(p); |
---|
1366 | if ((strat->S[i]==NULL) || (p==NULL)) |
---|
1367 | return; |
---|
1368 | if ((strat->fromQ!=NULL) && (isFromQ!=0) && (strat->fromQ[i]!=0)) |
---|
1369 | Lp.p=NULL; |
---|
1370 | else |
---|
1371 | { |
---|
1372 | #ifdef HAVE_PLURAL |
---|
1373 | if ( bIsPluralRing ) |
---|
1374 | { |
---|
1375 | if(pHasNotCF(p, strat->S[i])) |
---|
1376 | { |
---|
1377 | if(ncRingType(currRing) == nc_lie) |
---|
1378 | { |
---|
1379 | // generalized prod-crit for lie-type |
---|
1380 | strat->cp++; |
---|
1381 | Lp.p = nc_p_Bracket_qq(pCopy(p),strat->S[i]); |
---|
1382 | } |
---|
1383 | else |
---|
1384 | if( bIsSCA ) |
---|
1385 | { |
---|
1386 | // product criterion for homogeneous case in SCA |
---|
1387 | strat->cp++; |
---|
1388 | Lp.p = NULL; |
---|
1389 | } |
---|
1390 | else |
---|
1391 | Lp.p = nc_SPoly(strat->S[i],p,currRing); // ? |
---|
1392 | } |
---|
1393 | else |
---|
1394 | Lp.p = nc_SPoly(strat->S[i],p,currRing); |
---|
1395 | } |
---|
1396 | else |
---|
1397 | #endif |
---|
1398 | { |
---|
1399 | Lp.p = ksCreateShortSpoly(strat->S[i],p, strat->tailRing); |
---|
1400 | } |
---|
1401 | } |
---|
1402 | if (Lp.p == NULL) |
---|
1403 | { |
---|
1404 | /*- the case that the s-poly is 0 -*/ |
---|
1405 | if (strat->pairtest==NULL) initPairtest(strat); |
---|
1406 | strat->pairtest[i] = TRUE;/*- hint for spoly(S^[i],p)=0 -*/ |
---|
1407 | strat->pairtest[strat->sl+1] = TRUE; |
---|
1408 | /*hint for spoly(S[i],p) == 0 for some i,0 <= i <= sl*/ |
---|
1409 | /* |
---|
1410 | *suppose we have (s,r),(r,p),(s,p) and spoly(s,p) == 0 and (r,p) is |
---|
1411 | *still in B (i.e. lcm(r,p) == lcm(s,p) or the leading term of s does not |
---|
1412 | *devide lcm(r,p)). In the last case (s,r) can be canceled if the leading |
---|
1413 | *term of p devides the lcm(s,r) |
---|
1414 | *(this canceling should be done here because |
---|
1415 | *the case lcm(s,p) == lcm(s,r) is not covered in chainCrit) |
---|
1416 | *the first case is handeled in chainCrit |
---|
1417 | */ |
---|
1418 | if (Lp.lcm!=NULL) pLmFree(Lp.lcm); |
---|
1419 | } |
---|
1420 | else |
---|
1421 | { |
---|
1422 | /*- the pair (S[i],p) enters B -*/ |
---|
1423 | Lp.p1 = strat->S[i]; |
---|
1424 | Lp.p2 = p; |
---|
1425 | |
---|
1426 | if ( !bIsPluralRing ) |
---|
1427 | pNext(Lp.p) = strat->tail; |
---|
1428 | |
---|
1429 | if (atR >= 0) |
---|
1430 | { |
---|
1431 | Lp.i_r1 = strat->S_2_R[i]; |
---|
1432 | Lp.i_r2 = atR; |
---|
1433 | } |
---|
1434 | else |
---|
1435 | { |
---|
1436 | Lp.i_r1 = -1; |
---|
1437 | Lp.i_r2 = -1; |
---|
1438 | } |
---|
1439 | strat->initEcartPair(&Lp,strat->S[i],p,strat->ecartS[i],ecart); |
---|
1440 | |
---|
1441 | if (TEST_OPT_INTSTRATEGY) |
---|
1442 | { |
---|
1443 | if (!bIsPluralRing) |
---|
1444 | nDelete(&(Lp.p->coef)); |
---|
1445 | } |
---|
1446 | |
---|
1447 | l = strat->posInL(strat->B,strat->Bl,&Lp,strat); |
---|
1448 | enterL(&strat->B,&strat->Bl,&strat->Bmax,Lp,l); |
---|
1449 | } |
---|
1450 | } |
---|
1451 | |
---|
1452 | /*2 |
---|
1453 | * put the pair (s[i],p) into the set L, ecart=ecart(p) |
---|
1454 | * in the case that s forms a SB of (s) |
---|
1455 | */ |
---|
1456 | void enterOnePairSpecial (int i,poly p,int ecart,kStrategy strat, int atR = -1) |
---|
1457 | { |
---|
1458 | //PrintS("try ");wrp(strat->S[i]);PrintS(" and ");wrp(p);PrintLn(); |
---|
1459 | if(pHasNotCF(p,strat->S[i])) |
---|
1460 | { |
---|
1461 | //PrintS("prod-crit\n"); |
---|
1462 | #ifdef HAVE_PLURAL |
---|
1463 | if(!rIsPluralRing(currRing) || (rIsSCA(currRing) && strat->homog)) |
---|
1464 | #endif |
---|
1465 | { |
---|
1466 | //PrintS("prod-crit\n"); |
---|
1467 | strat->cp++; |
---|
1468 | return; |
---|
1469 | } |
---|
1470 | } |
---|
1471 | |
---|
1472 | int l,j,compare; |
---|
1473 | LObject Lp; |
---|
1474 | Lp.i_r = -1; |
---|
1475 | |
---|
1476 | Lp.lcm = pInit(); |
---|
1477 | pLcm(p,strat->S[i],Lp.lcm); |
---|
1478 | pSetm(Lp.lcm); |
---|
1479 | for(j = strat->Ll;j>=0;j--) |
---|
1480 | { |
---|
1481 | compare=pDivComp(strat->L[j].lcm,Lp.lcm); |
---|
1482 | if ((compare==1) || (pLmEqual(strat->L[j].lcm,Lp.lcm))) |
---|
1483 | { |
---|
1484 | //PrintS("c3-crit\n"); |
---|
1485 | strat->c3++; |
---|
1486 | pLmFree(Lp.lcm); |
---|
1487 | return; |
---|
1488 | } |
---|
1489 | else if (compare ==-1) |
---|
1490 | { |
---|
1491 | //Print("c3-crit with L[%d]\n",j); |
---|
1492 | deleteInL(strat->L,&strat->Ll,j,strat); |
---|
1493 | strat->c3++; |
---|
1494 | } |
---|
1495 | } |
---|
1496 | /*- compute the short s-polynomial -*/ |
---|
1497 | |
---|
1498 | #ifdef HAVE_PLURAL |
---|
1499 | if (rIsPluralRing(currRing)) |
---|
1500 | { |
---|
1501 | Lp.p = nc_CreateShortSpoly(strat->S[i],p); // ??? |
---|
1502 | } |
---|
1503 | else |
---|
1504 | #endif |
---|
1505 | Lp.p = ksCreateShortSpoly(strat->S[i],p,strat->tailRing); |
---|
1506 | |
---|
1507 | if (Lp.p == NULL) |
---|
1508 | { |
---|
1509 | //PrintS("short spoly==NULL\n"); |
---|
1510 | pLmFree(Lp.lcm); |
---|
1511 | } |
---|
1512 | else |
---|
1513 | { |
---|
1514 | /*- the pair (S[i],p) enters L -*/ |
---|
1515 | Lp.p1 = strat->S[i]; |
---|
1516 | Lp.p2 = p; |
---|
1517 | if (atR >= 0) |
---|
1518 | { |
---|
1519 | Lp.i_r1 = strat->S_2_R[i]; |
---|
1520 | Lp.i_r2 = atR; |
---|
1521 | } |
---|
1522 | else |
---|
1523 | { |
---|
1524 | Lp.i_r1 = -1; |
---|
1525 | Lp.i_r2 = -1; |
---|
1526 | } |
---|
1527 | pNext(Lp.p) = strat->tail; |
---|
1528 | strat->initEcartPair(&Lp,strat->S[i],p,strat->ecartS[i],ecart); |
---|
1529 | if (TEST_OPT_INTSTRATEGY) |
---|
1530 | { |
---|
1531 | nDelete(&(Lp.p->coef)); |
---|
1532 | } |
---|
1533 | l = strat->posInL(strat->L,strat->Ll,&Lp,strat); |
---|
1534 | //Print("-> L[%d]\n",l); |
---|
1535 | enterL(&strat->L,&strat->Ll,&strat->Lmax,Lp,l); |
---|
1536 | } |
---|
1537 | } |
---|
1538 | |
---|
1539 | /*2 |
---|
1540 | *the pairset B of pairs of type (s[i],p) is complete now. It will be updated |
---|
1541 | *using the chain-criterion in B and L and enters B to L |
---|
1542 | */ |
---|
1543 | void chainCrit (poly p,int ecart,kStrategy strat) |
---|
1544 | { |
---|
1545 | int i,j,l; |
---|
1546 | |
---|
1547 | /* |
---|
1548 | *pairtest[i] is TRUE if spoly(S[i],p) == 0. |
---|
1549 | *In this case all elements in B such |
---|
1550 | *that their lcm is divisible by the leading term of S[i] can be canceled |
---|
1551 | */ |
---|
1552 | if (strat->pairtest!=NULL) |
---|
1553 | { |
---|
1554 | { |
---|
1555 | /*- i.e. there is an i with pairtest[i]==TRUE -*/ |
---|
1556 | for (j=0; j<=strat->sl; j++) |
---|
1557 | { |
---|
1558 | if (strat->pairtest[j]) |
---|
1559 | { |
---|
1560 | for (i=strat->Bl; i>=0; i--) |
---|
1561 | { |
---|
1562 | if (pDivisibleBy(strat->S[j],strat->B[i].lcm)) |
---|
1563 | { |
---|
1564 | deleteInL(strat->B,&strat->Bl,i,strat); |
---|
1565 | strat->c3++; |
---|
1566 | } |
---|
1567 | } |
---|
1568 | } |
---|
1569 | } |
---|
1570 | } |
---|
1571 | omFreeSize(strat->pairtest,(strat->sl+2)*sizeof(BOOLEAN)); |
---|
1572 | strat->pairtest=NULL; |
---|
1573 | } |
---|
1574 | if (strat->Gebauer || strat->fromT) |
---|
1575 | { |
---|
1576 | if (strat->sugarCrit) |
---|
1577 | { |
---|
1578 | /* |
---|
1579 | *suppose L[j] == (s,r) and p/lcm(s,r) |
---|
1580 | *and lcm(s,r)#lcm(s,p) and lcm(s,r)#lcm(r,p) |
---|
1581 | *and in case the sugar is o.k. then L[j] can be canceled |
---|
1582 | */ |
---|
1583 | for (j=strat->Ll; j>=0; j--) |
---|
1584 | { |
---|
1585 | if (sugarDivisibleBy(ecart,strat->L[j].ecart) |
---|
1586 | && ((pNext(strat->L[j].p) == strat->tail) || (pOrdSgn==1)) |
---|
1587 | && pCompareChain(p,strat->L[j].p1,strat->L[j].p2,strat->L[j].lcm)) |
---|
1588 | { |
---|
1589 | if (strat->L[j].p == strat->tail) |
---|
1590 | { |
---|
1591 | deleteInL(strat->L,&strat->Ll,j,strat); |
---|
1592 | strat->c3++; |
---|
1593 | } |
---|
1594 | } |
---|
1595 | } |
---|
1596 | /* |
---|
1597 | *this is GEBAUER-MOELLER: |
---|
1598 | *in B all elements with the same lcm except the "best" |
---|
1599 | *(i.e. the last one in B with this property) will be canceled |
---|
1600 | */ |
---|
1601 | j = strat->Bl; |
---|
1602 | loop /*cannot be changed into a for !!! */ |
---|
1603 | { |
---|
1604 | if (j <= 0) break; |
---|
1605 | i = j-1; |
---|
1606 | loop |
---|
1607 | { |
---|
1608 | if (i < 0) break; |
---|
1609 | if (pLmEqual(strat->B[j].lcm,strat->B[i].lcm)) |
---|
1610 | { |
---|
1611 | strat->c3++; |
---|
1612 | if (sugarDivisibleBy(strat->B[j].ecart,strat->B[i].ecart)) |
---|
1613 | { |
---|
1614 | deleteInL(strat->B,&strat->Bl,i,strat); |
---|
1615 | j--; |
---|
1616 | } |
---|
1617 | else |
---|
1618 | { |
---|
1619 | deleteInL(strat->B,&strat->Bl,j,strat); |
---|
1620 | break; |
---|
1621 | } |
---|
1622 | } |
---|
1623 | i--; |
---|
1624 | } |
---|
1625 | j--; |
---|
1626 | } |
---|
1627 | } |
---|
1628 | else /*sugarCrit*/ |
---|
1629 | { |
---|
1630 | /* |
---|
1631 | *suppose L[j] == (s,r) and p/lcm(s,r) |
---|
1632 | *and lcm(s,r)#lcm(s,p) and lcm(s,r)#lcm(r,p) |
---|
1633 | *and in case the sugar is o.k. then L[j] can be canceled |
---|
1634 | */ |
---|
1635 | for (j=strat->Ll; j>=0; j--) |
---|
1636 | { |
---|
1637 | if (pCompareChain(p,strat->L[j].p1,strat->L[j].p2,strat->L[j].lcm)) |
---|
1638 | { |
---|
1639 | if ((pNext(strat->L[j].p) == strat->tail)||(pOrdSgn==1)) |
---|
1640 | { |
---|
1641 | deleteInL(strat->L,&strat->Ll,j,strat); |
---|
1642 | strat->c3++; |
---|
1643 | } |
---|
1644 | } |
---|
1645 | } |
---|
1646 | /* |
---|
1647 | *this is GEBAUER-MOELLER: |
---|
1648 | *in B all elements with the same lcm except the "best" |
---|
1649 | *(i.e. the last one in B with this property) will be canceled |
---|
1650 | */ |
---|
1651 | j = strat->Bl; |
---|
1652 | loop /*cannot be changed into a for !!! */ |
---|
1653 | { |
---|
1654 | if (j <= 0) break; |
---|
1655 | for(i=j-1; i>=0; i--) |
---|
1656 | { |
---|
1657 | if (pLmEqual(strat->B[j].lcm,strat->B[i].lcm)) |
---|
1658 | { |
---|
1659 | strat->c3++; |
---|
1660 | deleteInL(strat->B,&strat->Bl,i,strat); |
---|
1661 | j--; |
---|
1662 | } |
---|
1663 | } |
---|
1664 | j--; |
---|
1665 | } |
---|
1666 | } |
---|
1667 | /* |
---|
1668 | *the elements of B enter L/their order with respect to B is kept |
---|
1669 | *j = posInL(L,j,B[i]) would permutate the order |
---|
1670 | *if once B is ordered different from L |
---|
1671 | *then one should use j = posInL(L,Ll,B[i]) |
---|
1672 | */ |
---|
1673 | j = strat->Ll+1; |
---|
1674 | for (i=strat->Bl; i>=0; i--) |
---|
1675 | { |
---|
1676 | j = strat->posInL(strat->L,j-1,&(strat->B[i]),strat); |
---|
1677 | enterL(&strat->L,&strat->Ll,&strat->Lmax,strat->B[i],j); |
---|
1678 | } |
---|
1679 | strat->Bl = -1; |
---|
1680 | } |
---|
1681 | else |
---|
1682 | { |
---|
1683 | for (j=strat->Ll; j>=0; j--) |
---|
1684 | { |
---|
1685 | if (pCompareChain(p,strat->L[j].p1,strat->L[j].p2,strat->L[j].lcm)) |
---|
1686 | { |
---|
1687 | if ((pNext(strat->L[j].p) == strat->tail)||(pOrdSgn==1)) |
---|
1688 | { |
---|
1689 | deleteInL(strat->L,&strat->Ll,j,strat); |
---|
1690 | strat->c3++; |
---|
1691 | } |
---|
1692 | } |
---|
1693 | } |
---|
1694 | /* |
---|
1695 | *this is our MODIFICATION of GEBAUER-MOELLER: |
---|
1696 | *First the elements of B enter L, |
---|
1697 | *then we fix a lcm and the "best" element in L |
---|
1698 | *(i.e the last in L with this lcm and of type (s,p)) |
---|
1699 | *and cancel all the other elements of type (r,p) with this lcm |
---|
1700 | *except the case the element (s,r) has also the same lcm |
---|
1701 | *and is on the worst position with respect to (s,p) and (r,p) |
---|
1702 | */ |
---|
1703 | /* |
---|
1704 | *B enters to L/their order with respect to B is permutated for elements |
---|
1705 | *B[i].p with the same leading term |
---|
1706 | */ |
---|
1707 | j = strat->Ll; |
---|
1708 | for (i=strat->Bl; i>=0; i--) |
---|
1709 | { |
---|
1710 | j = strat->posInL(strat->L,j,&(strat->B[i]),strat); |
---|
1711 | enterL(&strat->L,&strat->Ll,&strat->Lmax,strat->B[i],j); |
---|
1712 | } |
---|
1713 | strat->Bl = -1; |
---|
1714 | j = strat->Ll; |
---|
1715 | loop /*cannot be changed into a for !!! */ |
---|
1716 | { |
---|
1717 | if (j <= 0) |
---|
1718 | { |
---|
1719 | /*now L[0] cannot be canceled any more and the tail can be removed*/ |
---|
1720 | if (strat->L[0].p2 == strat->tail) strat->L[0].p2 = p; |
---|
1721 | break; |
---|
1722 | } |
---|
1723 | if (strat->L[j].p2 == p) |
---|
1724 | { |
---|
1725 | i = j-1; |
---|
1726 | loop |
---|
1727 | { |
---|
1728 | if (i < 0) break; |
---|
1729 | if ((strat->L[i].p2 == p) && pLmEqual(strat->L[j].lcm,strat->L[i].lcm)) |
---|
1730 | { |
---|
1731 | /*L[i] could be canceled but we search for a better one to cancel*/ |
---|
1732 | strat->c3++; |
---|
1733 | if (isInPairsetL(i-1,strat->L[j].p1,strat->L[i].p1,&l,strat) |
---|
1734 | && (pNext(strat->L[l].p) == strat->tail) |
---|
1735 | && (!pLmEqual(strat->L[i].p,strat->L[l].p)) |
---|
1736 | && pDivisibleBy(p,strat->L[l].lcm)) |
---|
1737 | { |
---|
1738 | /* |
---|
1739 | *"NOT equal(...)" because in case of "equal" the element L[l] |
---|
1740 | *is "older" and has to be from theoretical point of view behind |
---|
1741 | *L[i], but we do not want to reorder L |
---|
1742 | */ |
---|
1743 | strat->L[i].p2 = strat->tail; |
---|
1744 | /* |
---|
1745 | *L[l] will be canceled, we cannot cancel L[i] later on, |
---|
1746 | *so we mark it with "tail" |
---|
1747 | */ |
---|
1748 | deleteInL(strat->L,&strat->Ll,l,strat); |
---|
1749 | i--; |
---|
1750 | } |
---|
1751 | else |
---|
1752 | { |
---|
1753 | deleteInL(strat->L,&strat->Ll,i,strat); |
---|
1754 | } |
---|
1755 | j--; |
---|
1756 | } |
---|
1757 | i--; |
---|
1758 | } |
---|
1759 | } |
---|
1760 | else if (strat->L[j].p2 == strat->tail) |
---|
1761 | { |
---|
1762 | /*now L[j] cannot be canceled any more and the tail can be removed*/ |
---|
1763 | strat->L[j].p2 = p; |
---|
1764 | } |
---|
1765 | j--; |
---|
1766 | } |
---|
1767 | } |
---|
1768 | } |
---|
1769 | |
---|
1770 | /*2 |
---|
1771 | *(s[0],h),...,(s[k],h) will be put to the pairset L |
---|
1772 | */ |
---|
1773 | void initenterpairs (poly h,int k,int ecart,int isFromQ,kStrategy strat, int atR = -1) |
---|
1774 | { |
---|
1775 | |
---|
1776 | if ((strat->syzComp==0) |
---|
1777 | || (pGetComp(h)<=strat->syzComp)) |
---|
1778 | { |
---|
1779 | int j; |
---|
1780 | BOOLEAN new_pair=FALSE; |
---|
1781 | |
---|
1782 | if (pGetComp(h)==0) |
---|
1783 | { |
---|
1784 | /* for Q!=NULL: build pairs (f,q),(f1,f2), but not (q1,q2)*/ |
---|
1785 | if ((isFromQ)&&(strat->fromQ!=NULL)) |
---|
1786 | { |
---|
1787 | for (j=0; j<=k; j++) |
---|
1788 | { |
---|
1789 | if (!strat->fromQ[j]) |
---|
1790 | { |
---|
1791 | new_pair=TRUE; |
---|
1792 | enterOnePair(j,h,ecart,isFromQ,strat, atR); |
---|
1793 | //Print("j:%d, Ll:%d\n",j,strat->Ll); |
---|
1794 | } |
---|
1795 | } |
---|
1796 | } |
---|
1797 | else |
---|
1798 | { |
---|
1799 | new_pair=TRUE; |
---|
1800 | for (j=0; j<=k; j++) |
---|
1801 | { |
---|
1802 | enterOnePair(j,h,ecart,isFromQ,strat, atR); |
---|
1803 | //Print("j:%d, Ll:%d\n",j,strat->Ll); |
---|
1804 | } |
---|
1805 | } |
---|
1806 | } |
---|
1807 | else |
---|
1808 | { |
---|
1809 | for (j=0; j<=k; j++) |
---|
1810 | { |
---|
1811 | if ((pGetComp(h)==pGetComp(strat->S[j])) |
---|
1812 | || (pGetComp(strat->S[j])==0)) |
---|
1813 | { |
---|
1814 | new_pair=TRUE; |
---|
1815 | enterOnePair(j,h,ecart,isFromQ,strat, atR); |
---|
1816 | //Print("j:%d, Ll:%d\n",j,strat->Ll); |
---|
1817 | } |
---|
1818 | } |
---|
1819 | } |
---|
1820 | |
---|
1821 | if (new_pair) chainCrit(h,ecart,strat); |
---|
1822 | |
---|
1823 | } |
---|
1824 | } |
---|
1825 | |
---|
1826 | #ifdef HAVE_RING2TOM |
---|
1827 | /*2 |
---|
1828 | *the pairset B of pairs of type (s[i],p) is complete now. It will be updated |
---|
1829 | *using the chain-criterion in B and L and enters B to L |
---|
1830 | */ |
---|
1831 | void chainCritRing (poly p,int ecart,kStrategy strat) |
---|
1832 | { |
---|
1833 | int i,j,l; |
---|
1834 | /* |
---|
1835 | *pairtest[i] is TRUE if spoly(S[i],p) == 0. |
---|
1836 | *In this case all elements in B such |
---|
1837 | *that their lcm is divisible by the leading term of S[i] can be canceled |
---|
1838 | */ |
---|
1839 | if (strat->pairtest!=NULL) |
---|
1840 | { |
---|
1841 | { |
---|
1842 | /*- i.e. there is an i with pairtest[i]==TRUE -*/ |
---|
1843 | for (j=0; j<=strat->sl; j++) |
---|
1844 | { |
---|
1845 | if (strat->pairtest[j]) |
---|
1846 | { |
---|
1847 | for (i=strat->Bl; i>=0; i--) |
---|
1848 | { |
---|
1849 | if (pDivisibleBy(strat->S[j],strat->B[i].lcm)) |
---|
1850 | { |
---|
1851 | deleteInL(strat->B,&strat->Bl,i,strat); |
---|
1852 | strat->c3++; |
---|
1853 | } |
---|
1854 | } |
---|
1855 | } |
---|
1856 | } |
---|
1857 | } |
---|
1858 | omFreeSize(strat->pairtest,(strat->sl+2)*sizeof(BOOLEAN)); |
---|
1859 | strat->pairtest=NULL; |
---|
1860 | } |
---|
1861 | assume(!(strat->Gebauer || strat->fromT)); |
---|
1862 | for (j=strat->Ll; j>=0; j--) |
---|
1863 | { |
---|
1864 | if (strat->L[j].lcm != NULL && nGreater(pGetCoeff(strat->L[j].lcm), pGetCoeff(p))) |
---|
1865 | { |
---|
1866 | if (pCompareChain(p,strat->L[j].p1,strat->L[j].p2,strat->L[j].lcm)) |
---|
1867 | { |
---|
1868 | if ((pNext(strat->L[j].p) == strat->tail) || (pOrdSgn==1)) |
---|
1869 | { |
---|
1870 | deleteInL(strat->L,&strat->Ll,j,strat); |
---|
1871 | strat->c3++; |
---|
1872 | // Print("|UL|"); |
---|
1873 | } |
---|
1874 | } |
---|
1875 | } |
---|
1876 | } |
---|
1877 | /* |
---|
1878 | *this is our MODIFICATION of GEBAUER-MOELLER: |
---|
1879 | *First the elements of B enter L, |
---|
1880 | *then we fix a lcm and the "best" element in L |
---|
1881 | *(i.e the last in L with this lcm and of type (s,p)) |
---|
1882 | *and cancel all the other elements of type (r,p) with this lcm |
---|
1883 | *except the case the element (s,r) has also the same lcm |
---|
1884 | *and is on the worst position with respect to (s,p) and (r,p) |
---|
1885 | */ |
---|
1886 | /* |
---|
1887 | *B enters to L/their order with respect to B is permutated for elements |
---|
1888 | *B[i].p with the same leading term |
---|
1889 | */ |
---|
1890 | j = strat->Ll; |
---|
1891 | for (i=strat->Bl; i>=0; i--) |
---|
1892 | { |
---|
1893 | j = strat->posInL(strat->L,j,&(strat->B[i]),strat); |
---|
1894 | enterL(&strat->L,&strat->Ll,&strat->Lmax,strat->B[i],j); |
---|
1895 | } |
---|
1896 | strat->Bl = -1; |
---|
1897 | j = strat->Ll; |
---|
1898 | loop /*cannot be changed into a for !!! */ |
---|
1899 | { |
---|
1900 | if (j <= 0) |
---|
1901 | { |
---|
1902 | /*now L[0] cannot be canceled any more and the tail can be removed*/ |
---|
1903 | if (strat->L[0].p2 == strat->tail) strat->L[0].p2 = p; |
---|
1904 | break; |
---|
1905 | } |
---|
1906 | if (strat->L[j].p2 == p) // Was the element added from B? |
---|
1907 | { |
---|
1908 | i = j-1; |
---|
1909 | loop |
---|
1910 | { |
---|
1911 | if (i < 0) break; |
---|
1912 | // Element is from B and has the same lcm as L[j] |
---|
1913 | if ((strat->L[i].p2 == p) && nGreater(pGetCoeff(strat->L[j].lcm), pGetCoeff(strat->L[i].lcm)) |
---|
1914 | && pLmEqual(strat->L[j].lcm,strat->L[i].lcm)) |
---|
1915 | { |
---|
1916 | /*L[i] could be canceled but we search for a better one to cancel*/ |
---|
1917 | strat->c3++; |
---|
1918 | // Print("|EP|"); |
---|
1919 | if (isInPairsetL(i-1,strat->L[j].p1,strat->L[i].p1,&l,strat) |
---|
1920 | && (pNext(strat->L[l].p) == strat->tail) |
---|
1921 | && (!pLmEqual(strat->L[i].p,strat->L[l].p)) |
---|
1922 | && pDivisibleBy(p,strat->L[l].lcm)) |
---|
1923 | { |
---|
1924 | /* |
---|
1925 | *"NOT equal(...)" because in case of "equal" the element L[l] |
---|
1926 | *is "older" and has to be from theoretical point of view behind |
---|
1927 | *L[i], but we do not want to reorder L |
---|
1928 | */ |
---|
1929 | strat->L[i].p2 = strat->tail; |
---|
1930 | /* |
---|
1931 | *L[l] will be canceled, we cannot cancel L[i] later on, |
---|
1932 | *so we mark it with "tail" |
---|
1933 | */ |
---|
1934 | deleteInL(strat->L,&strat->Ll,l,strat); |
---|
1935 | i--; |
---|
1936 | } |
---|
1937 | else |
---|
1938 | { |
---|
1939 | deleteInL(strat->L,&strat->Ll,i,strat); |
---|
1940 | } |
---|
1941 | j--; |
---|
1942 | } |
---|
1943 | i--; |
---|
1944 | } |
---|
1945 | } |
---|
1946 | else if (strat->L[j].p2 == strat->tail) |
---|
1947 | { |
---|
1948 | /*now L[j] cannot be canceled any more and the tail can be removed*/ |
---|
1949 | strat->L[j].p2 = p; |
---|
1950 | } |
---|
1951 | j--; |
---|
1952 | } |
---|
1953 | } |
---|
1954 | |
---|
1955 | long twoPow(long arg) |
---|
1956 | { |
---|
1957 | return 1L << arg; |
---|
1958 | } |
---|
1959 | |
---|
1960 | long ind2(long arg) |
---|
1961 | { |
---|
1962 | long ind = 0; |
---|
1963 | if (arg <= 0) return 0; |
---|
1964 | while (arg%2 == 0) |
---|
1965 | { |
---|
1966 | arg = arg / 2; |
---|
1967 | ind++; |
---|
1968 | } |
---|
1969 | return ind; |
---|
1970 | } |
---|
1971 | |
---|
1972 | long ind_fact_2(long arg) |
---|
1973 | { |
---|
1974 | long ind = 0; |
---|
1975 | if (arg <= 0) return 0; |
---|
1976 | if (arg%2 == 1) { arg--; } |
---|
1977 | while (arg > 0) |
---|
1978 | { |
---|
1979 | ind += ind2(arg); |
---|
1980 | arg = arg - 2; |
---|
1981 | } |
---|
1982 | return ind; |
---|
1983 | } |
---|
1984 | |
---|
1985 | /*2 |
---|
1986 | * put the pair (p, f) in B and f in T |
---|
1987 | */ |
---|
1988 | void enterOneZeroPairRing (poly f, poly t_p, poly p, int ecart, kStrategy strat, int atR = -1) |
---|
1989 | { |
---|
1990 | int l,j,compare,compareCoeff; |
---|
1991 | LObject Lp; |
---|
1992 | |
---|
1993 | if (strat->interred_flag) return; |
---|
1994 | #ifdef KDEBUG |
---|
1995 | Lp.ecart=0; Lp.length=0; |
---|
1996 | #endif |
---|
1997 | /*- computes the lcm(s[i],p) -*/ |
---|
1998 | Lp.lcm = pInit(); |
---|
1999 | |
---|
2000 | pLcm(p,f,Lp.lcm); |
---|
2001 | pSetm(Lp.lcm); |
---|
2002 | pSetCoeff(Lp.lcm, nLcm(pGetCoeff(p), pGetCoeff(f), currRing)); |
---|
2003 | assume(!strat->sugarCrit); |
---|
2004 | assume(!strat->fromT); |
---|
2005 | /* |
---|
2006 | *the set B collects the pairs of type (S[j],p) |
---|
2007 | *suppose (r,p) is in B and (s,p) is the new pair and lcm(s,p) != lcm(r,p) |
---|
2008 | *if the leading term of s devides lcm(r,p) then (r,p) will be canceled |
---|
2009 | *if the leading term of r devides lcm(s,p) then (s,p) will not enter B |
---|
2010 | */ |
---|
2011 | for(j = strat->Bl;j>=0;j--) |
---|
2012 | { |
---|
2013 | compare=pDivCompRing(strat->B[j].lcm,Lp.lcm); |
---|
2014 | compareCoeff = nComp((long) pGetCoeff(strat->B[j].lcm), (long) pGetCoeff(Lp.lcm)); |
---|
2015 | if (compareCoeff == 0 || compare == compareCoeff) |
---|
2016 | { |
---|
2017 | if (compare == 1) |
---|
2018 | { |
---|
2019 | strat->c3++; |
---|
2020 | pLmFree(Lp.lcm); |
---|
2021 | return; |
---|
2022 | } |
---|
2023 | else |
---|
2024 | if (compare == -1) |
---|
2025 | { |
---|
2026 | deleteInL(strat->B,&strat->Bl,j,strat); |
---|
2027 | strat->c3++; |
---|
2028 | } |
---|
2029 | } |
---|
2030 | if (compare == pDivComp_EQUAL) |
---|
2031 | { |
---|
2032 | // Add hint for same LM and direction of LC (later) (TODO Oliver) |
---|
2033 | if (compareCoeff == 1) |
---|
2034 | { |
---|
2035 | strat->c3++; |
---|
2036 | pLmFree(Lp.lcm); |
---|
2037 | return; |
---|
2038 | } |
---|
2039 | else |
---|
2040 | if (compareCoeff == -1) |
---|
2041 | { |
---|
2042 | deleteInL(strat->B,&strat->Bl,j,strat); |
---|
2043 | strat->c3++; |
---|
2044 | } |
---|
2045 | } |
---|
2046 | } |
---|
2047 | /* |
---|
2048 | *the pair (S[i],p) enters B if the spoly != 0 |
---|
2049 | */ |
---|
2050 | /*- compute the short s-polynomial -*/ |
---|
2051 | if ((f==NULL) || (p==NULL)) return; |
---|
2052 | pNorm(p); |
---|
2053 | { |
---|
2054 | Lp.p = ksCreateShortSpoly(f, p, strat->tailRing); |
---|
2055 | } |
---|
2056 | if (Lp.p == NULL) //deactivated, as we are adding pairs with zeropoly and not from S |
---|
2057 | { |
---|
2058 | /*- the case that the s-poly is 0 -*/ |
---|
2059 | // if (strat->pairtest==NULL) initPairtest(strat); |
---|
2060 | // strat->pairtest[i] = TRUE;/*- hint for spoly(S^[i],p)=0 -*/ |
---|
2061 | // strat->pairtest[strat->sl+1] = TRUE; |
---|
2062 | /*hint for spoly(S[i],p) == 0 for some i,0 <= i <= sl*/ |
---|
2063 | /* |
---|
2064 | *suppose we have (s,r),(r,p),(s,p) and spoly(s,p) == 0 and (r,p) is |
---|
2065 | *still in B (i.e. lcm(r,p) == lcm(s,p) or the leading term of s does not |
---|
2066 | *devide lcm(r,p)). In the last case (s,r) can be canceled if the leading |
---|
2067 | *term of p devides the lcm(s,r) |
---|
2068 | *(this canceling should be done here because |
---|
2069 | *the case lcm(s,p) == lcm(s,r) is not covered in chainCrit) |
---|
2070 | *the first case is handeled in chainCrit |
---|
2071 | */ |
---|
2072 | if (Lp.lcm!=NULL) pLmFree(Lp.lcm); |
---|
2073 | } |
---|
2074 | else |
---|
2075 | { |
---|
2076 | /*- the pair (S[i],p) enters B -*/ |
---|
2077 | Lp.p1 = f; |
---|
2078 | Lp.p2 = p; |
---|
2079 | |
---|
2080 | pNext(Lp.p) = strat->tail; |
---|
2081 | |
---|
2082 | LObject tmp_h(f, currRing, strat->tailRing); |
---|
2083 | tmp_h.SetShortExpVector(); |
---|
2084 | strat->initEcart(&tmp_h); |
---|
2085 | tmp_h.sev = pGetShortExpVector(tmp_h.p); |
---|
2086 | tmp_h.t_p = t_p; |
---|
2087 | |
---|
2088 | enterT(tmp_h, strat, strat->tl + 1); |
---|
2089 | |
---|
2090 | if (atR >= 0) |
---|
2091 | { |
---|
2092 | Lp.i_r2 = atR; |
---|
2093 | Lp.i_r1 = strat->tl; |
---|
2094 | } |
---|
2095 | |
---|
2096 | strat->initEcartPair(&Lp,f,p,0/*strat->ecartS[i]*/,ecart); // Attention: TODO: break ecart |
---|
2097 | l = strat->posInL(strat->B,strat->Bl,&Lp,strat); |
---|
2098 | enterL(&strat->B, &strat->Bl, &strat->Bmax, Lp, l); |
---|
2099 | } |
---|
2100 | } |
---|
2101 | |
---|
2102 | /* Helper for kCreateZeroPoly |
---|
2103 | * enumerating the exponents |
---|
2104 | ring r = 2^2, (a, b, c), lp; ideal G0 = system("createG0"); ideal G = interred(G0); ncols(G0); ncols(G); |
---|
2105 | */ |
---|
2106 | |
---|
2107 | int nextZeroSimplexExponent (long exp[], long ind[], long cexp[], long cind[], long* cabsind, long step[], long bound, long N) |
---|
2108 | /* gives the next exponent from the set H_1 */ |
---|
2109 | { |
---|
2110 | long add = ind2(cexp[1] + 2); |
---|
2111 | if ((*cabsind < bound) && (*cabsind - step[1] + add < bound)) |
---|
2112 | { |
---|
2113 | cexp[1] += 2; |
---|
2114 | cind[1] += add; |
---|
2115 | *cabsind += add; |
---|
2116 | } |
---|
2117 | else |
---|
2118 | { |
---|
2119 | // cabsind >= habsind |
---|
2120 | if (N == 1) return 0; |
---|
2121 | int i = 1; |
---|
2122 | while (exp[i] == cexp[i] && i <= N) i++; |
---|
2123 | cexp[i] = exp[i]; |
---|
2124 | *cabsind -= cind[i]; |
---|
2125 | cind[i] = ind[i]; |
---|
2126 | step[i] = 500000; |
---|
2127 | *cabsind += cind[i]; |
---|
2128 | // Print("in: %d\n", *cabsind); |
---|
2129 | i += 1; |
---|
2130 | if (i > N) return 0; |
---|
2131 | do |
---|
2132 | { |
---|
2133 | step[1] = 500000; |
---|
2134 | for (int j = i + 1; j <= N; j++) |
---|
2135 | { |
---|
2136 | if (step[1] > step[j]) step[1] = step[j]; |
---|
2137 | } |
---|
2138 | add = ind2(cexp[i] + 2); |
---|
2139 | if (*cabsind - step[1] + add >= bound) |
---|
2140 | { |
---|
2141 | cexp[i] = exp[i]; |
---|
2142 | *cabsind -= cind[i]; |
---|
2143 | cind[i] = ind[i]; |
---|
2144 | *cabsind += cind[i]; |
---|
2145 | step[i] = 500000; |
---|
2146 | i += 1; |
---|
2147 | if (i > N) return 0; |
---|
2148 | } |
---|
2149 | else step[1] = -1; |
---|
2150 | } while (step[1] != -1); |
---|
2151 | step[1] = 500000; |
---|
2152 | cexp[i] += 2; |
---|
2153 | cind[i] += add; |
---|
2154 | *cabsind += add; |
---|
2155 | if (add < step[i]) step[i] = add; |
---|
2156 | for (i = 2; i <= N; i++) |
---|
2157 | { |
---|
2158 | if (step[1] > step[i]) step[1] = step[i]; |
---|
2159 | } |
---|
2160 | } |
---|
2161 | return 1; |
---|
2162 | } |
---|
2163 | |
---|
2164 | /* |
---|
2165 | * Creates the zero Polynomial on position exp |
---|
2166 | * long exp[] : exponent of leading term |
---|
2167 | * cabsind : total 2-ind of exp (if -1 will be computed) |
---|
2168 | * poly* t_p : will hold the LT in tailRing |
---|
2169 | * leadRing : ring for the LT |
---|
2170 | * tailRing : ring for the tail |
---|
2171 | */ |
---|
2172 | |
---|
2173 | poly kCreateZeroPoly(long exp[], long cabsind, poly* t_p, ring leadRing, ring tailRing) |
---|
2174 | { |
---|
2175 | |
---|
2176 | poly zeroPoly = NULL; |
---|
2177 | |
---|
2178 | number tmp1; |
---|
2179 | poly tmp2, tmp3; |
---|
2180 | |
---|
2181 | if (cabsind == -1) |
---|
2182 | { |
---|
2183 | cabsind = 0; |
---|
2184 | for (int i = 1; i <= leadRing->N; i++) |
---|
2185 | { |
---|
2186 | cabsind += ind_fact_2(exp[i]); |
---|
2187 | } |
---|
2188 | // Print("cabsind: %d\n", cabsind); |
---|
2189 | } |
---|
2190 | if (cabsind < leadRing->ch) |
---|
2191 | { |
---|
2192 | zeroPoly = p_ISet(twoPow(leadRing->ch - cabsind), tailRing); |
---|
2193 | } |
---|
2194 | else |
---|
2195 | { |
---|
2196 | zeroPoly = p_ISet(1, tailRing); |
---|
2197 | } |
---|
2198 | for (int i = 1; i <= leadRing->N; i++) |
---|
2199 | { |
---|
2200 | for (long j = 1; j <= exp[i]; j++) |
---|
2201 | { |
---|
2202 | tmp1 = nInit(j); |
---|
2203 | tmp2 = p_ISet(1, tailRing); |
---|
2204 | p_SetExp(tmp2, i, 1, tailRing); |
---|
2205 | p_Setm(tmp2, tailRing); |
---|
2206 | if (nIsZero(tmp1)) |
---|
2207 | { // should nowbe obsolet, test ! TODO OLIVER |
---|
2208 | zeroPoly = p_Mult_q(zeroPoly, tmp2, tailRing); |
---|
2209 | } |
---|
2210 | else |
---|
2211 | { |
---|
2212 | tmp3 = p_NSet(nCopy(tmp1), tailRing); |
---|
2213 | zeroPoly = p_Mult_q(zeroPoly, p_Add_q(tmp3, tmp2, tailRing), tailRing); |
---|
2214 | } |
---|
2215 | } |
---|
2216 | } |
---|
2217 | tmp2 = p_NSet(nCopy(pGetCoeff(zeroPoly)), leadRing); |
---|
2218 | for (int i = 1; i <= leadRing->N; i++) |
---|
2219 | { |
---|
2220 | pSetExp(tmp2, i, p_GetExp(zeroPoly, i, tailRing)); |
---|
2221 | } |
---|
2222 | p_Setm(tmp2, leadRing); |
---|
2223 | *t_p = zeroPoly; |
---|
2224 | zeroPoly = pNext(zeroPoly); |
---|
2225 | pNext(*t_p) = NULL; |
---|
2226 | pNext(tmp2) = zeroPoly; |
---|
2227 | return tmp2; |
---|
2228 | } |
---|
2229 | |
---|
2230 | // #define OLI_DEBUG |
---|
2231 | |
---|
2232 | /* |
---|
2233 | * Generate the s-polynomial for the virtual set of zero-polynomials |
---|
2234 | */ |
---|
2235 | |
---|
2236 | void initenterzeropairsRing (poly p, int ecart, kStrategy strat, int atR) |
---|
2237 | { |
---|
2238 | // Initialize |
---|
2239 | long exp[50]; // The exponent of \hat{X} (basepoint) |
---|
2240 | long cexp[50]; // The current exponent for iterating over all |
---|
2241 | long ind[50]; // The power of 2 in the i-th component of exp |
---|
2242 | long cind[50]; // analog for cexp |
---|
2243 | long mult[50]; // How to multiply the elements of G |
---|
2244 | long cabsind = 0; // The abs. index of cexp, i.e. the sum of cind |
---|
2245 | long habsind = 0; // The abs. index of the coefficient of h |
---|
2246 | long step[50]; // The last increases |
---|
2247 | for (int i = 1; i <= currRing->N; i++) |
---|
2248 | { |
---|
2249 | exp[i] = p_GetExp(p, i, currRing); |
---|
2250 | if (exp[i] & 1 != 0) |
---|
2251 | { |
---|
2252 | exp[i] = exp[i] - 1; |
---|
2253 | mult[i] = 1; |
---|
2254 | } |
---|
2255 | cexp[i] = exp[i]; |
---|
2256 | ind[i] = ind_fact_2(exp[i]); |
---|
2257 | cabsind += ind[i]; |
---|
2258 | cind[i] = ind[i]; |
---|
2259 | step[i] = 500000; |
---|
2260 | } |
---|
2261 | step[1] = 500000; |
---|
2262 | habsind = ind2((long) p_GetCoeff(p, currRing)); |
---|
2263 | long bound = currRing->ch - habsind; |
---|
2264 | #ifdef OLI_DEBUG |
---|
2265 | PrintS("-------------\npoly :"); |
---|
2266 | wrp(p); |
---|
2267 | Print("\nexp : (%d, %d)\n", exp[1] + mult[1], exp[2] + mult[1]); |
---|
2268 | Print("cexp : (%d, %d)\n", cexp[1], cexp[2]); |
---|
2269 | Print("cind : (%d, %d)\n", cind[1], cind[2]); |
---|
2270 | Print("bound : %d\n", bound); |
---|
2271 | Print("cind : %d\n", cabsind); |
---|
2272 | #endif |
---|
2273 | if (cabsind == 0) |
---|
2274 | { |
---|
2275 | if (!(nextZeroSimplexExponent(exp, ind, cexp, cind, &cabsind, step, bound, currRing->N))) |
---|
2276 | { |
---|
2277 | return; |
---|
2278 | } |
---|
2279 | } |
---|
2280 | // Now the whole simplex |
---|
2281 | do |
---|
2282 | { |
---|
2283 | // Build s-polynomial |
---|
2284 | // 2**ind-def * mult * g - exp-def * h |
---|
2285 | poly t_p; |
---|
2286 | poly zeroPoly = kCreateZeroPoly(cexp, cabsind, &t_p, currRing, strat->tailRing); |
---|
2287 | #ifdef OLI_DEBUG |
---|
2288 | Print("%d, (%d, %d), ind = (%d, %d)\n", cabsind, cexp[1], cexp[2], cind[1], cind[2]); |
---|
2289 | Print("zPoly : "); |
---|
2290 | wrp(zeroPoly); |
---|
2291 | Print("\n"); |
---|
2292 | #endif |
---|
2293 | enterOneZeroPairRing(zeroPoly, t_p, p, ecart, strat, atR); |
---|
2294 | } |
---|
2295 | while ( nextZeroSimplexExponent(exp, ind, cexp, cind, &cabsind, step, bound, currRing->N) ); |
---|
2296 | } |
---|
2297 | |
---|
2298 | /* |
---|
2299 | * Create the Groebner basis of the vanishing polynomials. |
---|
2300 | */ |
---|
2301 | |
---|
2302 | ideal createG0() |
---|
2303 | { |
---|
2304 | // Initialize |
---|
2305 | long exp[50]; // The exponent of \hat{X} (basepoint) |
---|
2306 | long cexp[50]; // The current exponent for iterating over all |
---|
2307 | long ind[50]; // The power of 2 in the i-th component of exp |
---|
2308 | long cind[50]; // analog for cexp |
---|
2309 | long mult[50]; // How to multiply the elements of G |
---|
2310 | long cabsind = 0; // The abs. index of cexp, i.e. the sum of cind |
---|
2311 | long habsind = 0; // The abs. index of the coefficient of h |
---|
2312 | long step[50]; // The last increases |
---|
2313 | for (int i = 1; i <= currRing->N; i++) |
---|
2314 | { |
---|
2315 | exp[i] = 0; |
---|
2316 | cexp[i] = exp[i]; |
---|
2317 | ind[i] = 0; |
---|
2318 | step[i] = 500000; |
---|
2319 | cind[i] = ind[i]; |
---|
2320 | } |
---|
2321 | long bound = currRing->ch; |
---|
2322 | step[1] = 500000; |
---|
2323 | #ifdef OLI_DEBUG |
---|
2324 | PrintS("-------------\npoly :"); |
---|
2325 | // wrp(p); |
---|
2326 | Print("\nexp : (%d, %d)\n", exp[1] + mult[1], exp[2] + mult[1]); |
---|
2327 | Print("cexp : (%d, %d)\n", cexp[1], cexp[2]); |
---|
2328 | Print("cind : (%d, %d)\n", cind[1], cind[2]); |
---|
2329 | Print("bound : %d\n", bound); |
---|
2330 | Print("cind : %d\n", cabsind); |
---|
2331 | #endif |
---|
2332 | if (cabsind == 0) |
---|
2333 | { |
---|
2334 | if (!(nextZeroSimplexExponent(exp, ind, cexp, cind, &cabsind, step, bound, currRing->N))) |
---|
2335 | { |
---|
2336 | return idInit(1, 1); |
---|
2337 | } |
---|
2338 | } |
---|
2339 | ideal G0 = idInit(1, 1); |
---|
2340 | // Now the whole simplex |
---|
2341 | do |
---|
2342 | { |
---|
2343 | // Build s-polynomial |
---|
2344 | // 2**ind-def * mult * g - exp-def * h |
---|
2345 | poly t_p; |
---|
2346 | poly zeroPoly = kCreateZeroPoly(cexp, cabsind, &t_p, currRing, currRing); |
---|
2347 | #ifdef OLI_DEBUG |
---|
2348 | Print("%d, (%d, %d), ind = (%d, %d)\n", cabsind, cexp[1], cexp[2], cind[1], cind[2]); |
---|
2349 | Print("zPoly : "); |
---|
2350 | wrp(zeroPoly); |
---|
2351 | Print("\n"); |
---|
2352 | #endif |
---|
2353 | // Add to ideal |
---|
2354 | pEnlargeSet(&(G0->m), IDELEMS(G0), 1); |
---|
2355 | IDELEMS(G0) += 1; |
---|
2356 | G0->m[IDELEMS(G0) - 1] = zeroPoly; |
---|
2357 | } |
---|
2358 | while ( nextZeroSimplexExponent(exp, ind, cexp, cind, &cabsind, step, bound, currRing->N) ); |
---|
2359 | idSkipZeroes(G0); |
---|
2360 | return G0; |
---|
2361 | } |
---|
2362 | |
---|
2363 | /*2 |
---|
2364 | *(s[0],h),...,(s[k],h) will be put to the pairset L |
---|
2365 | */ |
---|
2366 | void initenterpairsRing (poly h,int k,int ecart,int isFromQ,kStrategy strat, int atR = -1) |
---|
2367 | { |
---|
2368 | |
---|
2369 | if ((strat->syzComp==0) || (pGetComp(h)<=strat->syzComp)) |
---|
2370 | { |
---|
2371 | int j; |
---|
2372 | BOOLEAN new_pair=FALSE; |
---|
2373 | |
---|
2374 | if (pGetComp(h)==0) |
---|
2375 | { |
---|
2376 | /* for Q!=NULL: build pairs (f,q),(f1,f2), but not (q1,q2)*/ |
---|
2377 | if ((isFromQ)&&(strat->fromQ!=NULL)) |
---|
2378 | { |
---|
2379 | for (j=0; j<=k; j++) |
---|
2380 | { |
---|
2381 | if (!strat->fromQ[j]) |
---|
2382 | { |
---|
2383 | new_pair=TRUE; |
---|
2384 | enterOnePairRing(j,h,ecart,isFromQ,strat, atR); |
---|
2385 | Print("j:%d, Ll:%d\n",j,strat->Ll); |
---|
2386 | } |
---|
2387 | } |
---|
2388 | } |
---|
2389 | else |
---|
2390 | { |
---|
2391 | new_pair=TRUE; |
---|
2392 | for (j=0; j<=k; j++) |
---|
2393 | { |
---|
2394 | enterOnePairRing(j,h,ecart,isFromQ,strat, atR); |
---|
2395 | // Print("j:%d, Ll:%d\n",j,strat->Ll); |
---|
2396 | } |
---|
2397 | } |
---|
2398 | } |
---|
2399 | else |
---|
2400 | { |
---|
2401 | for (j=0; j<=k; j++) |
---|
2402 | { |
---|
2403 | if ((pGetComp(h)==pGetComp(strat->S[j])) || (pGetComp(strat->S[j])==0)) |
---|
2404 | { |
---|
2405 | new_pair=TRUE; |
---|
2406 | enterOnePairRing(j,h,ecart,isFromQ,strat, atR); |
---|
2407 | Print("j:%d, Ll:%d\n",j,strat->Ll); |
---|
2408 | } |
---|
2409 | } |
---|
2410 | } |
---|
2411 | |
---|
2412 | #ifdef HAVE_VANGB |
---|
2413 | // initenterzeropairsRing(h, ecart, strat, atR); |
---|
2414 | #endif |
---|
2415 | |
---|
2416 | if (new_pair) chainCritRing(h,ecart,strat); |
---|
2417 | |
---|
2418 | } |
---|
2419 | /* |
---|
2420 | ring r=256,(x,y,z),dp; |
---|
2421 | ideal I=12xz-133y, 2xy-z; |
---|
2422 | */ |
---|
2423 | |
---|
2424 | } |
---|
2425 | |
---|
2426 | /*2 |
---|
2427 | * Generates spoly(0, h) if applicable. Assumes ring in Z/2^n. |
---|
2428 | */ |
---|
2429 | void enterExtendedSpoly(poly h,kStrategy strat) |
---|
2430 | { |
---|
2431 | if (((long) ((h)->coef)) % 2 == 0) |
---|
2432 | { |
---|
2433 | long a = ((long) ((h)->coef)) / 2; |
---|
2434 | long b = currRing->ch - 1; |
---|
2435 | poly p = p_Copy(h->next, strat->tailRing); |
---|
2436 | while (a % 2 == 0) |
---|
2437 | { |
---|
2438 | a = a / 2; |
---|
2439 | b--; |
---|
2440 | } |
---|
2441 | p = p_Mult_nn(p, (number) twoPow(b), strat->tailRing); |
---|
2442 | |
---|
2443 | if (p != NULL) |
---|
2444 | { |
---|
2445 | if (TEST_OPT_PROT) |
---|
2446 | { |
---|
2447 | PrintS("Z"); |
---|
2448 | } |
---|
2449 | poly tmp = p_ISet((long) ((p)->coef), currRing); |
---|
2450 | for (int i = 1; i <= currRing->N; i++) |
---|
2451 | { |
---|
2452 | pSetExp(tmp, i, p_GetExp(p, i, strat->tailRing)); |
---|
2453 | } |
---|
2454 | p_Setm(tmp, currRing); |
---|
2455 | p = p_LmDeleteAndNext(p, strat->tailRing); |
---|
2456 | pNext(tmp) = p; |
---|
2457 | |
---|
2458 | LObject h; |
---|
2459 | h.p = tmp; |
---|
2460 | h.tailRing = strat->tailRing; |
---|
2461 | int posx; |
---|
2462 | if (h.p!=NULL) |
---|
2463 | { |
---|
2464 | if (TEST_OPT_INTSTRATEGY) |
---|
2465 | { |
---|
2466 | //pContent(h.p); |
---|
2467 | h.pCleardenom(); // also does a pContent |
---|
2468 | } |
---|
2469 | else |
---|
2470 | { |
---|
2471 | h.pNorm(); |
---|
2472 | } |
---|
2473 | strat->initEcart(&h); |
---|
2474 | if (strat->Ll==-1) |
---|
2475 | posx =0; |
---|
2476 | else |
---|
2477 | posx = strat->posInL(strat->L,strat->Ll,&h,strat); |
---|
2478 | h.sev = pGetShortExpVector(h.p); |
---|
2479 | h.t_p = k_LmInit_currRing_2_tailRing(h.p, strat->tailRing); |
---|
2480 | if (pNext(p) != NULL) |
---|
2481 | { |
---|
2482 | // What does this? (Oliver) |
---|
2483 | // pShallowCopyDeleteProc p_shallow_copy_delete |
---|
2484 | // = pGetShallowCopyDeleteProc(strat->tailRing, new_tailRing); |
---|
2485 | // pNext(p) = p_shallow_copy_delete(pNext(p), |
---|
2486 | // currRing, strat->tailRing, strat->tailRing->PolyBin); |
---|
2487 | } |
---|
2488 | enterL(&strat->L,&strat->Ll,&strat->Lmax,h,posx); |
---|
2489 | } |
---|
2490 | } |
---|
2491 | } |
---|
2492 | } |
---|
2493 | |
---|
2494 | void clearSbatch (poly h,int k,int pos,kStrategy strat) |
---|
2495 | { |
---|
2496 | int j = pos; |
---|
2497 | if ( (!strat->fromT) |
---|
2498 | && (1//(strat->syzComp==0) |
---|
2499 | //||(pGetComp(h)<=strat->syzComp))) |
---|
2500 | )) |
---|
2501 | { |
---|
2502 | //Print("start clearS k=%d, pos=%d, sl=%d\n",k,pos,strat->sl); |
---|
2503 | unsigned long h_sev = pGetShortExpVector(h); |
---|
2504 | loop |
---|
2505 | { |
---|
2506 | if (j > k) break; |
---|
2507 | clearS(h,h_sev, &j,&k,strat); |
---|
2508 | j++; |
---|
2509 | } |
---|
2510 | //Print("end clearS sl=%d\n",strat->sl); |
---|
2511 | } |
---|
2512 | } |
---|
2513 | |
---|
2514 | /*2 |
---|
2515 | * Generates a sufficient set of spolys (maybe just a finite generating |
---|
2516 | * set of the syzygys) |
---|
2517 | */ |
---|
2518 | void superenterpairs (poly h,int k,int ecart,int pos,kStrategy strat, int atR) |
---|
2519 | { |
---|
2520 | assume (currRing->cring == 1) |
---|
2521 | // enter also zero divisor * poly, if this is non zero and of smaller degree |
---|
2522 | enterExtendedSpoly(h, strat); |
---|
2523 | initenterpairsRing(h, k, ecart, 0, strat, atR); |
---|
2524 | clearSbatch(h, k, pos, strat); |
---|
2525 | } |
---|
2526 | #endif |
---|
2527 | |
---|
2528 | /*2 |
---|
2529 | *(s[0],h),...,(s[k],h) will be put to the pairset L(via initenterpairs) |
---|
2530 | *superfluous elements in S will be deleted |
---|
2531 | */ |
---|
2532 | void enterpairs (poly h,int k,int ecart,int pos,kStrategy strat, int atR) |
---|
2533 | { |
---|
2534 | int j=pos; |
---|
2535 | |
---|
2536 | initenterpairs(h,k,ecart,0,strat, atR); |
---|
2537 | if ( (!strat->fromT) |
---|
2538 | && ((strat->syzComp==0) |
---|
2539 | ||(pGetComp(h)<=strat->syzComp))) |
---|
2540 | { |
---|
2541 | //Print("start clearS k=%d, pos=%d, sl=%d\n",k,pos,strat->sl); |
---|
2542 | unsigned long h_sev = pGetShortExpVector(h); |
---|
2543 | loop |
---|
2544 | { |
---|
2545 | if (j > k) break; |
---|
2546 | clearS(h,h_sev, &j,&k,strat); |
---|
2547 | j++; |
---|
2548 | } |
---|
2549 | //Print("end clearS sl=%d\n",strat->sl); |
---|
2550 | } |
---|
2551 | // PrintS("end enterpairs\n"); |
---|
2552 | } |
---|
2553 | |
---|
2554 | /*2 |
---|
2555 | *(s[0],h),...,(s[k],h) will be put to the pairset L(via initenterpairs) |
---|
2556 | *superfluous elements in S will be deleted |
---|
2557 | */ |
---|
2558 | void enterpairsSpecial (poly h,int k,int ecart,int pos,kStrategy strat, int atR = -1) |
---|
2559 | { |
---|
2560 | int j; |
---|
2561 | |
---|
2562 | for (j=0; j<=k; j++) |
---|
2563 | { |
---|
2564 | if ((pGetComp(h)==pGetComp(strat->S[j])) |
---|
2565 | || (0==pGetComp(strat->S[j]))) |
---|
2566 | { |
---|
2567 | enterOnePairSpecial(j,h,ecart,strat, atR); |
---|
2568 | } |
---|
2569 | } |
---|
2570 | // #ifdef HAVE_PLURAL |
---|
2571 | if (!rIsPluralRing(currRing)) |
---|
2572 | // #endif |
---|
2573 | { |
---|
2574 | j=pos; |
---|
2575 | loop |
---|
2576 | { |
---|
2577 | unsigned long h_sev = pGetShortExpVector(h); |
---|
2578 | if (j > k) break; |
---|
2579 | clearS(h,h_sev,&j,&k,strat); |
---|
2580 | j++; |
---|
2581 | } |
---|
2582 | } |
---|
2583 | } |
---|
2584 | |
---|
2585 | /*2 |
---|
2586 | *constructs the pairset at the beginning |
---|
2587 | *of the buchberger/mora algorithm |
---|
2588 | */ |
---|
2589 | void pairs (kStrategy strat) |
---|
2590 | { |
---|
2591 | int j,i; |
---|
2592 | // Print("pairs:sl=%d\n",strat->sl); |
---|
2593 | // for (i=0; i<=strat->sl; i++) |
---|
2594 | // { |
---|
2595 | // Print("s%d:",i);pWrite(strat->S[i]); |
---|
2596 | // } |
---|
2597 | if (strat->fromQ!=NULL) |
---|
2598 | { |
---|
2599 | for (i=1; i<=strat->sl; i++) |
---|
2600 | { |
---|
2601 | initenterpairs(strat->S[i],i-1,strat->ecartS[i],strat->fromQ[i],strat); |
---|
2602 | } |
---|
2603 | } |
---|
2604 | else |
---|
2605 | { |
---|
2606 | for (i=1; i<=strat->sl; i++) |
---|
2607 | { |
---|
2608 | initenterpairs(strat->S[i],i-1,strat->ecartS[i],0,strat); |
---|
2609 | } |
---|
2610 | } |
---|
2611 | /*deletes superfluous elements in S*/ |
---|
2612 | i = -1; |
---|
2613 | loop |
---|
2614 | { |
---|
2615 | i++; |
---|
2616 | if (i >= strat->sl) break; |
---|
2617 | if (1//(strat->syzComp==0) || (pGetComp(strat->S[i])<=strat->syzComp)) |
---|
2618 | ) |
---|
2619 | { |
---|
2620 | j=i; |
---|
2621 | loop |
---|
2622 | { |
---|
2623 | j++; |
---|
2624 | if (j > strat->sl) break; |
---|
2625 | if (pLmShortDivisibleBy(strat->S[i], strat->sevS[i], |
---|
2626 | strat->S[j], ~ strat->sevS[j])) |
---|
2627 | { |
---|
2628 | // Print("delete %d=",j); |
---|
2629 | // wrp(strat->S[j]); |
---|
2630 | // Print(" wegen %d=",i); |
---|
2631 | // wrp(strat->S[i]); |
---|
2632 | // Print("( fromQ=%d)\n", (strat->fromQ) ? strat->fromQ[j]:0); |
---|
2633 | if ((strat->fromQ==NULL) || (strat->fromQ[j]==0)) |
---|
2634 | { |
---|
2635 | deleteInS(j,strat); |
---|
2636 | j--; |
---|
2637 | } |
---|
2638 | } |
---|
2639 | } |
---|
2640 | } |
---|
2641 | } |
---|
2642 | } |
---|
2643 | |
---|
2644 | /*2 |
---|
2645 | *reorders s with respect to posInS, |
---|
2646 | *suc is the first changed index or zero |
---|
2647 | */ |
---|
2648 | void reorderS (int* suc,kStrategy strat) |
---|
2649 | { |
---|
2650 | int i,j,at,ecart, s2r; |
---|
2651 | int fq=0; |
---|
2652 | unsigned long sev; |
---|
2653 | poly p; |
---|
2654 | |
---|
2655 | *suc = -1; |
---|
2656 | for (i=1; i<=strat->sl; i++) |
---|
2657 | { |
---|
2658 | at = posInS(strat,i-1,strat->S[i],strat->ecartS[i]); |
---|
2659 | if (at != i) |
---|
2660 | { |
---|
2661 | if ((*suc > at) || (*suc == -1)) *suc = at; |
---|
2662 | p = strat->S[i]; |
---|
2663 | ecart = strat->ecartS[i]; |
---|
2664 | sev = strat->sevS[i]; |
---|
2665 | s2r = strat->S_2_R[i]; |
---|
2666 | if (strat->fromQ!=NULL) fq=strat->fromQ[i]; |
---|
2667 | for (j=i; j>=at+1; j--) |
---|
2668 | { |
---|
2669 | strat->S[j] = strat->S[j-1]; |
---|
2670 | strat->ecartS[j] = strat->ecartS[j-1]; |
---|
2671 | strat->sevS[j] = strat->sevS[j-1]; |
---|
2672 | strat->S_2_R[j] = strat->S_2_R[j-1]; |
---|
2673 | } |
---|
2674 | strat->S[at] = p; |
---|
2675 | strat->ecartS[at] = ecart; |
---|
2676 | strat->sevS[at] = sev; |
---|
2677 | strat->S_2_R[at] = s2r; |
---|
2678 | if (strat->fromQ!=NULL) |
---|
2679 | { |
---|
2680 | for (j=i; j>=at+1; j--) |
---|
2681 | { |
---|
2682 | strat->fromQ[j] = strat->fromQ[j-1]; |
---|
2683 | } |
---|
2684 | strat->fromQ[at]=fq; |
---|
2685 | } |
---|
2686 | } |
---|
2687 | } |
---|
2688 | } |
---|
2689 | |
---|
2690 | |
---|
2691 | /*2 |
---|
2692 | *looks up the position of p in set |
---|
2693 | *set[0] is the smallest with respect to the ordering-procedure deg/pComp |
---|
2694 | * Assumption: posInS only depends on the leading term |
---|
2695 | * otherwise, bba has to be changed |
---|
2696 | */ |
---|
2697 | int posInS (const kStrategy strat, const int length,const poly p, |
---|
2698 | const int ecart_p) |
---|
2699 | { |
---|
2700 | if(length==-1) return 0; |
---|
2701 | polyset set=strat->S; |
---|
2702 | int i; |
---|
2703 | int an = 0; |
---|
2704 | int en = length; |
---|
2705 | int cmp_int = pOrdSgn; |
---|
2706 | int pc=pGetComp(p); |
---|
2707 | if ((currRing->MixedOrder) |
---|
2708 | #if 0 |
---|
2709 | || ((strat->ak>0) && ((currRing->order[0]==ringorder_c)||((currRing->order[0]==ringorder_C)))) |
---|
2710 | #endif |
---|
2711 | ) |
---|
2712 | { |
---|
2713 | int o=pWTotaldegree(p); |
---|
2714 | int oo=pWTotaldegree(set[length]); |
---|
2715 | |
---|
2716 | if ((oo<o) |
---|
2717 | || ((o==oo) && (pLmCmp(set[length],p)!= cmp_int))) |
---|
2718 | return length+1; |
---|
2719 | |
---|
2720 | loop |
---|
2721 | { |
---|
2722 | if (an >= en-1) |
---|
2723 | { |
---|
2724 | if ((pWTotaldegree(set[an])>=o) && (pLmCmp(set[an],p) == cmp_int)) |
---|
2725 | { |
---|
2726 | return an; |
---|
2727 | } |
---|
2728 | return en; |
---|
2729 | } |
---|
2730 | i=(an+en) / 2; |
---|
2731 | if ((pWTotaldegree(set[i])>=o) && (pLmCmp(set[i],p) == cmp_int)) en=i; |
---|
2732 | else an=i; |
---|
2733 | } |
---|
2734 | } |
---|
2735 | else |
---|
2736 | { |
---|
2737 | #ifdef HAVE_RING2TOM |
---|
2738 | if (currRing->cring == 1) |
---|
2739 | { |
---|
2740 | if (pLmCmp(set[length],p)== -cmp_int) |
---|
2741 | return length+1; |
---|
2742 | int cmp; |
---|
2743 | loop |
---|
2744 | { |
---|
2745 | if (an >= en-1) |
---|
2746 | { |
---|
2747 | cmp = pLmCmp(set[an],p); |
---|
2748 | if (cmp == cmp_int) return an; |
---|
2749 | if (cmp == -cmp_int) return en; |
---|
2750 | if (nGreater(pGetCoeff(p), pGetCoeff(set[an]))) return en; |
---|
2751 | return an; |
---|
2752 | } |
---|
2753 | i = (an+en) / 2; |
---|
2754 | cmp = pLmCmp(set[i],p); |
---|
2755 | if (cmp == cmp_int) en = i; |
---|
2756 | else if (cmp == -cmp_int) an = i; |
---|
2757 | else |
---|
2758 | { |
---|
2759 | if (nGreater(pGetCoeff(p), pGetCoeff(set[i]))) an = i; |
---|
2760 | else en = i; |
---|
2761 | } |
---|
2762 | } |
---|
2763 | } |
---|
2764 | else |
---|
2765 | #endif |
---|
2766 | if (pLmCmp(set[length],p)== -cmp_int) |
---|
2767 | return length+1; |
---|
2768 | |
---|
2769 | loop |
---|
2770 | { |
---|
2771 | if (an >= en-1) |
---|
2772 | { |
---|
2773 | if (pLmCmp(set[an],p) == cmp_int) return an; |
---|
2774 | if (pLmCmp(set[an],p) == -cmp_int) return en; |
---|
2775 | if ((cmp_int!=1) |
---|
2776 | && ((strat->ecartS[an])>ecart_p)) |
---|
2777 | return an; |
---|
2778 | return en; |
---|
2779 | } |
---|
2780 | i=(an+en) / 2; |
---|
2781 | if (pLmCmp(set[i],p) == cmp_int) en=i; |
---|
2782 | else if (pLmCmp(set[i],p) == -cmp_int) an=i; |
---|
2783 | else |
---|
2784 | { |
---|
2785 | if ((cmp_int!=1) |
---|
2786 | &&((strat->ecartS[i])<ecart_p)) |
---|
2787 | en=i; |
---|
2788 | else |
---|
2789 | an=i; |
---|
2790 | } |
---|
2791 | } |
---|
2792 | } |
---|
2793 | } |
---|
2794 | |
---|
2795 | |
---|
2796 | /*2 |
---|
2797 | * looks up the position of p in set |
---|
2798 | * the position is the last one |
---|
2799 | */ |
---|
2800 | int posInT0 (const TSet set,const int length,LObject &p) |
---|
2801 | { |
---|
2802 | return (length+1); |
---|
2803 | } |
---|
2804 | |
---|
2805 | |
---|
2806 | /*2 |
---|
2807 | * looks up the position of p in T |
---|
2808 | * set[0] is the smallest with respect to the ordering-procedure |
---|
2809 | * pComp |
---|
2810 | */ |
---|
2811 | int posInT1 (const TSet set,const int length,LObject &p) |
---|
2812 | { |
---|
2813 | if (length==-1) return 0; |
---|
2814 | |
---|
2815 | if (pLmCmp(set[length].p,p.p)!= pOrdSgn) return length+1; |
---|
2816 | |
---|
2817 | int i; |
---|
2818 | int an = 0; |
---|
2819 | int en= length; |
---|
2820 | |
---|
2821 | loop |
---|
2822 | { |
---|
2823 | if (an >= en-1) |
---|
2824 | { |
---|
2825 | if (pLmCmp(set[an].p,p.p) == pOrdSgn) return an; |
---|
2826 | return en; |
---|
2827 | } |
---|
2828 | i=(an+en) / 2; |
---|
2829 | if (pLmCmp(set[i].p,p.p) == pOrdSgn) en=i; |
---|
2830 | else an=i; |
---|
2831 | } |
---|
2832 | } |
---|
2833 | |
---|
2834 | /*2 |
---|
2835 | * looks up the position of p in T |
---|
2836 | * set[0] is the smallest with respect to the ordering-procedure |
---|
2837 | * length |
---|
2838 | */ |
---|
2839 | int posInT2 (const TSet set,const int length,LObject &p) |
---|
2840 | { |
---|
2841 | if (length==-1) |
---|
2842 | return 0; |
---|
2843 | if (set[length].length<p.length) |
---|
2844 | return length+1; |
---|
2845 | |
---|
2846 | int i; |
---|
2847 | int an = 0; |
---|
2848 | int en= length; |
---|
2849 | |
---|
2850 | loop |
---|
2851 | { |
---|
2852 | if (an >= en-1) |
---|
2853 | { |
---|
2854 | if (set[an].length>p.length) return an; |
---|
2855 | return en; |
---|
2856 | } |
---|
2857 | i=(an+en) / 2; |
---|
2858 | if (set[i].length>p.length) en=i; |
---|
2859 | else an=i; |
---|
2860 | } |
---|
2861 | } |
---|
2862 | |
---|
2863 | /*2 |
---|
2864 | * looks up the position of p in T |
---|
2865 | * set[0] is the smallest with respect to the ordering-procedure |
---|
2866 | * totaldegree,pComp |
---|
2867 | */ |
---|
2868 | int posInT11 (const TSet set,const int length,LObject &p) |
---|
2869 | /*{ |
---|
2870 | * int j=0; |
---|
2871 | * int o; |
---|
2872 | * |
---|
2873 | * o = p.GetpFDeg(); |
---|
2874 | * loop |
---|
2875 | * { |
---|
2876 | * if ((pFDeg(set[j].p) > o) |
---|
2877 | * || ((pFDeg(set[j].p) == o) && (pLmCmp(set[j].p,p.p) == pOrdSgn))) |
---|
2878 | * { |
---|
2879 | * return j; |
---|
2880 | * } |
---|
2881 | * j++; |
---|
2882 | * if (j > length) return j; |
---|
2883 | * } |
---|
2884 | *} |
---|
2885 | */ |
---|
2886 | { |
---|
2887 | if (length==-1) return 0; |
---|
2888 | |
---|
2889 | int o = p.GetpFDeg(); |
---|
2890 | int op = set[length].GetpFDeg(); |
---|
2891 | |
---|
2892 | if ((op < o) |
---|
2893 | || ((op == o) && (pLmCmp(set[length].p,p.p) != pOrdSgn))) |
---|
2894 | return length+1; |
---|
2895 | |
---|
2896 | int i; |
---|
2897 | int an = 0; |
---|
2898 | int en= length; |
---|
2899 | |
---|
2900 | loop |
---|
2901 | { |
---|
2902 | if (an >= en-1) |
---|
2903 | { |
---|
2904 | op= set[an].GetpFDeg(); |
---|
2905 | if ((op > o) |
---|
2906 | || (( op == o) && (pLmCmp(set[an].p,p.p) == pOrdSgn))) |
---|
2907 | return an; |
---|
2908 | return en; |
---|
2909 | } |
---|
2910 | i=(an+en) / 2; |
---|
2911 | op = set[i].GetpFDeg(); |
---|
2912 | if (( op > o) |
---|
2913 | || (( op == o) && (pLmCmp(set[i].p,p.p) == pOrdSgn))) |
---|
2914 | en=i; |
---|
2915 | else |
---|
2916 | an=i; |
---|
2917 | } |
---|
2918 | } |
---|
2919 | |
---|
2920 | /*2 Pos for rings T: Here I am |
---|
2921 | * looks up the position of p in T |
---|
2922 | * set[0] is the smallest with respect to the ordering-procedure |
---|
2923 | * totaldegree,pComp |
---|
2924 | */ |
---|
2925 | int posInTrg0 (const TSet set,const int length,LObject &p) |
---|
2926 | { |
---|
2927 | if (length==-1) return 0; |
---|
2928 | int o = p.GetpFDeg(); |
---|
2929 | int op = set[length].GetpFDeg(); |
---|
2930 | int i; |
---|
2931 | int an = 0; |
---|
2932 | int en = length; |
---|
2933 | int cmp_int = pOrdSgn; |
---|
2934 | if ((op < o) || (pLmCmp(set[length].p,p.p)== -cmp_int)) |
---|
2935 | return length+1; |
---|
2936 | int cmp; |
---|
2937 | loop |
---|
2938 | { |
---|
2939 | if (an >= en-1) |
---|
2940 | { |
---|
2941 | op = set[an].GetpFDeg(); |
---|
2942 | if (op > o) return an; |
---|
2943 | if (op < 0) return en; |
---|
2944 | cmp = pLmCmp(set[an].p,p.p); |
---|
2945 | if (cmp == cmp_int) return an; |
---|
2946 | if (cmp == -cmp_int) return en; |
---|
2947 | if (nGreater(pGetCoeff(p.p), pGetCoeff(set[an].p))) return en; |
---|
2948 | return an; |
---|
2949 | } |
---|
2950 | i = (an + en) / 2; |
---|
2951 | op = set[i].GetpFDeg(); |
---|
2952 | if (op > o) en = i; |
---|
2953 | else if (op < o) an = i; |
---|
2954 | else |
---|
2955 | { |
---|
2956 | cmp = pLmCmp(set[i].p,p.p); |
---|
2957 | if (cmp == cmp_int) en = i; |
---|
2958 | else if (cmp == -cmp_int) an = i; |
---|
2959 | else if (nGreater(pGetCoeff(p.p), pGetCoeff(set[i].p))) an = i; |
---|
2960 | else en = i; |
---|
2961 | } |
---|
2962 | } |
---|
2963 | } |
---|
2964 | /* |
---|
2965 | int o = p.GetpFDeg(); |
---|
2966 | int op = set[length].GetpFDeg(); |
---|
2967 | |
---|
2968 | if ((op < o) |
---|
2969 | || ((op == o) && (pLmCmp(set[length].p,p.p) != pOrdSgn))) |
---|
2970 | return length+1; |
---|
2971 | |
---|
2972 | int i; |
---|
2973 | int an = 0; |
---|
2974 | int en= length; |
---|
2975 | |
---|
2976 | loop |
---|
2977 | { |
---|
2978 | if (an >= en-1) |
---|
2979 | { |
---|
2980 | op= set[an].GetpFDeg(); |
---|
2981 | if ((op > o) |
---|
2982 | || (( op == o) && (pLmCmp(set[an].p,p.p) == pOrdSgn))) |
---|
2983 | return an; |
---|
2984 | return en; |
---|
2985 | } |
---|
2986 | i=(an+en) / 2; |
---|
2987 | op = set[i].GetpFDeg(); |
---|
2988 | if (( op > o) |
---|
2989 | || (( op == o) && (pLmCmp(set[i].p,p.p) == pOrdSgn))) |
---|
2990 | en=i; |
---|
2991 | else |
---|
2992 | an=i; |
---|
2993 | } |
---|
2994 | } |
---|
2995 | */ |
---|
2996 | /*2 |
---|
2997 | * looks up the position of p in T |
---|
2998 | * set[0] is the smallest with respect to the ordering-procedure |
---|
2999 | * totaldegree,pComp |
---|
3000 | */ |
---|
3001 | int posInT110 (const TSet set,const int length,LObject &p) |
---|
3002 | { |
---|
3003 | if (length==-1) return 0; |
---|
3004 | |
---|
3005 | int o = p.GetpFDeg(); |
---|
3006 | int op = set[length].GetpFDeg(); |
---|
3007 | |
---|
3008 | if (( op < o) |
---|
3009 | || (( op == o) && (set[length].length<p.length)) |
---|
3010 | || (( op == o) && (set[length].length == p.length) |
---|
3011 | && (pLmCmp(set[length].p,p.p) != pOrdSgn))) |
---|
3012 | return length+1; |
---|
3013 | |
---|
3014 | int i; |
---|
3015 | int an = 0; |
---|
3016 | int en= length; |
---|
3017 | loop |
---|
3018 | { |
---|
3019 | if (an >= en-1) |
---|
3020 | { |
---|
3021 | op = set[an].GetpFDeg(); |
---|
3022 | if (( op > o) |
---|
3023 | || (( op == o) && (set[an].length > p.length)) |
---|
3024 | || (( op == o) && (set[an].length == p.length) |
---|
3025 | && (pLmCmp(set[an].p,p.p) == pOrdSgn))) |
---|
3026 | return an; |
---|
3027 | return en; |
---|
3028 | } |
---|
3029 | i=(an+en) / 2; |
---|
3030 | op = set[i].GetpFDeg(); |
---|
3031 | if (( op > o) |
---|
3032 | || (( op == o) && (set[i].length > p.length)) |
---|
3033 | || (( op == o) && (set[i].length == p.length) |
---|
3034 | && (pLmCmp(set[i].p,p.p) == pOrdSgn))) |
---|
3035 | en=i; |
---|
3036 | else |
---|
3037 | an=i; |
---|
3038 | } |
---|
3039 | } |
---|
3040 | |
---|
3041 | /*2 |
---|
3042 | * looks up the position of p in set |
---|
3043 | * set[0] is the smallest with respect to the ordering-procedure |
---|
3044 | * pFDeg |
---|
3045 | */ |
---|
3046 | int posInT13 (const TSet set,const int length,LObject &p) |
---|
3047 | { |
---|
3048 | if (length==-1) return 0; |
---|
3049 | |
---|
3050 | int o = p.GetpFDeg(); |
---|
3051 | |
---|
3052 | if (set[length].GetpFDeg() <= o) |
---|
3053 | return length+1; |
---|
3054 | |
---|
3055 | int i; |
---|
3056 | int an = 0; |
---|
3057 | int en= length; |
---|
3058 | loop |
---|
3059 | { |
---|
3060 | if (an >= en-1) |
---|
3061 | { |
---|
3062 | if (set[an].GetpFDeg() > o) |
---|
3063 | return an; |
---|
3064 | return en; |
---|
3065 | } |
---|
3066 | i=(an+en) / 2; |
---|
3067 | if (set[i].GetpFDeg() > o) |
---|
3068 | en=i; |
---|
3069 | else |
---|
3070 | an=i; |
---|
3071 | } |
---|
3072 | } |
---|
3073 | |
---|
3074 | // determines the position based on: 1.) Ecart 2.) pLength |
---|
3075 | int posInT_EcartpLength(const TSet set,const int length,LObject &p) |
---|
3076 | { |
---|
3077 | if (length==-1) return 0; |
---|
3078 | |
---|
3079 | int op=p.ecart; |
---|
3080 | int ol = p.GetpLength(); |
---|
3081 | |
---|
3082 | int oo=set[length].ecart; |
---|
3083 | if ((oo < op) || ((oo==op) && (set[length].length < ol))) |
---|
3084 | return length+1; |
---|
3085 | |
---|
3086 | int i; |
---|
3087 | int an = 0; |
---|
3088 | int en= length; |
---|
3089 | loop |
---|
3090 | { |
---|
3091 | if (an >= en-1) |
---|
3092 | { |
---|
3093 | int oo=set[an].ecart; |
---|
3094 | if((oo > op) |
---|
3095 | || ((oo==op) && (set[an].pLength > ol))) |
---|
3096 | return an; |
---|
3097 | return en; |
---|
3098 | } |
---|
3099 | i=(an+en) / 2; |
---|
3100 | int oo=set[i].ecart; |
---|
3101 | if ((oo > op) |
---|
3102 | || ((oo == op) && (set[i].pLength > ol))) |
---|
3103 | en=i; |
---|
3104 | else |
---|
3105 | an=i; |
---|
3106 | } |
---|
3107 | } |
---|
3108 | |
---|
3109 | /*2 |
---|
3110 | * looks up the position of p in set |
---|
3111 | * set[0] is the smallest with respect to the ordering-procedure |
---|
3112 | * maximaldegree, pComp |
---|
3113 | */ |
---|
3114 | int posInT15 (const TSet set,const int length,LObject &p) |
---|
3115 | /*{ |
---|
3116 | *int j=0; |
---|
3117 | * int o; |
---|
3118 | * |
---|
3119 | * o = p.GetpFDeg()+p.ecart; |
---|
3120 | * loop |
---|
3121 | * { |
---|
3122 | * if ((set[j].GetpFDeg()+set[j].ecart > o) |
---|
3123 | * || ((set[j].GetpFDeg()+set[j].ecart == o) |
---|
3124 | * && (pLmCmp(set[j].p,p.p) == pOrdSgn))) |
---|
3125 | * { |
---|
3126 | * return j; |
---|
3127 | * } |
---|
3128 | * j++; |
---|
3129 | * if (j > length) return j; |
---|
3130 | * } |
---|
3131 | *} |
---|
3132 | */ |
---|
3133 | { |
---|
3134 | if (length==-1) return 0; |
---|
3135 | |
---|
3136 | int o = p.GetpFDeg() + p.ecart; |
---|
3137 | int op = set[length].GetpFDeg()+set[length].ecart; |
---|
3138 | |
---|
3139 | if ((op < o) |
---|
3140 | || ((op == o) |
---|
3141 | && (pLmCmp(set[length].p,p.p) != pOrdSgn))) |
---|
3142 | return length+1; |
---|
3143 | |
---|
3144 | int i; |
---|
3145 | int an = 0; |
---|
3146 | int en= length; |
---|
3147 | loop |
---|
3148 | { |
---|
3149 | if (an >= en-1) |
---|
3150 | { |
---|
3151 | op = set[an].GetpFDeg()+set[an].ecart; |
---|
3152 | if (( op > o) |
---|
3153 | || (( op == o) && (pLmCmp(set[an].p,p.p) == pOrdSgn))) |
---|
3154 | return an; |
---|
3155 | return en; |
---|
3156 | } |
---|
3157 | i=(an+en) / 2; |
---|
3158 | op = set[i].GetpFDeg()+set[i].ecart; |
---|
3159 | if (( op > o) |
---|
3160 | || (( op == o) && (pLmCmp(set[i].p,p.p) == pOrdSgn))) |
---|
3161 | en=i; |
---|
3162 | else |
---|
3163 | an=i; |
---|
3164 | } |
---|
3165 | } |
---|
3166 | |
---|
3167 | /*2 |
---|
3168 | * looks up the position of p in set |
---|
3169 | * set[0] is the smallest with respect to the ordering-procedure |
---|
3170 | * pFDeg+ecart, ecart, pComp |
---|
3171 | */ |
---|
3172 | int posInT17 (const TSet set,const int length,LObject &p) |
---|
3173 | /* |
---|
3174 | *{ |
---|
3175 | * int j=0; |
---|
3176 | * int o; |
---|
3177 | * |
---|
3178 | * o = p.GetpFDeg()+p.ecart; |
---|
3179 | * loop |
---|
3180 | * { |
---|
3181 | * if ((pFDeg(set[j].p)+set[j].ecart > o) |
---|
3182 | * || (((pFDeg(set[j].p)+set[j].ecart == o) |
---|
3183 | * && (set[j].ecart < p.ecart))) |
---|
3184 | * || ((pFDeg(set[j].p)+set[j].ecart == o) |
---|
3185 | * && (set[j].ecart==p.ecart) |
---|
3186 | * && (pLmCmp(set[j].p,p.p)==pOrdSgn))) |
---|
3187 | * return j; |
---|
3188 | * j++; |
---|
3189 | * if (j > length) return j; |
---|
3190 | * } |
---|
3191 | * } |
---|
3192 | */ |
---|
3193 | { |
---|
3194 | if (length==-1) return 0; |
---|
3195 | |
---|
3196 | int o = p.GetpFDeg() + p.ecart; |
---|
3197 | int op = set[length].GetpFDeg()+set[length].ecart; |
---|
3198 | |
---|
3199 | if ((op < o) |
---|
3200 | || (( op == o) && (set[length].ecart > p.ecart)) |
---|
3201 | || (( op == o) && (set[length].ecart==p.ecart) |
---|
3202 | && (pLmCmp(set[length].p,p.p) != pOrdSgn))) |
---|
3203 | return length+1; |
---|
3204 | |
---|
3205 | int i; |
---|
3206 | int an = 0; |
---|
3207 | int en= length; |
---|
3208 | loop |
---|
3209 | { |
---|
3210 | if (an >= en-1) |
---|
3211 | { |
---|
3212 | op = set[an].GetpFDeg()+set[an].ecart; |
---|
3213 | if (( op > o) |
---|
3214 | || (( op == o) && (set[an].ecart < p.ecart)) |
---|
3215 | || (( op == o) && (set[an].ecart==p.ecart) |
---|
3216 | && (pLmCmp(set[an].p,p.p) == pOrdSgn))) |
---|
3217 | return an; |
---|
3218 | return en; |
---|
3219 | } |
---|
3220 | i=(an+en) / 2; |
---|
3221 | op = set[i].GetpFDeg()+set[i].ecart; |
---|
3222 | if ((op > o) |
---|
3223 | || (( op == o) && (set[i].ecart < p.ecart)) |
---|
3224 | || (( op == o) && (set[i].ecart == p.ecart) |
---|
3225 | && (pLmCmp(set[i].p,p.p) == pOrdSgn))) |
---|
3226 | en=i; |
---|
3227 | else |
---|
3228 | an=i; |
---|
3229 | } |
---|
3230 | } |
---|
3231 | /*2 |
---|
3232 | * looks up the position of p in set |
---|
3233 | * set[0] is the smallest with respect to the ordering-procedure |
---|
3234 | * pGetComp, pFDeg+ecart, ecart, pComp |
---|
3235 | */ |
---|
3236 | int posInT17_c (const TSet set,const int length,LObject &p) |
---|
3237 | { |
---|
3238 | if (length==-1) return 0; |
---|
3239 | |
---|
3240 | int cc = (-1+2*currRing->order[0]==ringorder_c); |
---|
3241 | /* cc==1 for (c,..), cc==-1 for (C,..) */ |
---|
3242 | int o = p.GetpFDeg() + p.ecart; |
---|
3243 | int c = pGetComp(p.p)*cc; |
---|
3244 | |
---|
3245 | if (pGetComp(set[length].p)*cc < c) |
---|
3246 | return length+1; |
---|
3247 | if (pGetComp(set[length].p)*cc == c) |
---|
3248 | { |
---|
3249 | int op = set[length].GetpFDeg()+set[length].ecart; |
---|
3250 | if ((op < o) |
---|
3251 | || ((op == o) && (set[length].ecart > p.ecart)) |
---|
3252 | || ((op == o) && (set[length].ecart==p.ecart) |
---|
3253 | && (pLmCmp(set[length].p,p.p) != pOrdSgn))) |
---|
3254 | return length+1; |
---|
3255 | } |
---|
3256 | |
---|
3257 | int i; |
---|
3258 | int an = 0; |
---|
3259 | int en= length; |
---|
3260 | loop |
---|
3261 | { |
---|
3262 | if (an >= en-1) |
---|
3263 | { |
---|
3264 | if (pGetComp(set[an].p)*cc < c) |
---|
3265 | return en; |
---|
3266 | if (pGetComp(set[an].p)*cc == c) |
---|
3267 | { |
---|
3268 | int op = set[an].GetpFDeg()+set[an].ecart; |
---|
3269 | if ((op > o) |
---|
3270 | || ((op == o) && (set[an].ecart < p.ecart)) |
---|
3271 | || ((op == o) && (set[an].ecart==p.ecart) |
---|
3272 | && (pLmCmp(set[an].p,p.p) == pOrdSgn))) |
---|
3273 | return an; |
---|
3274 | } |
---|
3275 | return en; |
---|
3276 | } |
---|
3277 | i=(an+en) / 2; |
---|
3278 | if (pGetComp(set[i].p)*cc > c) |
---|
3279 | en=i; |
---|
3280 | else if (pGetComp(set[i].p)*cc == c) |
---|
3281 | { |
---|
3282 | int op = set[i].GetpFDeg()+set[i].ecart; |
---|
3283 | if ((op > o) |
---|
3284 | || ((op == o) && (set[i].ecart < p.ecart)) |
---|
3285 | || ((op == o) && (set[i].ecart == p.ecart) |
---|
3286 | && (pLmCmp(set[i].p,p.p) == pOrdSgn))) |
---|
3287 | en=i; |
---|
3288 | else |
---|
3289 | an=i; |
---|
3290 | } |
---|
3291 | else |
---|
3292 | an=i; |
---|
3293 | } |
---|
3294 | } |
---|
3295 | |
---|
3296 | /*2 |
---|
3297 | * looks up the position of p in set |
---|
3298 | * set[0] is the smallest with respect to |
---|
3299 | * ecart, pFDeg, length |
---|
3300 | */ |
---|
3301 | int posInT19 (const TSet set,const int length,LObject &p) |
---|
3302 | { |
---|
3303 | if (length==-1) return 0; |
---|
3304 | |
---|
3305 | int o = p.ecart; |
---|
3306 | int op=p.GetpFDeg(); |
---|
3307 | |
---|
3308 | if (set[length].ecart < o) |
---|
3309 | return length+1; |
---|
3310 | if (set[length].ecart == o) |
---|
3311 | { |
---|
3312 | int oo=set[length].GetpFDeg(); |
---|
3313 | if ((oo < op) || ((oo==op) && (set[length].length < p.length))) |
---|
3314 | return length+1; |
---|
3315 | } |
---|
3316 | |
---|
3317 | int i; |
---|
3318 | int an = 0; |
---|
3319 | int en= length; |
---|
3320 | loop |
---|
3321 | { |
---|
3322 | if (an >= en-1) |
---|
3323 | { |
---|
3324 | if (set[an].ecart > o) |
---|
3325 | return an; |
---|
3326 | if (set[an].ecart == o) |
---|
3327 | { |
---|
3328 | int oo=set[an].GetpFDeg(); |
---|
3329 | if((oo > op) |
---|
3330 | || ((oo==op) && (set[an].length > p.length))) |
---|
3331 | return an; |
---|
3332 | } |
---|
3333 | return en; |
---|
3334 | } |
---|
3335 | i=(an+en) / 2; |
---|
3336 | if (set[i].ecart > o) |
---|
3337 | en=i; |
---|
3338 | else if (set[i].ecart == o) |
---|
3339 | { |
---|
3340 | int oo=set[i].GetpFDeg(); |
---|
3341 | if ((oo > op) |
---|
3342 | || ((oo == op) && (set[i].length > p.length))) |
---|
3343 | en=i; |
---|
3344 | else |
---|
3345 | an=i; |
---|
3346 | } |
---|
3347 | else |
---|
3348 | an=i; |
---|
3349 | } |
---|
3350 | } |
---|
3351 | |
---|
3352 | /*2 |
---|
3353 | *looks up the position of polynomial p in set |
---|
3354 | *set[length] is the smallest element in set with respect |
---|
3355 | *to the ordering-procedure pComp |
---|
3356 | */ |
---|
3357 | int posInLSpecial (const LSet set, const int length, |
---|
3358 | LObject *p,const kStrategy strat) |
---|
3359 | { |
---|
3360 | if (length<0) return 0; |
---|
3361 | |
---|
3362 | int d=p->GetpFDeg(); |
---|
3363 | int op=set[length].GetpFDeg(); |
---|
3364 | |
---|
3365 | if ((op > d) |
---|
3366 | || ((op == d) && (p->p1!=NULL)&&(set[length].p1==NULL)) |
---|
3367 | || (pLmCmp(set[length].p,p->p)== pOrdSgn)) |
---|
3368 | return length+1; |
---|
3369 | |
---|
3370 | int i; |
---|
3371 | int an = 0; |
---|
3372 | int en= length; |
---|
3373 | loop |
---|
3374 | { |
---|
3375 | if (an >= en-1) |
---|
3376 | { |
---|
3377 | op=set[an].GetpFDeg(); |
---|
3378 | if ((op > d) |
---|
3379 | || ((op == d) && (p->p1!=NULL) && (set[an].p1==NULL)) |
---|
3380 | || (pLmCmp(set[an].p,p->p)== pOrdSgn)) |
---|
3381 | return en; |
---|
3382 | return an; |
---|
3383 | } |
---|
3384 | i=(an+en) / 2; |
---|
3385 | op=set[i].GetpFDeg(); |
---|
3386 | if ((op>d) |
---|
3387 | || ((op==d) && (p->p1!=NULL) && (set[i].p1==NULL)) |
---|
3388 | || (pLmCmp(set[i].p,p->p) == pOrdSgn)) |
---|
3389 | an=i; |
---|
3390 | else |
---|
3391 | en=i; |
---|
3392 | } |
---|
3393 | } |
---|
3394 | |
---|
3395 | /*2 |
---|
3396 | *looks up the position of polynomial p in set |
---|
3397 | *set[length] is the smallest element in set with respect |
---|
3398 | *to the ordering-procedure pComp |
---|
3399 | */ |
---|
3400 | int posInL0 (const LSet set, const int length, |
---|
3401 | LObject* p,const kStrategy strat) |
---|
3402 | { |
---|
3403 | if (length<0) return 0; |
---|
3404 | |
---|
3405 | if (pLmCmp(set[length].p,p->p)== pOrdSgn) |
---|
3406 | return length+1; |
---|
3407 | |
---|
3408 | int i; |
---|
3409 | int an = 0; |
---|
3410 | int en= length; |
---|
3411 | loop |
---|
3412 | { |
---|
3413 | if (an >= en-1) |
---|
3414 | { |
---|
3415 | if (pLmCmp(set[an].p,p->p) == pOrdSgn) return en; |
---|
3416 | return an; |
---|
3417 | } |
---|
3418 | i=(an+en) / 2; |
---|
3419 | if (pLmCmp(set[i].p,p->p) == pOrdSgn) an=i; |
---|
3420 | else en=i; |
---|
3421 | /*aend. fuer lazy == in !=- machen */ |
---|
3422 | } |
---|
3423 | } |
---|
3424 | |
---|
3425 | /*2 |
---|
3426 | * looks up the position of polynomial p in set |
---|
3427 | * e is the ecart of p |
---|
3428 | * set[length] is the smallest element in set with respect |
---|
3429 | * to the ordering-procedure totaldegree,pComp |
---|
3430 | */ |
---|
3431 | int posInL11 (const LSet set, const int length, |
---|
3432 | LObject* p,const kStrategy strat) |
---|
3433 | /*{ |
---|
3434 | * int j=0; |
---|
3435 | * int o; |
---|
3436 | * |
---|
3437 | * o = p->GetpFDeg(); |
---|
3438 | * loop |
---|
3439 | * { |
---|
3440 | * if (j > length) return j; |
---|
3441 | * if ((set[j].GetpFDeg() < o)) return j; |
---|
3442 | * if ((set[j].GetpFDeg() == o) && (pLmCmp(set[j].p,p->p) == -pOrdSgn)) |
---|
3443 | * { |
---|
3444 | * return j; |
---|
3445 | * } |
---|
3446 | * j++; |
---|
3447 | * } |
---|
3448 | *} |
---|
3449 | */ |
---|
3450 | { |
---|
3451 | if (length<0) return 0; |
---|
3452 | |
---|
3453 | int o = p->GetpFDeg(); |
---|
3454 | int op = set[length].GetpFDeg(); |
---|
3455 | |
---|
3456 | if ((op > o) |
---|
3457 | || ((op == o) && (pLmCmp(set[length].p,p->p) != -pOrdSgn))) |
---|
3458 | return length+1; |
---|
3459 | int i; |
---|
3460 | int an = 0; |
---|
3461 | int en= length; |
---|
3462 | loop |
---|
3463 | { |
---|
3464 | if (an >= en-1) |
---|
3465 | { |
---|
3466 | op = set[an].GetpFDeg(); |
---|
3467 | if ((op > o) |
---|
3468 | || ((op == o) && (pLmCmp(set[an].p,p->p) != -pOrdSgn))) |
---|
3469 | return en; |
---|
3470 | return an; |
---|
3471 | } |
---|
3472 | i=(an+en) / 2; |
---|
3473 | op = set[i].GetpFDeg(); |
---|
3474 | if ((op > o) |
---|
3475 | || ((op == o) && (pLmCmp(set[i].p,p->p) != -pOrdSgn))) |
---|
3476 | an=i; |
---|
3477 | else |
---|
3478 | en=i; |
---|
3479 | } |
---|
3480 | } |
---|
3481 | |
---|
3482 | /*2 Position for rings L: Here I am |
---|
3483 | * looks up the position of polynomial p in set |
---|
3484 | * e is the ecart of p |
---|
3485 | * set[length] is the smallest element in set with respect |
---|
3486 | * to the ordering-procedure totaldegree,pComp |
---|
3487 | */ |
---|
3488 | inline int getIndexRng(long coeff) |
---|
3489 | { |
---|
3490 | if (coeff == 0) return -1; |
---|
3491 | long tmp = coeff; |
---|
3492 | int ind = 0; |
---|
3493 | while (tmp % 2 == 0) |
---|
3494 | { |
---|
3495 | tmp = tmp / 2; |
---|
3496 | ind++; |
---|
3497 | } |
---|
3498 | return ind; |
---|
3499 | } |
---|
3500 | |
---|
3501 | int posInLrg0 (const LSet set, const int length, |
---|
3502 | LObject* p,const kStrategy strat) |
---|
3503 | /* if (nGreater(pGetCoeff(p), pGetCoeff(set[an]))) return en; |
---|
3504 | if (pLmCmp(set[i],p) == cmp_int) en = i; |
---|
3505 | else if (pLmCmp(set[i],p) == -cmp_int) an = i; |
---|
3506 | else |
---|
3507 | { |
---|
3508 | if (nGreater(pGetCoeff(p), pGetCoeff(set[i]))) an = i; |
---|
3509 | else en = i; |
---|
3510 | }*/ |
---|
3511 | { |
---|
3512 | if (length < 0) return 0; |
---|
3513 | |
---|
3514 | int o = p->GetpFDeg(); |
---|
3515 | int op = set[length].GetpFDeg(); |
---|
3516 | |
---|
3517 | if ((op > o) || ((op == o) && (pLmCmp(set[length].p,p->p) != -pOrdSgn))) |
---|
3518 | return length + 1; |
---|
3519 | int i; |
---|
3520 | int an = 0; |
---|
3521 | int en = length; |
---|
3522 | loop |
---|
3523 | { |
---|
3524 | if (an >= en - 1) |
---|
3525 | { |
---|
3526 | op = set[an].GetpFDeg(); |
---|
3527 | if ((op > o) || ((op == o) && (pLmCmp(set[an].p,p->p) != -pOrdSgn))) |
---|
3528 | return en; |
---|
3529 | return an; |
---|
3530 | } |
---|
3531 | i = (an+en) / 2; |
---|
3532 | op = set[i].GetpFDeg(); |
---|
3533 | if ((op > o) || ((op == o) && (pLmCmp(set[i].p,p->p) != -pOrdSgn))) |
---|
3534 | an = i; |
---|
3535 | else |
---|
3536 | en = i; |
---|
3537 | } |
---|
3538 | } |
---|
3539 | |
---|
3540 | /*{ |
---|
3541 | if (length < 0) return 0; |
---|
3542 | |
---|
3543 | int o = p->GetpFDeg(); |
---|
3544 | int op = set[length].GetpFDeg(); |
---|
3545 | |
---|
3546 | int inde = getIndexRng((unsigned long) pGetCoeff(set[length].p)); |
---|
3547 | int indp = getIndexRng((unsigned long) pGetCoeff(p->p)); |
---|
3548 | int inda; |
---|
3549 | int indi; |
---|
3550 | |
---|
3551 | if ((inda > indp) || ((inda == inde) && ((op > o) || ((op == o) && (pLmCmp(set[length].p,p->p) != -pOrdSgn))))) |
---|
3552 | return length + 1; |
---|
3553 | int i; |
---|
3554 | int an = 0; |
---|
3555 | inda = getIndexRng((unsigned long) pGetCoeff(set[an].p)); |
---|
3556 | int en = length; |
---|
3557 | loop |
---|
3558 | { |
---|
3559 | if (an >= en-1) |
---|
3560 | { |
---|
3561 | op = set[an].GetpFDeg(); |
---|
3562 | if ((indp > inda) || ((indp == inda) && ((op > o) || ((op == o) && (pLmCmp(set[an].p,p->p) != -pOrdSgn))))) |
---|
3563 | return en; |
---|
3564 | return an; |
---|
3565 | } |
---|
3566 | i = (an + en) / 2; |
---|
3567 | indi = getIndexRng((unsigned long) pGetCoeff(set[i].p)); |
---|
3568 | op = set[i].GetpFDeg(); |
---|
3569 | if ((indi > indp) || ((indi == indp) && ((op > o) || ((op == o) && (pLmCmp(set[i].p,p->p) != -pOrdSgn))))) |
---|
3570 | // if ((op > o) || ((op == o) && (pLmCmp(set[i].p,p->p) != -pOrdSgn))) |
---|
3571 | { |
---|
3572 | an = i; |
---|
3573 | inda = getIndexRng((unsigned long) pGetCoeff(set[an].p)); |
---|
3574 | } |
---|
3575 | else |
---|
3576 | en = i; |
---|
3577 | } |
---|
3578 | } */ |
---|
3579 | |
---|
3580 | /*2 |
---|
3581 | * looks up the position of polynomial p in set |
---|
3582 | * set[length] is the smallest element in set with respect |
---|
3583 | * to the ordering-procedure totaldegree,pLength0 |
---|
3584 | */ |
---|
3585 | int posInL110 (const LSet set, const int length, |
---|
3586 | LObject* p,const kStrategy strat) |
---|
3587 | { |
---|
3588 | if (length<0) return 0; |
---|
3589 | |
---|
3590 | int o = p->GetpFDeg(); |
---|
3591 | int op = set[length].GetpFDeg(); |
---|
3592 | |
---|
3593 | if ((op > o) |
---|
3594 | || ((op == o) && (set[length].length >p->length)) |
---|
3595 | || ((op == o) && (set[length].length <= p->length) |
---|
3596 | && (pLmCmp(set[length].p,p->p) != -pOrdSgn))) |
---|
3597 | return length+1; |
---|
3598 | int i; |
---|
3599 | int an = 0; |
---|
3600 | int en= length; |
---|
3601 | loop |
---|
3602 | { |
---|
3603 | if (an >= en-1) |
---|
3604 | { |
---|
3605 | op = set[an].GetpFDeg(); |
---|
3606 | if ((op > o) |
---|
3607 | || ((op == o) && (set[an].length >p->length)) |
---|
3608 | || ((op == o) && (set[an].length <=p->length) |
---|
3609 | && (pLmCmp(set[an].p,p->p) != -pOrdSgn))) |
---|
3610 | return en; |
---|
3611 | return an; |
---|
3612 | } |
---|
3613 | i=(an+en) / 2; |
---|
3614 | op = set[i].GetpFDeg(); |
---|
3615 | if ((op > o) |
---|
3616 | || ((op == o) && (set[i].length > p->length)) |
---|
3617 | || ((op == o) && (set[i].length <= p->length) |
---|
3618 | && (pLmCmp(set[i].p,p->p) != -pOrdSgn))) |
---|
3619 | an=i; |
---|
3620 | else |
---|
3621 | en=i; |
---|
3622 | } |
---|
3623 | } |
---|
3624 | |
---|
3625 | /*2 |
---|
3626 | * looks up the position of polynomial p in set |
---|
3627 | * e is the ecart of p |
---|
3628 | * set[length] is the smallest element in set with respect |
---|
3629 | * to the ordering-procedure totaldegree |
---|
3630 | */ |
---|
3631 | int posInL13 (const LSet set, const int length, |
---|
3632 | LObject* p,const kStrategy strat) |
---|
3633 | { |
---|
3634 | if (length<0) return 0; |
---|
3635 | |
---|
3636 | int o = p->GetpFDeg(); |
---|
3637 | |
---|
3638 | if (set[length].GetpFDeg() > o) |
---|
3639 | return length+1; |
---|
3640 | |
---|
3641 | int i; |
---|
3642 | int an = 0; |
---|
3643 | int en= length; |
---|
3644 | loop |
---|
3645 | { |
---|
3646 | if (an >= en-1) |
---|
3647 | { |
---|
3648 | if (set[an].GetpFDeg() >= o) |
---|
3649 | return en; |
---|
3650 | return an; |
---|
3651 | } |
---|
3652 | i=(an+en) / 2; |
---|
3653 | if (set[i].GetpFDeg() >= o) |
---|
3654 | an=i; |
---|
3655 | else |
---|
3656 | en=i; |
---|
3657 | } |
---|
3658 | } |
---|
3659 | |
---|
3660 | /*2 |
---|
3661 | * looks up the position of polynomial p in set |
---|
3662 | * e is the ecart of p |
---|
3663 | * set[length] is the smallest element in set with respect |
---|
3664 | * to the ordering-procedure maximaldegree,pComp |
---|
3665 | */ |
---|
3666 | int posInL15 (const LSet set, const int length, |
---|
3667 | LObject* p,const kStrategy strat) |
---|
3668 | /*{ |
---|
3669 | * int j=0; |
---|
3670 | * int o; |
---|
3671 | * |
---|
3672 | * o = p->ecart+p->GetpFDeg(); |
---|
3673 | * loop |
---|
3674 | * { |
---|
3675 | * if (j > length) return j; |
---|
3676 | * if (set[j].GetpFDeg()+set[j].ecart < o) return j; |
---|
3677 | * if ((set[j].GetpFDeg()+set[j].ecart == o) |
---|
3678 | * && (pLmCmp(set[j].p,p->p) == -pOrdSgn)) |
---|
3679 | * { |
---|
3680 | * return j; |
---|
3681 | * } |
---|
3682 | * j++; |
---|
3683 | * } |
---|
3684 | *} |
---|
3685 | */ |
---|
3686 | { |
---|
3687 | if (length<0) return 0; |
---|
3688 | |
---|
3689 | int o = p->GetpFDeg() + p->ecart; |
---|
3690 | int op = set[length].GetpFDeg() + set[length].ecart; |
---|
3691 | |
---|
3692 | if ((op > o) |
---|
3693 | || ((op == o) && (pLmCmp(set[length].p,p->p) != -pOrdSgn))) |
---|
3694 | return length+1; |
---|
3695 | int i; |
---|
3696 | int an = 0; |
---|
3697 | int en= length; |
---|
3698 | loop |
---|
3699 | { |
---|
3700 | if (an >= en-1) |
---|
3701 | { |
---|
3702 | op = set[an].GetpFDeg() + set[an].ecart; |
---|
3703 | if ((op > o) |
---|
3704 | || ((op == o) && (pLmCmp(set[an].p,p->p) != -pOrdSgn))) |
---|
3705 | return en; |
---|
3706 | return an; |
---|
3707 | } |
---|
3708 | i=(an+en) / 2; |
---|
3709 | op = set[i].GetpFDeg() + set[i].ecart; |
---|
3710 | if ((op > o) |
---|
3711 | || ((op == o) && (pLmCmp(set[i].p,p->p) != -pOrdSgn))) |
---|
3712 | an=i; |
---|
3713 | else |
---|
3714 | en=i; |
---|
3715 | } |
---|
3716 | } |
---|
3717 | |
---|
3718 | /*2 |
---|
3719 | * looks up the position of polynomial p in set |
---|
3720 | * e is the ecart of p |
---|
3721 | * set[length] is the smallest element in set with respect |
---|
3722 | * to the ordering-procedure totaldegree |
---|
3723 | */ |
---|
3724 | int posInL17 (const LSet set, const int length, |
---|
3725 | LObject* p,const kStrategy strat) |
---|
3726 | { |
---|
3727 | if (length<0) return 0; |
---|
3728 | |
---|
3729 | int o = p->GetpFDeg() + p->ecart; |
---|
3730 | |
---|
3731 | if ((set[length].GetpFDeg() + set[length].ecart > o) |
---|
3732 | || ((set[length].GetpFDeg() + set[length].ecart == o) |
---|
3733 | && (set[length].ecart > p->ecart)) |
---|
3734 | || ((set[length].GetpFDeg() + set[length].ecart == o) |
---|
3735 | && (set[length].ecart == p->ecart) |
---|
3736 | && (pLmCmp(set[length].p,p->p) != -pOrdSgn))) |
---|
3737 | return length+1; |
---|
3738 | int i; |
---|
3739 | int an = 0; |
---|
3740 | int en= length; |
---|
3741 | loop |
---|
3742 | { |
---|
3743 | if (an >= en-1) |
---|
3744 | { |
---|
3745 | if ((set[an].GetpFDeg() + set[an].ecart > o) |
---|
3746 | || ((set[an].GetpFDeg() + set[an].ecart == o) |
---|
3747 | && (set[an].ecart > p->ecart)) |
---|
3748 | || ((set[an].GetpFDeg() + set[an].ecart == o) |
---|
3749 | && (set[an].ecart == p->ecart) |
---|
3750 | && (pLmCmp(set[an].p,p->p) != -pOrdSgn))) |
---|
3751 | return en; |
---|
3752 | return an; |
---|
3753 | } |
---|
3754 | i=(an+en) / 2; |
---|
3755 | if ((set[i].GetpFDeg() + set[i].ecart > o) |
---|
3756 | || ((set[i].GetpFDeg() + set[i].ecart == o) |
---|
3757 | && (set[i].ecart > p->ecart)) |
---|
3758 | || ((set[i].GetpFDeg() +set[i].ecart == o) |
---|
3759 | && (set[i].ecart == p->ecart) |
---|
3760 | && (pLmCmp(set[i].p,p->p) != -pOrdSgn))) |
---|
3761 | an=i; |
---|
3762 | else |
---|
3763 | en=i; |
---|
3764 | } |
---|
3765 | } |
---|
3766 | /*2 |
---|
3767 | * looks up the position of polynomial p in set |
---|
3768 | * e is the ecart of p |
---|
3769 | * set[length] is the smallest element in set with respect |
---|
3770 | * to the ordering-procedure pComp |
---|
3771 | */ |
---|
3772 | int posInL17_c (const LSet set, const int length, |
---|
3773 | LObject* p,const kStrategy strat) |
---|
3774 | { |
---|
3775 | if (length<0) return 0; |
---|
3776 | |
---|
3777 | int cc = (-1+2*currRing->order[0]==ringorder_c); |
---|
3778 | /* cc==1 for (c,..), cc==-1 for (C,..) */ |
---|
3779 | int c = pGetComp(p->p)*cc; |
---|
3780 | int o = p->GetpFDeg() + p->ecart; |
---|
3781 | |
---|
3782 | if (pGetComp(set[length].p)*cc > c) |
---|
3783 | return length+1; |
---|
3784 | if (pGetComp(set[length].p)*cc == c) |
---|
3785 | { |
---|
3786 | if ((set[length].GetpFDeg() + set[length].ecart > o) |
---|
3787 | || ((set[length].GetpFDeg() + set[length].ecart == o) |
---|
3788 | && (set[length].ecart > p->ecart)) |
---|
3789 | || ((set[length].GetpFDeg() + set[length].ecart == o) |
---|
3790 | && (set[length].ecart == p->ecart) |
---|
3791 | && (pLmCmp(set[length].p,p->p) != -pOrdSgn))) |
---|
3792 | return length+1; |
---|
3793 | } |
---|
3794 | int i; |
---|
3795 | int an = 0; |
---|
3796 | int en= length; |
---|
3797 | loop |
---|
3798 | { |
---|
3799 | if (an >= en-1) |
---|
3800 | { |
---|
3801 | if (pGetComp(set[an].p)*cc > c) |
---|
3802 | return en; |
---|
3803 | if (pGetComp(set[an].p)*cc == c) |
---|
3804 | { |
---|
3805 | if ((set[an].GetpFDeg() + set[an].ecart > o) |
---|
3806 | || ((set[an].GetpFDeg() + set[an].ecart == o) |
---|
3807 | && (set[an].ecart > p->ecart)) |
---|
3808 | || ((set[an].GetpFDeg() + set[an].ecart == o) |
---|
3809 | && (set[an].ecart == p->ecart) |
---|
3810 | && (pLmCmp(set[an].p,p->p) != -pOrdSgn))) |
---|
3811 | return en; |
---|
3812 | } |
---|
3813 | return an; |
---|
3814 | } |
---|
3815 | i=(an+en) / 2; |
---|
3816 | if (pGetComp(set[i].p)*cc > c) |
---|
3817 | an=i; |
---|
3818 | else if (pGetComp(set[i].p)*cc == c) |
---|
3819 | { |
---|
3820 | if ((set[i].GetpFDeg() + set[i].ecart > o) |
---|
3821 | || ((set[i].GetpFDeg() + set[i].ecart == o) |
---|
3822 | && (set[i].ecart > p->ecart)) |
---|
3823 | || ((set[i].GetpFDeg() +set[i].ecart == o) |
---|
3824 | && (set[i].ecart == p->ecart) |
---|
3825 | && (pLmCmp(set[i].p,p->p) != -pOrdSgn))) |
---|
3826 | an=i; |
---|
3827 | else |
---|
3828 | en=i; |
---|
3829 | } |
---|
3830 | else |
---|
3831 | en=i; |
---|
3832 | } |
---|
3833 | } |
---|
3834 | |
---|
3835 | /*************************************************************** |
---|
3836 | * |
---|
3837 | * Tail reductions |
---|
3838 | * |
---|
3839 | ***************************************************************/ |
---|
3840 | TObject* |
---|
3841 | kFindDivisibleByInS(kStrategy strat, int pos, LObject* L, TObject *T, |
---|
3842 | long ecart) |
---|
3843 | { |
---|
3844 | int j = 0; |
---|
3845 | const unsigned long not_sev = ~L->sev; |
---|
3846 | const unsigned long* sev = strat->sevS; |
---|
3847 | poly p; |
---|
3848 | ring r; |
---|
3849 | L->GetLm(p, r); |
---|
3850 | |
---|
3851 | assume(~not_sev == p_GetShortExpVector(p, r)); |
---|
3852 | |
---|
3853 | if (r == currRing) |
---|
3854 | { |
---|
3855 | loop |
---|
3856 | { |
---|
3857 | if (j > pos) return NULL; |
---|
3858 | #if defined(PDEBUG) || defined(PDIV_DEBUG) |
---|
3859 | if (p_LmShortDivisibleBy(strat->S[j], sev[j], p, not_sev, r) && |
---|
3860 | (ecart== LONG_MAX || ecart>= strat->ecartS[j])) |
---|
3861 | break; |
---|
3862 | #else |
---|
3863 | if (!(sev[j] & not_sev) && |
---|
3864 | (ecart== LONG_MAX || ecart>= strat->ecartS[j]) && |
---|
3865 | p_LmDivisibleBy(strat->S[j], p, r)) |
---|
3866 | break; |
---|
3867 | |
---|
3868 | #endif |
---|
3869 | j++; |
---|
3870 | } |
---|
3871 | // if called from NF, T objects do not exist: |
---|
3872 | if (strat->tl < 0 || strat->S_2_R[j] == -1) |
---|
3873 | { |
---|
3874 | T->Set(strat->S[j], r, strat->tailRing); |
---|
3875 | return T; |
---|
3876 | } |
---|
3877 | else |
---|
3878 | { |
---|
3879 | assume (j >= 0 && j <= strat->tl && strat->S_2_T(j) != NULL && |
---|
3880 | strat->S_2_T(j)->p == strat->S[j]); |
---|
3881 | return strat->S_2_T(j); |
---|
3882 | } |
---|
3883 | } |
---|
3884 | else |
---|
3885 | { |
---|
3886 | TObject* t; |
---|
3887 | loop |
---|
3888 | { |
---|
3889 | if (j > pos) return NULL; |
---|
3890 | assume(strat->S_2_R[j] != -1); |
---|
3891 | #if defined(PDEBUG) || defined(PDIV_DEBUG) |
---|
3892 | t = strat->S_2_T(j); |
---|
3893 | assume(t != NULL && t->t_p != NULL && t->tailRing == r); |
---|
3894 | if (p_LmShortDivisibleBy(t->t_p, sev[j], p, not_sev, r) && |
---|
3895 | (ecart== LONG_MAX || ecart>= strat->ecartS[j])) |
---|
3896 | return t; |
---|
3897 | #else |
---|
3898 | if (! (sev[j] & not_sev) && (ecart== LONG_MAX || ecart>= strat->ecartS[j])) |
---|
3899 | { |
---|
3900 | t = strat->S_2_T(j); |
---|
3901 | assume(t != NULL && t->t_p != NULL && t->tailRing == r && t->p == strat->S[j]); |
---|
3902 | if (p_LmDivisibleBy(t->t_p, p, r)) return t; |
---|
3903 | } |
---|
3904 | #endif |
---|
3905 | j++; |
---|
3906 | } |
---|
3907 | } |
---|
3908 | } |
---|
3909 | /* |
---|
3910 | #ifdef HAVE_RING2TOM |
---|
3911 | TObject* |
---|
3912 | kRingFindDivisibleByInS(kStrategy strat, int pos, LObject* L, TObject *T, |
---|
3913 | long ecart) |
---|
3914 | { |
---|
3915 | int j = 0; |
---|
3916 | const unsigned long not_sev = ~L->sev; |
---|
3917 | const unsigned long* sev = strat->sevS; |
---|
3918 | poly p; |
---|
3919 | ring r; |
---|
3920 | L->GetLm(p, r); |
---|
3921 | |
---|
3922 | assume(~not_sev == p_GetShortExpVector(p, r)); |
---|
3923 | |
---|
3924 | if (r == currRing) |
---|
3925 | { |
---|
3926 | loop |
---|
3927 | { |
---|
3928 | if (j > pos) return NULL; |
---|
3929 | #if defined(PDEBUG) || defined(PDIV_DEBUG) |
---|
3930 | if (p_LmRingShortDivisibleBy(strat->S[j], sev[j], p, not_sev, r) && |
---|
3931 | (ecart== LONG_MAX || ecart>= strat->ecartS[j])) |
---|
3932 | break; |
---|
3933 | #else |
---|
3934 | if (!(sev[j] & not_sev) && |
---|
3935 | (ecart== LONG_MAX || ecart>= strat->ecartS[j]) && |
---|
3936 | p_LmRingDivisibleBy(strat->S[j], p, r)) |
---|
3937 | break; |
---|
3938 | |
---|
3939 | #endif |
---|
3940 | j++; |
---|
3941 | } |
---|
3942 | // if called from NF, T objects do not exist: |
---|
3943 | if (strat->tl < 0 || strat->S_2_R[j] == -1) |
---|
3944 | { |
---|
3945 | T->Set(strat->S[j], r, strat->tailRing); |
---|
3946 | return T; |
---|
3947 | } |
---|
3948 | else |
---|
3949 | { |
---|
3950 | assume (j >= 0 && j <= strat->tl && strat->S_2_T(j) != NULL && |
---|
3951 | strat->S_2_T(j)->p == strat->S[j]); |
---|
3952 | return strat->S_2_T(j); |
---|
3953 | } |
---|
3954 | } |
---|
3955 | else |
---|
3956 | { |
---|
3957 | TObject* t; |
---|
3958 | loop |
---|
3959 | { |
---|
3960 | if (j > pos) return NULL; |
---|
3961 | assume(strat->S_2_R[j] != -1); |
---|
3962 | #if defined(PDEBUG) || defined(PDIV_DEBUG) |
---|
3963 | t = strat->S_2_T(j); |
---|
3964 | assume(t != NULL && t->t_p != NULL && t->tailRing == r); |
---|
3965 | if (p_LmRingShortDivisibleBy(t->t_p, sev[j], p, not_sev, r) && |
---|
3966 | (ecart== LONG_MAX || ecart>= strat->ecartS[j])) |
---|
3967 | return t; |
---|
3968 | #else |
---|
3969 | if (! (sev[j] & not_sev) && (ecart== LONG_MAX || ecart>= strat->ecartS[j])) |
---|
3970 | { |
---|
3971 | t = strat->S_2_T(j); |
---|
3972 | assume(t != NULL && t->t_p != NULL && t->tailRing == r && t->p == strat->S[j]); |
---|
3973 | if (p_LmRingDivisibleBy(t->t_p, p, r)) return t; |
---|
3974 | } |
---|
3975 | #endif |
---|
3976 | j++; |
---|
3977 | } |
---|
3978 | } |
---|
3979 | } |
---|
3980 | #endif |
---|
3981 | */ |
---|
3982 | |
---|
3983 | poly redtail (LObject* L, int pos, kStrategy strat) |
---|
3984 | { |
---|
3985 | poly h, hn; |
---|
3986 | int j; |
---|
3987 | unsigned long not_sev; |
---|
3988 | strat->redTailChange=FALSE; |
---|
3989 | |
---|
3990 | poly p = L->p; |
---|
3991 | if (strat->noTailReduction || pNext(p) == NULL) |
---|
3992 | return p; |
---|
3993 | |
---|
3994 | LObject Ln(strat->tailRing); |
---|
3995 | TObject* With; |
---|
3996 | // placeholder in case strat->tl < 0 |
---|
3997 | TObject With_s(strat->tailRing); |
---|
3998 | h = p; |
---|
3999 | hn = pNext(h); |
---|
4000 | long op = strat->tailRing->pFDeg(hn, strat->tailRing); |
---|
4001 | long e; |
---|
4002 | int l; |
---|
4003 | BOOLEAN save_HE=strat->kHEdgeFound; |
---|
4004 | strat->kHEdgeFound |= |
---|
4005 | ((Kstd1_deg>0) && (op<=Kstd1_deg)) || TEST_OPT_INFREDTAIL; |
---|
4006 | |
---|
4007 | while(hn != NULL) |
---|
4008 | { |
---|
4009 | op = strat->tailRing->pFDeg(hn, strat->tailRing); |
---|
4010 | if ((Kstd1_deg>0)&&(op>Kstd1_deg)) goto all_done; |
---|
4011 | e = strat->tailRing->pLDeg(hn, &l, strat->tailRing) - op; |
---|
4012 | loop |
---|
4013 | { |
---|
4014 | Ln.Set(hn, strat->tailRing); |
---|
4015 | Ln.sev = p_GetShortExpVector(hn, strat->tailRing); |
---|
4016 | if (strat->kHEdgeFound) |
---|
4017 | With = kFindDivisibleByInS(strat, pos, &Ln, &With_s); |
---|
4018 | else |
---|
4019 | With = kFindDivisibleByInS(strat, pos, &Ln, &With_s, e); |
---|
4020 | if (With == NULL) break; |
---|
4021 | With->length=0; |
---|
4022 | With->pLength=0; |
---|
4023 | strat->redTailChange=TRUE; |
---|
4024 | if (ksReducePolyTail(L, With, h, strat->kNoetherTail())) |
---|
4025 | { |
---|
4026 | // reducing the tail would violate the exp bound |
---|
4027 | if (kStratChangeTailRing(strat, L)) |
---|
4028 | { |
---|
4029 | strat->kHEdgeFound = save_HE; |
---|
4030 | return redtail(L, pos, strat); |
---|
4031 | } |
---|
4032 | else |
---|
4033 | return NULL; |
---|
4034 | } |
---|
4035 | hn = pNext(h); |
---|
4036 | if (hn == NULL) goto all_done; |
---|
4037 | op = strat->tailRing->pFDeg(hn, strat->tailRing); |
---|
4038 | if ((Kstd1_deg>0)&&(op>Kstd1_deg)) goto all_done; |
---|
4039 | e = strat->tailRing->pLDeg(hn, &l, strat->tailRing) - op; |
---|
4040 | } |
---|
4041 | h = hn; |
---|
4042 | hn = pNext(h); |
---|
4043 | } |
---|
4044 | |
---|
4045 | all_done: |
---|
4046 | if (strat->redTailChange) |
---|
4047 | { |
---|
4048 | L->last = 0; |
---|
4049 | L->pLength = 0; |
---|
4050 | } |
---|
4051 | strat->kHEdgeFound = save_HE; |
---|
4052 | return p; |
---|
4053 | } |
---|
4054 | |
---|
4055 | poly redtail (poly p, int pos, kStrategy strat) |
---|
4056 | { |
---|
4057 | LObject L(p, currRing); |
---|
4058 | return redtail(&L, pos, strat); |
---|
4059 | } |
---|
4060 | |
---|
4061 | poly redtailBba (LObject* L, int pos, kStrategy strat, BOOLEAN withT) |
---|
4062 | { |
---|
4063 | strat->redTailChange=FALSE; |
---|
4064 | if (strat->noTailReduction) return L->GetLmCurrRing(); |
---|
4065 | poly h, p; |
---|
4066 | p = h = L->GetLmTailRing(); |
---|
4067 | if ((h==NULL) || (pNext(h)==NULL)) |
---|
4068 | return L->GetLmCurrRing(); |
---|
4069 | |
---|
4070 | TObject* With; |
---|
4071 | // placeholder in case strat->tl < 0 |
---|
4072 | TObject With_s(strat->tailRing); |
---|
4073 | |
---|
4074 | LObject Ln(pNext(h), strat->tailRing); |
---|
4075 | Ln.pLength = L->GetpLength() - 1; |
---|
4076 | |
---|
4077 | pNext(h) = NULL; |
---|
4078 | if (L->p != NULL) pNext(L->p) = NULL; |
---|
4079 | L->pLength = 1; |
---|
4080 | |
---|
4081 | Ln.PrepareRed(strat->use_buckets); |
---|
4082 | |
---|
4083 | while(!Ln.IsNull()) |
---|
4084 | { |
---|
4085 | loop |
---|
4086 | { |
---|
4087 | Ln.SetShortExpVector(); |
---|
4088 | if (! withT) |
---|
4089 | { |
---|
4090 | /* obsolete |
---|
4091 | #ifdef HAVE_RING2TOM |
---|
4092 | if (currRing->cring == 1) |
---|
4093 | { |
---|
4094 | With = kRingFindDivisibleByInS(strat, pos, &Ln, &With_s); |
---|
4095 | } else |
---|
4096 | #endif |
---|
4097 | */ |
---|
4098 | With = kFindDivisibleByInS(strat, pos, &Ln, &With_s); |
---|
4099 | if (With == NULL) break; |
---|
4100 | } |
---|
4101 | else |
---|
4102 | { |
---|
4103 | int j; |
---|
4104 | /* Obsolete |
---|
4105 | #ifdef HAVE_RING2TOM |
---|
4106 | if (currRing->cring == 1) |
---|
4107 | { |
---|
4108 | j = kRingFindDivisibleByInT(strat->T, strat->sevT, strat->tl, &Ln); |
---|
4109 | } else |
---|
4110 | #endif |
---|
4111 | */ |
---|
4112 | j = kFindDivisibleByInT(strat->T, strat->sevT, strat->tl, &Ln); |
---|
4113 | if (j < 0) break; |
---|
4114 | With = &(strat->T[j]); |
---|
4115 | } |
---|
4116 | if (ksReducePolyTail(L, With, &Ln)) |
---|
4117 | { |
---|
4118 | // reducing the tail would violate the exp bound |
---|
4119 | pNext(h) = Ln.GetTP(); |
---|
4120 | L->pLength += Ln.GetpLength(); |
---|
4121 | if (L->p != NULL) pNext(L->p) = pNext(p); |
---|
4122 | if (kStratChangeTailRing(strat, L)) |
---|
4123 | return redtailBba(L, pos, strat, withT); |
---|
4124 | else |
---|
4125 | { // should never get here -- need to fix this |
---|
4126 | assume(0); |
---|
4127 | return NULL; |
---|
4128 | } |
---|
4129 | } |
---|
4130 | strat->redTailChange=TRUE; |
---|
4131 | if (Ln.IsNull()) goto all_done; |
---|
4132 | if (! withT) With_s.Init(currRing); |
---|
4133 | } |
---|
4134 | pNext(h) = Ln.LmExtractAndIter(); |
---|
4135 | pIter(h); |
---|
4136 | L->pLength++; |
---|
4137 | } |
---|
4138 | |
---|
4139 | all_done: |
---|
4140 | if (L->p != NULL) pNext(L->p) = pNext(p); |
---|
4141 | assume(pLength(L->p != NULL ? L->p : L->t_p) == L->pLength); |
---|
4142 | |
---|
4143 | if (strat->redTailChange) |
---|
4144 | { |
---|
4145 | L->last = NULL; |
---|
4146 | L->length = 0; |
---|
4147 | } |
---|
4148 | L->Normalize(); // HANNES: should have a test |
---|
4149 | kTest_L(L); |
---|
4150 | return L->GetLmCurrRing(); |
---|
4151 | } |
---|
4152 | |
---|
4153 | /*2 |
---|
4154 | *checks the change degree and write progress report |
---|
4155 | */ |
---|
4156 | void message (int i,int* reduc,int* olddeg,kStrategy strat, int red_result) |
---|
4157 | { |
---|
4158 | if (i != *olddeg) |
---|
4159 | { |
---|
4160 | Print("%d",i); |
---|
4161 | *olddeg = i; |
---|
4162 | } |
---|
4163 | if (K_TEST_OPT_OLDSTD) |
---|
4164 | { |
---|
4165 | if (strat->Ll != *reduc) |
---|
4166 | { |
---|
4167 | if (strat->Ll != *reduc-1) |
---|
4168 | Print("(%d)",strat->Ll+1); |
---|
4169 | else |
---|
4170 | PrintS("-"); |
---|
4171 | *reduc = strat->Ll; |
---|
4172 | } |
---|
4173 | else |
---|
4174 | PrintS("."); |
---|
4175 | mflush(); |
---|
4176 | } |
---|
4177 | else |
---|
4178 | { |
---|
4179 | if (red_result == 0) |
---|
4180 | PrintS("-"); |
---|
4181 | else if (red_result < 0) |
---|
4182 | PrintS("."); |
---|
4183 | if ((red_result > 0) || ((strat->Ll % 100)==99)) |
---|
4184 | { |
---|
4185 | if (strat->Ll != *reduc && strat->Ll > 0) |
---|
4186 | { |
---|
4187 | Print("(%d)",strat->Ll+1); |
---|
4188 | *reduc = strat->Ll; |
---|
4189 | } |
---|
4190 | } |
---|
4191 | } |
---|
4192 | } |
---|
4193 | |
---|
4194 | /*2 |
---|
4195 | *statistics |
---|
4196 | */ |
---|
4197 | void messageStat (int srmax,int lrmax,int hilbcount,kStrategy strat) |
---|
4198 | { |
---|
4199 | //PrintS("\nUsage/Allocation of temporary storage:\n"); |
---|
4200 | //Print("%d/%d polynomials in standard base\n",srmax,IDELEMS(Shdl)); |
---|
4201 | //Print("%d/%d polynomials in set L (for lazy alg.)",lrmax+1,strat->Lmax); |
---|
4202 | Print("\nproduct criterion:%d chain criterion:%d\n",strat->cp,strat->c3); |
---|
4203 | if (hilbcount!=0) Print("hilbert series criterion:%d\n",hilbcount); |
---|
4204 | /*mflush();*/ |
---|
4205 | } |
---|
4206 | |
---|
4207 | #ifdef KDEBUG |
---|
4208 | /*2 |
---|
4209 | *debugging output: all internal sets, if changed |
---|
4210 | *for testing purpuse only/has to be changed for later use |
---|
4211 | */ |
---|
4212 | void messageSets (kStrategy strat) |
---|
4213 | { |
---|
4214 | int i; |
---|
4215 | if (strat->news) |
---|
4216 | { |
---|
4217 | PrintS("set S"); |
---|
4218 | for (i=0; i<=strat->sl; i++) |
---|
4219 | { |
---|
4220 | Print("\n %d:",i); |
---|
4221 | p_wrp(strat->S[i], currRing, strat->tailRing); |
---|
4222 | } |
---|
4223 | strat->news = FALSE; |
---|
4224 | } |
---|
4225 | if (strat->newt) |
---|
4226 | { |
---|
4227 | PrintS("\nset T"); |
---|
4228 | for (i=0; i<=strat->tl; i++) |
---|
4229 | { |
---|
4230 | Print("\n %d:",i); |
---|
4231 | strat->T[i].wrp(); |
---|
4232 | Print(" o:%d e:%d l:%d", |
---|
4233 | strat->T[i].pFDeg(),strat->T[i].ecart,strat->T[i].length); |
---|
4234 | } |
---|
4235 | strat->newt = FALSE; |
---|
4236 | } |
---|
4237 | PrintS("\nset L"); |
---|
4238 | for (i=strat->Ll; i>=0; i--) |
---|
4239 | { |
---|
4240 | Print("\n%d:",i); |
---|
4241 | p_wrp(strat->L[i].p1, currRing, strat->tailRing); |
---|
4242 | PrintS(" "); |
---|
4243 | p_wrp(strat->L[i].p2, currRing, strat->tailRing); |
---|
4244 | PrintS(" lcm: ");p_wrp(strat->L[i].lcm, currRing); |
---|
4245 | PrintS("\n p : "); |
---|
4246 | strat->L[i].wrp(); |
---|
4247 | Print(" o:%d e:%d l:%d", |
---|
4248 | strat->L[i].pFDeg(),strat->L[i].ecart,strat->L[i].length); |
---|
4249 | } |
---|
4250 | PrintLn(); |
---|
4251 | } |
---|
4252 | |
---|
4253 | #endif |
---|
4254 | |
---|
4255 | |
---|
4256 | /*2 |
---|
4257 | *construct the set s from F |
---|
4258 | */ |
---|
4259 | void initS (ideal F, ideal Q,kStrategy strat) |
---|
4260 | { |
---|
4261 | int i,pos; |
---|
4262 | |
---|
4263 | if (Q!=NULL) i=((IDELEMS(Q)+(setmaxTinc-1))/setmaxTinc)*setmaxTinc; |
---|
4264 | else i=setmaxT; |
---|
4265 | strat->ecartS=initec(i); |
---|
4266 | strat->sevS=initsevS(i); |
---|
4267 | strat->S_2_R=initS_2_R(i); |
---|
4268 | strat->fromQ=NULL; |
---|
4269 | strat->Shdl=idInit(i,F->rank); |
---|
4270 | strat->S=strat->Shdl->m; |
---|
4271 | /*- put polys into S -*/ |
---|
4272 | if (Q!=NULL) |
---|
4273 | { |
---|
4274 | strat->fromQ=initec(i); |
---|
4275 | memset(strat->fromQ,0,i*sizeof(int)); |
---|
4276 | for (i=0; i<IDELEMS(Q); i++) |
---|
4277 | { |
---|
4278 | if (Q->m[i]!=NULL) |
---|
4279 | { |
---|
4280 | LObject h; |
---|
4281 | h.p = pCopy(Q->m[i]); |
---|
4282 | if (TEST_OPT_INTSTRATEGY) |
---|
4283 | { |
---|
4284 | //pContent(h.p); |
---|
4285 | h.pCleardenom(); // also does a pContent |
---|
4286 | } |
---|
4287 | else |
---|
4288 | { |
---|
4289 | h.pNorm(); |
---|
4290 | } |
---|
4291 | if (pOrdSgn==-1) |
---|
4292 | { |
---|
4293 | deleteHC(&h, strat); |
---|
4294 | } |
---|
4295 | if (h.p!=NULL) |
---|
4296 | { |
---|
4297 | strat->initEcart(&h); |
---|
4298 | if (strat->sl==-1) |
---|
4299 | pos =0; |
---|
4300 | else |
---|
4301 | { |
---|
4302 | pos = posInS(strat,strat->sl,h.p,h.ecart); |
---|
4303 | } |
---|
4304 | h.sev = pGetShortExpVector(h.p); |
---|
4305 | strat->enterS(h,pos,strat,-1); |
---|
4306 | strat->fromQ[pos]=1; |
---|
4307 | } |
---|
4308 | } |
---|
4309 | } |
---|
4310 | } |
---|
4311 | for (i=0; i<IDELEMS(F); i++) |
---|
4312 | { |
---|
4313 | if (F->m[i]!=NULL) |
---|
4314 | { |
---|
4315 | LObject h; |
---|
4316 | h.p = pCopy(F->m[i]); |
---|
4317 | if (pOrdSgn==-1) |
---|
4318 | { |
---|
4319 | cancelunit(&h); /*- tries to cancel a unit -*/ |
---|
4320 | deleteHC(&h, strat); |
---|
4321 | } |
---|
4322 | if (TEST_OPT_INTSTRATEGY) |
---|
4323 | { |
---|
4324 | //pContent(h.p); |
---|
4325 | h.pCleardenom(); // also does a pContent |
---|
4326 | } |
---|
4327 | else |
---|
4328 | { |
---|
4329 | h.pNorm(); |
---|
4330 | } |
---|
4331 | if (h.p!=NULL) |
---|
4332 | { |
---|
4333 | strat->initEcart(&h); |
---|
4334 | if (strat->sl==-1) |
---|
4335 | pos =0; |
---|
4336 | else |
---|
4337 | pos = posInS(strat,strat->sl,h.p,h.ecart); |
---|
4338 | h.sev = pGetShortExpVector(h.p); |
---|
4339 | strat->enterS(h,pos,strat,-1); |
---|
4340 | } |
---|
4341 | } |
---|
4342 | } |
---|
4343 | /*- test, if a unit is in F -*/ |
---|
4344 | if ((strat->sl>=0) && pIsConstant(strat->S[0])) |
---|
4345 | { |
---|
4346 | while (strat->sl>0) deleteInS(strat->sl,strat); |
---|
4347 | } |
---|
4348 | } |
---|
4349 | |
---|
4350 | void initSL (ideal F, ideal Q,kStrategy strat) |
---|
4351 | { |
---|
4352 | int i,pos; |
---|
4353 | |
---|
4354 | if (Q!=NULL) i=((IDELEMS(Q)+(setmaxTinc-1))/setmaxTinc)*setmaxTinc; |
---|
4355 | else i=setmaxT; |
---|
4356 | strat->ecartS=initec(i); |
---|
4357 | strat->sevS=initsevS(i); |
---|
4358 | strat->S_2_R=initS_2_R(i); |
---|
4359 | strat->fromQ=NULL; |
---|
4360 | strat->Shdl=idInit(i,F->rank); |
---|
4361 | strat->S=strat->Shdl->m; |
---|
4362 | /*- put polys into S -*/ |
---|
4363 | if (Q!=NULL) |
---|
4364 | { |
---|
4365 | strat->fromQ=initec(i); |
---|
4366 | memset(strat->fromQ,0,i*sizeof(int)); |
---|
4367 | for (i=0; i<IDELEMS(Q); i++) |
---|
4368 | { |
---|
4369 | if (Q->m[i]!=NULL) |
---|
4370 | { |
---|
4371 | LObject h; |
---|
4372 | h.p = pCopy(Q->m[i]); |
---|
4373 | if (pOrdSgn==-1) |
---|
4374 | { |
---|
4375 | deleteHC(&h,strat); |
---|
4376 | } |
---|
4377 | if (TEST_OPT_INTSTRATEGY) |
---|
4378 | { |
---|
4379 | //pContent(h.p); |
---|
4380 | h.pCleardenom(); // also does a pContent |
---|
4381 | } |
---|
4382 | else |
---|
4383 | { |
---|
4384 | h.pNorm(); |
---|
4385 | } |
---|
4386 | if (h.p!=NULL) |
---|
4387 | { |
---|
4388 | strat->initEcart(&h); |
---|
4389 | if (strat->sl==-1) |
---|
4390 | pos =0; |
---|
4391 | else |
---|
4392 | { |
---|
4393 | pos = posInS(strat,strat->sl,h.p,h.ecart); |
---|
4394 | } |
---|
4395 | h.sev = pGetShortExpVector(h.p); |
---|
4396 | strat->enterS(h,pos,strat,-1); |
---|
4397 | strat->fromQ[pos]=1; |
---|
4398 | } |
---|
4399 | } |
---|
4400 | } |
---|
4401 | } |
---|
4402 | for (i=0; i<IDELEMS(F); i++) |
---|
4403 | { |
---|
4404 | if (F->m[i]!=NULL) |
---|
4405 | { |
---|
4406 | LObject h; |
---|
4407 | h.p = pCopy(F->m[i]); |
---|
4408 | if (h.p!=NULL) |
---|
4409 | { |
---|
4410 | if (pOrdSgn==-1) |
---|
4411 | { |
---|
4412 | cancelunit(&h); /*- tries to cancel a unit -*/ |
---|
4413 | deleteHC(&h, strat); |
---|
4414 | } |
---|
4415 | if (h.p!=NULL) |
---|
4416 | { |
---|
4417 | if (TEST_OPT_INTSTRATEGY) |
---|
4418 | { |
---|
4419 | //pContent(h.p); |
---|
4420 | h.pCleardenom(); // also does a pContent |
---|
4421 | } |
---|
4422 | else |
---|
4423 | { |
---|
4424 | h.pNorm(); |
---|
4425 | } |
---|
4426 | strat->initEcart(&h); |
---|
4427 | if (strat->Ll==-1) |
---|
4428 | pos =0; |
---|
4429 | else |
---|
4430 | pos = strat->posInL(strat->L,strat->Ll,&h,strat); |
---|
4431 | h.sev = pGetShortExpVector(h.p); |
---|
4432 | enterL(&strat->L,&strat->Ll,&strat->Lmax,h,pos); |
---|
4433 | } |
---|
4434 | } |
---|
4435 | } |
---|
4436 | } |
---|
4437 | /*- test, if a unit is in F -*/ |
---|
4438 | if ((strat->Ll>=0) && pIsConstant(strat->L[strat->Ll].p)) |
---|
4439 | { |
---|
4440 | while (strat->Ll>0) deleteInL(strat->L,&strat->Ll,strat->Ll-1,strat); |
---|
4441 | } |
---|
4442 | } |
---|
4443 | |
---|
4444 | |
---|
4445 | /*2 |
---|
4446 | *construct the set s from F and {P} |
---|
4447 | */ |
---|
4448 | void initSSpecial (ideal F, ideal Q, ideal P,kStrategy strat) |
---|
4449 | { |
---|
4450 | int i,pos; |
---|
4451 | |
---|
4452 | if (Q!=NULL) i=((IDELEMS(Q)+(setmaxTinc-1))/setmaxTinc)*setmaxTinc; |
---|
4453 | else i=setmaxT; |
---|
4454 | i=((i+IDELEMS(F)+IDELEMS(P)+15)/16)*16; |
---|
4455 | strat->ecartS=initec(i); |
---|
4456 | strat->sevS=initsevS(i); |
---|
4457 | strat->S_2_R=initS_2_R(i); |
---|
4458 | strat->fromQ=NULL; |
---|
4459 | strat->Shdl=idInit(i,F->rank); |
---|
4460 | strat->S=strat->Shdl->m; |
---|
4461 | |
---|
4462 | /*- put polys into S -*/ |
---|
4463 | if (Q!=NULL) |
---|
4464 | { |
---|
4465 | strat->fromQ=initec(i); |
---|
4466 | memset(strat->fromQ,0,i*sizeof(int)); |
---|
4467 | for (i=0; i<IDELEMS(Q); i++) |
---|
4468 | { |
---|
4469 | if (Q->m[i]!=NULL) |
---|
4470 | { |
---|
4471 | LObject h; |
---|
4472 | h.p = pCopy(Q->m[i]); |
---|
4473 | //if (TEST_OPT_INTSTRATEGY) |
---|
4474 | //{ |
---|
4475 | // //pContent(h.p); |
---|
4476 | // h.pCleardenom(); // also does a pContent |
---|
4477 | //} |
---|
4478 | //else |
---|
4479 | //{ |
---|
4480 | // h.pNorm(); |
---|
4481 | //} |
---|
4482 | if (pOrdSgn==-1) |
---|
4483 | { |
---|
4484 | deleteHC(&h,strat); |
---|
4485 | } |
---|
4486 | if (h.p!=NULL) |
---|
4487 | { |
---|
4488 | strat->initEcart(&h); |
---|
4489 | if (strat->sl==-1) |
---|
4490 | pos =0; |
---|
4491 | else |
---|
4492 | { |
---|
4493 | pos = posInS(strat,strat->sl,h.p,h.ecart); |
---|
4494 | } |
---|
4495 | h.sev = pGetShortExpVector(h.p); |
---|
4496 | strat->enterS(h,pos,strat, strat->tl+1); |
---|
4497 | enterT(h, strat); |
---|
4498 | strat->fromQ[pos]=1; |
---|
4499 | } |
---|
4500 | } |
---|
4501 | } |
---|
4502 | } |
---|
4503 | /*- put polys into S -*/ |
---|
4504 | for (i=0; i<IDELEMS(F); i++) |
---|
4505 | { |
---|
4506 | if (F->m[i]!=NULL) |
---|
4507 | { |
---|
4508 | LObject h; |
---|
4509 | h.p = pCopy(F->m[i]); |
---|
4510 | if (pOrdSgn==-1) |
---|
4511 | { |
---|
4512 | deleteHC(&h,strat); |
---|
4513 | } |
---|
4514 | else |
---|
4515 | { |
---|
4516 | h.p=redtailBba(h.p,strat->sl,strat); |
---|
4517 | } |
---|
4518 | if (h.p!=NULL) |
---|
4519 | { |
---|
4520 | strat->initEcart(&h); |
---|
4521 | if (strat->sl==-1) |
---|
4522 | pos =0; |
---|
4523 | else |
---|
4524 | pos = posInS(strat,strat->sl,h.p,h.ecart); |
---|
4525 | h.sev = pGetShortExpVector(h.p); |
---|
4526 | strat->enterS(h,pos,strat, strat->tl+1); |
---|
4527 | enterT(h,strat); |
---|
4528 | } |
---|
4529 | } |
---|
4530 | } |
---|
4531 | for (i=0; i<IDELEMS(P); i++) |
---|
4532 | { |
---|
4533 | if (P->m[i]!=NULL) |
---|
4534 | { |
---|
4535 | LObject h; |
---|
4536 | h.p=pCopy(P->m[i]); |
---|
4537 | if (TEST_OPT_INTSTRATEGY) |
---|
4538 | { |
---|
4539 | h.pCleardenom(); |
---|
4540 | } |
---|
4541 | else |
---|
4542 | { |
---|
4543 | h.pNorm(); |
---|
4544 | } |
---|
4545 | if(strat->sl>=0) |
---|
4546 | { |
---|
4547 | if (pOrdSgn==1) |
---|
4548 | { |
---|
4549 | h.p=redBba(h.p,strat->sl,strat); |
---|
4550 | if (h.p!=NULL) |
---|
4551 | { |
---|
4552 | h.p=redtailBba(h.p,strat->sl,strat); |
---|
4553 | } |
---|
4554 | } |
---|
4555 | else |
---|
4556 | { |
---|
4557 | h.p=redMora(h.p,strat->sl,strat); |
---|
4558 | } |
---|
4559 | if(h.p!=NULL) |
---|
4560 | { |
---|
4561 | strat->initEcart(&h); |
---|
4562 | if (TEST_OPT_INTSTRATEGY) |
---|
4563 | { |
---|
4564 | h.pCleardenom(); |
---|
4565 | } |
---|
4566 | else |
---|
4567 | { |
---|
4568 | h.is_normalized = 0; |
---|
4569 | h.pNorm(); |
---|
4570 | } |
---|
4571 | h.sev = pGetShortExpVector(h.p); |
---|
4572 | h.SetpFDeg(); |
---|
4573 | pos = posInS(strat,strat->sl,h.p,h.ecart); |
---|
4574 | enterpairsSpecial(h.p,strat->sl,h.ecart,pos,strat,strat->tl+1); |
---|
4575 | strat->enterS(h,pos,strat, strat->tl+1); |
---|
4576 | enterT(h,strat); |
---|
4577 | } |
---|
4578 | } |
---|
4579 | else |
---|
4580 | { |
---|
4581 | h.sev = pGetShortExpVector(h.p); |
---|
4582 | strat->initEcart(&h); |
---|
4583 | strat->enterS(h,0,strat, strat->tl+1); |
---|
4584 | enterT(h,strat); |
---|
4585 | } |
---|
4586 | } |
---|
4587 | } |
---|
4588 | } |
---|
4589 | /*2 |
---|
4590 | * reduces h using the set S |
---|
4591 | * procedure used in cancelunit1 |
---|
4592 | */ |
---|
4593 | static poly redBba1 (poly h,int maxIndex,kStrategy strat) |
---|
4594 | { |
---|
4595 | int j = 0; |
---|
4596 | unsigned long not_sev = ~ pGetShortExpVector(h); |
---|
4597 | |
---|
4598 | while (j <= maxIndex) |
---|
4599 | { |
---|
4600 | if (pLmShortDivisibleBy(strat->S[j],strat->sevS[j],h, not_sev)) |
---|
4601 | return ksOldSpolyRedNew(strat->S[j],h,strat->kNoetherTail()); |
---|
4602 | else j++; |
---|
4603 | } |
---|
4604 | return h; |
---|
4605 | } |
---|
4606 | |
---|
4607 | /*2 |
---|
4608 | *tests if p.p=monomial*unit and cancels the unit |
---|
4609 | */ |
---|
4610 | void cancelunit1 (LObject* p,int *suc, int index,kStrategy strat ) |
---|
4611 | { |
---|
4612 | int k; |
---|
4613 | poly r,h,h1,q; |
---|
4614 | |
---|
4615 | if (!pIsVector((*p).p) && ((*p).ecart != 0)) |
---|
4616 | { |
---|
4617 | k = 0; |
---|
4618 | h1 = r = pCopy((*p).p); |
---|
4619 | h =pNext(r); |
---|
4620 | loop |
---|
4621 | { |
---|
4622 | if (h==NULL) |
---|
4623 | { |
---|
4624 | pDelete(&r); |
---|
4625 | pDelete(&(pNext((*p).p))); |
---|
4626 | (*p).ecart = 0; |
---|
4627 | (*p).length = 1; |
---|
4628 | (*suc)=0; |
---|
4629 | return; |
---|
4630 | } |
---|
4631 | if (!pDivisibleBy(r,h)) |
---|
4632 | { |
---|
4633 | q=redBba1(h,index ,strat); |
---|
4634 | if (q != h) |
---|
4635 | { |
---|
4636 | k++; |
---|
4637 | pDelete(&h); |
---|
4638 | pNext(h1) = h = q; |
---|
4639 | } |
---|
4640 | else |
---|
4641 | { |
---|
4642 | pDelete(&r); |
---|
4643 | return; |
---|
4644 | } |
---|
4645 | } |
---|
4646 | else |
---|
4647 | { |
---|
4648 | h1 = h; |
---|
4649 | pIter(h); |
---|
4650 | } |
---|
4651 | if (k > 10) |
---|
4652 | { |
---|
4653 | pDelete(&r); |
---|
4654 | return; |
---|
4655 | } |
---|
4656 | } |
---|
4657 | } |
---|
4658 | } |
---|
4659 | |
---|
4660 | /*2 |
---|
4661 | * reduces h using the elements from Q in the set S |
---|
4662 | * procedure used in updateS |
---|
4663 | * must not be used for elements of Q or elements of an ideal ! |
---|
4664 | */ |
---|
4665 | static poly redQ (poly h, int j, kStrategy strat) |
---|
4666 | { |
---|
4667 | int start; |
---|
4668 | unsigned long not_sev = ~ pGetShortExpVector(h); |
---|
4669 | while ((j <= strat->sl) && (pGetComp(strat->S[j])!=0)) j++; |
---|
4670 | start=j; |
---|
4671 | while (j<=strat->sl) |
---|
4672 | { |
---|
4673 | if (pLmShortDivisibleBy(strat->S[j],strat->sevS[j], h, not_sev)) |
---|
4674 | { |
---|
4675 | h = ksOldSpolyRed(strat->S[j],h,strat->kNoetherTail()); |
---|
4676 | if (h==NULL) return NULL; |
---|
4677 | j = start; |
---|
4678 | not_sev = ~ pGetShortExpVector(h); |
---|
4679 | } |
---|
4680 | else j++; |
---|
4681 | } |
---|
4682 | return h; |
---|
4683 | } |
---|
4684 | |
---|
4685 | /*2 |
---|
4686 | * reduces h using the set S |
---|
4687 | * procedure used in updateS |
---|
4688 | */ |
---|
4689 | static poly redBba (poly h,int maxIndex,kStrategy strat) |
---|
4690 | { |
---|
4691 | int j = 0; |
---|
4692 | unsigned long not_sev = ~ pGetShortExpVector(h); |
---|
4693 | |
---|
4694 | while (j <= maxIndex) |
---|
4695 | { |
---|
4696 | #ifdef HAVE_RING2TOM |
---|
4697 | if ((currRing->cring == 1 && pLmRingShortDivisibleBy(strat->S[j],strat->sevS[j], h, not_sev)) || |
---|
4698 | (currRing->cring == 0 && pLmShortDivisibleBy(strat->S[j],strat->sevS[j], h, not_sev))) |
---|
4699 | #else |
---|
4700 | if (pLmShortDivisibleBy(strat->S[j],strat->sevS[j], h, not_sev)) |
---|
4701 | #endif |
---|
4702 | { |
---|
4703 | h = ksOldSpolyRed(strat->S[j],h,strat->kNoetherTail()); |
---|
4704 | if (h==NULL) return NULL; |
---|
4705 | j = 0; |
---|
4706 | not_sev = ~ pGetShortExpVector(h); } |
---|
4707 | else j++; |
---|
4708 | } |
---|
4709 | return h; |
---|
4710 | } |
---|
4711 | |
---|
4712 | /*2 |
---|
4713 | * reduces h using the set S |
---|
4714 | *e is the ecart of h |
---|
4715 | *procedure used in updateS |
---|
4716 | */ |
---|
4717 | static poly redMora (poly h,int maxIndex,kStrategy strat) |
---|
4718 | { |
---|
4719 | int j=0; |
---|
4720 | int e,l; |
---|
4721 | unsigned long not_sev = ~ pGetShortExpVector(h); |
---|
4722 | |
---|
4723 | if (maxIndex >= 0) |
---|
4724 | { |
---|
4725 | e = pLDeg(h,&l,currRing)-pFDeg(h,currRing); |
---|
4726 | do |
---|
4727 | { |
---|
4728 | if (pLmShortDivisibleBy(strat->S[j],strat->sevS[j], h, not_sev) |
---|
4729 | && ((e >= strat->ecartS[j]) || strat->kHEdgeFound)) |
---|
4730 | { |
---|
4731 | #ifdef KDEBUG |
---|
4732 | if (TEST_OPT_DEBUG) |
---|
4733 | {PrintS("reduce ");wrp(h);Print(" with S[%d] (",j);wrp(strat->S[j]);} |
---|
4734 | |
---|
4735 | #endif |
---|
4736 | h = ksOldSpolyRed(strat->S[j],h,strat->kNoetherTail()); |
---|
4737 | #ifdef KDEBUG |
---|
4738 | if(TEST_OPT_DEBUG) |
---|
4739 | {PrintS(")\nto "); wrp(h); PrintLn();} |
---|
4740 | |
---|
4741 | #endif |
---|
4742 | // pDelete(&h); |
---|
4743 | if (h == NULL) return NULL; |
---|
4744 | e = pLDeg(h,&l,currRing)-pFDeg(h,currRing); |
---|
4745 | j = 0; |
---|
4746 | not_sev = ~ pGetShortExpVector(h); |
---|
4747 | } |
---|
4748 | else j++; |
---|
4749 | } |
---|
4750 | while (j <= maxIndex); |
---|
4751 | } |
---|
4752 | return h; |
---|
4753 | } |
---|
4754 | |
---|
4755 | /*2 |
---|
4756 | *updates S: |
---|
4757 | *the result is a set of polynomials which are in |
---|
4758 | *normalform with respect to S |
---|
4759 | */ |
---|
4760 | void updateS(BOOLEAN toT,kStrategy strat) |
---|
4761 | { |
---|
4762 | LObject h; |
---|
4763 | int i, suc=0; |
---|
4764 | poly redSi=NULL; |
---|
4765 | BOOLEAN change; |
---|
4766 | // Print("nach initS: updateS start mit sl=%d\n",(strat->sl)); |
---|
4767 | // for (i=0; i<=(strat->sl); i++) |
---|
4768 | // { |
---|
4769 | // Print("s%d:",i); |
---|
4770 | // if (strat->fromQ!=NULL) Print("(Q:%d) ",strat->fromQ[i]); |
---|
4771 | // pWrite(strat->S[i]); |
---|
4772 | // } |
---|
4773 | // Print("pOrdSgn=%d\n", pOrdSgn); |
---|
4774 | if (pOrdSgn==1) |
---|
4775 | { |
---|
4776 | while (suc != -1) |
---|
4777 | { |
---|
4778 | i=suc+1; |
---|
4779 | while (i<=strat->sl) |
---|
4780 | { |
---|
4781 | change=FALSE; |
---|
4782 | if (1//((strat->syzComp==0) || (pGetComp(strat->S[i])<=strat->syzComp)) |
---|
4783 | && ((strat->fromQ==NULL) || (strat->fromQ[i]==0))) |
---|
4784 | { |
---|
4785 | redSi = pHead(strat->S[i]); |
---|
4786 | strat->S[i] = redBba(strat->S[i],i-1,strat); |
---|
4787 | if ((strat->ak!=0)&&(strat->S[i]!=NULL)) |
---|
4788 | strat->S[i]=redQ(strat->S[i],i+1,strat); /*reduce S[i] mod Q*/ |
---|
4789 | if (pCmp(redSi,strat->S[i])!=0) |
---|
4790 | { |
---|
4791 | change=TRUE; |
---|
4792 | if (TEST_OPT_DEBUG) |
---|
4793 | { |
---|
4794 | PrintS("reduce:"); |
---|
4795 | wrp(redSi);PrintS(" to ");p_wrp(strat->S[i], currRing, strat->tailRing);PrintLn(); |
---|
4796 | } |
---|
4797 | if (TEST_OPT_PROT) |
---|
4798 | { |
---|
4799 | if (strat->S[i]==NULL) |
---|
4800 | PrintS("V"); |
---|
4801 | else |
---|
4802 | PrintS("v"); |
---|
4803 | mflush(); |
---|
4804 | } |
---|
4805 | } |
---|
4806 | pDeleteLm(&redSi); |
---|
4807 | if (strat->S[i]==NULL) |
---|
4808 | { |
---|
4809 | deleteInS(i,strat); |
---|
4810 | i--; |
---|
4811 | } |
---|
4812 | else if (change) |
---|
4813 | { |
---|
4814 | if (TEST_OPT_INTSTRATEGY) |
---|
4815 | { |
---|
4816 | //pContent(strat->S[i]); |
---|
4817 | pCleardenom(strat->S[i]);// also does a pContent |
---|
4818 | } |
---|
4819 | else |
---|
4820 | { |
---|
4821 | pNorm(strat->S[i]); |
---|
4822 | } |
---|
4823 | strat->sevS[i] = pGetShortExpVector(strat->S[i]); |
---|
4824 | } |
---|
4825 | } |
---|
4826 | i++; |
---|
4827 | } |
---|
4828 | reorderS(&suc,strat); |
---|
4829 | } |
---|
4830 | if (toT) |
---|
4831 | { |
---|
4832 | for (i=0; i<=strat->sl; i++) |
---|
4833 | { |
---|
4834 | if ((strat->fromQ==NULL) || (strat->fromQ[i]==0)) |
---|
4835 | { |
---|
4836 | h.p = redtailBba(strat->S[i],i-1,strat); |
---|
4837 | if (TEST_OPT_INTSTRATEGY) |
---|
4838 | { |
---|
4839 | pCleardenom(h.p);// also does a pContent |
---|
4840 | } |
---|
4841 | } |
---|
4842 | else |
---|
4843 | { |
---|
4844 | h.p = strat->S[i]; |
---|
4845 | } |
---|
4846 | strat->initEcart(&h); |
---|
4847 | if (strat->honey) |
---|
4848 | { |
---|
4849 | strat->ecartS[i] = h.ecart; |
---|
4850 | } |
---|
4851 | if (strat->sevS[i] == 0) {strat->sevS[i] = pGetShortExpVector(h.p);} |
---|
4852 | else assume(strat->sevS[i] == pGetShortExpVector(h.p)); |
---|
4853 | h.sev = strat->sevS[i]; |
---|
4854 | /*puts the elements of S also to T*/ |
---|
4855 | enterT(h,strat); |
---|
4856 | strat->S_2_R[i] = strat->tl; |
---|
4857 | } |
---|
4858 | } |
---|
4859 | } |
---|
4860 | else |
---|
4861 | { |
---|
4862 | while (suc != -1) |
---|
4863 | { |
---|
4864 | i=suc; |
---|
4865 | while (i<=strat->sl) |
---|
4866 | { |
---|
4867 | change=FALSE; |
---|
4868 | if (1//((strat->syzComp==0) || (pGetComp(strat->S[i])<=strat->syzComp)) |
---|
4869 | && ((strat->fromQ==NULL) || (strat->fromQ[i]==0))) |
---|
4870 | { |
---|
4871 | redSi=pHead((strat->S)[i]); |
---|
4872 | (strat->S)[i] = redMora((strat->S)[i],i-1,strat); |
---|
4873 | if ((strat->S)[i]==NULL) |
---|
4874 | { |
---|
4875 | deleteInS(i,strat); |
---|
4876 | i--; |
---|
4877 | } |
---|
4878 | else if (pCmp((strat->S)[i],redSi)!=0) |
---|
4879 | { |
---|
4880 | h.p = strat->S[i]; |
---|
4881 | strat->initEcart(&h); |
---|
4882 | strat->ecartS[i] = h.ecart; |
---|
4883 | if (TEST_OPT_INTSTRATEGY) |
---|
4884 | { |
---|
4885 | pCleardenom(strat->S[i]);// also does a pContent |
---|
4886 | } |
---|
4887 | else |
---|
4888 | { |
---|
4889 | pNorm(strat->S[i]); // == h.p |
---|
4890 | } |
---|
4891 | h.sev = pGetShortExpVector(h.p); |
---|
4892 | strat->sevS[i] = h.sev; |
---|
4893 | } |
---|
4894 | pDeleteLm(&redSi); |
---|
4895 | kTest(strat); |
---|
4896 | } |
---|
4897 | i++; |
---|
4898 | } |
---|
4899 | #ifdef KDEBUG |
---|
4900 | kTest(strat); |
---|
4901 | #endif |
---|
4902 | reorderS(&suc,strat); |
---|
4903 | if (h.p!=NULL) |
---|
4904 | { |
---|
4905 | if (!strat->kHEdgeFound) |
---|
4906 | { |
---|
4907 | /*strat->kHEdgeFound =*/ HEckeTest(h.p,strat); |
---|
4908 | } |
---|
4909 | if (strat->kHEdgeFound) |
---|
4910 | newHEdge(strat->S,strat); |
---|
4911 | } |
---|
4912 | } |
---|
4913 | for (i=0; i<=strat->sl; i++) |
---|
4914 | { |
---|
4915 | if (((strat->fromQ==NULL) || (strat->fromQ[i]==0)) |
---|
4916 | ) |
---|
4917 | { |
---|
4918 | strat->S[i] = h.p = redtail(strat->S[i],strat->sl,strat); |
---|
4919 | strat->initEcart(&h); |
---|
4920 | strat->ecartS[i] = h.ecart; |
---|
4921 | h.sev = pGetShortExpVector(h.p); |
---|
4922 | strat->sevS[i] = h.sev; |
---|
4923 | } |
---|
4924 | else |
---|
4925 | { |
---|
4926 | h.p = strat->S[i]; |
---|
4927 | h.ecart=strat->ecartS[i]; |
---|
4928 | h.sev = strat->sevS[i]; |
---|
4929 | h.length = h.pLength = pLength(h.p); |
---|
4930 | } |
---|
4931 | if ((strat->fromQ==NULL) || (strat->fromQ[i]==0)) |
---|
4932 | cancelunit1(&h,&suc,strat->sl,strat); |
---|
4933 | h.SetpFDeg(); |
---|
4934 | /*puts the elements of S also to T*/ |
---|
4935 | enterT(h,strat); |
---|
4936 | strat->S_2_R[i] = strat->tl; |
---|
4937 | } |
---|
4938 | if (suc!= -1) updateS(toT,strat); |
---|
4939 | } |
---|
4940 | #ifdef KDEBUG |
---|
4941 | kTest(strat); |
---|
4942 | #endif |
---|
4943 | } |
---|
4944 | |
---|
4945 | |
---|
4946 | /*2 |
---|
4947 | * -puts p to the standardbasis s at position at |
---|
4948 | * -saves the result in S |
---|
4949 | */ |
---|
4950 | void enterSBba (LObject p,int atS,kStrategy strat, int atR) |
---|
4951 | { |
---|
4952 | int i; |
---|
4953 | strat->news = TRUE; |
---|
4954 | /*- puts p to the standardbasis s at position at -*/ |
---|
4955 | if (strat->sl == IDELEMS(strat->Shdl)-1) |
---|
4956 | { |
---|
4957 | strat->sevS = (unsigned long*) omRealloc0Size(strat->sevS, |
---|
4958 | IDELEMS(strat->Shdl)*sizeof(unsigned long), |
---|
4959 | (IDELEMS(strat->Shdl)+setmaxTinc) |
---|
4960 | *sizeof(unsigned long)); |
---|
4961 | strat->ecartS = (intset)omReallocSize(strat->ecartS, |
---|
4962 | IDELEMS(strat->Shdl)*sizeof(int), |
---|
4963 | (IDELEMS(strat->Shdl)+setmaxTinc) |
---|
4964 | *sizeof(int)); |
---|
4965 | strat->S_2_R = (int*) omRealloc0Size(strat->S_2_R, |
---|
4966 | IDELEMS(strat->Shdl)*sizeof(int), |
---|
4967 | (IDELEMS(strat->Shdl)+setmaxTinc) |
---|
4968 | *sizeof(int)); |
---|
4969 | if (strat->lenS!=NULL) |
---|
4970 | strat->lenS=(int*)omRealloc0Size(strat->lenS, |
---|
4971 | IDELEMS(strat->Shdl)*sizeof(int), |
---|
4972 | (IDELEMS(strat->Shdl)+setmaxTinc) |
---|
4973 | *sizeof(int)); |
---|
4974 | if (strat->lenSw!=NULL) |
---|
4975 | strat->lenSw=(wlen_type*)omRealloc0Size(strat->lenSw, |
---|
4976 | IDELEMS(strat->Shdl)*sizeof(wlen_type), |
---|
4977 | (IDELEMS(strat->Shdl)+setmaxTinc) |
---|
4978 | *sizeof(wlen_type)); |
---|
4979 | if (strat->fromQ!=NULL) |
---|
4980 | { |
---|
4981 | strat->fromQ = (intset)omReallocSize(strat->fromQ, |
---|
4982 | IDELEMS(strat->Shdl)*sizeof(int), |
---|
4983 | (IDELEMS(strat->Shdl)+setmaxTinc)*sizeof(int)); |
---|
4984 | } |
---|
4985 | pEnlargeSet(&strat->S,IDELEMS(strat->Shdl),setmaxTinc); |
---|
4986 | IDELEMS(strat->Shdl)+=setmaxTinc; |
---|
4987 | strat->Shdl->m=strat->S; |
---|
4988 | } |
---|
4989 | if (atS <= strat->sl) |
---|
4990 | { |
---|
4991 | #ifdef ENTER_USE_MEMMOVE |
---|
4992 | // #if 0 |
---|
4993 | memmove(&(strat->S[atS+1]), &(strat->S[atS]), |
---|
4994 | (strat->sl - atS + 1)*sizeof(poly)); |
---|
4995 | memmove(&(strat->ecartS[atS+1]), &(strat->ecartS[atS]), |
---|
4996 | (strat->sl - atS + 1)*sizeof(int)); |
---|
4997 | memmove(&(strat->sevS[atS+1]), &(strat->sevS[atS]), |
---|
4998 | (strat->sl - atS + 1)*sizeof(unsigned long)); |
---|
4999 | memmove(&(strat->S_2_R[atS+1]), &(strat->S_2_R[atS]), |
---|
5000 | (strat->sl - atS + 1)*sizeof(int)); |
---|
5001 | if (strat->lenS!=NULL) |
---|
5002 | memmove(&(strat->lenS[atS+1]), &(strat->lenS[atS]), |
---|
5003 | (strat->sl - atS + 1)*sizeof(int)); |
---|
5004 | if (strat->lenSw!=NULL) |
---|
5005 | memmove(&(strat->lenSw[atS+1]), &(strat->lenSw[atS]), |
---|
5006 | (strat->sl - atS + 1)*sizeof(wlen_type)); |
---|
5007 | #else |
---|
5008 | for (i=strat->sl+1; i>=atS+1; i--) |
---|
5009 | { |
---|
5010 | strat->S[i] = strat->S[i-1]; |
---|
5011 | strat->ecartS[i] = strat->ecartS[i-1]; |
---|
5012 | strat->sevS[i] = strat->sevS[i-1]; |
---|
5013 | strat->S_2_R[i] = strat->S_2_R[i-1]; |
---|
5014 | } |
---|
5015 | if (strat->lenS!=NULL) |
---|
5016 | for (i=strat->sl+1; i>=atS+1; i--) |
---|
5017 | strat->lenS[i] = strat->lenS[i-1]; |
---|
5018 | if (strat->lenSw!=NULL) |
---|
5019 | for (i=strat->sl+1; i>=atS+1; i--) |
---|
5020 | strat->lenSw[i] = strat->lenSw[i-1]; |
---|
5021 | #endif |
---|
5022 | } |
---|
5023 | if (strat->fromQ!=NULL) |
---|
5024 | { |
---|
5025 | #ifdef ENTER_USE_MEMMOVE |
---|
5026 | memmove(&(strat->fromQ[atS+1]), &(strat->fromQ[atS]), |
---|
5027 | (strat->sl - atS + 1)*sizeof(int)); |
---|
5028 | #else |
---|
5029 | for (i=strat->sl+1; i>=atS+1; i--) |
---|
5030 | { |
---|
5031 | strat->fromQ[i] = strat->fromQ[i-1]; |
---|
5032 | } |
---|
5033 | #endif |
---|
5034 | strat->fromQ[atS]=0; |
---|
5035 | } |
---|
5036 | |
---|
5037 | /*- save result -*/ |
---|
5038 | strat->S[atS] = p.p; |
---|
5039 | if (strat->honey) strat->ecartS[atS] = p.ecart; |
---|
5040 | if (p.sev == 0) |
---|
5041 | p.sev = pGetShortExpVector(p.p); |
---|
5042 | else |
---|
5043 | assume(p.sev == pGetShortExpVector(p.p)); |
---|
5044 | strat->sevS[atS] = p.sev; |
---|
5045 | strat->ecartS[atS] = p.ecart; |
---|
5046 | strat->S_2_R[atS] = atR; |
---|
5047 | strat->sl++; |
---|
5048 | } |
---|
5049 | |
---|
5050 | /*2 |
---|
5051 | * puts p to the set T at position atT |
---|
5052 | */ |
---|
5053 | void enterT(LObject p, kStrategy strat, int atT) |
---|
5054 | { |
---|
5055 | int i; |
---|
5056 | |
---|
5057 | pp_Test(p.p, currRing, p.tailRing); |
---|
5058 | assume(strat->tailRing == p.tailRing); |
---|
5059 | // redMoraNF complains about this -- but, we don't really |
---|
5060 | // neeed this so far |
---|
5061 | assume(p.pLength == 0 || pLength(p.p) == p.pLength); |
---|
5062 | assume(p.FDeg == p.pFDeg()); |
---|
5063 | assume(!p.is_normalized || nIsOne(pGetCoeff(p.p))); |
---|
5064 | |
---|
5065 | strat->newt = TRUE; |
---|
5066 | if (atT < 0) |
---|
5067 | atT = strat->posInT(strat->T, strat->tl, p); |
---|
5068 | if (strat->tl == strat->tmax-1) |
---|
5069 | enlargeT(strat->T,strat->R,strat->sevT,strat->tmax,setmaxTinc); |
---|
5070 | if (atT <= strat->tl) |
---|
5071 | { |
---|
5072 | #ifdef ENTER_USE_MEMMOVE |
---|
5073 | memmove(&(strat->T[atT+1]), &(strat->T[atT]), |
---|
5074 | (strat->tl-atT+1)*sizeof(TObject)); |
---|
5075 | memmove(&(strat->sevT[atT+1]), &(strat->sevT[atT]), |
---|
5076 | (strat->tl-atT+1)*sizeof(unsigned long)); |
---|
5077 | #endif |
---|
5078 | for (i=strat->tl+1; i>=atT+1; i--) |
---|
5079 | { |
---|
5080 | #ifndef ENTER_USE_MEMMOVE |
---|
5081 | strat->T[i] = strat->T[i-1]; |
---|
5082 | strat->sevT[i] = strat->sevT[i-1]; |
---|
5083 | #endif |
---|
5084 | strat->R[strat->T[i].i_r] = &(strat->T[i]); |
---|
5085 | } |
---|
5086 | } |
---|
5087 | |
---|
5088 | if (strat->tailBin != NULL && (pNext(p.p) != NULL)) |
---|
5089 | { |
---|
5090 | pNext(p.p)=p_ShallowCopyDelete(pNext(p.p), |
---|
5091 | (strat->tailRing != NULL ? |
---|
5092 | strat->tailRing : currRing), |
---|
5093 | strat->tailBin); |
---|
5094 | if (p.t_p != NULL) pNext(p.t_p) = pNext(p.p); |
---|
5095 | } |
---|
5096 | strat->T[atT] = (TObject) p; |
---|
5097 | |
---|
5098 | if (strat->tailRing != currRing && pNext(p.p) != NULL) |
---|
5099 | strat->T[atT].max = p_GetMaxExpP(pNext(p.p), strat->tailRing); |
---|
5100 | else |
---|
5101 | strat->T[atT].max = NULL; |
---|
5102 | |
---|
5103 | strat->tl++; |
---|
5104 | strat->R[strat->tl] = &(strat->T[atT]); |
---|
5105 | strat->T[atT].i_r = strat->tl; |
---|
5106 | assume(p.sev == 0 || pGetShortExpVector(p.p) == p.sev); |
---|
5107 | strat->sevT[atT] = (p.sev == 0 ? pGetShortExpVector(p.p) : p.sev); |
---|
5108 | kTest_T(&(strat->T[atT])); |
---|
5109 | } |
---|
5110 | |
---|
5111 | void initHilbCrit(ideal F, ideal Q, intvec **hilb,kStrategy strat) |
---|
5112 | { |
---|
5113 | if (strat->homog!=isHomog) |
---|
5114 | { |
---|
5115 | *hilb=NULL; |
---|
5116 | } |
---|
5117 | } |
---|
5118 | |
---|
5119 | void initBuchMoraCrit(kStrategy strat) |
---|
5120 | { |
---|
5121 | strat->sugarCrit = TEST_OPT_SUGARCRIT; |
---|
5122 | // obachman: Hmm.. I need BTEST1(2) for notBuckets .. |
---|
5123 | // strat->Gebauer = BTEST1(2) || strat->homog || strat->sugarCrit; |
---|
5124 | strat->Gebauer = strat->homog || strat->sugarCrit; |
---|
5125 | strat->honey = !strat->homog || strat->sugarCrit || TEST_OPT_WEIGHTM; |
---|
5126 | if (TEST_OPT_NOT_SUGAR) strat->honey = FALSE; |
---|
5127 | strat->pairtest = NULL; |
---|
5128 | /* alway use tailreduction, except: |
---|
5129 | * - in local rings, - in lex order case, -in ring over extensions */ |
---|
5130 | strat->noTailReduction = !TEST_OPT_REDTAIL; |
---|
5131 | |
---|
5132 | #ifdef HAVE_PLURAL |
---|
5133 | // and r is plural_ring |
---|
5134 | if( rIsPluralRing(currRing) || (rIsSCA(currRing) && !strat->homog) ) |
---|
5135 | { //or it has non-quasi-comm type... later |
---|
5136 | strat->sugarCrit = FALSE; |
---|
5137 | strat->Gebauer = FALSE; |
---|
5138 | strat->honey = FALSE; |
---|
5139 | } |
---|
5140 | #endif |
---|
5141 | |
---|
5142 | #ifdef HAVE_RING2TOM |
---|
5143 | // Coefficient ring? |
---|
5144 | if (currRing->cring == 1) |
---|
5145 | { |
---|
5146 | strat->sugarCrit = FALSE; |
---|
5147 | strat->Gebauer = FALSE ; |
---|
5148 | strat->honey = FALSE; |
---|
5149 | } |
---|
5150 | #endif |
---|
5151 | if (TEST_OPT_DEBUG) |
---|
5152 | { |
---|
5153 | if (strat->homog) PrintS("ideal/module is homogeneous\n"); |
---|
5154 | else PrintS("ideal/module is not homogeneous\n"); |
---|
5155 | } |
---|
5156 | } |
---|
5157 | |
---|
5158 | BOOLEAN kPosInLDependsOnLength(int (*pos_in_l) |
---|
5159 | (const LSet set, const int length, |
---|
5160 | LObject* L,const kStrategy strat)) |
---|
5161 | { |
---|
5162 | if (pos_in_l == posInL110 || |
---|
5163 | pos_in_l == posInL10) |
---|
5164 | return TRUE; |
---|
5165 | |
---|
5166 | return FALSE; |
---|
5167 | } |
---|
5168 | |
---|
5169 | void initBuchMoraPos (kStrategy strat) |
---|
5170 | { |
---|
5171 | if (pOrdSgn==1) |
---|
5172 | { |
---|
5173 | if (strat->honey) |
---|
5174 | { |
---|
5175 | strat->posInL = posInL15; |
---|
5176 | // ok -- here is the deal: from my experiments for Singular-2-0 |
---|
5177 | // I conclude that that posInT_EcartpLength is the best of |
---|
5178 | // posInT15, posInT_EcartFDegpLength, posInT_FDegLength, posInT_pLength |
---|
5179 | // see the table at the end of this file |
---|
5180 | if (K_TEST_OPT_OLDSTD) |
---|
5181 | strat->posInT = posInT15; |
---|
5182 | else |
---|
5183 | strat->posInT = posInT_EcartpLength; |
---|
5184 | } |
---|
5185 | else if (pLexOrder && !TEST_OPT_INTSTRATEGY) |
---|
5186 | { |
---|
5187 | strat->posInL = posInL11; |
---|
5188 | strat->posInT = posInT11; |
---|
5189 | } |
---|
5190 | else if (TEST_OPT_INTSTRATEGY) |
---|
5191 | { |
---|
5192 | strat->posInL = posInL11; |
---|
5193 | strat->posInT = posInT11; |
---|
5194 | } |
---|
5195 | else |
---|
5196 | { |
---|
5197 | strat->posInL = posInL0; |
---|
5198 | strat->posInT = posInT0; |
---|
5199 | } |
---|
5200 | //if (strat->minim>0) strat->posInL =posInLSpecial; |
---|
5201 | if (strat->homog) |
---|
5202 | { |
---|
5203 | strat->posInL = posInL110; |
---|
5204 | strat->posInT = posInT110; |
---|
5205 | } |
---|
5206 | } |
---|
5207 | else |
---|
5208 | { |
---|
5209 | if (strat->homog) |
---|
5210 | { |
---|
5211 | strat->posInL = posInL11; |
---|
5212 | strat->posInT = posInT11; |
---|
5213 | } |
---|
5214 | else |
---|
5215 | { |
---|
5216 | if ((currRing->order[0]==ringorder_c) |
---|
5217 | ||(currRing->order[0]==ringorder_C)) |
---|
5218 | { |
---|
5219 | strat->posInL = posInL17_c; |
---|
5220 | strat->posInT = posInT17_c; |
---|
5221 | } |
---|
5222 | else |
---|
5223 | { |
---|
5224 | strat->posInL = posInL17; |
---|
5225 | strat->posInT = posInT17; |
---|
5226 | } |
---|
5227 | } |
---|
5228 | } |
---|
5229 | if (strat->minim>0) strat->posInL =posInLSpecial; |
---|
5230 | // for further tests only |
---|
5231 | if ((BTEST1(11)) || (BTEST1(12))) |
---|
5232 | strat->posInL = posInL11; |
---|
5233 | else if ((BTEST1(13)) || (BTEST1(14))) |
---|
5234 | strat->posInL = posInL13; |
---|
5235 | else if ((BTEST1(15)) || (BTEST1(16))) |
---|
5236 | strat->posInL = posInL15; |
---|
5237 | else if ((BTEST1(17)) || (BTEST1(18))) |
---|
5238 | strat->posInL = posInL17; |
---|
5239 | if (BTEST1(11)) |
---|
5240 | strat->posInT = posInT11; |
---|
5241 | else if (BTEST1(13)) |
---|
5242 | strat->posInT = posInT13; |
---|
5243 | else if (BTEST1(15)) |
---|
5244 | strat->posInT = posInT15; |
---|
5245 | else if ((BTEST1(17))) |
---|
5246 | strat->posInT = posInT17; |
---|
5247 | else if ((BTEST1(19))) |
---|
5248 | strat->posInT = posInT19; |
---|
5249 | else if (BTEST1(12) || BTEST1(14) || BTEST1(16) || BTEST1(18)) |
---|
5250 | strat->posInT = posInT1; |
---|
5251 | #ifdef HAVE_RING2TOM |
---|
5252 | if (currRing->cring == 1) |
---|
5253 | { |
---|
5254 | strat->posInL = posInL11; |
---|
5255 | strat->posInT = posInT11; |
---|
5256 | } |
---|
5257 | #endif |
---|
5258 | strat->posInLDependsOnLength = kPosInLDependsOnLength(strat->posInL); |
---|
5259 | } |
---|
5260 | |
---|
5261 | void initBuchMora (ideal F,ideal Q,kStrategy strat) |
---|
5262 | { |
---|
5263 | strat->interpt = BTEST1(OPT_INTERRUPT); |
---|
5264 | strat->kHEdge=NULL; |
---|
5265 | if (pOrdSgn==1) strat->kHEdgeFound=FALSE; |
---|
5266 | /*- creating temp data structures------------------- -*/ |
---|
5267 | strat->cp = 0; |
---|
5268 | strat->c3 = 0; |
---|
5269 | strat->tail = pInit(); |
---|
5270 | /*- set s -*/ |
---|
5271 | strat->sl = -1; |
---|
5272 | /*- set L -*/ |
---|
5273 | strat->Lmax = setmaxL; |
---|
5274 | strat->Ll = -1; |
---|
5275 | strat->L = initL(); |
---|
5276 | /*- set B -*/ |
---|
5277 | strat->Bmax = setmaxL; |
---|
5278 | strat->Bl = -1; |
---|
5279 | strat->B = initL(); |
---|
5280 | /*- set T -*/ |
---|
5281 | strat->tl = -1; |
---|
5282 | strat->tmax = setmaxT; |
---|
5283 | strat->T = initT(); |
---|
5284 | strat->R = initR(); |
---|
5285 | strat->sevT = initsevT(); |
---|
5286 | /*- init local data struct.---------------------------------------- -*/ |
---|
5287 | strat->P.ecart=0; |
---|
5288 | strat->P.length=0; |
---|
5289 | if (pOrdSgn==-1) |
---|
5290 | { |
---|
5291 | if (strat->kHEdge!=NULL) pSetComp(strat->kHEdge, strat->ak); |
---|
5292 | if (strat->kNoether!=NULL) pSetComp(strat->kNoetherTail(), strat->ak); |
---|
5293 | } |
---|
5294 | if(TEST_OPT_SB_1) |
---|
5295 | { |
---|
5296 | int i; |
---|
5297 | ideal P=idInit(IDELEMS(F)-strat->newIdeal,F->rank); |
---|
5298 | for (i=strat->newIdeal;i<IDELEMS(F);i++) |
---|
5299 | { |
---|
5300 | P->m[i-strat->newIdeal] = F->m[i]; |
---|
5301 | F->m[i] = NULL; |
---|
5302 | } |
---|
5303 | initSSpecial(F,Q,P,strat); |
---|
5304 | for (i=strat->newIdeal;i<IDELEMS(F);i++) |
---|
5305 | { |
---|
5306 | F->m[i] = P->m[i-strat->newIdeal]; |
---|
5307 | P->m[i-strat->newIdeal] = NULL; |
---|
5308 | } |
---|
5309 | idDelete(&P); |
---|
5310 | } |
---|
5311 | else |
---|
5312 | { |
---|
5313 | /*Shdl=*/initSL(F, Q,strat); /*sets also S, ecartS, fromQ */ |
---|
5314 | // /*Shdl=*/initS(F, Q,strat); /*sets also S, ecartS, fromQ */ |
---|
5315 | } |
---|
5316 | strat->kIdeal = NULL; |
---|
5317 | strat->fromT = FALSE; |
---|
5318 | strat->noTailReduction = !TEST_OPT_REDTAIL; |
---|
5319 | if(!TEST_OPT_SB_1) |
---|
5320 | { |
---|
5321 | updateS(TRUE,strat); |
---|
5322 | pairs(strat); |
---|
5323 | } |
---|
5324 | if (strat->fromQ!=NULL) omFreeSize(strat->fromQ,IDELEMS(strat->Shdl)*sizeof(int)); |
---|
5325 | strat->fromQ=NULL; |
---|
5326 | } |
---|
5327 | |
---|
5328 | void exitBuchMora (kStrategy strat) |
---|
5329 | { |
---|
5330 | /*- release temp data -*/ |
---|
5331 | cleanT(strat); |
---|
5332 | omFreeSize(strat->T,(strat->tmax)*sizeof(TObject)); |
---|
5333 | omFreeSize(strat->R,(strat->tmax)*sizeof(TObject*)); |
---|
5334 | omFreeSize(strat->sevT, (strat->tmax)*sizeof(unsigned long)); |
---|
5335 | omFreeSize(strat->ecartS,IDELEMS(strat->Shdl)*sizeof(int)); |
---|
5336 | omFreeSize(strat->sevS,IDELEMS(strat->Shdl)*sizeof(int)); |
---|
5337 | omFreeSize(strat->S_2_R,IDELEMS(strat->Shdl)*sizeof(int)); |
---|
5338 | /*- set L: should be empty -*/ |
---|
5339 | omFreeSize(strat->L,(strat->Lmax)*sizeof(LObject)); |
---|
5340 | /*- set B: should be empty -*/ |
---|
5341 | omFreeSize(strat->B,(strat->Bmax)*sizeof(LObject)); |
---|
5342 | pDeleteLm(&strat->tail); |
---|
5343 | strat->syzComp=0; |
---|
5344 | if (strat->kIdeal!=NULL) |
---|
5345 | { |
---|
5346 | omFreeBin(strat->kIdeal, sleftv_bin); |
---|
5347 | strat->kIdeal=NULL; |
---|
5348 | } |
---|
5349 | } |
---|
5350 | |
---|
5351 | /*2 |
---|
5352 | * in the case of a standardbase of a module over a qring: |
---|
5353 | * replace polynomials in i by ak vectors, |
---|
5354 | * (the polynomial * unit vectors gen(1)..gen(ak) |
---|
5355 | * in every case (also for ideals:) |
---|
5356 | * deletes divisible vectors/polynomials |
---|
5357 | */ |
---|
5358 | void updateResult(ideal r,ideal Q, kStrategy strat) |
---|
5359 | { |
---|
5360 | int l; |
---|
5361 | if (strat->ak>0) |
---|
5362 | { |
---|
5363 | for (l=IDELEMS(r)-1;l>=0;l--) |
---|
5364 | { |
---|
5365 | if ((r->m[l]!=NULL) && (pGetComp(r->m[l])==0)) |
---|
5366 | { |
---|
5367 | pDelete(&r->m[l]); // and set it to NULL |
---|
5368 | } |
---|
5369 | } |
---|
5370 | int q; |
---|
5371 | poly p; |
---|
5372 | for (l=IDELEMS(r)-1;l>=0;l--) |
---|
5373 | { |
---|
5374 | if ((r->m[l]!=NULL) |
---|
5375 | && (strat->syzComp>0) |
---|
5376 | && (pGetComp(r->m[l])<=strat->syzComp)) |
---|
5377 | { |
---|
5378 | for(q=IDELEMS(Q)-1; q>=0;q--) |
---|
5379 | { |
---|
5380 | if ((Q->m[q]!=NULL) |
---|
5381 | &&(pLmDivisibleBy(Q->m[q],r->m[l]))) |
---|
5382 | { |
---|
5383 | if (TEST_OPT_REDSB) |
---|
5384 | { |
---|
5385 | p=r->m[l]; |
---|
5386 | r->m[l]=kNF(Q,NULL,p); |
---|
5387 | pDelete(&p); |
---|
5388 | } |
---|
5389 | else |
---|
5390 | { |
---|
5391 | pDelete(&r->m[l]); // and set it to NULL |
---|
5392 | } |
---|
5393 | break; |
---|
5394 | } |
---|
5395 | } |
---|
5396 | } |
---|
5397 | } |
---|
5398 | } |
---|
5399 | else |
---|
5400 | { |
---|
5401 | int q; |
---|
5402 | poly p; |
---|
5403 | for (l=IDELEMS(r)-1;l>=0;l--) |
---|
5404 | { |
---|
5405 | if (r->m[l]!=NULL) |
---|
5406 | { |
---|
5407 | for(q=IDELEMS(Q)-1; q>=0;q--) |
---|
5408 | { |
---|
5409 | if ((Q->m[q]!=NULL) |
---|
5410 | &&(pLmEqual(r->m[l],Q->m[q]))) |
---|
5411 | { |
---|
5412 | if (TEST_OPT_REDSB) |
---|
5413 | { |
---|
5414 | p=r->m[l]; |
---|
5415 | r->m[l]=kNF(Q,NULL,p); |
---|
5416 | pDelete(&p); |
---|
5417 | } |
---|
5418 | else |
---|
5419 | { |
---|
5420 | pDelete(&r->m[l]); // and set it to NULL |
---|
5421 | } |
---|
5422 | break; |
---|
5423 | } |
---|
5424 | } |
---|
5425 | } |
---|
5426 | } |
---|
5427 | } |
---|
5428 | idSkipZeroes(r); |
---|
5429 | } |
---|
5430 | |
---|
5431 | void completeReduce (kStrategy strat) |
---|
5432 | { |
---|
5433 | int i; |
---|
5434 | int low = (pOrdSgn == 1 ? 1 : 0); |
---|
5435 | LObject L; |
---|
5436 | |
---|
5437 | #ifdef KDEBUG |
---|
5438 | // need to set this: during tailreductions of T[i], T[i].max is out of |
---|
5439 | // sync |
---|
5440 | sloppy_max = TRUE; |
---|
5441 | #endif |
---|
5442 | |
---|
5443 | strat->noTailReduction = FALSE; |
---|
5444 | if (TEST_OPT_PROT) |
---|
5445 | { |
---|
5446 | PrintLn(); |
---|
5447 | if (timerv) writeTime("standard base computed:"); |
---|
5448 | } |
---|
5449 | if (TEST_OPT_PROT) |
---|
5450 | { |
---|
5451 | Print("(S:%d)",strat->sl);mflush(); |
---|
5452 | } |
---|
5453 | for (i=strat->sl; i>=low; i--) |
---|
5454 | { |
---|
5455 | TObject* T_j = strat->s_2_t(i); |
---|
5456 | if (T_j != NULL) |
---|
5457 | { |
---|
5458 | L = *T_j; |
---|
5459 | poly p; |
---|
5460 | if (pOrdSgn == 1) |
---|
5461 | strat->S[i] = redtailBba(&L, i-1, strat, FALSE); |
---|
5462 | else |
---|
5463 | strat->S[i] = redtail(&L, strat->sl, strat); |
---|
5464 | |
---|
5465 | if (strat->redTailChange && strat->tailRing != currRing) |
---|
5466 | { |
---|
5467 | if (T_j->max != NULL) p_LmFree(T_j->max, strat->tailRing); |
---|
5468 | if (pNext(T_j->p) != NULL) |
---|
5469 | T_j->max = p_GetMaxExpP(pNext(T_j->p), strat->tailRing); |
---|
5470 | else |
---|
5471 | T_j->max = NULL; |
---|
5472 | } |
---|
5473 | if (TEST_OPT_INTSTRATEGY) |
---|
5474 | T_j->pCleardenom(); |
---|
5475 | } |
---|
5476 | else |
---|
5477 | { |
---|
5478 | assume(currRing == strat->tailRing); |
---|
5479 | if (pOrdSgn == 1) |
---|
5480 | strat->S[i] = redtailBba(strat->S[i], i-1, strat); |
---|
5481 | else |
---|
5482 | strat->S[i] = redtail(strat->S[i], strat->sl, strat); |
---|
5483 | if (TEST_OPT_INTSTRATEGY) |
---|
5484 | pCleardenom(strat->S[i]); |
---|
5485 | } |
---|
5486 | if (TEST_OPT_PROT) |
---|
5487 | PrintS("-"); |
---|
5488 | } |
---|
5489 | #ifdef KDEBUG |
---|
5490 | sloppy_max = FALSE; |
---|
5491 | #endif |
---|
5492 | } |
---|
5493 | |
---|
5494 | |
---|
5495 | /*2 |
---|
5496 | * computes the new strat->kHEdge and the new pNoether, |
---|
5497 | * returns TRUE, if pNoether has changed |
---|
5498 | */ |
---|
5499 | BOOLEAN newHEdge(polyset S, kStrategy strat) |
---|
5500 | { |
---|
5501 | int i,j; |
---|
5502 | poly newNoether; |
---|
5503 | |
---|
5504 | scComputeHC(strat->Shdl,NULL,strat->ak,strat->kHEdge, strat->tailRing); |
---|
5505 | if (strat->t_kHEdge != NULL) p_LmFree(strat->t_kHEdge, strat->tailRing); |
---|
5506 | if (strat->tailRing != currRing) |
---|
5507 | strat->t_kHEdge = k_LmInit_currRing_2_tailRing(strat->kHEdge, strat->tailRing); |
---|
5508 | /* compare old and new noether*/ |
---|
5509 | newNoether = pLmInit(strat->kHEdge); |
---|
5510 | j = pFDeg(newNoether,currRing); |
---|
5511 | for (i=1; i<=pVariables; i++) |
---|
5512 | { |
---|
5513 | if (pGetExp(newNoether, i) > 0) pDecrExp(newNoether,i); |
---|
5514 | } |
---|
5515 | pSetm(newNoether); |
---|
5516 | if (j < strat->HCord) /*- statistics -*/ |
---|
5517 | { |
---|
5518 | if (TEST_OPT_PROT) |
---|
5519 | { |
---|
5520 | Print("H(%d)",j); |
---|
5521 | mflush(); |
---|
5522 | } |
---|
5523 | strat->HCord=j; |
---|
5524 | if (TEST_OPT_DEBUG) |
---|
5525 | { |
---|
5526 | Print("H(%d):",j); |
---|
5527 | wrp(strat->kHEdge); |
---|
5528 | PrintLn(); |
---|
5529 | } |
---|
5530 | } |
---|
5531 | if (pCmp(strat->kNoether,newNoether)!=1) |
---|
5532 | { |
---|
5533 | pDelete(&strat->kNoether); |
---|
5534 | strat->kNoether=newNoether; |
---|
5535 | if (strat->t_kNoether != NULL) p_LmFree(strat->t_kNoether, strat->tailRing); |
---|
5536 | if (strat->tailRing != currRing) |
---|
5537 | strat->t_kNoether = k_LmInit_currRing_2_tailRing(strat->kNoether, strat->tailRing); |
---|
5538 | |
---|
5539 | return TRUE; |
---|
5540 | } |
---|
5541 | pLmFree(newNoether); |
---|
5542 | return FALSE; |
---|
5543 | } |
---|
5544 | |
---|
5545 | /*************************************************************** |
---|
5546 | * |
---|
5547 | * Routines related for ring changes during std computations |
---|
5548 | * |
---|
5549 | ***************************************************************/ |
---|
5550 | BOOLEAN kCheckSpolyCreation(LObject *L, kStrategy strat, poly &m1, poly &m2) |
---|
5551 | { |
---|
5552 | assume(L->p1 != NULL && L->p2 != NULL); |
---|
5553 | assume(L->i_r1 >= 0 && L->i_r1 <= strat->tl); |
---|
5554 | assume(L->i_r2 >= 0 && L->i_r2 <= strat->tl); |
---|
5555 | assume(strat->tailRing != currRing); |
---|
5556 | |
---|
5557 | if (! k_GetLeadTerms(L->p1, L->p2, currRing, m1, m2, strat->tailRing)) |
---|
5558 | return FALSE; |
---|
5559 | poly p1_max = (strat->R[L->i_r1])->max; |
---|
5560 | poly p2_max = (strat->R[L->i_r2])->max; |
---|
5561 | |
---|
5562 | if ((p1_max != NULL && !p_LmExpVectorAddIsOk(m1, p1_max, strat->tailRing)) || |
---|
5563 | (p2_max != NULL && !p_LmExpVectorAddIsOk(m2, p2_max, strat->tailRing))) |
---|
5564 | { |
---|
5565 | p_LmFree(m1, strat->tailRing); |
---|
5566 | p_LmFree(m2, strat->tailRing); |
---|
5567 | m1 = NULL; |
---|
5568 | m2 = NULL; |
---|
5569 | return FALSE; |
---|
5570 | } |
---|
5571 | return TRUE; |
---|
5572 | } |
---|
5573 | |
---|
5574 | BOOLEAN kStratChangeTailRing(kStrategy strat, LObject *L, TObject* T, unsigned long expbound) |
---|
5575 | { |
---|
5576 | if (expbound == 0) expbound = strat->tailRing->bitmask << 1; |
---|
5577 | if (expbound >= currRing->bitmask) return FALSE; |
---|
5578 | ring new_tailRing = rModifyRing(currRing, |
---|
5579 | // Hmmm .. the condition pFDeg == pDeg |
---|
5580 | // might be too strong |
---|
5581 | #ifdef HAVE_RING2TOM |
---|
5582 | (strat->homog && pFDeg == pDeg && currRing->cring == 0), // TODO Oliver |
---|
5583 | #else |
---|
5584 | (strat->homog && pFDeg == pDeg), |
---|
5585 | #endif |
---|
5586 | !strat->ak, |
---|
5587 | expbound); |
---|
5588 | if (new_tailRing == currRing) return TRUE; |
---|
5589 | |
---|
5590 | strat->pOrigFDeg_TailRing = new_tailRing->pFDeg; |
---|
5591 | strat->pOrigLDeg_TailRing = new_tailRing->pLDeg; |
---|
5592 | |
---|
5593 | if (currRing->pFDeg != currRing->pFDegOrig) |
---|
5594 | { |
---|
5595 | new_tailRing->pFDeg = currRing->pFDeg; |
---|
5596 | new_tailRing->pLDeg = currRing->pLDeg; |
---|
5597 | } |
---|
5598 | |
---|
5599 | if (TEST_OPT_PROT) |
---|
5600 | Print("[%lu:%d", (unsigned long) new_tailRing->bitmask, new_tailRing->ExpL_Size); |
---|
5601 | kTest_TS(strat); |
---|
5602 | assume(new_tailRing != strat->tailRing); |
---|
5603 | pShallowCopyDeleteProc p_shallow_copy_delete |
---|
5604 | = pGetShallowCopyDeleteProc(strat->tailRing, new_tailRing); |
---|
5605 | |
---|
5606 | omBin new_tailBin = omGetStickyBinOfBin(new_tailRing->PolyBin); |
---|
5607 | |
---|
5608 | int i; |
---|
5609 | for (i=0; i<=strat->tl; i++) |
---|
5610 | { |
---|
5611 | strat->T[i].ShallowCopyDelete(new_tailRing, new_tailBin, |
---|
5612 | p_shallow_copy_delete); |
---|
5613 | } |
---|
5614 | for (i=0; i<=strat->Ll; i++) |
---|
5615 | { |
---|
5616 | assume(strat->L[i].p != NULL); |
---|
5617 | if (pNext(strat->L[i].p) != strat->tail) |
---|
5618 | strat->L[i].ShallowCopyDelete(new_tailRing, p_shallow_copy_delete); |
---|
5619 | } |
---|
5620 | if (strat->P.t_p != NULL || |
---|
5621 | (strat->P.p != NULL && pNext(strat->P.p) != strat->tail)) |
---|
5622 | strat->P.ShallowCopyDelete(new_tailRing, p_shallow_copy_delete); |
---|
5623 | |
---|
5624 | if (L != NULL && L->tailRing != new_tailRing) |
---|
5625 | { |
---|
5626 | if (L->i_r < 0) |
---|
5627 | L->ShallowCopyDelete(new_tailRing, p_shallow_copy_delete); |
---|
5628 | else |
---|
5629 | { |
---|
5630 | assume(L->i_r <= strat->tl); |
---|
5631 | TObject* t_l = strat->R[L->i_r]; |
---|
5632 | assume(t_l != NULL); |
---|
5633 | L->tailRing = new_tailRing; |
---|
5634 | L->p = t_l->p; |
---|
5635 | L->t_p = t_l->t_p; |
---|
5636 | L->max = t_l->max; |
---|
5637 | } |
---|
5638 | } |
---|
5639 | |
---|
5640 | if (T != NULL && T->tailRing != new_tailRing && T->i_r < 0) |
---|
5641 | T->ShallowCopyDelete(new_tailRing, new_tailBin, p_shallow_copy_delete); |
---|
5642 | |
---|
5643 | omMergeStickyBinIntoBin(strat->tailBin, strat->tailRing->PolyBin); |
---|
5644 | if (strat->tailRing != currRing) |
---|
5645 | rKillModifiedRing(strat->tailRing); |
---|
5646 | |
---|
5647 | strat->tailRing = new_tailRing; |
---|
5648 | strat->tailBin = new_tailBin; |
---|
5649 | strat->p_shallow_copy_delete |
---|
5650 | = pGetShallowCopyDeleteProc(currRing, new_tailRing); |
---|
5651 | |
---|
5652 | if (strat->kHEdge != NULL) |
---|
5653 | { |
---|
5654 | if (strat->t_kHEdge != NULL) |
---|
5655 | p_LmFree(strat->t_kHEdge, strat->tailRing); |
---|
5656 | strat->t_kHEdge=k_LmInit_currRing_2_tailRing(strat->kHEdge, new_tailRing); |
---|
5657 | } |
---|
5658 | |
---|
5659 | if (strat->kNoether != NULL) |
---|
5660 | { |
---|
5661 | if (strat->t_kNoether != NULL) |
---|
5662 | p_LmFree(strat->t_kNoether, strat->tailRing); |
---|
5663 | strat->t_kNoether=k_LmInit_currRing_2_tailRing(strat->kNoether, |
---|
5664 | new_tailRing); |
---|
5665 | } |
---|
5666 | kTest_TS(strat); |
---|
5667 | if (TEST_OPT_PROT) |
---|
5668 | PrintS("]"); |
---|
5669 | return TRUE; |
---|
5670 | } |
---|
5671 | |
---|
5672 | void kStratInitChangeTailRing(kStrategy strat) |
---|
5673 | { |
---|
5674 | unsigned long l = 0; |
---|
5675 | int i; |
---|
5676 | Exponent_t e; |
---|
5677 | ring new_tailRing; |
---|
5678 | |
---|
5679 | assume(strat->tailRing == currRing); |
---|
5680 | |
---|
5681 | for (i=0; i<= strat->Ll; i++) |
---|
5682 | { |
---|
5683 | l = p_GetMaxExpL(strat->L[i].p, currRing, l); |
---|
5684 | } |
---|
5685 | for (i=0; i<=strat->tl; i++) |
---|
5686 | { |
---|
5687 | // Hmm ... this we could do in one Step |
---|
5688 | l = p_GetMaxExpL(strat->T[i].p, currRing, l); |
---|
5689 | } |
---|
5690 | e = p_GetMaxExp(l, currRing); |
---|
5691 | if (e <= 1) e = 2; |
---|
5692 | |
---|
5693 | kStratChangeTailRing(strat, NULL, NULL, e); |
---|
5694 | } |
---|
5695 | |
---|
5696 | skStrategy::skStrategy() |
---|
5697 | { |
---|
5698 | memset(this, 0, sizeof(skStrategy)); |
---|
5699 | #ifndef NDEBUG |
---|
5700 | strat_nr++; |
---|
5701 | nr=strat_nr; |
---|
5702 | if (strat_fac_debug) Print("s(%d) created\n",nr); |
---|
5703 | #endif |
---|
5704 | tailRing = currRing; |
---|
5705 | P.tailRing = currRing; |
---|
5706 | tl = -1; |
---|
5707 | sl = -1; |
---|
5708 | #ifdef HAVE_LM_BIN |
---|
5709 | lmBin = omGetStickyBinOfBin(currRing->PolyBin); |
---|
5710 | #endif |
---|
5711 | #ifdef HAVE_TAIL_BIN |
---|
5712 | tailBin = omGetStickyBinOfBin(currRing->PolyBin); |
---|
5713 | #endif |
---|
5714 | pOrigFDeg = pFDeg; |
---|
5715 | pOrigLDeg = pLDeg; |
---|
5716 | } |
---|
5717 | |
---|
5718 | |
---|
5719 | skStrategy::~skStrategy() |
---|
5720 | { |
---|
5721 | if (lmBin != NULL) |
---|
5722 | omMergeStickyBinIntoBin(lmBin, currRing->PolyBin); |
---|
5723 | if (tailBin != NULL) |
---|
5724 | omMergeStickyBinIntoBin(tailBin, |
---|
5725 | (tailRing != NULL ? tailRing->PolyBin: |
---|
5726 | currRing->PolyBin)); |
---|
5727 | if (t_kHEdge != NULL) |
---|
5728 | p_LmFree(t_kHEdge, tailRing); |
---|
5729 | if (t_kNoether != NULL) |
---|
5730 | p_LmFree(t_kNoether, tailRing); |
---|
5731 | |
---|
5732 | if (currRing != tailRing) |
---|
5733 | rKillModifiedRing(tailRing); |
---|
5734 | pRestoreDegProcs(pOrigFDeg, pOrigLDeg); |
---|
5735 | } |
---|
5736 | |
---|
5737 | #if 0 |
---|
5738 | Timings for the different possibilities of posInT: |
---|
5739 | T15 EDL DL EL L 1-2-3 |
---|
5740 | Gonnet 43.26 42.30 38.34 41.98 38.40 100.04 |
---|
5741 | Hairer_2_1 1.11 1.15 1.04 1.22 1.08 4.7 |
---|
5742 | Twomat3 1.62 1.69 1.70 1.65 1.54 11.32 |
---|
5743 | ahml 4.48 4.03 4.03 4.38 4.96 26.50 |
---|
5744 | c7 15.02 13.98 15.16 13.24 17.31 47.89 |
---|
5745 | c8 505.09 407.46 852.76 413.21 499.19 n/a |
---|
5746 | f855 12.65 9.27 14.97 8.78 14.23 33.12 |
---|
5747 | gametwo6 11.47 11.35 14.57 11.20 12.02 35.07 |
---|
5748 | gerhard_3 2.73 2.83 2.93 2.64 3.12 6.24 |
---|
5749 | ilias13 22.89 22.46 24.62 20.60 23.34 53.86 |
---|
5750 | noon8 40.68 37.02 37.99 36.82 35.59 877.16 |
---|
5751 | rcyclic_19 48.22 42.29 43.99 45.35 51.51 204.29 |
---|
5752 | rkat9 82.37 79.46 77.20 77.63 82.54 267.92 |
---|
5753 | schwarz_11 16.46 16.81 16.76 16.81 16.72 35.56 |
---|
5754 | test016 16.39 14.17 14.40 13.50 14.26 34.07 |
---|
5755 | test017 34.70 36.01 33.16 35.48 32.75 71.45 |
---|
5756 | test042 10.76 10.99 10.27 11.57 10.45 23.04 |
---|
5757 | test058 6.78 6.75 6.51 6.95 6.22 9.47 |
---|
5758 | test066 10.71 10.94 10.76 10.61 10.56 19.06 |
---|
5759 | test073 10.75 11.11 10.17 10.79 8.63 58.10 |
---|
5760 | test086 12.23 11.81 12.88 12.24 13.37 66.68 |
---|
5761 | test103 5.05 4.80 5.47 4.64 4.89 11.90 |
---|
5762 | test154 12.96 11.64 13.51 12.46 14.61 36.35 |
---|
5763 | test162 65.27 64.01 67.35 59.79 67.54 196.46 |
---|
5764 | test164 7.50 6.50 7.68 6.70 7.96 17.13 |
---|
5765 | virasoro 3.39 3.50 3.35 3.47 3.70 7.66 |
---|
5766 | #endif |
---|
5767 | |
---|
5768 | |
---|
5769 | #ifdef HAVE_MORE_POS_IN_T |
---|
5770 | // determines the position based on: 1.) Ecart 2.) FDeg 3.) pLength |
---|
5771 | int posInT_EcartFDegpLength(const TSet set,const int length,LObject &p) |
---|
5772 | { |
---|
5773 | |
---|
5774 | if (length==-1) return 0; |
---|
5775 | |
---|
5776 | int o = p.ecart; |
---|
5777 | int op=p.GetpFDeg(); |
---|
5778 | int ol = p.GetpLength(); |
---|
5779 | |
---|
5780 | if (set[length].ecart < o) |
---|
5781 | return length+1; |
---|
5782 | if (set[length].ecart == o) |
---|
5783 | { |
---|
5784 | int oo=set[length].GetpFDeg(); |
---|
5785 | if ((oo < op) || ((oo==op) && (set[length].length < ol))) |
---|
5786 | return length+1; |
---|
5787 | } |
---|
5788 | |
---|
5789 | int i; |
---|
5790 | int an = 0; |
---|
5791 | int en= length; |
---|
5792 | loop |
---|
5793 | { |
---|
5794 | if (an >= en-1) |
---|
5795 | { |
---|
5796 | if (set[an].ecart > o) |
---|
5797 | return an; |
---|
5798 | if (set[an].ecart == o) |
---|
5799 | { |
---|
5800 | int oo=set[an].GetpFDeg(); |
---|
5801 | if((oo > op) |
---|
5802 | || ((oo==op) && (set[an].pLength > ol))) |
---|
5803 | return an; |
---|
5804 | } |
---|
5805 | return en; |
---|
5806 | } |
---|
5807 | i=(an+en) / 2; |
---|
5808 | if (set[i].ecart > o) |
---|
5809 | en=i; |
---|
5810 | else if (set[i].ecart == o) |
---|
5811 | { |
---|
5812 | int oo=set[i].GetpFDeg(); |
---|
5813 | if ((oo > op) |
---|
5814 | || ((oo == op) && (set[i].pLength > ol))) |
---|
5815 | en=i; |
---|
5816 | else |
---|
5817 | an=i; |
---|
5818 | } |
---|
5819 | else |
---|
5820 | an=i; |
---|
5821 | } |
---|
5822 | } |
---|
5823 | |
---|
5824 | // determines the position based on: 1.) FDeg 2.) pLength |
---|
5825 | int posInT_FDegpLength(const TSet set,const int length,LObject &p) |
---|
5826 | { |
---|
5827 | |
---|
5828 | if (length==-1) return 0; |
---|
5829 | |
---|
5830 | int op=p.GetpFDeg(); |
---|
5831 | int ol = p.GetpLength(); |
---|
5832 | |
---|
5833 | int oo=set[length].GetpFDeg(); |
---|
5834 | if ((oo < op) || ((oo==op) && (set[length].length < ol))) |
---|
5835 | return length+1; |
---|
5836 | |
---|
5837 | int i; |
---|
5838 | int an = 0; |
---|
5839 | int en= length; |
---|
5840 | loop |
---|
5841 | { |
---|
5842 | if (an >= en-1) |
---|
5843 | { |
---|
5844 | int oo=set[an].GetpFDeg(); |
---|
5845 | if((oo > op) |
---|
5846 | || ((oo==op) && (set[an].pLength > ol))) |
---|
5847 | return an; |
---|
5848 | return en; |
---|
5849 | } |
---|
5850 | i=(an+en) / 2; |
---|
5851 | int oo=set[i].GetpFDeg(); |
---|
5852 | if ((oo > op) |
---|
5853 | || ((oo == op) && (set[i].pLength > ol))) |
---|
5854 | en=i; |
---|
5855 | else |
---|
5856 | an=i; |
---|
5857 | } |
---|
5858 | } |
---|
5859 | |
---|
5860 | |
---|
5861 | // determines the position based on: 1.) Ecart 2.) FDeg 3.) pLength |
---|
5862 | int posInT_pLength(const TSet set,const int length,LObject &p) |
---|
5863 | { |
---|
5864 | if (length==-1) |
---|
5865 | return 0; |
---|
5866 | if (set[length].length<p.length) |
---|
5867 | return length+1; |
---|
5868 | |
---|
5869 | int i; |
---|
5870 | int an = 0; |
---|
5871 | int en= length; |
---|
5872 | int ol = p.GetpLength(); |
---|
5873 | |
---|
5874 | loop |
---|
5875 | { |
---|
5876 | if (an >= en-1) |
---|
5877 | { |
---|
5878 | if (set[an].pLength>ol) return an; |
---|
5879 | return en; |
---|
5880 | } |
---|
5881 | i=(an+en) / 2; |
---|
5882 | if (set[i].pLength>ol) en=i; |
---|
5883 | else an=i; |
---|
5884 | } |
---|
5885 | } |
---|
5886 | |
---|
5887 | #endif |
---|
5888 | |
---|
5889 | #endif // KUTIL_CC |
---|