1 | |
---|
2 | |
---|
3 | |
---|
4 | #include "kernel/mod2.h" |
---|
5 | |
---|
6 | #include "kernel/linear_algebra/Minor.h" |
---|
7 | |
---|
8 | #include "kernel/structs.h" |
---|
9 | #include "kernel/polys.h" |
---|
10 | |
---|
11 | using namespace std; |
---|
12 | |
---|
13 | void MinorKey::reset() |
---|
14 | { |
---|
15 | _numberOfRowBlocks = 0; |
---|
16 | _numberOfColumnBlocks = 0; |
---|
17 | omfree(_rowKey); |
---|
18 | _rowKey = NULL; |
---|
19 | omfree(_columnKey); |
---|
20 | _columnKey = NULL; |
---|
21 | } |
---|
22 | |
---|
23 | MinorKey::MinorKey (const MinorKey& mk) |
---|
24 | { |
---|
25 | _numberOfRowBlocks = mk.getNumberOfRowBlocks(); |
---|
26 | _numberOfColumnBlocks = mk.getNumberOfColumnBlocks();; |
---|
27 | |
---|
28 | /* allocate memory for new entries in _rowKey and _columnKey */ |
---|
29 | _rowKey = (unsigned*)omAlloc(_numberOfRowBlocks*sizeof(unsigned)); |
---|
30 | _columnKey = (unsigned*)omAlloc(_numberOfColumnBlocks*sizeof(unsigned)); |
---|
31 | |
---|
32 | /* copying values from parameter arrays to private arrays */ |
---|
33 | for (int r = 0; r < _numberOfRowBlocks; r++) |
---|
34 | _rowKey[r] = mk.getRowKey(r); |
---|
35 | for (int c = 0; c < _numberOfColumnBlocks; c++) |
---|
36 | _columnKey[c] = mk.getColumnKey(c); |
---|
37 | } |
---|
38 | |
---|
39 | MinorKey& MinorKey::operator=(const MinorKey& mk) |
---|
40 | { |
---|
41 | omfree(_rowKey); _rowKey = NULL; |
---|
42 | omfree(_columnKey); _columnKey = NULL; |
---|
43 | _numberOfRowBlocks = 0; |
---|
44 | _numberOfColumnBlocks = 0; |
---|
45 | |
---|
46 | _numberOfRowBlocks = mk.getNumberOfRowBlocks(); |
---|
47 | _numberOfColumnBlocks = mk.getNumberOfColumnBlocks();; |
---|
48 | |
---|
49 | /* allocate memory for new entries in _rowKey and _columnKey */ |
---|
50 | _rowKey = (unsigned*)omalloc(_numberOfRowBlocks*sizeof(unsigned)); |
---|
51 | _columnKey = (unsigned*)omalloc(_numberOfColumnBlocks*sizeof(unsigned)); |
---|
52 | |
---|
53 | /* copying values from parameter arrays to private arrays */ |
---|
54 | for (int r = 0; r < _numberOfRowBlocks; r++) |
---|
55 | _rowKey[r] = mk.getRowKey(r); |
---|
56 | for (int c = 0; c < _numberOfColumnBlocks; c++) |
---|
57 | _columnKey[c] = mk.getColumnKey(c); |
---|
58 | |
---|
59 | return *this; |
---|
60 | } |
---|
61 | |
---|
62 | void MinorKey::set(const int lengthOfRowArray, const unsigned int* rowKey, |
---|
63 | const int lengthOfColumnArray, |
---|
64 | const unsigned int* columnKey) |
---|
65 | { |
---|
66 | /* free memory of _rowKey and _columnKey */ |
---|
67 | if (_numberOfRowBlocks > 0) { omFree(_rowKey); } |
---|
68 | if (_numberOfColumnBlocks > 0) { omFree(_columnKey); } |
---|
69 | |
---|
70 | _numberOfRowBlocks = lengthOfRowArray; |
---|
71 | _numberOfColumnBlocks = lengthOfColumnArray; |
---|
72 | |
---|
73 | /* allocate memory for new entries in _rowKey and _columnKey; */ |
---|
74 | _rowKey = (unsigned*)omAlloc(_numberOfRowBlocks*sizeof(unsigned)); |
---|
75 | _columnKey = (unsigned*)omAlloc(_numberOfColumnBlocks*sizeof(unsigned)); |
---|
76 | |
---|
77 | /* copying values from parameter arrays to private arrays */ |
---|
78 | for (int r = 0; r < _numberOfRowBlocks; r++) |
---|
79 | _rowKey[r] = rowKey[r]; |
---|
80 | for (int c = 0; c < _numberOfColumnBlocks; c++) |
---|
81 | _columnKey[c] = columnKey[c]; |
---|
82 | } |
---|
83 | |
---|
84 | MinorKey::MinorKey(const int lengthOfRowArray, |
---|
85 | const unsigned int* const rowKey, |
---|
86 | const int lengthOfColumnArray, |
---|
87 | const unsigned int* const columnKey) |
---|
88 | { |
---|
89 | _numberOfRowBlocks = lengthOfRowArray; |
---|
90 | _numberOfColumnBlocks = lengthOfColumnArray; |
---|
91 | |
---|
92 | /* allocate memory for new entries in _rowKey and _columnKey */ |
---|
93 | _rowKey = (unsigned*)omalloc(_numberOfRowBlocks*sizeof(unsigned)); |
---|
94 | _columnKey = (unsigned*)omalloc(_numberOfColumnBlocks*sizeof(unsigned)); |
---|
95 | |
---|
96 | /* copying values from parameter arrays to private arrays */ |
---|
97 | for (int r = 0; r < _numberOfRowBlocks; r++) |
---|
98 | _rowKey[r] = rowKey[r]; |
---|
99 | |
---|
100 | for (int c = 0; c < _numberOfColumnBlocks; c++) |
---|
101 | _columnKey[c] = columnKey[c]; |
---|
102 | } |
---|
103 | |
---|
104 | MinorKey::~MinorKey() |
---|
105 | { |
---|
106 | _numberOfRowBlocks = 0; |
---|
107 | _numberOfColumnBlocks = 0; |
---|
108 | omfree(_rowKey); _rowKey = NULL; |
---|
109 | omfree(_columnKey); _columnKey = NULL; |
---|
110 | } |
---|
111 | |
---|
112 | //void MinorKey::print() const |
---|
113 | //{ |
---|
114 | // PrintS(this->toString().c_str()); |
---|
115 | //} |
---|
116 | |
---|
117 | int MinorKey::getAbsoluteRowIndex(const int i) const |
---|
118 | { |
---|
119 | /* This method is to return the absolute (0-based) index of the i-th |
---|
120 | row encoded in \a this. |
---|
121 | Example: bit-pattern of rows: "10010001101", i = 3: |
---|
122 | This should yield the 0-based absolute index of the 3-rd bit |
---|
123 | (counted from the right), i.e. 7. */ |
---|
124 | |
---|
125 | int matchedBits = -1; /* counter for matched bits; |
---|
126 | this needs to reach i, then we're done */ |
---|
127 | for (int block = 0; block < getNumberOfRowBlocks(); block ++) |
---|
128 | { |
---|
129 | /* start with lowest bits, i.e. in block No. 0 */ |
---|
130 | /* the bits in this block of 32 bits: */ |
---|
131 | unsigned int blockBits = getRowKey(block); |
---|
132 | unsigned int shiftedBit = 1; |
---|
133 | int exponent = 0; |
---|
134 | /* The invariant "shiftedBit = 2^exponent" will hold throughout the |
---|
135 | entire while loop. */ |
---|
136 | while (exponent < 32) |
---|
137 | { |
---|
138 | if (shiftedBit & blockBits) matchedBits++; |
---|
139 | if (matchedBits == i) return exponent + (32 * block); |
---|
140 | shiftedBit = shiftedBit << 1; |
---|
141 | exponent++; |
---|
142 | } |
---|
143 | } |
---|
144 | /* We should never reach this line of code. */ |
---|
145 | assume(false); |
---|
146 | return -1; |
---|
147 | } |
---|
148 | |
---|
149 | int MinorKey::getAbsoluteColumnIndex(const int i) const |
---|
150 | { |
---|
151 | /* This method is to return the absolute (0-based) index of the i-th |
---|
152 | column encoded in \a this. |
---|
153 | Example: bit-pattern of columns: "10010001101", i = 3: |
---|
154 | This should yield the 0-based absolute index of the 3-rd bit |
---|
155 | (counted from the right), i.e. 7. */ |
---|
156 | |
---|
157 | int matchedBits = -1; /* counter for matched bits; this needs to reach i, |
---|
158 | then we're done */ |
---|
159 | for (int block = 0; block < getNumberOfColumnBlocks(); block ++) |
---|
160 | { |
---|
161 | /* start with lowest bits, i.e. in block No. 0 */ |
---|
162 | /* the bits in this block of 32 bits: */ |
---|
163 | unsigned int blockBits = getColumnKey(block); |
---|
164 | unsigned int shiftedBit = 1; |
---|
165 | int exponent = 0; |
---|
166 | /* The invariant "shiftedBit = 2^exponent" will hold throughout the |
---|
167 | entire while loop. */ |
---|
168 | while (exponent < 32) |
---|
169 | { |
---|
170 | if (shiftedBit & blockBits) matchedBits++; |
---|
171 | if (matchedBits == i) return exponent + (32 * block); |
---|
172 | shiftedBit = shiftedBit << 1; |
---|
173 | exponent++; |
---|
174 | } |
---|
175 | } |
---|
176 | /* We should never reach this line of code. */ |
---|
177 | assume(false); |
---|
178 | return -1; |
---|
179 | } |
---|
180 | |
---|
181 | void MinorKey::getAbsoluteRowIndices(int* const target) const |
---|
182 | { |
---|
183 | int i = 0; /* index for filling the target array */ |
---|
184 | for (int block = 0; block < getNumberOfRowBlocks(); block ++) |
---|
185 | { |
---|
186 | /* start with lowest bits, i.e. in block No. 0 */ |
---|
187 | /* the bits in this block of 32 bits: */ |
---|
188 | unsigned int blockBits = getRowKey(block); |
---|
189 | unsigned int shiftedBit = 1; |
---|
190 | int exponent = 0; |
---|
191 | /* The invariant "shiftedBit = 2^exponent" will hold throughout the |
---|
192 | entire while loop. */ |
---|
193 | while (exponent < 32) |
---|
194 | { |
---|
195 | if (shiftedBit & blockBits) target[i++] = exponent + (32 * block); |
---|
196 | shiftedBit = shiftedBit << 1; |
---|
197 | exponent++; |
---|
198 | } |
---|
199 | } |
---|
200 | } |
---|
201 | |
---|
202 | void MinorKey::getAbsoluteColumnIndices(int* const target) const |
---|
203 | { |
---|
204 | int i = 0; /* index for filling the target array */ |
---|
205 | for (int block = 0; block < getNumberOfColumnBlocks(); block ++) |
---|
206 | { |
---|
207 | /* start with lowest bits, i.e. in block No. 0 */ |
---|
208 | /* the bits in this block of 32 bits: */ |
---|
209 | unsigned int blockBits = getColumnKey(block); |
---|
210 | unsigned int shiftedBit = 1; |
---|
211 | int exponent = 0; |
---|
212 | /* The invariant "shiftedBit = 2^exponent" will hold throughout the |
---|
213 | entire while loop. */ |
---|
214 | while (exponent < 32) |
---|
215 | { |
---|
216 | if (shiftedBit & blockBits) target[i++] = exponent + (32 * block); |
---|
217 | shiftedBit = shiftedBit << 1; |
---|
218 | exponent++; |
---|
219 | } |
---|
220 | } |
---|
221 | } |
---|
222 | |
---|
223 | int MinorKey::getRelativeRowIndex(const int i) const |
---|
224 | { |
---|
225 | /* This method is to return the relative (0-based) index of the row |
---|
226 | with absolute index \c i. |
---|
227 | Example: bit-pattern of rows: "10010001101", i = 7: |
---|
228 | This should yield the 0-based relative index of the bit |
---|
229 | corresponding to row no. 7, i.e. 3. */ |
---|
230 | |
---|
231 | int matchedBits = -1; /* counter for matched bits; this is going to |
---|
232 | contain our return value */ |
---|
233 | for (int block = 0; block < getNumberOfRowBlocks(); block ++) |
---|
234 | { |
---|
235 | /* start with lowest bits, i.e. in block No. 0 */ |
---|
236 | /* the bits in this block of 32 bits: */ |
---|
237 | unsigned int blockBits = getRowKey(block); |
---|
238 | unsigned int shiftedBit = 1; |
---|
239 | int exponent = 0; |
---|
240 | /* The invariant "shiftedBit = 2^exponent" will hold throughout the |
---|
241 | entire while loop. */ |
---|
242 | while (exponent < 32) |
---|
243 | { |
---|
244 | if (shiftedBit & blockBits) matchedBits++; |
---|
245 | if (exponent + (32 * block) == i) return matchedBits; |
---|
246 | shiftedBit = shiftedBit << 1; |
---|
247 | exponent++; |
---|
248 | } |
---|
249 | } |
---|
250 | /* We should never reach this line of code. */ |
---|
251 | assume(false); |
---|
252 | return -1; |
---|
253 | } |
---|
254 | |
---|
255 | int MinorKey::getRelativeColumnIndex(const int i) const |
---|
256 | { |
---|
257 | /* This method is to return the relative (0-based) index |
---|
258 | of the column with absolute index \c i. |
---|
259 | Example: bit-pattern of columns: "10010001101", i = 7: |
---|
260 | This should yield the 0-based relative index of the bit |
---|
261 | corresponding to column no. 7, i.e. 3. */ |
---|
262 | |
---|
263 | int matchedBits = -1; /* counter for matched bits; this is going |
---|
264 | to contain our return value */ |
---|
265 | for (int block = 0; block < getNumberOfColumnBlocks(); block ++) |
---|
266 | { |
---|
267 | /* start with lowest bits, i.e. in block No. 0 */ |
---|
268 | /* the bits in this block of 32 bits: */ |
---|
269 | unsigned int blockBits = getColumnKey(block); |
---|
270 | unsigned int shiftedBit = 1; |
---|
271 | int exponent = 0; |
---|
272 | /* The invariant "shiftedBit = 2^exponent" will hold |
---|
273 | throughout the entire while loop. */ |
---|
274 | while (exponent < 32) |
---|
275 | { |
---|
276 | if (shiftedBit & blockBits) matchedBits++; |
---|
277 | if (exponent + (32 * block) == i) return matchedBits; |
---|
278 | shiftedBit = shiftedBit << 1; |
---|
279 | exponent++; |
---|
280 | } |
---|
281 | } |
---|
282 | /* We should never reach this line of code. */ |
---|
283 | assume(false); |
---|
284 | return -1; |
---|
285 | } |
---|
286 | |
---|
287 | unsigned int MinorKey::getRowKey(const int blockIndex) const |
---|
288 | { |
---|
289 | return _rowKey[blockIndex]; |
---|
290 | } |
---|
291 | |
---|
292 | unsigned int MinorKey::getColumnKey(const int blockIndex) const |
---|
293 | { |
---|
294 | return _columnKey[blockIndex]; |
---|
295 | } |
---|
296 | |
---|
297 | int MinorKey::getNumberOfRowBlocks() const |
---|
298 | { |
---|
299 | return _numberOfRowBlocks; |
---|
300 | } |
---|
301 | |
---|
302 | int MinorKey::getNumberOfColumnBlocks() const |
---|
303 | { |
---|
304 | return _numberOfColumnBlocks; |
---|
305 | } |
---|
306 | |
---|
307 | #ifndef SING_NDEBUG |
---|
308 | int MinorKey::getSetBits(const int a) const |
---|
309 | { |
---|
310 | int b = 0; |
---|
311 | if (a == 1) |
---|
312 | { /* rows */ |
---|
313 | for (int i = 0; i < _numberOfRowBlocks; i++) |
---|
314 | { |
---|
315 | unsigned int m = _rowKey[i]; |
---|
316 | unsigned int k = 1; |
---|
317 | for (int j = 0; j < 32; j++) |
---|
318 | { |
---|
319 | /* k = 2^j */ |
---|
320 | if (m & k) b++; |
---|
321 | k = k << 1; |
---|
322 | } |
---|
323 | } |
---|
324 | } |
---|
325 | else |
---|
326 | { /* columns */ |
---|
327 | for (int i = 0; i < _numberOfColumnBlocks; i++) |
---|
328 | { |
---|
329 | unsigned int m = _columnKey[i]; |
---|
330 | unsigned int k = 1; |
---|
331 | for (int j = 0; j < 32; j++) |
---|
332 | { |
---|
333 | /* k = 2^j */ |
---|
334 | if (m & k) b++; |
---|
335 | k = k << 1; |
---|
336 | } |
---|
337 | } |
---|
338 | } |
---|
339 | return b; |
---|
340 | } |
---|
341 | #endif |
---|
342 | |
---|
343 | MinorKey MinorKey::getSubMinorKey (const int absoluteEraseRowIndex, |
---|
344 | const int absoluteEraseColumnIndex) const |
---|
345 | { |
---|
346 | int rowBlock = absoluteEraseRowIndex / 32; |
---|
347 | int exponent = absoluteEraseRowIndex % 32; |
---|
348 | unsigned int newRowBits = getRowKey(rowBlock) - (1 << exponent); |
---|
349 | int highestRowBlock = getNumberOfRowBlocks() - 1; |
---|
350 | /* highestRowBlock will finally contain the highest block index with |
---|
351 | non-zero bit pattern */ |
---|
352 | if ((newRowBits == 0) && (rowBlock == highestRowBlock)) |
---|
353 | { |
---|
354 | /* we have thus nullified the highest block; |
---|
355 | we can now forget about the highest block... */ |
---|
356 | highestRowBlock -= 1; |
---|
357 | while (getRowKey(highestRowBlock) == 0) /* ...and maybe even some more |
---|
358 | zero-blocks */ |
---|
359 | highestRowBlock -= 1; |
---|
360 | } |
---|
361 | /* highestRowBlock now contains the highest row block index with non-zero |
---|
362 | bit pattern */ |
---|
363 | |
---|
364 | int columnBlock = absoluteEraseColumnIndex / 32; |
---|
365 | exponent = absoluteEraseColumnIndex % 32; |
---|
366 | unsigned int newColumnBits = getColumnKey(columnBlock) - (1 << exponent); |
---|
367 | int highestColumnBlock = getNumberOfColumnBlocks() - 1; |
---|
368 | /* highestColumnBlock will finally contain the highest block index with |
---|
369 | non-zero bit pattern */ |
---|
370 | if ((newColumnBits == 0) && (columnBlock == highestColumnBlock)) |
---|
371 | { |
---|
372 | /* we have thus nullified the highest block; |
---|
373 | we can now forget about the highest block... */ |
---|
374 | highestColumnBlock -= 1; |
---|
375 | while (getColumnKey(highestColumnBlock) == 0) /* ...and maybe even some |
---|
376 | more zero-blocks */ |
---|
377 | highestColumnBlock -= 1; |
---|
378 | } |
---|
379 | /* highestColumnBlock now contains the highest column block index with |
---|
380 | non-zero bit pattern */ |
---|
381 | |
---|
382 | MinorKey result(highestRowBlock + 1, _rowKey, highestColumnBlock + 1, |
---|
383 | _columnKey); |
---|
384 | /* This is just a copy with maybe some leading bit blocks omitted. We still |
---|
385 | need to re-define the row block at index 'rowBlock' and the column block |
---|
386 | at index 'columnBlock': */ |
---|
387 | if ((newRowBits != 0) || (rowBlock < getNumberOfRowBlocks() - 1)) |
---|
388 | result.setRowKey(rowBlock, newRowBits); |
---|
389 | if ((newColumnBits != 0) || (columnBlock < getNumberOfColumnBlocks() - 1)) |
---|
390 | result.setColumnKey(columnBlock, newColumnBits); |
---|
391 | |
---|
392 | #ifndef SING_NDEBUG |
---|
393 | /* let's check that the number of selected rows and columns are equal; |
---|
394 | (this check is only performed in the debug version) */ |
---|
395 | assume(result.getSetBits(1) == result.getSetBits(2)); |
---|
396 | #endif |
---|
397 | |
---|
398 | return result; |
---|
399 | } |
---|
400 | |
---|
401 | void MinorKey::setRowKey (const int blockIndex, const unsigned int rowKey) |
---|
402 | { |
---|
403 | _rowKey[blockIndex] = rowKey; |
---|
404 | } |
---|
405 | |
---|
406 | void MinorKey::setColumnKey (const int blockIndex, |
---|
407 | const unsigned int columnKey) |
---|
408 | { |
---|
409 | _columnKey[blockIndex] = columnKey; |
---|
410 | } |
---|
411 | |
---|
412 | int MinorKey::compare (const MinorKey& that) const |
---|
413 | { |
---|
414 | /* compare by rowKeys first; in case of equality, use columnKeys */ |
---|
415 | if (this->getNumberOfRowBlocks() < that.getNumberOfRowBlocks()) |
---|
416 | return -1; |
---|
417 | if (this->getNumberOfRowBlocks() > that.getNumberOfRowBlocks()) |
---|
418 | return 1; |
---|
419 | /* Here, numbers of rows are equal. */ |
---|
420 | for (int r = this->getNumberOfRowBlocks() - 1; r >= 0; r--) |
---|
421 | { |
---|
422 | if (this->getRowKey(r) < that.getRowKey(r)) return -1; |
---|
423 | if (this->getRowKey(r) > that.getRowKey(r)) return 1; |
---|
424 | } |
---|
425 | /* Here, this and that encode ecaxtly the same sets of rows. |
---|
426 | Now, we take a look at the columns. */ |
---|
427 | if (this->getNumberOfColumnBlocks() < that.getNumberOfColumnBlocks()) |
---|
428 | return -1; |
---|
429 | if (this->getNumberOfColumnBlocks() > that.getNumberOfColumnBlocks()) |
---|
430 | return 1; |
---|
431 | /* Here, numbers of columns are equal. */ |
---|
432 | for (int c = this->getNumberOfColumnBlocks() - 1; c >= 0; c--) |
---|
433 | { |
---|
434 | if (this->getColumnKey(c) < that.getColumnKey(c)) return -1; |
---|
435 | if (this->getColumnKey(c) > that.getColumnKey(c)) return 1; |
---|
436 | } |
---|
437 | /* Here, this and that encode exactly the same sets of rows and columns. */ |
---|
438 | return 0; |
---|
439 | } |
---|
440 | |
---|
441 | /* just to make the compiler happy; |
---|
442 | this method should never be called */ |
---|
443 | bool MinorKey::operator==(const MinorKey& mk) const |
---|
444 | { |
---|
445 | assume(false); |
---|
446 | return this->compare(mk) == 0; |
---|
447 | } |
---|
448 | |
---|
449 | /* just to make the compiler happy; |
---|
450 | this method should never be called */ |
---|
451 | bool MinorKey::operator<(const MinorKey& mk) const |
---|
452 | { |
---|
453 | assume(false); |
---|
454 | return this->compare(mk) == -1; |
---|
455 | } |
---|
456 | |
---|
457 | void MinorKey::selectFirstRows (const int k, const MinorKey& mk) |
---|
458 | { |
---|
459 | int hitBits = 0; /* the number of bits we have hit; in the end, this |
---|
460 | has to be equal to k, the dimension of the minor */ |
---|
461 | int blockIndex = -1; /* the index of the current int in mk */ |
---|
462 | unsigned int highestInt = 0; /* the new highest block of this MinorKey */ |
---|
463 | /* We determine which ints of mk we can copy. Their indices will be |
---|
464 | 0, 1, ..., blockIndex - 1. And highestInt is going to capture the highest |
---|
465 | int (which may be only a portion of the corresponding int in mk. |
---|
466 | We loop until hitBits = k: */ |
---|
467 | while (hitBits < k) |
---|
468 | { |
---|
469 | blockIndex++; |
---|
470 | highestInt = 0; |
---|
471 | unsigned int currentInt = mk.getRowKey(blockIndex); |
---|
472 | unsigned int shiftedBit = 1; |
---|
473 | int exponent = 0; |
---|
474 | /* invariant in the loop: shiftedBit = 2^exponent */ |
---|
475 | while (exponent < 32 && hitBits < k) |
---|
476 | { |
---|
477 | if (shiftedBit & currentInt) |
---|
478 | { |
---|
479 | highestInt += shiftedBit; |
---|
480 | hitBits++; |
---|
481 | } |
---|
482 | shiftedBit = shiftedBit << 1; |
---|
483 | exponent++; |
---|
484 | } |
---|
485 | } |
---|
486 | /* free old memory */ |
---|
487 | omfree(_rowKey); |
---|
488 | _rowKey = NULL; |
---|
489 | _numberOfRowBlocks = blockIndex + 1; |
---|
490 | /* allocate memory for new entries in _rowKey; */ |
---|
491 | _rowKey = (unsigned*)omAlloc(_numberOfRowBlocks*sizeof(unsigned)); |
---|
492 | /* copying values from mk to this MinorKey */ |
---|
493 | for (int r = 0; r < blockIndex; r++) |
---|
494 | _rowKey[r] = mk.getRowKey(r); |
---|
495 | _rowKey[blockIndex] = highestInt; |
---|
496 | } |
---|
497 | |
---|
498 | void MinorKey::selectFirstColumns (const int k, const MinorKey& mk) |
---|
499 | { |
---|
500 | int hitBits = 0; /* the number of bits we have hit; in the end, this |
---|
501 | has to be equal to k, the dimension of the minor */ |
---|
502 | int blockIndex = -1; /* the index of the current int in mk */ |
---|
503 | unsigned int highestInt = 0; /* the new highest block of this MinorKey */ |
---|
504 | /* We determine which ints of mk we can copy. Their indices will be |
---|
505 | 0, 1, ..., blockIndex - 1. And highestInt is going to capture the highest |
---|
506 | int (which may be only a portion of the corresponding int in mk. |
---|
507 | We loop until hitBits = k: */ |
---|
508 | while (hitBits < k) |
---|
509 | { |
---|
510 | blockIndex++; |
---|
511 | highestInt = 0; |
---|
512 | unsigned int currentInt = mk.getColumnKey(blockIndex); |
---|
513 | unsigned int shiftedBit = 1; |
---|
514 | int exponent = 0; |
---|
515 | /* invariant in the loop: shiftedBit = 2^exponent */ |
---|
516 | while (exponent < 32 && hitBits < k) |
---|
517 | { |
---|
518 | if (shiftedBit & currentInt) |
---|
519 | { |
---|
520 | highestInt += shiftedBit; |
---|
521 | hitBits++; |
---|
522 | } |
---|
523 | shiftedBit = shiftedBit << 1; |
---|
524 | exponent++; |
---|
525 | } |
---|
526 | } |
---|
527 | /* free old memory */ |
---|
528 | omfree(_columnKey); _columnKey = NULL; |
---|
529 | _numberOfColumnBlocks = blockIndex + 1; |
---|
530 | /* allocate memory for new entries in _columnKey; */ |
---|
531 | _columnKey = (unsigned*)omAlloc(_numberOfColumnBlocks*sizeof(unsigned)); |
---|
532 | /* copying values from mk to this MinorKey */ |
---|
533 | for (int c = 0; c < blockIndex; c++) |
---|
534 | _columnKey[c] = mk.getColumnKey(c); |
---|
535 | _columnKey[blockIndex] = highestInt; |
---|
536 | } |
---|
537 | |
---|
538 | bool MinorKey::selectNextRows (const int k, const MinorKey& mk) |
---|
539 | { |
---|
540 | /* We need to compute the set of k rows which must all be contained in mk. |
---|
541 | AND: This set must be the least possible of this kind which is larger |
---|
542 | than the currently encoded set of rows. (Here, '<' is w.r.t. to the |
---|
543 | natural ordering on multi-indices. |
---|
544 | Example: mk encodes the rows according to the bit pattern 11010111, |
---|
545 | k = 3, this MinorKey encodes 10010100. Then, the method must |
---|
546 | shift the set of rows in this MinorKey to 11000001 (, and |
---|
547 | return true). */ |
---|
548 | |
---|
549 | /* The next two variables will finally name a row which is |
---|
550 | (1) currently not yet among the rows in this MinorKey, but |
---|
551 | (2) among the rows in mk, and |
---|
552 | (3) which is "higher" than the lowest row in this MinorKey, and |
---|
553 | (4) which is the lowest possible choice such that (1) - (3) hold. |
---|
554 | If we should not be able to find such a row, then there is no next |
---|
555 | subset of rows. In this case, the method will return false; otherwise |
---|
556 | always true. */ |
---|
557 | int newBitBlockIndex = 0; /* the block index of the bit */ |
---|
558 | unsigned int newBitToBeSet = 0; /* the bit as 2^e, where 0 <= e <= 31 */ |
---|
559 | |
---|
560 | /* number of ints (representing rows) in this MinorKey: */ |
---|
561 | int blockCount = this->getNumberOfRowBlocks(); |
---|
562 | /* for iterating along the blocks of mk: */ |
---|
563 | int mkBlockIndex = mk.getNumberOfRowBlocks(); |
---|
564 | |
---|
565 | int hitBits = 0; /* the number of bits we have hit */ |
---|
566 | int bitCounter = 0; /* for storing the number of bits hit before a |
---|
567 | specific moment; see below */ |
---|
568 | while (hitBits < k) |
---|
569 | { |
---|
570 | mkBlockIndex--; |
---|
571 | unsigned int currentInt = mk.getRowKey(mkBlockIndex); |
---|
572 | unsigned int shiftedBit = 1 << 31; /* initially, this equals 2^31, i.e. |
---|
573 | the highest bit */ |
---|
574 | while (hitBits < k && shiftedBit > 0) |
---|
575 | { |
---|
576 | if ((blockCount - 1 >= mkBlockIndex) && |
---|
577 | (shiftedBit & this->getRowKey(mkBlockIndex))) hitBits++; |
---|
578 | else if (shiftedBit & currentInt) |
---|
579 | { |
---|
580 | newBitToBeSet = shiftedBit; |
---|
581 | newBitBlockIndex = mkBlockIndex; |
---|
582 | bitCounter = hitBits; /* So, whenever we set newBitToBeSet, we want |
---|
583 | to remember the momentary number of hit |
---|
584 | bits. This will later be needed; see below. */ |
---|
585 | } |
---|
586 | shiftedBit = shiftedBit >> 1; |
---|
587 | } |
---|
588 | } |
---|
589 | if (newBitToBeSet == 0) |
---|
590 | { |
---|
591 | return false; |
---|
592 | } |
---|
593 | else |
---|
594 | { |
---|
595 | /* Note that the following must hold when reaching this line of code: |
---|
596 | (1) The row with bit newBitToBeSet in this->getRowKey(newBitBlockIndex) |
---|
597 | is currently not among the rows in this MinorKey, but |
---|
598 | (2) it is among the rows in mk, and |
---|
599 | (3) it is higher than the lowest row in this MinorKey, and |
---|
600 | (4) it is the lowest possible choice such that (1) - (3) hold. |
---|
601 | In the above example, we would reach this line with |
---|
602 | newBitToBeSet == 2^6 and bitCounter == 1 (resulting from the bit 2^7). |
---|
603 | */ |
---|
604 | |
---|
605 | if (blockCount - 1 < newBitBlockIndex) |
---|
606 | { /* In this case, _rowKey is too small. */ |
---|
607 | /* free old memory */ |
---|
608 | omFree(_rowKey); _rowKey = NULL; |
---|
609 | _numberOfRowBlocks = newBitBlockIndex + 1; |
---|
610 | /* allocate memory for new entries in _rowKey; */ |
---|
611 | _rowKey = (unsigned*)omAlloc(_numberOfRowBlocks*sizeof(unsigned)); |
---|
612 | /* initializing entries to zero */ |
---|
613 | for (int r = 0; r < _numberOfRowBlocks; r++) _rowKey[r] = 0; |
---|
614 | } |
---|
615 | else |
---|
616 | { |
---|
617 | /* We need to delete all bits in _rowKey[newBitBlockIndex] that are |
---|
618 | below newBitToBeSet: */ |
---|
619 | unsigned int anInt = this->getRowKey(newBitBlockIndex); |
---|
620 | unsigned int deleteBit = newBitToBeSet >> 1; // in example: = 2^5 |
---|
621 | while (deleteBit > 0) |
---|
622 | { |
---|
623 | if (anInt & deleteBit) anInt -= deleteBit; |
---|
624 | deleteBit = deleteBit >> 1; |
---|
625 | }; |
---|
626 | _rowKey[newBitBlockIndex] = anInt; |
---|
627 | /* ...and we delete all entries in _rowKey[i] for |
---|
628 | 0 <= i < newBitBlockIndex */ |
---|
629 | for (int i = 0; i < newBitBlockIndex; i++) |
---|
630 | _rowKey[i] = 0; |
---|
631 | } |
---|
632 | |
---|
633 | /* We have now deleted all bits from _rowKey[...] below the bit |
---|
634 | 2^newBitToBeSet. |
---|
635 | In the example we shall have at this point: _rowKey[...] = 10000000. |
---|
636 | Now let's set the new bit: */ |
---|
637 | _rowKey[newBitBlockIndex] += newBitToBeSet; |
---|
638 | /* in the example: _rowKey[newBitBlockIndex] = 11000000 */ |
---|
639 | bitCounter++; /* This is now the number of correct bits in _rowKey[...]; |
---|
640 | i.e. in the example this will be equal to 2. */ |
---|
641 | |
---|
642 | /* Now we only need to fill _rowKey[...] with the lowest possible bits |
---|
643 | until it consists of exactly k bits. (We know that we need to set |
---|
644 | exactly (k - bitCounter) additional bits.) */ |
---|
645 | mkBlockIndex = -1; |
---|
646 | while (bitCounter < k) |
---|
647 | { |
---|
648 | mkBlockIndex++; |
---|
649 | unsigned int currentInt = mk.getRowKey(mkBlockIndex); |
---|
650 | unsigned int shiftedBit = 1; |
---|
651 | int exponent = 0; |
---|
652 | /* invariant: shiftedBit = 2^exponent */ |
---|
653 | while (bitCounter < k && exponent < 32) |
---|
654 | { |
---|
655 | if (shiftedBit & currentInt) |
---|
656 | { |
---|
657 | _rowKey[mkBlockIndex] += shiftedBit; |
---|
658 | bitCounter++; |
---|
659 | }; |
---|
660 | shiftedBit = shiftedBit << 1; |
---|
661 | exponent++; |
---|
662 | } |
---|
663 | }; |
---|
664 | /* in the example, we shall obtain _rowKey[...] = 11000001 */ |
---|
665 | return true; |
---|
666 | } |
---|
667 | } |
---|
668 | |
---|
669 | bool MinorKey::selectNextColumns (const int k, const MinorKey& mk) |
---|
670 | { |
---|
671 | /* We need to compute the set of k columns which must all be contained in mk. |
---|
672 | AND: This set must be the least possible of this kind which is larger |
---|
673 | than the currently encoded set of columns. (Here, '<' is w.r.t. to |
---|
674 | the natural ordering on multi-indices. |
---|
675 | Example: mk encodes the columns according to the bit pattern 11010111, |
---|
676 | k = 3, this MinorKey encodes 10010100. Then, the method must |
---|
677 | shift the set of columns in this MinorKey to 11000001 (, and |
---|
678 | return true). */ |
---|
679 | |
---|
680 | /* The next two variables will finally name a column which is |
---|
681 | (1) currently not yet among the columns in this MinorKey, but |
---|
682 | (2) among the columns in mk, and |
---|
683 | (3) which is "higher" than the lowest column in this MinorKey, and |
---|
684 | (4) which is the lowest possible choice such that (1) - (3) hold. |
---|
685 | If we should not be able to find such a column, then there is no next |
---|
686 | subset of columns. In this case, the method will return false; otherwise |
---|
687 | always true. */ |
---|
688 | int newBitBlockIndex = 0; /* the block index of the bit */ |
---|
689 | unsigned int newBitToBeSet = 0; /* the bit as 2^e, where 0 <= e <= 31 */ |
---|
690 | |
---|
691 | /* number of ints (representing columns) in this MinorKey: */ |
---|
692 | int blockCount = this->getNumberOfColumnBlocks(); |
---|
693 | /* for iterating along the blocks of mk: */ |
---|
694 | int mkBlockIndex = mk.getNumberOfColumnBlocks(); |
---|
695 | |
---|
696 | int hitBits = 0; /* the number of bits we have hit */ |
---|
697 | int bitCounter = 0; /* for storing the number of bits hit before a specific |
---|
698 | moment; see below */ |
---|
699 | while (hitBits < k) |
---|
700 | { |
---|
701 | mkBlockIndex--; |
---|
702 | unsigned int currentInt = mk.getColumnKey(mkBlockIndex); |
---|
703 | unsigned int shiftedBit = 1 << 31; /* initially, this equals 2^31, i.e. |
---|
704 | the highest bit */ |
---|
705 | while (hitBits < k && shiftedBit > 0) |
---|
706 | { |
---|
707 | if ((blockCount - 1 >= mkBlockIndex) && |
---|
708 | (shiftedBit & this->getColumnKey(mkBlockIndex))) hitBits++; |
---|
709 | else if (shiftedBit & currentInt) |
---|
710 | { |
---|
711 | newBitToBeSet = shiftedBit; |
---|
712 | newBitBlockIndex = mkBlockIndex; |
---|
713 | bitCounter = hitBits; /* So, whenever we set newBitToBeSet, we want to |
---|
714 | remember the momentary number of hit bits. |
---|
715 | This will later be needed; see below. */ |
---|
716 | } |
---|
717 | shiftedBit = shiftedBit >> 1; |
---|
718 | } |
---|
719 | } |
---|
720 | if (newBitToBeSet == 0) |
---|
721 | { |
---|
722 | return false; |
---|
723 | } |
---|
724 | else |
---|
725 | { |
---|
726 | /* Note that the following must hold when reaching this line of code: |
---|
727 | (1) The column with bit newBitToBeSet in |
---|
728 | this->getColumnKey(newBitBlockIndex) is currently not among the |
---|
729 | columns in this MinorKey, but |
---|
730 | (2) it is among the columns in mk, and |
---|
731 | (3) it is higher than the lowest columns in this MinorKey, and |
---|
732 | (4) it is the lowest possible choice such that (1) - (3) hold. |
---|
733 | In the above example, we would reach this line with |
---|
734 | newBitToBeSet == 2^6 and bitCounter == 1 (resulting from the bit 2^7). |
---|
735 | */ |
---|
736 | |
---|
737 | if (blockCount - 1 < newBitBlockIndex) |
---|
738 | { /* In this case, _columnKey is too small. */ |
---|
739 | /* free old memory */ |
---|
740 | omFree( _columnKey); _columnKey = NULL; |
---|
741 | _numberOfColumnBlocks = newBitBlockIndex + 1; |
---|
742 | /* allocate memory for new entries in _columnKey; */ |
---|
743 | _columnKey = (unsigned*)omAlloc(_numberOfColumnBlocks*sizeof(unsigned)); |
---|
744 | /* initializing entries to zero */ |
---|
745 | for (int c = 0; c < _numberOfColumnBlocks; c++) _columnKey[c] = 0; |
---|
746 | } |
---|
747 | else |
---|
748 | { |
---|
749 | /* We need to delete all bits in _columnKey[newBitBlockIndex] that are |
---|
750 | below newBitToBeSet: */ |
---|
751 | unsigned int anInt = this->getColumnKey(newBitBlockIndex); |
---|
752 | unsigned int deleteBit = newBitToBeSet >> 1; /* in example: = 2^5 */ |
---|
753 | while (deleteBit > 0) |
---|
754 | { |
---|
755 | if (anInt & deleteBit) anInt -= deleteBit; |
---|
756 | deleteBit = deleteBit >> 1; |
---|
757 | }; |
---|
758 | _columnKey[newBitBlockIndex] = anInt; |
---|
759 | /* ...and we delete all entries in _columnKey[i] for |
---|
760 | 0 <= i < newBitBlockIndex */ |
---|
761 | for (int i = 0; i < newBitBlockIndex; i++) |
---|
762 | _columnKey[i] = 0; |
---|
763 | } |
---|
764 | /* We have now deleted all bits from _columnKey[...] below the bit |
---|
765 | 2^newBitToBeSet. In the example we shall have at this point: |
---|
766 | _columnKey[...] = 10000000. Now let's set the new bit: */ |
---|
767 | _columnKey[newBitBlockIndex] += newBitToBeSet; |
---|
768 | /* in the example: _columnKey[newBitBlockIndex] = 11000000 */ |
---|
769 | bitCounter++; /* This is now the number of correct bits in |
---|
770 | _columnKey[...]; i.e. in the example this will be equal |
---|
771 | to 2. */ |
---|
772 | |
---|
773 | /* Now we only need to fill _columnKey[...] with the lowest possible bits |
---|
774 | until it consists of exactly k bits. (We know that we need to set |
---|
775 | exactly (k - bitCounter) additional bits.) */ |
---|
776 | mkBlockIndex = -1; |
---|
777 | while (bitCounter < k) |
---|
778 | { |
---|
779 | mkBlockIndex++; |
---|
780 | unsigned int currentInt = mk.getColumnKey(mkBlockIndex); |
---|
781 | unsigned int shiftedBit = 1; |
---|
782 | int exponent = 0; |
---|
783 | /* invariant: shiftedBit = 2^exponent */ |
---|
784 | while (bitCounter < k && exponent < 32) |
---|
785 | { |
---|
786 | if (shiftedBit & currentInt) |
---|
787 | { |
---|
788 | _columnKey[mkBlockIndex] += shiftedBit; |
---|
789 | bitCounter++; |
---|
790 | }; |
---|
791 | shiftedBit = shiftedBit << 1; |
---|
792 | exponent++; |
---|
793 | } |
---|
794 | }; |
---|
795 | /* in the example, we shall obtain _columnKey[...] = 11000001 */ |
---|
796 | return true; |
---|
797 | } |
---|
798 | } |
---|
799 | |
---|
800 | string MinorKey::toString() const |
---|
801 | { return ""; } |
---|
802 | /* |
---|
803 | string t; |
---|
804 | string s = "("; |
---|
805 | unsigned int z = 0; |
---|
806 | for (int r = this->getNumberOfRowBlocks() - 1; r >= 0; r--) |
---|
807 | { |
---|
808 | t = ""; |
---|
809 | z = this->getRowKey(r); |
---|
810 | while (z != 0) |
---|
811 | { |
---|
812 | if ((z % 2) != 0) t = "1" + t; else t = "0" + t; |
---|
813 | z = z / 2; |
---|
814 | } |
---|
815 | if (r < this->getNumberOfRowBlocks() - 1) |
---|
816 | t = string(32 - t.length(), '0') + t; |
---|
817 | s += t; |
---|
818 | } |
---|
819 | s += ", "; |
---|
820 | for (int c = this->getNumberOfColumnBlocks() - 1; c >= 0; c--) |
---|
821 | { |
---|
822 | t = ""; |
---|
823 | z = this->getColumnKey(c); |
---|
824 | while (z != 0) |
---|
825 | { |
---|
826 | if ((z % 2) != 0) t = "1" + t; else t = "0" + t; |
---|
827 | z = z / 2; |
---|
828 | } |
---|
829 | if (c < this->getNumberOfColumnBlocks() - 1) |
---|
830 | t = string(32 - t.length(), '0') + t; |
---|
831 | s += t; |
---|
832 | } |
---|
833 | s += ")"; |
---|
834 | return s; |
---|
835 | } |
---|
836 | */ |
---|
837 | |
---|
838 | THREAD_VAR int MinorValue::g_rankingStrategy = -1; |
---|
839 | |
---|
840 | int MinorValue::getWeight () const |
---|
841 | { |
---|
842 | assume(false); /* must be overridden in derived classes */ |
---|
843 | return 0; |
---|
844 | } |
---|
845 | |
---|
846 | /* just to make the compiler happy; |
---|
847 | this method should never be called */ |
---|
848 | bool MinorValue::operator==(const MinorValue& mv) const |
---|
849 | { |
---|
850 | assume(false); |
---|
851 | return (this == &mv); /* compare addresses of both objects */ |
---|
852 | } |
---|
853 | |
---|
854 | string MinorValue::toString () const |
---|
855 | { |
---|
856 | assume(false); /* must be overridden in derived classes */ |
---|
857 | return ""; |
---|
858 | } |
---|
859 | |
---|
860 | /* just to make the compiler happy; |
---|
861 | this method should never be called */ |
---|
862 | bool MinorValue::operator<(const MinorValue& mv) const |
---|
863 | { |
---|
864 | assume(false); |
---|
865 | return (this < &mv); /* compare addresses of both objects */ |
---|
866 | } |
---|
867 | |
---|
868 | int MinorValue::getRetrievals() const |
---|
869 | { |
---|
870 | return _retrievals; |
---|
871 | } |
---|
872 | |
---|
873 | void MinorValue::incrementRetrievals() |
---|
874 | { |
---|
875 | _retrievals++; |
---|
876 | } |
---|
877 | |
---|
878 | int MinorValue::getPotentialRetrievals() const |
---|
879 | { |
---|
880 | return _potentialRetrievals; |
---|
881 | } |
---|
882 | |
---|
883 | int MinorValue::getMultiplications() const |
---|
884 | { |
---|
885 | return _multiplications; |
---|
886 | } |
---|
887 | |
---|
888 | int MinorValue::getAdditions() const |
---|
889 | { |
---|
890 | return _additions; |
---|
891 | } |
---|
892 | |
---|
893 | int MinorValue::getAccumulatedMultiplications() const |
---|
894 | { |
---|
895 | return _accumulatedMult; |
---|
896 | } |
---|
897 | |
---|
898 | int MinorValue::getAccumulatedAdditions() const |
---|
899 | { |
---|
900 | return _accumulatedSum; |
---|
901 | } |
---|
902 | |
---|
903 | void MinorValue::print() const |
---|
904 | { |
---|
905 | PrintS(this->toString().c_str()); |
---|
906 | } |
---|
907 | |
---|
908 | |
---|
909 | void MinorValue::SetRankingStrategy (const int rankingStrategy) |
---|
910 | { |
---|
911 | g_rankingStrategy = rankingStrategy; |
---|
912 | //if (g_rankingStrategy == 6) : rand() is never used |
---|
913 | //{ |
---|
914 | // /* initialize the random generator with system time */ |
---|
915 | // srand ( time(NULL) ); |
---|
916 | //} |
---|
917 | } |
---|
918 | |
---|
919 | int MinorValue::GetRankingStrategy() |
---|
920 | { |
---|
921 | return g_rankingStrategy; |
---|
922 | } |
---|
923 | |
---|
924 | /* this is for generically accessing the rank measure regardless of |
---|
925 | which strategy has been set */ |
---|
926 | int MinorValue::getUtility () const |
---|
927 | { |
---|
928 | switch (this->GetRankingStrategy()) |
---|
929 | { |
---|
930 | case 1: return this->rankMeasure1(); |
---|
931 | case 2: return this->rankMeasure2(); |
---|
932 | case 3: return this->rankMeasure3(); |
---|
933 | case 4: return this->rankMeasure4(); |
---|
934 | case 5: return this->rankMeasure5(); |
---|
935 | default: return this->rankMeasure1(); |
---|
936 | } |
---|
937 | } |
---|
938 | |
---|
939 | /* here are some sensible caching strategies: */ |
---|
940 | int MinorValue::rankMeasure1 () const |
---|
941 | { |
---|
942 | /* number of actually performed multiplications */ |
---|
943 | return this->getMultiplications(); |
---|
944 | } |
---|
945 | |
---|
946 | int MinorValue::rankMeasure2 () const |
---|
947 | { |
---|
948 | /* accumulated number of performed multiplications, i.e. all including |
---|
949 | nested multiplications */ |
---|
950 | return this->getAccumulatedMultiplications(); |
---|
951 | } |
---|
952 | |
---|
953 | int MinorValue::rankMeasure3 () const |
---|
954 | { |
---|
955 | /* number of performed multiplications, weighted with the ratio of |
---|
956 | not yet performed retrievals over the maximal number of retrievals */ |
---|
957 | return this->getMultiplications() |
---|
958 | * (this->getPotentialRetrievals() |
---|
959 | - this->getRetrievals()) |
---|
960 | / this->getPotentialRetrievals(); |
---|
961 | } |
---|
962 | |
---|
963 | int MinorValue::rankMeasure4 () const |
---|
964 | { |
---|
965 | /* number of performed multiplications, |
---|
966 | multiplied with the number of not yet performed retrievals */ |
---|
967 | return this->getMultiplications() |
---|
968 | * (this->getPotentialRetrievals() |
---|
969 | - this->getRetrievals()); |
---|
970 | } |
---|
971 | |
---|
972 | int MinorValue::rankMeasure5 () const |
---|
973 | { |
---|
974 | /* number of not yet performed retrievals; |
---|
975 | tends to cache entries longer when they are going to be retrieved more |
---|
976 | often in the future */ |
---|
977 | return this->getPotentialRetrievals() - this->getRetrievals(); |
---|
978 | } |
---|
979 | |
---|
980 | int IntMinorValue::getWeight () const |
---|
981 | { |
---|
982 | /* put measure for size of MinorValue here, i.e. number of monomials in |
---|
983 | polynomial; so far, we use the accumulated number of multiplications |
---|
984 | (i.e., including all nested ones) to simmulate the size of a polynomial */ |
---|
985 | return _accumulatedMult; |
---|
986 | } |
---|
987 | |
---|
988 | IntMinorValue::IntMinorValue (const int result, const int multiplications, |
---|
989 | const int additions, |
---|
990 | const int accumulatedMultiplications, |
---|
991 | const int accumulatedAdditions, |
---|
992 | const int retrievals, |
---|
993 | const int potentialRetrievals) |
---|
994 | { |
---|
995 | _result = result; |
---|
996 | _multiplications = multiplications; |
---|
997 | _additions = additions; |
---|
998 | _accumulatedMult = accumulatedMultiplications; |
---|
999 | _accumulatedSum = accumulatedAdditions; |
---|
1000 | _potentialRetrievals = potentialRetrievals; |
---|
1001 | _retrievals = retrievals; |
---|
1002 | } |
---|
1003 | |
---|
1004 | IntMinorValue::IntMinorValue () |
---|
1005 | { |
---|
1006 | _result = -1; |
---|
1007 | _multiplications = -1; |
---|
1008 | _additions = -1; |
---|
1009 | _accumulatedMult = -1; |
---|
1010 | _accumulatedSum = -1; |
---|
1011 | _potentialRetrievals = -1; |
---|
1012 | _retrievals = -1; |
---|
1013 | } |
---|
1014 | |
---|
1015 | IntMinorValue::~IntMinorValue() |
---|
1016 | { |
---|
1017 | } |
---|
1018 | |
---|
1019 | int IntMinorValue::getResult() const |
---|
1020 | { |
---|
1021 | return _result; |
---|
1022 | } |
---|
1023 | |
---|
1024 | string IntMinorValue::toString () const |
---|
1025 | { |
---|
1026 | char h[10]; |
---|
1027 | |
---|
1028 | /* Let's see whether a cache has been used to compute this MinorValue: */ |
---|
1029 | bool cacheHasBeenUsed = true; |
---|
1030 | if (this->getRetrievals() == -1) cacheHasBeenUsed = false; |
---|
1031 | |
---|
1032 | sprintf(h, "%d", this->getResult()); |
---|
1033 | string s = h; |
---|
1034 | s += " [retrievals: "; |
---|
1035 | if (cacheHasBeenUsed) { sprintf(h, "%d", this->getRetrievals()); s += h; } |
---|
1036 | else s += "/"; |
---|
1037 | s += " (of "; |
---|
1038 | if (cacheHasBeenUsed) |
---|
1039 | { |
---|
1040 | sprintf(h, "%d", this->getPotentialRetrievals()); |
---|
1041 | s += h; |
---|
1042 | } |
---|
1043 | else s += "/"; |
---|
1044 | s += "), *: "; |
---|
1045 | sprintf(h, "%d", this->getMultiplications()); s += h; |
---|
1046 | s += " (accumulated: "; |
---|
1047 | sprintf(h, "%d", this->getAccumulatedMultiplications()); s += h; |
---|
1048 | s += "), +: "; |
---|
1049 | sprintf(h, "%d", this->getAdditions()); s += h; |
---|
1050 | s += " (accumulated: "; |
---|
1051 | sprintf(h, "%d", this->getAccumulatedAdditions()); s += h; |
---|
1052 | s += "), rank: "; |
---|
1053 | if (cacheHasBeenUsed) { sprintf(h, "%d", this->getUtility()); s += h; } |
---|
1054 | else s += "/"; |
---|
1055 | s += "]"; |
---|
1056 | return s; |
---|
1057 | } |
---|
1058 | |
---|
1059 | IntMinorValue::IntMinorValue (const IntMinorValue& mv) |
---|
1060 | { |
---|
1061 | _result = mv.getResult(); |
---|
1062 | _retrievals = mv.getRetrievals(); |
---|
1063 | _potentialRetrievals = mv.getPotentialRetrievals(); |
---|
1064 | _multiplications = mv.getMultiplications(); |
---|
1065 | _additions = mv.getAdditions(); |
---|
1066 | _accumulatedMult = mv.getAccumulatedMultiplications(); |
---|
1067 | _accumulatedSum = mv.getAccumulatedAdditions(); |
---|
1068 | } |
---|
1069 | |
---|
1070 | PolyMinorValue::PolyMinorValue (const poly result, const int multiplications, |
---|
1071 | const int additions, |
---|
1072 | const int accumulatedMultiplications, |
---|
1073 | const int accumulatedAdditions, |
---|
1074 | const int retrievals, |
---|
1075 | const int potentialRetrievals) |
---|
1076 | { |
---|
1077 | _result = pCopy(result); |
---|
1078 | _multiplications = multiplications; |
---|
1079 | _additions = additions; |
---|
1080 | _accumulatedMult = accumulatedMultiplications; |
---|
1081 | _accumulatedSum = accumulatedAdditions; |
---|
1082 | _potentialRetrievals = potentialRetrievals; |
---|
1083 | _retrievals = retrievals; |
---|
1084 | } |
---|
1085 | |
---|
1086 | PolyMinorValue::PolyMinorValue () |
---|
1087 | { |
---|
1088 | _result = NULL; |
---|
1089 | _multiplications = -1; |
---|
1090 | _additions = -1; |
---|
1091 | _accumulatedMult = -1; |
---|
1092 | _accumulatedSum = -1; |
---|
1093 | _potentialRetrievals = -1; |
---|
1094 | _retrievals = -1; |
---|
1095 | } |
---|
1096 | |
---|
1097 | PolyMinorValue::~PolyMinorValue() |
---|
1098 | { |
---|
1099 | p_Delete(&_result, currRing); |
---|
1100 | } |
---|
1101 | |
---|
1102 | poly PolyMinorValue::getResult() const |
---|
1103 | { |
---|
1104 | return _result; |
---|
1105 | } |
---|
1106 | |
---|
1107 | int PolyMinorValue::getWeight () const |
---|
1108 | { |
---|
1109 | /* put measure for size of PolyMinorValue here, e.g. the number of monomials |
---|
1110 | in the cached polynomial */ |
---|
1111 | return pLength(_result); // the number of monomials in the polynomial |
---|
1112 | } |
---|
1113 | |
---|
1114 | string PolyMinorValue::toString () const |
---|
1115 | { |
---|
1116 | char h[20]; |
---|
1117 | |
---|
1118 | /* Let's see whether a cache has been used to compute this MinorValue: */ |
---|
1119 | bool cacheHasBeenUsed = true; |
---|
1120 | if (this->getRetrievals() == -1) cacheHasBeenUsed = false; |
---|
1121 | |
---|
1122 | string s = pString(_result); |
---|
1123 | s += " [retrievals: "; |
---|
1124 | if (cacheHasBeenUsed) { sprintf(h, "%d", this->getRetrievals()); s += h; } |
---|
1125 | else s += "/"; |
---|
1126 | s += " (of "; |
---|
1127 | if (cacheHasBeenUsed) |
---|
1128 | { |
---|
1129 | sprintf(h, "%d", this->getPotentialRetrievals()); |
---|
1130 | s += h; |
---|
1131 | } |
---|
1132 | else s += "/"; |
---|
1133 | s += "), *: "; |
---|
1134 | sprintf(h, "%d", this->getMultiplications()); s += h; |
---|
1135 | s += " (accumulated: "; |
---|
1136 | sprintf(h, "%d", this->getAccumulatedMultiplications()); s += h; |
---|
1137 | s += "), +: "; |
---|
1138 | sprintf(h, "%d", this->getAdditions()); s += h; |
---|
1139 | s += " (accumulated: "; |
---|
1140 | sprintf(h, "%d", this->getAccumulatedAdditions()); s += h; |
---|
1141 | s += "), rank: "; |
---|
1142 | if (cacheHasBeenUsed) { sprintf(h, "%d", this->getUtility()); s += h; } |
---|
1143 | else s += "/"; |
---|
1144 | s += "]"; |
---|
1145 | return s; |
---|
1146 | } |
---|
1147 | |
---|
1148 | PolyMinorValue::PolyMinorValue (const PolyMinorValue& mv) |
---|
1149 | { |
---|
1150 | _result = pCopy(mv.getResult()); |
---|
1151 | _retrievals = mv.getRetrievals(); |
---|
1152 | _potentialRetrievals = mv.getPotentialRetrievals(); |
---|
1153 | _multiplications = mv.getMultiplications(); |
---|
1154 | _additions = mv.getAdditions(); |
---|
1155 | _accumulatedMult = mv.getAccumulatedMultiplications(); |
---|
1156 | _accumulatedSum = mv.getAccumulatedAdditions(); |
---|
1157 | } |
---|
1158 | |
---|
1159 | void PolyMinorValue::operator= (const PolyMinorValue& mv) |
---|
1160 | { |
---|
1161 | if (_result != mv.getResult()) pDelete(&_result); |
---|
1162 | _result = pCopy(mv.getResult()); |
---|
1163 | _retrievals = mv.getRetrievals(); |
---|
1164 | _potentialRetrievals = mv.getPotentialRetrievals(); |
---|
1165 | _multiplications = mv.getMultiplications(); |
---|
1166 | _additions = mv.getAdditions(); |
---|
1167 | _accumulatedMult = mv.getAccumulatedMultiplications(); |
---|
1168 | _accumulatedSum = mv.getAccumulatedAdditions(); |
---|
1169 | } |
---|