1 | /*********************************************************************************** |
---|
2 | * Author: Sebastian Jambor, 2011 * |
---|
3 | * (C) GPL (e-mail from June 6, 2012, 17:00:31 MESZ) * |
---|
4 | * sebastian@momo.math.rwth-aachen.de * |
---|
5 | * * |
---|
6 | * Implementation of an algorithm to compute the minimal polynomial of a * |
---|
7 | * square matrix A \in \F_p^{n \times n}. * |
---|
8 | * * |
---|
9 | * Let V_1, \dotsc, V_k \in \F_p^{1 \times n} be vectors such that * |
---|
10 | * V_1, V_1*A, V_1*A^2, \dotsc, V_2, V_2*A, V_2*A^2, \dotsc * |
---|
11 | * generate \F_p^{1 \times n}. * |
---|
12 | * Let mpV_i be the monic polynomial of smallest degree such that * |
---|
13 | * V_i*mpV_i(A) = 0. * |
---|
14 | * Then the minimal polynomial of A is the least common multiple of the mpV_i. * |
---|
15 | * * |
---|
16 | * * |
---|
17 | * The algorithm uses two classes: * |
---|
18 | * * |
---|
19 | * 1. LinearDependencyMatrix * |
---|
20 | * This is used to find a linear dependency between the vectors V, V*A, \ldotsc. * |
---|
21 | * To to this, it has an internal n \times (2n + 1) matrix. * |
---|
22 | * Every time a new row VA^i is inserted, it is reduced via Gauss' Algorithm, * |
---|
23 | * using right hand sides. If VA^i is reduced to zero, then the vectors are * |
---|
24 | * linearly dependend, and the dependency can be read of at the right hand sides. * |
---|
25 | * * |
---|
26 | * Example: Compute the minimal polynomial of A = [[0,1],[1,1]] with V = [1,0] * |
---|
27 | * over F_5. * |
---|
28 | * Then LinearDependencyMatrix will be: * |
---|
29 | * After the first step (i.e., after inserting V = [1,0]): * |
---|
30 | * ( 1 0 | 1 0 0 ) * |
---|
31 | * After the second step (i.e., after inserting VA = [0,1]): * |
---|
32 | * ( 1 0 | 1 0 0 ) * |
---|
33 | * ( 0 1 | 0 1 0 ) * |
---|
34 | * In the third step, where VA^2 = [1,1] is inserted, the row * |
---|
35 | * ( 1 1 | 0 0 1 ) * |
---|
36 | * is reduced to * |
---|
37 | * ( 0 0 | 4 4 1) * |
---|
38 | * Thus VA^2 + 4*VA + 4*V = 0, so mpV = t^2 + 4*t + 4. * |
---|
39 | * * |
---|
40 | * * |
---|
41 | * * |
---|
42 | * 2. NewVectorMatrix * |
---|
43 | * If one vector V_1 is not enough to compute the minimal polynomial, i.e. the * |
---|
44 | * vectors V_1, V_1*A, V_1*A^2, \dotsc don't generate \F_p^{1 \times n}, then * |
---|
45 | * we have to find a vector V_2 which is not in the span of the V_1*A^i. * |
---|
46 | * This is done with NewVectorMatrix, which simply holds a reduced n \times n * |
---|
47 | * matrix, where the rows generate the span of the V_jA^i. * |
---|
48 | * To find a vector which is not in the span, simply take the k-th standard * |
---|
49 | * vector, where k is not a pivot element of A. * |
---|
50 | * * |
---|
51 | * * |
---|
52 | * For efficiency reasons, the matrix entries in LinearDependencyMatrix * |
---|
53 | * and NewVectorMatrix are not initialized to zero. Instead, a variable rows * |
---|
54 | * is used to indicate the number of rows which are nonzero (all further * |
---|
55 | * rows are regarded as zero rows). Furthermore, the array pivots stores the * |
---|
56 | * pivot entries of the rows, i.e., pivots[i] indicates the position of the * |
---|
57 | * first non-zero entry in the i-th row, which is normalized to 1. * |
---|
58 | ***********************************************************************************/ |
---|
59 | |
---|
60 | |
---|
61 | |
---|
62 | |
---|
63 | #ifndef MINPOLY_H |
---|
64 | #define MINPOLY_H |
---|
65 | |
---|
66 | class NewVectorMatrix; |
---|
67 | |
---|
68 | class LinearDependencyMatrix { |
---|
69 | friend class NewVectorMatrix; |
---|
70 | private: |
---|
71 | unsigned p; |
---|
72 | unsigned long n; |
---|
73 | unsigned long **matrix; |
---|
74 | unsigned long *tmprow; |
---|
75 | unsigned *pivots; |
---|
76 | unsigned rows; |
---|
77 | |
---|
78 | public: |
---|
79 | LinearDependencyMatrix(unsigned n, unsigned long p); |
---|
80 | ~LinearDependencyMatrix(); |
---|
81 | |
---|
82 | // reset the matrix, so that we can use it to find another linear dependence |
---|
83 | // Note: there is no need to reinitalize the matrix and vectors! |
---|
84 | void resetMatrix(); |
---|
85 | |
---|
86 | |
---|
87 | // return the first nonzero entry in row (only the first n entries are checked, |
---|
88 | // regardless of the size, since we will also apply this for rows with |
---|
89 | // right hand sides). |
---|
90 | // If the first n entries are all zero, return -1 (so this gives a check if row is the zero vector) |
---|
91 | int firstNonzeroEntry(unsigned long *row); |
---|
92 | |
---|
93 | void reduceTmpRow(); |
---|
94 | |
---|
95 | void normalizeTmp(unsigned i); |
---|
96 | |
---|
97 | bool findLinearDependency(unsigned long* newRow, unsigned long* dep); |
---|
98 | |
---|
99 | //friend std::ostream& operator<<(std::ostream& out, const LinearDependencyMatrix& mat); |
---|
100 | }; |
---|
101 | |
---|
102 | |
---|
103 | // This class is used to find a new vector for the next step in the |
---|
104 | // minimal polynomial algorithm. |
---|
105 | class NewVectorMatrix { |
---|
106 | private: |
---|
107 | unsigned p; |
---|
108 | unsigned long n; |
---|
109 | unsigned long **matrix; |
---|
110 | unsigned *pivots; |
---|
111 | unsigned *nonPivots; |
---|
112 | unsigned rows; |
---|
113 | |
---|
114 | public: |
---|
115 | NewVectorMatrix(unsigned n, unsigned long p); |
---|
116 | ~NewVectorMatrix(); |
---|
117 | |
---|
118 | // return the first nonzero entry in row (only the first n entries are checked, |
---|
119 | // regardless of the size, since we will also apply this for rows with |
---|
120 | // right hand sides). |
---|
121 | // If the first n entries are all zero, return -1 (so this gives a check if row is the zero vector) |
---|
122 | int firstNonzeroEntry(unsigned long *row); |
---|
123 | |
---|
124 | // // let piv be the pivot position of row i. then this method eliminates entry piv of row |
---|
125 | // void subtractIthRow(unsigned long *row, unsigned i); |
---|
126 | |
---|
127 | void normalizeRow(unsigned long *row, unsigned i); |
---|
128 | |
---|
129 | void insertRow(unsigned long* row); |
---|
130 | |
---|
131 | // insert each row of the matrix |
---|
132 | void insertMatrix(LinearDependencyMatrix& mat); |
---|
133 | |
---|
134 | // Finds the smallest integer between 0 and n-1, which is not a pivot position. |
---|
135 | // If no such number exists, return -1. |
---|
136 | int findSmallestNonpivot(); |
---|
137 | |
---|
138 | int findLargestNonpivot(); |
---|
139 | }; |
---|
140 | |
---|
141 | |
---|
142 | // compute the minimal polynomial of matrix \in \F_p^{n \times n}. |
---|
143 | // The result is an array of length n + 1, where the i-th entry represents the i-th coefficient |
---|
144 | // of the minimal polynomial. |
---|
145 | // |
---|
146 | // result should be deleted with delete[] |
---|
147 | unsigned long* computeMinimalPolynomial(unsigned long** matrix, unsigned n, unsigned long p); |
---|
148 | |
---|
149 | |
---|
150 | |
---|
151 | ///////////////////////////////// |
---|
152 | // auxiliary methods |
---|
153 | ///////////////////////////////// |
---|
154 | |
---|
155 | |
---|
156 | // compute x^(-1) mod p |
---|
157 | // |
---|
158 | // NOTE: this uses long long instead of unsigned long, for the XEA to work. |
---|
159 | // This shouldn't be a problem, since p has to be < 2^31 for the multiplication to work anyway. |
---|
160 | // |
---|
161 | // There is no need to distinguish between 32bit and 64bit architectures: On 64bit, long long |
---|
162 | // is the same as long, and on 32bit, we need long long so that the variables can hold negative values. |
---|
163 | unsigned long modularInverse(long long x, long long p); |
---|
164 | |
---|
165 | void vectorMatrixMult(unsigned long* vec, unsigned long **mat, unsigned **nonzeroIndices, unsigned *nonzeroCounts, unsigned long* result, unsigned n, unsigned long p); |
---|
166 | |
---|
167 | // a is a vector of length at least dega + 1, and q is a vector of length at least degq + 1, |
---|
168 | // representing polynomials \sum_i a[i]t^i \in \F_p[t]. |
---|
169 | // After this method, a will be a mod q. |
---|
170 | // Method will change dega accordingly. |
---|
171 | void rem(unsigned long* a, unsigned long* q, unsigned long p, int & dega, int degq); |
---|
172 | |
---|
173 | // a is a vector of length at least dega + 1, and q is a vector of length at least degq + 1, |
---|
174 | // representing polynomials \sum_i a[i]t^i \in \F_p[t]. |
---|
175 | // After this method, a will be a / q. |
---|
176 | // Method will change dega accordingly. |
---|
177 | void quo(unsigned long* a, unsigned long* q, unsigned long p, int & dega, int degq); |
---|
178 | |
---|
179 | |
---|
180 | // NOTE: since we don't know the size of result (the list can be longer than the degree of the polynomial), |
---|
181 | // every entry has to be preinitialized to zero! |
---|
182 | void mult(unsigned long* result, unsigned long* a, unsigned long* b, unsigned long p, int dega, int degb); |
---|
183 | |
---|
184 | |
---|
185 | // g = gcd(a,b). |
---|
186 | // returns deg(g) |
---|
187 | // |
---|
188 | // NOTE: since we don't know the size of g, every entry has to be preinitialized to zero! |
---|
189 | int gcd(unsigned long* g, unsigned long* a, unsigned long* b, unsigned long p, int dega, int degb); |
---|
190 | |
---|
191 | // l = lcm(a,b). |
---|
192 | // returns deg(l) |
---|
193 | // |
---|
194 | // has side effects for a |
---|
195 | // |
---|
196 | // NOTE: since we don't know the size of l, every entry has to be preinitialized to zero! |
---|
197 | int lcm(unsigned long* l, unsigned long* a, unsigned long* b, unsigned long p, int dega, int degb); |
---|
198 | |
---|
199 | |
---|
200 | // method suggested by Hans Schoenemann to multiply elements in finite fields |
---|
201 | // on 32bit and 64bit machines |
---|
202 | static inline unsigned long multMod(unsigned long a, unsigned long b, unsigned long p) |
---|
203 | { |
---|
204 | #if SIZEOF_LONG == 4 |
---|
205 | #define ULONG64 (unsigned long long) |
---|
206 | #else |
---|
207 | #define ULONG64 (unsigned long) |
---|
208 | #endif |
---|
209 | return (unsigned long)((ULONG64 a)*(ULONG64 b) % (ULONG64 p)); |
---|
210 | } |
---|
211 | |
---|
212 | #endif // MINPOLY_H |
---|