1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* $Id: longtrans.cc 12469 2011-02-25 13:38:49Z seelisch $ */ |
---|
5 | /* |
---|
6 | * ABSTRACT: numbers in transcendental field extensions, i.e., |
---|
7 | in rational function fields |
---|
8 | */ |
---|
9 | |
---|
10 | #include <stdio.h> |
---|
11 | #include <string.h> |
---|
12 | #include <kernel/mod2.h> |
---|
13 | #include <kernel/structs.h> |
---|
14 | #include <omalloc/omalloc.h> |
---|
15 | #include <kernel/febase.h> |
---|
16 | #include <kernel/longrat.h> |
---|
17 | #include <kernel/modulop.h> |
---|
18 | #include <kernel/numbers.h> |
---|
19 | #include <kernel/polys.h> |
---|
20 | #include <kernel/ideals.h> |
---|
21 | #include <kernel/ring.h> |
---|
22 | #ifdef HAVE_FACTORY |
---|
23 | #define SI_DONT_HAVE_GLOBAL_VARS |
---|
24 | #include <factory/factory.h> |
---|
25 | #include <kernel/clapsing.h> |
---|
26 | #include <kernel/clapconv.h> |
---|
27 | #endif |
---|
28 | #include <kernel/longtrans.h> |
---|
29 | #include <kernel/longalg.h> |
---|
30 | |
---|
31 | ring nacRing; |
---|
32 | int ntIsChar0; |
---|
33 | ring ntMapRing; |
---|
34 | int ntParsToCopy; |
---|
35 | int ntNumbOfPar; |
---|
36 | |
---|
37 | numberfunc nacMult, nacSub, nacAdd, nacDiv, nacIntDiv; |
---|
38 | number (*ntMap)(number from); |
---|
39 | number (*nacGcd)(number a, number b, const ring r); |
---|
40 | number (*nacLcm)(number a, number b, const ring r); |
---|
41 | number (*nacInit)(int i, const ring r); |
---|
42 | int (*nacInt)(number &n, const ring r); |
---|
43 | void (*nacNormalize)(number &a); |
---|
44 | number (*nacNeg)(number a); |
---|
45 | number (*nacCopy)(number a); |
---|
46 | number (*nacInvers)(number a); |
---|
47 | BOOLEAN (*nacIsZero)(number a); |
---|
48 | BOOLEAN (*nacIsOne)(number a); |
---|
49 | BOOLEAN (*nacIsMOne)(number a); |
---|
50 | BOOLEAN (*nacGreaterZero)(number a); |
---|
51 | number (*nacMap)(number); |
---|
52 | |
---|
53 | #ifdef LDEBUG |
---|
54 | #define ntTest(a) ntDBTest(a,__FILE__,__LINE__) |
---|
55 | BOOLEAN ntDBTest(number a, const char *f,const int l); |
---|
56 | #else |
---|
57 | #define ntTest(a) |
---|
58 | #endif |
---|
59 | |
---|
60 | static number ntdGcd( number a, number b, const ring r) { return nacInit(1,r); } |
---|
61 | /*2 |
---|
62 | * sets the appropriate operators |
---|
63 | */ |
---|
64 | void ntSetChar(int i, ring r) |
---|
65 | { |
---|
66 | assume((r->minpoly == NULL) && |
---|
67 | (r->minideal == NULL) ); |
---|
68 | |
---|
69 | if (naI!=NULL) |
---|
70 | { |
---|
71 | int j; |
---|
72 | for (j=naI->anz-1; j>=0; j--) |
---|
73 | p_Delete (&naI->liste[j],nacRing); |
---|
74 | omFreeSize((ADDRESS)naI->liste,naI->anz*sizeof(napoly)); |
---|
75 | omFreeBin((ADDRESS)naI, snaIdeal_bin); |
---|
76 | naI=NULL; |
---|
77 | } |
---|
78 | ntMap = ntCopy; |
---|
79 | naMinimalPoly = NULL; |
---|
80 | |
---|
81 | ntNumbOfPar=rPar(r); |
---|
82 | if (i == 1) |
---|
83 | ntIsChar0 = 1; |
---|
84 | else if (i < 0) |
---|
85 | { |
---|
86 | ntIsChar0 = 0; |
---|
87 | npSetChar(-i, r->algring); // to be changed HS |
---|
88 | } |
---|
89 | #ifdef TEST |
---|
90 | else |
---|
91 | { |
---|
92 | Print("ntSetChar:c=%d param=%d\n",i,rPar(r)); |
---|
93 | } |
---|
94 | #endif |
---|
95 | nacRing = r->algring; |
---|
96 | nacInit = nacRing->cf->cfInit; |
---|
97 | nacInt = nacRing->cf->n_Int; |
---|
98 | nacCopy = nacRing->cf->nCopy; |
---|
99 | nacAdd = nacRing->cf->nAdd; |
---|
100 | nacSub = nacRing->cf->nSub; |
---|
101 | nacNormalize = nacRing->cf->nNormalize; |
---|
102 | nacNeg = nacRing->cf->nNeg; |
---|
103 | nacIsZero = nacRing->cf->nIsZero; |
---|
104 | nacGreaterZero = nacRing->cf->nGreaterZero; |
---|
105 | nacIsOne = nacRing->cf->nIsOne; |
---|
106 | nacIsMOne = nacRing->cf->nIsMOne; |
---|
107 | nacGcd = nacRing->cf->nGcd; |
---|
108 | nacLcm = nacRing->cf->nLcm; |
---|
109 | nacMult = nacRing->cf->nMult; |
---|
110 | nacDiv = nacRing->cf->nDiv; |
---|
111 | nacIntDiv = nacRing->cf->nIntDiv; |
---|
112 | nacInvers = nacRing->cf->nInvers; |
---|
113 | } |
---|
114 | |
---|
115 | /*============= procedure for polynomials: napXXXX =======================*/ |
---|
116 | |
---|
117 | #ifdef LDEBUG |
---|
118 | void napTest(napoly p) |
---|
119 | { |
---|
120 | if (ntIsChar0) |
---|
121 | { |
---|
122 | while (p != NULL) |
---|
123 | { |
---|
124 | nlDBTest(pGetCoeff(p), "", 0); |
---|
125 | pIter(p); |
---|
126 | } |
---|
127 | } |
---|
128 | } |
---|
129 | #else |
---|
130 | #define napTest(p) ((void) 0) |
---|
131 | #endif |
---|
132 | |
---|
133 | /* creates a new napoly that consists of a |
---|
134 | single coefficient (provided as a number); |
---|
135 | the provided number is NOT const */ |
---|
136 | napoly napInitz(number z) |
---|
137 | { |
---|
138 | napoly a = (napoly)p_Init(nacRing); |
---|
139 | pGetCoeff(a) = z; |
---|
140 | return a; |
---|
141 | } |
---|
142 | |
---|
143 | /* creates a new napoly which is the |
---|
144 | negative inverse of the argument; |
---|
145 | keeps p */ |
---|
146 | napoly napCopyNeg(const napoly p) |
---|
147 | { |
---|
148 | napoly r = napCopy(p); |
---|
149 | r = (napoly)p_Neg((poly)r, nacRing); |
---|
150 | return r; |
---|
151 | } |
---|
152 | |
---|
153 | /* modifies the napoly p to p*z, i.e. |
---|
154 | in-place multiplication of p with the number z; |
---|
155 | keeps z */ |
---|
156 | void napMultN(napoly p, const number z) |
---|
157 | { |
---|
158 | number t; |
---|
159 | while (p != NULL) |
---|
160 | { |
---|
161 | t = nacMult(pGetCoeff(p), z); |
---|
162 | nacNormalize(t); |
---|
163 | n_Delete(&pGetCoeff(p),nacRing); |
---|
164 | pGetCoeff(p) = t; |
---|
165 | pIter(p); |
---|
166 | } |
---|
167 | } |
---|
168 | |
---|
169 | /* division of f by g with remainder |
---|
170 | (with respect to the first variable), |
---|
171 | f = g * q + r, |
---|
172 | assumes that the exponent of the first variable |
---|
173 | in f is greater than or equal to that in g |
---|
174 | sets q, r; destroys f; keeps g */ |
---|
175 | void napDivMod(napoly f, const napoly g, napoly *q, napoly *r) |
---|
176 | { |
---|
177 | napoly a, h, b, qq; |
---|
178 | |
---|
179 | qq = (napoly)p_Init(nacRing); |
---|
180 | pNext(qq) = b = NULL; |
---|
181 | p_Normalize(g, nacRing); |
---|
182 | p_Normalize(f, nacRing); |
---|
183 | a = f; |
---|
184 | assume(p_GetExp(a, 1, nacRing) >= p_GetExp(g, 1, nacRing)); |
---|
185 | do |
---|
186 | { |
---|
187 | napSetExp(qq, 1, p_GetExp(a, 1, nacRing) - p_GetExp(g, 1, nacRing)); |
---|
188 | p_Setm(qq, nacRing); |
---|
189 | pGetCoeff(qq) = nacDiv(pGetCoeff(a), pGetCoeff(g)); |
---|
190 | nacNormalize(pGetCoeff(qq)); |
---|
191 | b = napAdd(b, napCopy(qq)); |
---|
192 | pGetCoeff(qq) = nacNeg(pGetCoeff(qq)); |
---|
193 | h = napCopy(g); |
---|
194 | napMultT(h, qq); |
---|
195 | p_Normalize(h, nacRing); |
---|
196 | n_Delete(&pGetCoeff(qq), nacRing); |
---|
197 | a = napAdd(a, h); |
---|
198 | } |
---|
199 | while ((a != NULL) && |
---|
200 | (p_GetExp(a, 1, nacRing) >= p_GetExp(g, 1, nacRing))); |
---|
201 | omFreeBinAddr(qq); |
---|
202 | *q = b; |
---|
203 | *r = a; |
---|
204 | } |
---|
205 | |
---|
206 | /* remainder of division of f by g |
---|
207 | (with respect to the first variable), |
---|
208 | f = g * q + r, |
---|
209 | assumes that the exponent of the first variable |
---|
210 | in f is greater than or equal to that in g |
---|
211 | destroys f; keeps g; returns r */ |
---|
212 | napoly napRemainder(napoly f, const napoly g) |
---|
213 | { |
---|
214 | napoly a, h, qq; |
---|
215 | |
---|
216 | qq = (napoly)p_Init(nacRing); |
---|
217 | pNext(qq) = NULL; |
---|
218 | p_Normalize(g, nacRing); |
---|
219 | p_Normalize(f, nacRing); |
---|
220 | a = f; |
---|
221 | assume(p_GetExp(a, 1, nacRing) >= p_GetExp(g, 1, nacRing)); |
---|
222 | do |
---|
223 | { |
---|
224 | napSetExp(qq, 1, p_GetExp(a, 1, nacRing) - p_GetExp(g, 1, nacRing)); |
---|
225 | napSetm(qq); |
---|
226 | pGetCoeff(qq) = nacDiv(pGetCoeff(a), pGetCoeff(g)); |
---|
227 | pGetCoeff(qq) = nacNeg(pGetCoeff(qq)); |
---|
228 | nacNormalize(pGetCoeff(qq)); |
---|
229 | h = napCopy(g); |
---|
230 | napMultT(h, qq); |
---|
231 | p_Normalize(h, nacRing); |
---|
232 | n_Delete(&pGetCoeff(qq), nacRing); |
---|
233 | a = napAdd(a, h); |
---|
234 | } |
---|
235 | while ((a != NULL) && |
---|
236 | (p_GetExp(a,1,nacRing) >= p_GetExp(g,1,nacRing))); |
---|
237 | omFreeBinAddr(qq); |
---|
238 | return a; |
---|
239 | } |
---|
240 | |
---|
241 | /* returns z such that z * x mod c = 1; |
---|
242 | if there is no solution, an error is reported and |
---|
243 | some intermediate version of x is returned; |
---|
244 | modifies x; keeps c */ |
---|
245 | napoly napInvers(napoly x, const napoly c) |
---|
246 | { |
---|
247 | napoly y, r, qa, qn, q; |
---|
248 | number t, h; |
---|
249 | |
---|
250 | if (p_GetExp(x, 1, nacRing) >= p_GetExp(c, 1, nacRing)) |
---|
251 | x = napRemainder(x, c); |
---|
252 | if (x == NULL) |
---|
253 | { |
---|
254 | WerrorS("zero divisor found - your minpoly is not irreducible"); |
---|
255 | return NULL; |
---|
256 | } |
---|
257 | if (p_GetExp(x, 1, nacRing) == 0) |
---|
258 | { |
---|
259 | if (!nacIsOne(pGetCoeff(x))) |
---|
260 | { |
---|
261 | nacNormalize(pGetCoeff(x)); |
---|
262 | t = nacInvers(pGetCoeff(x)); |
---|
263 | nacNormalize(t); |
---|
264 | n_Delete(&pGetCoeff(x), nacRing); |
---|
265 | pGetCoeff(x) = t; |
---|
266 | } |
---|
267 | return x; |
---|
268 | } |
---|
269 | y = napCopy(c); |
---|
270 | napDivMod(y, x, &qa, &r); |
---|
271 | if (r == NULL) |
---|
272 | { |
---|
273 | WerrorS("x is not invertible modulo c(1)"); |
---|
274 | return x; |
---|
275 | } |
---|
276 | if (p_GetExp(r, 1, nacRing) == 0) |
---|
277 | { |
---|
278 | nacNormalize(pGetCoeff(r)); |
---|
279 | t = nacInvers(pGetCoeff(r)); |
---|
280 | nacNormalize(t); |
---|
281 | t = nacNeg(t); |
---|
282 | napMultN(qa, t); |
---|
283 | n_Delete(&t, nacRing); |
---|
284 | p_Normalize(qa, nacRing); |
---|
285 | p_Delete(&x, nacRing); |
---|
286 | p_Delete(&r, nacRing); |
---|
287 | return qa; |
---|
288 | } |
---|
289 | y = x; |
---|
290 | x = r; |
---|
291 | napDivMod(y, x, &q, &r); |
---|
292 | if (r == NULL) |
---|
293 | { |
---|
294 | WerrorS("x is not invertible modulo c(2)"); |
---|
295 | return x; |
---|
296 | } |
---|
297 | if (p_GetExp(r, 1, nacRing) == 0) |
---|
298 | { |
---|
299 | q = p_Mult_q(q, qa,nacRing); |
---|
300 | q = napAdd(q, p_ISet(1, nacRing)); |
---|
301 | nacNormalize(pGetCoeff(r)); |
---|
302 | t = nacInvers(pGetCoeff(r)); |
---|
303 | napMultN(q, t); |
---|
304 | p_Normalize(q, nacRing); |
---|
305 | n_Delete(&t, nacRing); |
---|
306 | p_Delete(&x, nacRing); |
---|
307 | p_Delete(&r, nacRing); |
---|
308 | if (p_GetExp(q, 1, nacRing) >= p_GetExp(c, 1, nacRing)) |
---|
309 | q = napRemainder(q, c); |
---|
310 | return q; |
---|
311 | } |
---|
312 | q = p_Mult_q(q, napCopy(qa), nacRing); |
---|
313 | q = napAdd(q, p_ISet(1, nacRing)); |
---|
314 | qa = napNeg(qa); |
---|
315 | loop |
---|
316 | { |
---|
317 | y = x; |
---|
318 | x = r; |
---|
319 | napDivMod(y, x, &qn, &r); |
---|
320 | if (r == NULL) |
---|
321 | { |
---|
322 | WerrorS("zero divisor found - your minpoly is not irreducible"); |
---|
323 | return x; |
---|
324 | } |
---|
325 | if (p_GetExp(r, 1, nacRing) == 0) |
---|
326 | { |
---|
327 | q = p_Mult_q(q, qn, nacRing); |
---|
328 | q = napNeg(q); |
---|
329 | q = napAdd(q, qa); |
---|
330 | nacNormalize(pGetCoeff(r)); |
---|
331 | t = nacInvers(pGetCoeff(r)); |
---|
332 | //nacNormalize(t); |
---|
333 | napMultN(q, t); |
---|
334 | p_Normalize(q, nacRing); |
---|
335 | n_Delete(&t, nacRing); |
---|
336 | p_Delete(&x, nacRing); |
---|
337 | p_Delete(&r, nacRing); |
---|
338 | if (p_GetExp(q, 1, nacRing) >= p_GetExp(c, 1, nacRing)) |
---|
339 | q = napRemainder(q, c); |
---|
340 | return q; |
---|
341 | } |
---|
342 | y = q; |
---|
343 | q = p_Mult_q(napCopy(q), qn, nacRing); |
---|
344 | q = napNeg(q); |
---|
345 | q = napAdd(q, qa); |
---|
346 | qa = y; |
---|
347 | } |
---|
348 | } |
---|
349 | |
---|
350 | /* the degree of a napoly, i.e. the |
---|
351 | maximum of all terms' degrees; |
---|
352 | keeps p */ |
---|
353 | int napMaxDeg(napoly p) |
---|
354 | { |
---|
355 | int d = 0; |
---|
356 | while (p != NULL) |
---|
357 | { |
---|
358 | d=si_max(d, napDeg(p)); |
---|
359 | pIter(p); |
---|
360 | } |
---|
361 | return d; |
---|
362 | } |
---|
363 | |
---|
364 | /* the degree of a napoly, i.e. the |
---|
365 | maximum of all terms' degrees; |
---|
366 | fills l with the number of terms; |
---|
367 | keeps p */ |
---|
368 | int napMaxDegLen(napoly p, int &l) |
---|
369 | { |
---|
370 | int d = 0; |
---|
371 | l = 0; |
---|
372 | while (p != NULL) |
---|
373 | { |
---|
374 | d = si_max(d, napDeg(p)); |
---|
375 | pIter(p); |
---|
376 | l++; |
---|
377 | } |
---|
378 | return d; |
---|
379 | } |
---|
380 | |
---|
381 | |
---|
382 | /* writes a napoly, i.e. a number in the ground field; |
---|
383 | if has_denom is TRUE, the output is ready to be |
---|
384 | followed by a non-trivial denominator; |
---|
385 | r is assumed to be a polynomial ring over an algebraic |
---|
386 | or transcendental field extension; |
---|
387 | keeps all arguments */ |
---|
388 | void napWrite(napoly p, const BOOLEAN has_denom, const ring r) |
---|
389 | { |
---|
390 | ring nacring = r->algring; |
---|
391 | if (p == NULL) StringAppendS("0"); |
---|
392 | else if (p_LmIsConstant(p, nacring)) |
---|
393 | { |
---|
394 | BOOLEAN kl = FALSE; |
---|
395 | if (has_denom) |
---|
396 | { |
---|
397 | number den = nacring->cf->cfGetDenom(pGetCoeff(p), nacring); |
---|
398 | kl = !n_IsOne(den, nacring); |
---|
399 | n_Delete(&den, nacring); |
---|
400 | } |
---|
401 | if (kl) StringAppendS("("); |
---|
402 | n_Write(pGetCoeff(p), nacring); |
---|
403 | if (kl) StringAppendS(")"); |
---|
404 | } |
---|
405 | else |
---|
406 | { |
---|
407 | StringAppendS("("); |
---|
408 | loop |
---|
409 | { |
---|
410 | BOOLEAN wroteCoeff = FALSE; |
---|
411 | if ((p_LmIsConstant(p, nacring)) || |
---|
412 | ((!n_IsOne(pGetCoeff(p), nacring)) && |
---|
413 | (!n_IsMOne(pGetCoeff(p),nacring)))) |
---|
414 | { |
---|
415 | n_Write(pGetCoeff(p), nacring); |
---|
416 | wroteCoeff = (r->ShortOut == 0); |
---|
417 | } |
---|
418 | else if (n_IsMOne(pGetCoeff(p), nacring)) StringAppendS("-"); |
---|
419 | for (int i = 0; i < r->P; i++) |
---|
420 | { |
---|
421 | int e = p_GetExp(p, i+1, nacring); |
---|
422 | if (e > 0) |
---|
423 | { |
---|
424 | if (wroteCoeff) StringAppendS("*"); |
---|
425 | else wroteCoeff=(r->ShortOut==0); |
---|
426 | StringAppendS(r->parameter[i]); |
---|
427 | if (e > 1) |
---|
428 | { |
---|
429 | if (r->ShortOut == 0) StringAppendS("^"); |
---|
430 | StringAppend("%d", e); |
---|
431 | } |
---|
432 | } |
---|
433 | } |
---|
434 | pIter(p); |
---|
435 | if (p == NULL) break; |
---|
436 | if (n_GreaterZero(pGetCoeff(p),nacring)) StringAppendS("+"); |
---|
437 | } |
---|
438 | StringAppendS(")"); |
---|
439 | } |
---|
440 | } |
---|
441 | |
---|
442 | /* helper for napRead */ |
---|
443 | const char* napHandleMons(const char* s, int i, napoly ex) |
---|
444 | { |
---|
445 | int j; |
---|
446 | if (strncmp(s, ntParNames[i], strlen(ntParNames[i])) == 0) |
---|
447 | { |
---|
448 | s += strlen(ntParNames[i]); |
---|
449 | if ((*s >= '0') && (*s <= '9')) |
---|
450 | { |
---|
451 | s = eati(s, &j); |
---|
452 | napAddExp(ex, i+1, j); |
---|
453 | } |
---|
454 | else |
---|
455 | napAddExp(ex, i+1, 1); |
---|
456 | } |
---|
457 | return s; |
---|
458 | } |
---|
459 | |
---|
460 | /* helper for napRead */ |
---|
461 | const char* napHandlePars(const char *s, int i, napoly ex) |
---|
462 | { |
---|
463 | int j; |
---|
464 | if (strcmp(s, ntParNames[i]) == 0) |
---|
465 | { |
---|
466 | s += strlen(ntParNames[i]); |
---|
467 | napSetExp(ex, i+1, 1); |
---|
468 | } |
---|
469 | return s; |
---|
470 | } |
---|
471 | |
---|
472 | /* reads a monomial into the napoly b; |
---|
473 | returns the latter portion of s which |
---|
474 | comes "after" the monomial that has |
---|
475 | just been read; |
---|
476 | modifies b */ |
---|
477 | const char* napRead(const char *s, napoly *b) |
---|
478 | { |
---|
479 | napoly a; |
---|
480 | int i; |
---|
481 | a = (napoly)p_Init(nacRing); |
---|
482 | if ((*s >= '0') && (*s <= '9')) |
---|
483 | { |
---|
484 | s = nacRing->cf->nRead(s, &pGetCoeff(a)); |
---|
485 | if (nacIsZero(pGetCoeff(a))) |
---|
486 | { |
---|
487 | p_LmDelete(&a, nacRing); |
---|
488 | *b = NULL; |
---|
489 | return s; |
---|
490 | } |
---|
491 | } |
---|
492 | else pGetCoeff(a) = nacInit(1,nacRing); |
---|
493 | i = 0; |
---|
494 | const char* olds = s; |
---|
495 | loop |
---|
496 | { |
---|
497 | s = napHandlePars(s, i, a); |
---|
498 | if (olds == s) i++; |
---|
499 | else if (*s == '\0') |
---|
500 | { |
---|
501 | *b = a; |
---|
502 | return s; |
---|
503 | } |
---|
504 | if (i >= ntNumbOfPar) break; |
---|
505 | } |
---|
506 | i = 0; |
---|
507 | loop |
---|
508 | { |
---|
509 | olds = s; |
---|
510 | s = napHandleMons(s, i, a); |
---|
511 | if (olds == s) i++; |
---|
512 | else i = 0; |
---|
513 | if ((*s == '\0') || (i >= ntNumbOfPar)) break; |
---|
514 | } |
---|
515 | *b = a; |
---|
516 | return s; |
---|
517 | } |
---|
518 | |
---|
519 | /* considers the lowest terms la of a and lb of b; |
---|
520 | returns the minimum of the two exponents of the |
---|
521 | first variable in la and lb; |
---|
522 | keeps a and b */ |
---|
523 | int napExp(napoly a, napoly b) |
---|
524 | { |
---|
525 | while (pNext(a) != NULL) pIter(a); |
---|
526 | int m = p_GetExp(a, 1, nacRing); |
---|
527 | if (m == 0) return 0; |
---|
528 | while (pNext(b) != NULL) pIter(b); |
---|
529 | int mm = p_GetExp(b, 1, nacRing); |
---|
530 | if (m > mm) m = mm; |
---|
531 | return m; |
---|
532 | } |
---|
533 | |
---|
534 | /* returns the smallest i-th exponent in a and b; |
---|
535 | used to find it in a fraction; |
---|
536 | keeps a and b */ |
---|
537 | int napExpi(int i, napoly a, napoly b) |
---|
538 | { |
---|
539 | if (a == NULL || b == NULL) return 0; |
---|
540 | int m = p_GetExp(a, i+1, nacRing); |
---|
541 | if (m == 0) return 0; |
---|
542 | while (pNext(a) != NULL) |
---|
543 | { |
---|
544 | pIter(a); |
---|
545 | if (m > p_GetExp(a, i+1, nacRing)) |
---|
546 | { |
---|
547 | m = p_GetExp(a, i+1, nacRing); |
---|
548 | if (m == 0) return 0; |
---|
549 | } |
---|
550 | } |
---|
551 | do |
---|
552 | { |
---|
553 | if (m > p_GetExp(b, i+1, nacRing)) |
---|
554 | { |
---|
555 | m = p_GetExp(b, i+1, nacRing); |
---|
556 | if (m == 0) return 0; |
---|
557 | } |
---|
558 | pIter(b); |
---|
559 | } |
---|
560 | while (b != NULL); |
---|
561 | return m; |
---|
562 | } |
---|
563 | |
---|
564 | /* divides out the content of the given napoly; |
---|
565 | modifies the argument */ |
---|
566 | void napContent(napoly ph) |
---|
567 | { |
---|
568 | number h, d; |
---|
569 | napoly p; |
---|
570 | |
---|
571 | assume(p != NULL); |
---|
572 | p = ph; |
---|
573 | if (nacIsOne(pGetCoeff(p))) return; |
---|
574 | h = nacCopy(pGetCoeff(p)); |
---|
575 | pIter(p); |
---|
576 | do |
---|
577 | { |
---|
578 | d = nacGcd(pGetCoeff(p), h, nacRing); |
---|
579 | if (nacIsOne(d)) |
---|
580 | { |
---|
581 | n_Delete(&h,nacRing); |
---|
582 | n_Delete(&d,nacRing); |
---|
583 | return; |
---|
584 | } |
---|
585 | n_Delete(&h, nacRing); |
---|
586 | h = d; |
---|
587 | pIter(p); |
---|
588 | } |
---|
589 | while (p != NULL); |
---|
590 | h = nacInvers(d); |
---|
591 | n_Delete(&d, nacRing); |
---|
592 | p = ph; |
---|
593 | while (p != NULL) |
---|
594 | { |
---|
595 | d = nacMult(pGetCoeff(p), h); |
---|
596 | n_Delete(&pGetCoeff(p), nacRing); |
---|
597 | pGetCoeff(p) = d; |
---|
598 | pIter(p); |
---|
599 | } |
---|
600 | n_Delete(&h, nacRing); |
---|
601 | } |
---|
602 | |
---|
603 | void napCleardenom(napoly ph) |
---|
604 | { |
---|
605 | number d, h; |
---|
606 | napoly p; |
---|
607 | |
---|
608 | if (!ntIsChar0) return; |
---|
609 | p = ph; |
---|
610 | h = nacInit(1,nacRing); |
---|
611 | while (p!=NULL) |
---|
612 | { |
---|
613 | d = nacLcm(h, pGetCoeff(p), nacRing); |
---|
614 | n_Delete(&h,nacRing); |
---|
615 | h = d; |
---|
616 | pIter(p); |
---|
617 | } |
---|
618 | if(!nacIsOne(h)) |
---|
619 | { |
---|
620 | p = ph; |
---|
621 | while (p!=NULL) |
---|
622 | { |
---|
623 | d=nacMult(h, pGetCoeff(p)); |
---|
624 | n_Delete(&pGetCoeff(p),nacRing); |
---|
625 | nacNormalize(d); |
---|
626 | pGetCoeff(p) = d; |
---|
627 | pIter(p); |
---|
628 | } |
---|
629 | n_Delete(&h,nacRing); |
---|
630 | } |
---|
631 | napContent(ph); |
---|
632 | } |
---|
633 | |
---|
634 | napoly napGcd0(napoly a, napoly b) |
---|
635 | { |
---|
636 | number x, y; |
---|
637 | if (!ntIsChar0) return p_ISet(1, nacRing); |
---|
638 | x = nacCopy(pGetCoeff(a)); |
---|
639 | if (nacIsOne(x)) |
---|
640 | return napInitz(x); |
---|
641 | while (pNext(a)!=NULL) |
---|
642 | { |
---|
643 | pIter(a); |
---|
644 | y = nacGcd(x, pGetCoeff(a), nacRing); |
---|
645 | n_Delete(&x,nacRing); |
---|
646 | x = y; |
---|
647 | if (nacIsOne(x)) |
---|
648 | return napInitz(x); |
---|
649 | } |
---|
650 | do |
---|
651 | { |
---|
652 | y = nacGcd(x, pGetCoeff(b), nacRing); |
---|
653 | n_Delete(&x,nacRing); |
---|
654 | x = y; |
---|
655 | if (nacIsOne(x)) |
---|
656 | return napInitz(x); |
---|
657 | pIter(b); |
---|
658 | } |
---|
659 | while (b!=NULL); |
---|
660 | return napInitz(x); |
---|
661 | } |
---|
662 | |
---|
663 | /*3 |
---|
664 | * result =gcd(a,b) |
---|
665 | */ |
---|
666 | napoly napGcd(napoly a, napoly b) |
---|
667 | { |
---|
668 | int i; |
---|
669 | napoly g, x, y, h; |
---|
670 | if ((a==NULL) |
---|
671 | || ((pNext(a)==NULL)&&(nacIsZero(pGetCoeff(a))))) |
---|
672 | { |
---|
673 | if ((b==NULL) |
---|
674 | || ((pNext(b)==NULL)&&(nacIsZero(pGetCoeff(b))))) |
---|
675 | { |
---|
676 | return p_ISet(1,nacRing); |
---|
677 | } |
---|
678 | return napCopy(b); |
---|
679 | } |
---|
680 | else |
---|
681 | if ((b==NULL) |
---|
682 | || ((pNext(b)==NULL)&&(nacIsZero(pGetCoeff(b))))) |
---|
683 | { |
---|
684 | return napCopy(a); |
---|
685 | } |
---|
686 | if (naMinimalPoly != NULL) |
---|
687 | { |
---|
688 | if (p_GetExp(a,1,nacRing) >= p_GetExp(b,1,nacRing)) |
---|
689 | { |
---|
690 | x = a; |
---|
691 | y = b; |
---|
692 | } |
---|
693 | else |
---|
694 | { |
---|
695 | x = b; |
---|
696 | y = a; |
---|
697 | } |
---|
698 | if (!ntIsChar0) g = p_ISet(1,nacRing); |
---|
699 | else g = napGcd0(x, y); |
---|
700 | if (pNext(y)==NULL) |
---|
701 | { |
---|
702 | napSetExp(g,1, napExp(x, y)); |
---|
703 | p_Setm(g,nacRing); |
---|
704 | return g; |
---|
705 | } |
---|
706 | x = napCopy(x); |
---|
707 | y = napCopy(y); |
---|
708 | loop |
---|
709 | { |
---|
710 | h = napRemainder(x, y); |
---|
711 | if (h==NULL) |
---|
712 | { |
---|
713 | napCleardenom(y); |
---|
714 | if (!nacIsOne(pGetCoeff(g))) |
---|
715 | napMultN(y, pGetCoeff(g)); |
---|
716 | p_LmDelete(&g,nacRing); |
---|
717 | return y; |
---|
718 | } |
---|
719 | else if (pNext(h)==NULL) |
---|
720 | break; |
---|
721 | x = y; |
---|
722 | y = h; |
---|
723 | } |
---|
724 | p_Delete(&y,nacRing); |
---|
725 | p_LmDelete(&h,nacRing); |
---|
726 | napSetExp(g,1, napExp(a, b)); |
---|
727 | p_Setm(g,nacRing); |
---|
728 | return g; |
---|
729 | } |
---|
730 | // Hmm ... this is a memory leak |
---|
731 | // x = (napoly)p_Init(nacRing); |
---|
732 | g=a; |
---|
733 | h=b; |
---|
734 | if (!ntIsChar0) x = p_ISet(1,nacRing); |
---|
735 | else x = napGcd0(g,h); |
---|
736 | for (i=(ntNumbOfPar-1); i>=0; i--) |
---|
737 | { |
---|
738 | napSetExp(x,i+1, napExpi(i,a,b)); |
---|
739 | p_Setm(x,nacRing); |
---|
740 | } |
---|
741 | return x; |
---|
742 | } |
---|
743 | |
---|
744 | |
---|
745 | number napLcm(napoly a) |
---|
746 | { |
---|
747 | number h = nacInit(1,nacRing); |
---|
748 | |
---|
749 | if (ntIsChar0) |
---|
750 | { |
---|
751 | number d; |
---|
752 | napoly b = a; |
---|
753 | |
---|
754 | while (b!=NULL) |
---|
755 | { |
---|
756 | d = nacLcm(h, pGetCoeff(b), nacRing); |
---|
757 | n_Delete(&h,nacRing); |
---|
758 | h = d; |
---|
759 | pIter(b); |
---|
760 | } |
---|
761 | } |
---|
762 | return h; |
---|
763 | } |
---|
764 | |
---|
765 | |
---|
766 | /*2 |
---|
767 | * meins (for reduction in algebraic extension) |
---|
768 | * checks if head of p divides head of q |
---|
769 | * doesn't delete p and q |
---|
770 | */ |
---|
771 | BOOLEAN napDivPoly (napoly p, napoly q) |
---|
772 | { |
---|
773 | int j=1; /* evtl. von naNumber.. -1 abwaerts zaehlen */ |
---|
774 | |
---|
775 | while (p_GetExp(p,j,nacRing) <= p_GetExp(q,j,nacRing)) |
---|
776 | { |
---|
777 | j++; |
---|
778 | if (j > ntNumbOfPar) |
---|
779 | return 1; |
---|
780 | } |
---|
781 | return 0; |
---|
782 | } |
---|
783 | |
---|
784 | |
---|
785 | /* |
---|
786 | * only used for reduction in algebraic extensions when naI != NULL; |
---|
787 | * reduces the tail of poly q which is required to be != NULL; |
---|
788 | * modifies q and returns it |
---|
789 | */ |
---|
790 | napoly napRedp (napoly q) |
---|
791 | { |
---|
792 | napoly h = (napoly)p_Init(nacRing); |
---|
793 | int i=0,j; |
---|
794 | |
---|
795 | loop |
---|
796 | { |
---|
797 | if (napDivPoly (naI->liste[i], q)) |
---|
798 | { |
---|
799 | /* h = lt(q)/lt(naI->liste[i])*/ |
---|
800 | pGetCoeff(h) = nacCopy(pGetCoeff(q)); |
---|
801 | for (j=ntNumbOfPar; j>0; j--) |
---|
802 | napSetExp(h,j, p_GetExp(q,j,nacRing) - p_GetExp(naI->liste[i], |
---|
803 | j,nacRing)); |
---|
804 | p_Setm(h,nacRing); |
---|
805 | h = p_Mult_q(h, napCopy(naI->liste[i]),nacRing); |
---|
806 | h = napNeg (h); |
---|
807 | q = napAdd (q, napCopy(h)); |
---|
808 | p_Delete (&pNext(h),nacRing); |
---|
809 | if (q == NULL) |
---|
810 | { |
---|
811 | p_Delete(&h,nacRing); |
---|
812 | return q; |
---|
813 | } |
---|
814 | /* try to reduce further */ |
---|
815 | i = 0; |
---|
816 | } |
---|
817 | else |
---|
818 | { |
---|
819 | i++; |
---|
820 | if (i >= naI->anz) |
---|
821 | { |
---|
822 | p_Delete(&h,nacRing); |
---|
823 | return q; |
---|
824 | } |
---|
825 | } |
---|
826 | } |
---|
827 | } |
---|
828 | |
---|
829 | |
---|
830 | /* |
---|
831 | * only used for reduction in algebraic extensions when naI != NULL; |
---|
832 | * reduces the tail of poly q which is required to be != NULL; |
---|
833 | * modifies q and returns it |
---|
834 | */ |
---|
835 | napoly napTailred (napoly q) |
---|
836 | { |
---|
837 | napoly h; |
---|
838 | |
---|
839 | h = pNext(q); |
---|
840 | while (h != NULL) |
---|
841 | { |
---|
842 | h = napRedp (h); |
---|
843 | if (h == NULL) |
---|
844 | return q; |
---|
845 | pIter(h); |
---|
846 | } |
---|
847 | return q; |
---|
848 | } |
---|
849 | |
---|
850 | napoly napMap(napoly p) |
---|
851 | { |
---|
852 | napoly w, a; |
---|
853 | |
---|
854 | if (p==NULL) return NULL; |
---|
855 | a = w = (napoly)p_Init(nacRing); |
---|
856 | int i; |
---|
857 | for(i=1;i<=ntParsToCopy;i++) |
---|
858 | napSetExp(a,i,napGetExpFrom(p,i,ntMapRing)); |
---|
859 | p_Setm(a,nacRing); |
---|
860 | pGetCoeff(w) = nacMap(pGetCoeff(p)); |
---|
861 | loop |
---|
862 | { |
---|
863 | pIter(p); |
---|
864 | if (p==NULL) break; |
---|
865 | pNext(a) = (napoly)p_Init(nacRing); |
---|
866 | pIter(a); |
---|
867 | for(i=1;i<=ntParsToCopy;i++) |
---|
868 | napSetExp(a,i,napGetExpFrom(p,i,ntMapRing)); |
---|
869 | p_Setm(a,nacRing); |
---|
870 | pGetCoeff(a) = nacMap(pGetCoeff(p)); |
---|
871 | } |
---|
872 | pNext(a) = NULL; |
---|
873 | return w; |
---|
874 | } |
---|
875 | |
---|
876 | napoly napPerm(napoly p,const int *par_perm,const ring src_ring,const nMapFunc nMap) |
---|
877 | { |
---|
878 | napoly w, a; |
---|
879 | |
---|
880 | if (p==NULL) return NULL; |
---|
881 | w = (napoly)p_Init(nacRing); |
---|
882 | int i; |
---|
883 | BOOLEAN not_null=TRUE; |
---|
884 | loop |
---|
885 | { |
---|
886 | for(i=1;i<=rPar(src_ring);i++) |
---|
887 | { |
---|
888 | int e; |
---|
889 | if (par_perm!=NULL) e=par_perm[i-1]; |
---|
890 | else e=-i; |
---|
891 | int ee=napGetExpFrom(p,i,src_ring); |
---|
892 | if (e<0) |
---|
893 | napSetExp(w,-e,ee); |
---|
894 | else if (ee>0) |
---|
895 | not_null=FALSE; |
---|
896 | } |
---|
897 | pGetCoeff(w) = nMap(pGetCoeff(p)); |
---|
898 | p_Setm(w,nacRing); |
---|
899 | pIter(p); |
---|
900 | if (!not_null) |
---|
901 | { |
---|
902 | if (p==NULL) |
---|
903 | { |
---|
904 | p_Delete(&w,nacRing); |
---|
905 | return NULL; |
---|
906 | } |
---|
907 | /* else continue*/ |
---|
908 | n_Delete(&(pGetCoeff(w)),nacRing); |
---|
909 | } |
---|
910 | else |
---|
911 | { |
---|
912 | if (p==NULL) return w; |
---|
913 | else |
---|
914 | { |
---|
915 | pNext(w)=napPerm(p,par_perm,src_ring,nMap); |
---|
916 | return w; |
---|
917 | } |
---|
918 | } |
---|
919 | } |
---|
920 | } |
---|
921 | |
---|
922 | /*2 |
---|
923 | * convert a napoly number into a poly |
---|
924 | */ |
---|
925 | poly napPermNumber(number z, int * par_perm, int P, ring oldRing) |
---|
926 | { |
---|
927 | if (z==NULL) return NULL; |
---|
928 | poly res=NULL; |
---|
929 | poly p; |
---|
930 | napoly za=((lnumber)z)->z; |
---|
931 | napoly zb=((lnumber)z)->n; |
---|
932 | nMapFunc nMap=naSetMap(oldRing,currRing); /* todo: check naSetMap |
---|
933 | vs. ntSetMap */ |
---|
934 | if (currRing->parameter!=NULL) |
---|
935 | nMap=currRing->algring->cf->cfSetMap(oldRing->algring, nacRing); |
---|
936 | else |
---|
937 | nMap=currRing->cf->cfSetMap(oldRing->algring, currRing); |
---|
938 | if (nMap==NULL) return NULL; /* emergency exit only */ |
---|
939 | while(za!=NULL) |
---|
940 | { |
---|
941 | p = pInit(); |
---|
942 | pNext(p)=NULL; |
---|
943 | nNew(&pGetCoeff(p)); |
---|
944 | int i; |
---|
945 | for(i=pVariables;i;i--) |
---|
946 | pSetExp(p,i, 0); |
---|
947 | if (rRing_has_Comp(currRing)) pSetComp(p, 0); |
---|
948 | napoly pa=NULL; |
---|
949 | lnumber pan; |
---|
950 | if (currRing->parameter!=NULL) |
---|
951 | { |
---|
952 | assume(oldRing->algring!=NULL); |
---|
953 | pGetCoeff(p)=(number)omAlloc0Bin(rnumber_bin); |
---|
954 | pan=(lnumber)pGetCoeff(p); |
---|
955 | pan->s=2; |
---|
956 | pan->z=napInitz(nMap(pGetCoeff(za))); |
---|
957 | pa=pan->z; |
---|
958 | } |
---|
959 | else |
---|
960 | { |
---|
961 | pGetCoeff(p)=nMap(pGetCoeff(za)); |
---|
962 | } |
---|
963 | for(i=0;i<P;i++) |
---|
964 | { |
---|
965 | if(napGetExpFrom(za,i+1,oldRing)!=0) |
---|
966 | { |
---|
967 | if(par_perm==NULL) |
---|
968 | { |
---|
969 | if ((rPar(currRing)>=i) && (pa!=NULL)) |
---|
970 | { |
---|
971 | napSetExp(pa,i+1,napGetExpFrom(za,i+1,oldRing)); |
---|
972 | p_Setm(pa,nacRing); |
---|
973 | } |
---|
974 | else |
---|
975 | { |
---|
976 | pDelete(&p); |
---|
977 | break; |
---|
978 | } |
---|
979 | } |
---|
980 | else if(par_perm[i]>0) |
---|
981 | pSetExp(p,par_perm[i],napGetExpFrom(za,i+1,oldRing)); |
---|
982 | else if((par_perm[i]<0)&&(pa!=NULL)) |
---|
983 | { |
---|
984 | napSetExp(pa,-par_perm[i], napGetExpFrom(za,i+1,oldRing)); |
---|
985 | p_Setm(pa,nacRing); |
---|
986 | } |
---|
987 | else |
---|
988 | { |
---|
989 | pDelete(&p); |
---|
990 | break; |
---|
991 | } |
---|
992 | } |
---|
993 | } |
---|
994 | if (p!=NULL) |
---|
995 | { |
---|
996 | pSetm(p); |
---|
997 | if (zb!=NULL) |
---|
998 | { |
---|
999 | if (currRing->P>0) |
---|
1000 | { |
---|
1001 | pan->n=napPerm(zb,par_perm,oldRing,nMap); |
---|
1002 | if(pan->n==NULL) /* error in mapping or mapping to variable */ |
---|
1003 | pDelete(&p); |
---|
1004 | } |
---|
1005 | else |
---|
1006 | pDelete(&p); |
---|
1007 | } |
---|
1008 | pTest(p); |
---|
1009 | res=pAdd(res,p); |
---|
1010 | } |
---|
1011 | pIter(za); |
---|
1012 | } |
---|
1013 | pTest(res); |
---|
1014 | return res; |
---|
1015 | } |
---|
1016 | |
---|
1017 | number napGetDenom(number &n, const ring r) |
---|
1018 | { |
---|
1019 | lnumber x=(lnumber)n; |
---|
1020 | if (x->n!=NULL) |
---|
1021 | { |
---|
1022 | lnumber rr=(lnumber)omAlloc0Bin(rnumber_bin); |
---|
1023 | rr->z=p_Copy(x->n,r->algring); |
---|
1024 | rr->s = 2; |
---|
1025 | return (number)rr; |
---|
1026 | } |
---|
1027 | return n_Init(1,r); |
---|
1028 | } |
---|
1029 | |
---|
1030 | number napGetNumerator(number &n, const ring r) |
---|
1031 | { |
---|
1032 | lnumber x=(lnumber)n; |
---|
1033 | lnumber rr=(lnumber)omAlloc0Bin(rnumber_bin); |
---|
1034 | rr->z=p_Copy(x->z,r->algring); |
---|
1035 | rr->s = 2; |
---|
1036 | return (number)rr; |
---|
1037 | } |
---|
1038 | |
---|
1039 | /*================ procedure for rational functions: ntXXXX =================*/ |
---|
1040 | |
---|
1041 | /*2 |
---|
1042 | * z:= i |
---|
1043 | */ |
---|
1044 | number ntInit(int i, const ring r) |
---|
1045 | { |
---|
1046 | if (i!=0) |
---|
1047 | { |
---|
1048 | number c=n_Init(i,r->algring); |
---|
1049 | if (!n_IsZero(c,r->algring)) |
---|
1050 | { |
---|
1051 | poly z=p_Init(r->algring); |
---|
1052 | pSetCoeff0(z,c); |
---|
1053 | lnumber l = (lnumber)omAllocBin(rnumber_bin); |
---|
1054 | l->z = z; |
---|
1055 | l->s = 2; |
---|
1056 | l->n = NULL; |
---|
1057 | return (number)l; |
---|
1058 | } |
---|
1059 | } |
---|
1060 | /*else*/ |
---|
1061 | return NULL; |
---|
1062 | } |
---|
1063 | |
---|
1064 | /*3 |
---|
1065 | * division with remainder: f = g*q + r, |
---|
1066 | * returns r and destroys f |
---|
1067 | */ |
---|
1068 | napoly ntRemainder(napoly f, const napoly g) |
---|
1069 | { |
---|
1070 | napoly a, h, qq; |
---|
1071 | |
---|
1072 | qq = (napoly)p_Init(nacRing); |
---|
1073 | pNext(qq) = NULL; |
---|
1074 | p_Normalize(g, nacRing); |
---|
1075 | p_Normalize(f, nacRing); |
---|
1076 | a = f; |
---|
1077 | do |
---|
1078 | { |
---|
1079 | napSetExp(qq,1, p_GetExp(a,1,nacRing) - p_GetExp(g,1,nacRing)); |
---|
1080 | napSetm(qq); |
---|
1081 | pGetCoeff(qq) = nacDiv(pGetCoeff(a), pGetCoeff(g)); |
---|
1082 | pGetCoeff(qq) = nacNeg(pGetCoeff(qq)); |
---|
1083 | nacNormalize(pGetCoeff(qq)); |
---|
1084 | h = napCopy(g); |
---|
1085 | napMultT(h, qq); |
---|
1086 | p_Normalize(h,nacRing); |
---|
1087 | n_Delete(&pGetCoeff(qq),nacRing); |
---|
1088 | a = napAdd(a, h); |
---|
1089 | } |
---|
1090 | while ((a!=NULL) && (p_GetExp(a,1,nacRing) >= p_GetExp(g,1,nacRing))); |
---|
1091 | omFreeBinAddr(qq); |
---|
1092 | return a; |
---|
1093 | } |
---|
1094 | |
---|
1095 | number ntPar(int i) |
---|
1096 | { |
---|
1097 | lnumber l = (lnumber)omAllocBin(rnumber_bin); |
---|
1098 | l->s = 2; |
---|
1099 | l->z = p_ISet(1,nacRing); |
---|
1100 | napSetExp(l->z,i,1); |
---|
1101 | p_Setm(l->z,nacRing); |
---|
1102 | l->n = NULL; |
---|
1103 | return (number)l; |
---|
1104 | } |
---|
1105 | |
---|
1106 | int ntParDeg(number n) /* i := deg(n) */ |
---|
1107 | { |
---|
1108 | lnumber l = (lnumber)n; |
---|
1109 | if (l==NULL) return -1; |
---|
1110 | return napDeg(l->z); |
---|
1111 | } |
---|
1112 | |
---|
1113 | //int ntParDeg(number n) /* i := deg(n) */ |
---|
1114 | //{ |
---|
1115 | // lnumber l = (lnumber)n; |
---|
1116 | // if (l==NULL) return -1; |
---|
1117 | // return napMaxDeg(l->z)+napMaxDeg(l->n); |
---|
1118 | //} |
---|
1119 | |
---|
1120 | int ntSize(number n) /* size desc. */ |
---|
1121 | { |
---|
1122 | lnumber l = (lnumber)n; |
---|
1123 | if (l==NULL) return -1; |
---|
1124 | int len_z; |
---|
1125 | int len_n; |
---|
1126 | int o=napMaxDegLen(l->z,len_z)+napMaxDegLen(l->n,len_n); |
---|
1127 | return (len_z+len_n)+o; |
---|
1128 | } |
---|
1129 | |
---|
1130 | /*2 |
---|
1131 | * convert a number to int (if possible) |
---|
1132 | */ |
---|
1133 | int ntInt(number &n, const ring r) |
---|
1134 | { |
---|
1135 | lnumber l=(lnumber)n; |
---|
1136 | if ((l!=NULL)&&(l->n==NULL)&&(p_IsConstant(l->z,r->algring))) |
---|
1137 | { |
---|
1138 | return nacInt(pGetCoeff(l->z),r->algring); |
---|
1139 | } |
---|
1140 | return 0; |
---|
1141 | } |
---|
1142 | |
---|
1143 | /*2 |
---|
1144 | * deletes p |
---|
1145 | */ |
---|
1146 | void ntDelete(number *p, const ring r) |
---|
1147 | { |
---|
1148 | if ((*p)!=NULL) |
---|
1149 | { |
---|
1150 | lnumber l = (lnumber) * p; |
---|
1151 | if (l==NULL) return; |
---|
1152 | p_Delete(&(l->z),r->algring); |
---|
1153 | p_Delete(&(l->n),r->algring); |
---|
1154 | omFreeBin((ADDRESS)l, rnumber_bin); |
---|
1155 | } |
---|
1156 | *p = NULL; |
---|
1157 | } |
---|
1158 | |
---|
1159 | /*2 |
---|
1160 | * copy p to erg |
---|
1161 | */ |
---|
1162 | number ntCopy(number p) |
---|
1163 | { |
---|
1164 | if (p==NULL) return NULL; |
---|
1165 | ntTest(p); |
---|
1166 | lnumber erg; |
---|
1167 | lnumber src = (lnumber)p; |
---|
1168 | erg = (lnumber)omAlloc0Bin(rnumber_bin); |
---|
1169 | erg->z = p_Copy(src->z, nacRing); |
---|
1170 | erg->n = p_Copy(src->n, nacRing); |
---|
1171 | erg->s = src->s; |
---|
1172 | return (number)erg; |
---|
1173 | } |
---|
1174 | number nt_Copy(number p, const ring r) |
---|
1175 | { |
---|
1176 | if (p==NULL) return NULL; |
---|
1177 | lnumber erg; |
---|
1178 | lnumber src = (lnumber)p; |
---|
1179 | erg = (lnumber)omAlloc0Bin(rnumber_bin); |
---|
1180 | erg->z = p_Copy(src->z,r->algring); |
---|
1181 | erg->n = p_Copy(src->n,r->algring); |
---|
1182 | erg->s = src->s; |
---|
1183 | return (number)erg; |
---|
1184 | } |
---|
1185 | |
---|
1186 | /*2 |
---|
1187 | * addition; lu:= la + lb |
---|
1188 | */ |
---|
1189 | number ntAdd(number la, number lb) |
---|
1190 | { |
---|
1191 | if (la==NULL) return ntCopy(lb); |
---|
1192 | if (lb==NULL) return ntCopy(la); |
---|
1193 | |
---|
1194 | napoly x, y; |
---|
1195 | lnumber lu; |
---|
1196 | lnumber a = (lnumber)la; |
---|
1197 | lnumber b = (lnumber)lb; |
---|
1198 | #ifdef LDEBUG |
---|
1199 | omCheckAddrSize(a,sizeof(snumber)); |
---|
1200 | omCheckAddrSize(b,sizeof(snumber)); |
---|
1201 | #endif |
---|
1202 | if (b->n!=NULL) x = pp_Mult_qq(a->z, b->n,nacRing); |
---|
1203 | else x = napCopy(a->z); |
---|
1204 | if (a->n!=NULL) y = pp_Mult_qq(b->z, a->n,nacRing); |
---|
1205 | else y = napCopy(b->z); |
---|
1206 | napoly res = napAdd(x, y); |
---|
1207 | if (res==NULL) |
---|
1208 | { |
---|
1209 | return (number)NULL; |
---|
1210 | } |
---|
1211 | lu = (lnumber)omAllocBin(rnumber_bin); |
---|
1212 | lu->z=res; |
---|
1213 | if (a->n!=NULL) |
---|
1214 | { |
---|
1215 | if (b->n!=NULL) x = pp_Mult_qq(a->n, b->n,nacRing); |
---|
1216 | else x = napCopy(a->n); |
---|
1217 | } |
---|
1218 | else |
---|
1219 | { |
---|
1220 | if (b->n!=NULL) x = napCopy(b->n); |
---|
1221 | else x = NULL; |
---|
1222 | } |
---|
1223 | //if (x!=NULL) |
---|
1224 | //{ |
---|
1225 | // if (p_LmIsConstant(x,nacRing)) |
---|
1226 | // { |
---|
1227 | // number inv=nacInvers(pGetCoeff(x)); |
---|
1228 | // napMultN(lu->z,inv); |
---|
1229 | // n_Delete(&inv,nacRing); |
---|
1230 | // napDelete(&x); |
---|
1231 | // } |
---|
1232 | //} |
---|
1233 | lu->n = x; |
---|
1234 | lu->s = FALSE; |
---|
1235 | if (/*lu->n*/ x!=NULL) |
---|
1236 | { |
---|
1237 | number luu=(number)lu; |
---|
1238 | //if (p_IsConstant(lu->n,nacRing)) ntCoefNormalize(luu); |
---|
1239 | //else |
---|
1240 | ntNormalize(luu); |
---|
1241 | lu=(lnumber)luu; |
---|
1242 | } |
---|
1243 | //else lu->s=2; |
---|
1244 | ntTest((number)lu); |
---|
1245 | return (number)lu; |
---|
1246 | } |
---|
1247 | |
---|
1248 | /*2 |
---|
1249 | * subtraction; r:= la - lb |
---|
1250 | */ |
---|
1251 | number ntSub(number la, number lb) |
---|
1252 | { |
---|
1253 | lnumber lu; |
---|
1254 | |
---|
1255 | if (lb==NULL) return ntCopy(la); |
---|
1256 | if (la==NULL) |
---|
1257 | { |
---|
1258 | lu = (lnumber)ntCopy(lb); |
---|
1259 | lu->z = napNeg(lu->z); |
---|
1260 | return (number)lu; |
---|
1261 | } |
---|
1262 | |
---|
1263 | lnumber a = (lnumber)la; |
---|
1264 | lnumber b = (lnumber)lb; |
---|
1265 | |
---|
1266 | #ifdef LDEBUG |
---|
1267 | omCheckAddrSize(a,sizeof(snumber)); |
---|
1268 | omCheckAddrSize(b,sizeof(snumber)); |
---|
1269 | #endif |
---|
1270 | |
---|
1271 | napoly x, y; |
---|
1272 | if (b->n!=NULL) x = pp_Mult_qq(a->z, b->n,nacRing); |
---|
1273 | else x = napCopy(a->z); |
---|
1274 | if (a->n!=NULL) y = p_Mult_q(napCopy(b->z), napCopyNeg(a->n),nacRing); |
---|
1275 | else y = napCopyNeg(b->z); |
---|
1276 | napoly res = napAdd(x, y); |
---|
1277 | if (res==NULL) |
---|
1278 | { |
---|
1279 | return (number)NULL; |
---|
1280 | } |
---|
1281 | lu = (lnumber)omAllocBin(rnumber_bin); |
---|
1282 | lu->z=res; |
---|
1283 | if (a->n!=NULL) |
---|
1284 | { |
---|
1285 | if (b->n!=NULL) x = pp_Mult_qq(a->n, b->n,nacRing); |
---|
1286 | else x = napCopy(a->n); |
---|
1287 | } |
---|
1288 | else |
---|
1289 | { |
---|
1290 | if (b->n!=NULL) x = napCopy(b->n); |
---|
1291 | else x = NULL; |
---|
1292 | } |
---|
1293 | lu->n = x; |
---|
1294 | lu->s = FALSE; |
---|
1295 | if (/*lu->n*/ x!=NULL) |
---|
1296 | { |
---|
1297 | number luu=(number)lu; |
---|
1298 | //if (p_IsConstant(lu->n,nacRing)) ntCoefNormalize(luu); |
---|
1299 | //else |
---|
1300 | ntNormalize(luu); |
---|
1301 | lu=(lnumber)luu; |
---|
1302 | } |
---|
1303 | //else lu->s=2; |
---|
1304 | ntTest((number)lu); |
---|
1305 | return (number)lu; |
---|
1306 | } |
---|
1307 | |
---|
1308 | /*2 |
---|
1309 | * multiplication; r:= la * lb |
---|
1310 | */ |
---|
1311 | number ntMult(number la, number lb) |
---|
1312 | { |
---|
1313 | if ((la==NULL) || (lb==NULL)) |
---|
1314 | return NULL; |
---|
1315 | |
---|
1316 | lnumber a = (lnumber)la; |
---|
1317 | lnumber b = (lnumber)lb; |
---|
1318 | lnumber lo; |
---|
1319 | napoly x; |
---|
1320 | |
---|
1321 | #ifdef LDEBUG |
---|
1322 | omCheckAddrSize(a,sizeof(snumber)); |
---|
1323 | omCheckAddrSize(b,sizeof(snumber)); |
---|
1324 | #endif |
---|
1325 | ntTest(la); |
---|
1326 | ntTest(lb); |
---|
1327 | |
---|
1328 | lo = (lnumber)omAllocBin(rnumber_bin); |
---|
1329 | lo->z = pp_Mult_qq(a->z, b->z,nacRing); |
---|
1330 | |
---|
1331 | if (a->n==NULL) |
---|
1332 | { |
---|
1333 | if (b->n==NULL) |
---|
1334 | x = NULL; |
---|
1335 | else |
---|
1336 | x = napCopy(b->n); |
---|
1337 | } |
---|
1338 | else |
---|
1339 | { |
---|
1340 | if (b->n==NULL) |
---|
1341 | { |
---|
1342 | x = napCopy(a->n); |
---|
1343 | } |
---|
1344 | else |
---|
1345 | { |
---|
1346 | x = pp_Mult_qq(b->n, a->n, nacRing); |
---|
1347 | } |
---|
1348 | } |
---|
1349 | if ((x!=NULL) && (p_LmIsConstant(x,nacRing)) && nacIsOne(pGetCoeff(x))) |
---|
1350 | p_Delete(&x,nacRing); |
---|
1351 | lo->n = x; |
---|
1352 | lo->s = 0; |
---|
1353 | if(lo->z==NULL) |
---|
1354 | { |
---|
1355 | omFreeBin((ADDRESS)lo, rnumber_bin); |
---|
1356 | lo=NULL; |
---|
1357 | } |
---|
1358 | else if (lo->n!=NULL) |
---|
1359 | { |
---|
1360 | number luu=(number)lo; |
---|
1361 | // if (p_IsConstant(lo->n,nacRing)) ntCoefNormalize(luu); |
---|
1362 | // else |
---|
1363 | ntNormalize(luu); |
---|
1364 | lo=(lnumber)luu; |
---|
1365 | } |
---|
1366 | //if (naMinimalPoly==NULL) lo->s=2; |
---|
1367 | ntTest((number)lo); |
---|
1368 | return (number)lo; |
---|
1369 | } |
---|
1370 | |
---|
1371 | number ntIntDiv(number la, number lb) |
---|
1372 | { |
---|
1373 | lnumber res; |
---|
1374 | lnumber a = (lnumber)la; |
---|
1375 | lnumber b = (lnumber)lb; |
---|
1376 | if (a==NULL) |
---|
1377 | { |
---|
1378 | return NULL; |
---|
1379 | } |
---|
1380 | if (b==NULL) |
---|
1381 | { |
---|
1382 | WerrorS(nDivBy0); |
---|
1383 | return NULL; |
---|
1384 | } |
---|
1385 | assume(a->z!=NULL && b->z!=NULL); |
---|
1386 | assume(a->n==NULL && b->n==NULL); |
---|
1387 | res = (lnumber)omAllocBin(rnumber_bin); |
---|
1388 | res->z = napCopy(a->z); |
---|
1389 | res->n = napCopy(b->z); |
---|
1390 | res->s = 0; |
---|
1391 | number nres=(number)res; |
---|
1392 | ntNormalize(nres); |
---|
1393 | |
---|
1394 | //napDelete(&res->n); |
---|
1395 | ntTest(nres); |
---|
1396 | return nres; |
---|
1397 | } |
---|
1398 | |
---|
1399 | /*2 |
---|
1400 | * division; lo:= la / lb |
---|
1401 | */ |
---|
1402 | number ntDiv(number la, number lb) |
---|
1403 | { |
---|
1404 | lnumber lo; |
---|
1405 | lnumber a = (lnumber)la; |
---|
1406 | lnumber b = (lnumber)lb; |
---|
1407 | napoly x; |
---|
1408 | |
---|
1409 | if (a==NULL) |
---|
1410 | return NULL; |
---|
1411 | |
---|
1412 | if (b==NULL) |
---|
1413 | { |
---|
1414 | WerrorS(nDivBy0); |
---|
1415 | return NULL; |
---|
1416 | } |
---|
1417 | #ifdef LDEBUG |
---|
1418 | omCheckAddrSize(a,sizeof(snumber)); |
---|
1419 | omCheckAddrSize(b,sizeof(snumber)); |
---|
1420 | #endif |
---|
1421 | lo = (lnumber)omAllocBin(rnumber_bin); |
---|
1422 | if (b->n!=NULL) |
---|
1423 | lo->z = pp_Mult_qq(a->z, b->n,nacRing); |
---|
1424 | else |
---|
1425 | lo->z = napCopy(a->z); |
---|
1426 | if (a->n!=NULL) |
---|
1427 | x = pp_Mult_qq(b->z, a->n, nacRing); |
---|
1428 | else |
---|
1429 | x = napCopy(b->z); |
---|
1430 | if ((p_LmIsConstant(x,nacRing)) && nacIsOne(pGetCoeff(x))) |
---|
1431 | p_Delete(&x,nacRing); |
---|
1432 | lo->n = x; |
---|
1433 | lo->s = 0; |
---|
1434 | if (lo->n!=NULL) |
---|
1435 | { |
---|
1436 | number luu=(number)lo; |
---|
1437 | //if (p_IsConstant(lo->n,nacRing)) ntCoefNormalize(luu); |
---|
1438 | //else |
---|
1439 | ntNormalize(luu); |
---|
1440 | lo=(lnumber)luu; |
---|
1441 | } |
---|
1442 | //else lo->s=2; |
---|
1443 | ntTest((number)lo); |
---|
1444 | return (number)lo; |
---|
1445 | } |
---|
1446 | |
---|
1447 | /*2 |
---|
1448 | * za:= - za, inplace |
---|
1449 | */ |
---|
1450 | number ntNeg(number za) |
---|
1451 | { |
---|
1452 | if (za!=NULL) |
---|
1453 | { |
---|
1454 | lnumber e = (lnumber)za; |
---|
1455 | ntTest(za); |
---|
1456 | e->z = napNeg(e->z); |
---|
1457 | } |
---|
1458 | return za; |
---|
1459 | } |
---|
1460 | |
---|
1461 | /*2 |
---|
1462 | * 1/a |
---|
1463 | */ |
---|
1464 | number ntInvers(number a) |
---|
1465 | { |
---|
1466 | lnumber lo; |
---|
1467 | lnumber b = (lnumber)a; |
---|
1468 | napoly x; |
---|
1469 | |
---|
1470 | if (b==NULL) |
---|
1471 | { |
---|
1472 | WerrorS(nDivBy0); |
---|
1473 | return NULL; |
---|
1474 | } |
---|
1475 | #ifdef LDEBUG |
---|
1476 | omCheckAddrSize(b,sizeof(snumber)); |
---|
1477 | #endif |
---|
1478 | lo = (lnumber)omAlloc0Bin(rnumber_bin); |
---|
1479 | lo->s = b->s; |
---|
1480 | if (b->n!=NULL) |
---|
1481 | lo->z = napCopy(b->n); |
---|
1482 | else |
---|
1483 | lo->z = p_ISet(1,nacRing); |
---|
1484 | x = b->z; |
---|
1485 | if ((!p_LmIsConstant(x,nacRing)) || !nacIsOne(pGetCoeff(x))) |
---|
1486 | x = napCopy(x); |
---|
1487 | else |
---|
1488 | { |
---|
1489 | lo->n = NULL; |
---|
1490 | ntTest((number)lo); |
---|
1491 | return (number)lo; |
---|
1492 | } |
---|
1493 | lo->n = x; |
---|
1494 | if (lo->n!=NULL) |
---|
1495 | { |
---|
1496 | number luu=(number)lo; |
---|
1497 | //if (p_IsConstant(lo->n,nacRing)) ntCoefNormalize(luu); |
---|
1498 | //else |
---|
1499 | ntNormalize(luu); |
---|
1500 | lo=(lnumber)luu; |
---|
1501 | } |
---|
1502 | ntTest((number)lo); |
---|
1503 | return (number)lo; |
---|
1504 | } |
---|
1505 | |
---|
1506 | |
---|
1507 | BOOLEAN ntIsZero(number za) |
---|
1508 | { |
---|
1509 | lnumber zb = (lnumber)za; |
---|
1510 | ntTest(za); |
---|
1511 | #ifdef LDEBUG |
---|
1512 | if ((zb!=NULL) && (zb->z==NULL)) WerrorS("internal zero error(2)"); |
---|
1513 | #endif |
---|
1514 | return (zb==NULL); |
---|
1515 | } |
---|
1516 | |
---|
1517 | |
---|
1518 | BOOLEAN ntGreaterZero(number za) |
---|
1519 | { |
---|
1520 | lnumber zb = (lnumber)za; |
---|
1521 | #ifdef LDEBUG |
---|
1522 | if ((zb!=NULL) && (zb->z==NULL)) WerrorS("internal zero error(3)"); |
---|
1523 | #endif |
---|
1524 | ntTest(za); |
---|
1525 | if (zb!=NULL) |
---|
1526 | { |
---|
1527 | return (nacGreaterZero(pGetCoeff(zb->z))||(!p_LmIsConstant(zb->z,nacRing))); |
---|
1528 | } |
---|
1529 | /* else */ return FALSE; |
---|
1530 | } |
---|
1531 | |
---|
1532 | |
---|
1533 | /*2 |
---|
1534 | * a = b ? |
---|
1535 | */ |
---|
1536 | BOOLEAN ntEqual (number a, number b) |
---|
1537 | { |
---|
1538 | if(a==b) return TRUE; |
---|
1539 | if((a==NULL)&&(b!=NULL)) return FALSE; |
---|
1540 | if((b==NULL)&&(a!=NULL)) return FALSE; |
---|
1541 | |
---|
1542 | lnumber aa=(lnumber)a; |
---|
1543 | lnumber bb=(lnumber)b; |
---|
1544 | |
---|
1545 | int an_deg=0; |
---|
1546 | if(aa->n!=NULL) |
---|
1547 | an_deg=napDeg(aa->n); |
---|
1548 | int bn_deg=0; |
---|
1549 | if(bb->n!=NULL) |
---|
1550 | bn_deg=napDeg(bb->n); |
---|
1551 | if(an_deg+napDeg(bb->z)!=bn_deg+napDeg(aa->z)) |
---|
1552 | return FALSE; |
---|
1553 | #if 0 |
---|
1554 | ntNormalize(a); |
---|
1555 | aa=(lnumber)a; |
---|
1556 | ntNormalize(b); |
---|
1557 | bb=(lnumber)b; |
---|
1558 | if((aa->n==NULL)&&(bb->n!=NULL)) return FALSE; |
---|
1559 | if((bb->n==NULL)&&(aa->n!=NULL)) return FALSE; |
---|
1560 | if(napComp(aa->z,bb->z)!=0) return FALSE; |
---|
1561 | if((aa->n!=NULL) && (napComp(aa->n,bb->n))) return FALSE; |
---|
1562 | #endif |
---|
1563 | number h = ntSub(a, b); |
---|
1564 | BOOLEAN bo = ntIsZero(h); |
---|
1565 | ntDelete(&h,currRing); |
---|
1566 | return bo; |
---|
1567 | } |
---|
1568 | |
---|
1569 | |
---|
1570 | BOOLEAN ntGreater (number a, number b) |
---|
1571 | { |
---|
1572 | if (ntIsZero(a)) |
---|
1573 | return FALSE; |
---|
1574 | if (ntIsZero(b)) |
---|
1575 | return TRUE; /* a!= 0)*/ |
---|
1576 | return napDeg(((lnumber)a)->z)>napDeg(((lnumber)b)->z); |
---|
1577 | } |
---|
1578 | |
---|
1579 | /*2 |
---|
1580 | * reads a number |
---|
1581 | */ |
---|
1582 | const char *ntRead(const char *s, number *p) |
---|
1583 | { |
---|
1584 | napoly x; |
---|
1585 | lnumber a; |
---|
1586 | s = napRead(s, &x); |
---|
1587 | if (x==NULL) |
---|
1588 | { |
---|
1589 | *p = NULL; |
---|
1590 | return s; |
---|
1591 | } |
---|
1592 | *p = (number)omAlloc0Bin(rnumber_bin); |
---|
1593 | a = (lnumber)*p; |
---|
1594 | a->z = x; |
---|
1595 | if(a->z==NULL) |
---|
1596 | { |
---|
1597 | omFreeBin((ADDRESS)*p, rnumber_bin); |
---|
1598 | *p=NULL; |
---|
1599 | } |
---|
1600 | else |
---|
1601 | { |
---|
1602 | a->n = NULL; |
---|
1603 | a->s = 0; |
---|
1604 | ntTest(*p); |
---|
1605 | } |
---|
1606 | return s; |
---|
1607 | } |
---|
1608 | |
---|
1609 | /*2 |
---|
1610 | * tries to convert a number to a name |
---|
1611 | */ |
---|
1612 | char * ntName(number n) |
---|
1613 | { |
---|
1614 | lnumber ph = (lnumber)n; |
---|
1615 | if (ph==NULL) |
---|
1616 | return NULL; |
---|
1617 | int i; |
---|
1618 | char *s=(char *)omAlloc(4* ntNumbOfPar); |
---|
1619 | char *t=(char *)omAlloc(8); |
---|
1620 | s[0]='\0'; |
---|
1621 | for (i = 0; i <= ntNumbOfPar - 1; i++) |
---|
1622 | { |
---|
1623 | int e=p_GetExp(ph->z,i+1,nacRing); |
---|
1624 | if (e > 0) |
---|
1625 | { |
---|
1626 | if (e >1) |
---|
1627 | { |
---|
1628 | sprintf(t,"%s%d",ntParNames[i],e); |
---|
1629 | strcat(s,t); |
---|
1630 | } |
---|
1631 | else |
---|
1632 | { |
---|
1633 | strcat(s,ntParNames[i]); |
---|
1634 | } |
---|
1635 | } |
---|
1636 | } |
---|
1637 | omFreeSize((ADDRESS)t,8); |
---|
1638 | if (s[0]=='\0') |
---|
1639 | { |
---|
1640 | omFree((ADDRESS)s); |
---|
1641 | return NULL; |
---|
1642 | } |
---|
1643 | return s; |
---|
1644 | } |
---|
1645 | |
---|
1646 | /*2 |
---|
1647 | * writes a number |
---|
1648 | */ |
---|
1649 | void ntWrite(number &phn, const ring r) |
---|
1650 | { |
---|
1651 | lnumber ph = (lnumber)phn; |
---|
1652 | if (ph==NULL) |
---|
1653 | StringAppendS("0"); |
---|
1654 | else |
---|
1655 | { |
---|
1656 | phn->s = 0; |
---|
1657 | BOOLEAN has_denom=(ph->n!=NULL); |
---|
1658 | napWrite(ph->z,has_denom/*(ph->n!=NULL)*/,r); |
---|
1659 | if (has_denom/*(ph->n!=NULL)*/) |
---|
1660 | { |
---|
1661 | StringAppendS("/"); |
---|
1662 | napWrite(ph->n,TRUE,r); |
---|
1663 | } |
---|
1664 | } |
---|
1665 | } |
---|
1666 | |
---|
1667 | /*2 |
---|
1668 | * za == 1 ? |
---|
1669 | */ |
---|
1670 | BOOLEAN ntIsOne(number za) |
---|
1671 | { |
---|
1672 | lnumber a = (lnumber)za; |
---|
1673 | napoly x, y; |
---|
1674 | number t; |
---|
1675 | if (a==NULL) return FALSE; |
---|
1676 | #ifdef LDEBUG |
---|
1677 | omCheckAddrSize(a,sizeof(snumber)); |
---|
1678 | if (a->z==NULL) |
---|
1679 | { |
---|
1680 | WerrorS("internal zero error(4)"); |
---|
1681 | return FALSE; |
---|
1682 | } |
---|
1683 | #endif |
---|
1684 | if (a->n==NULL) |
---|
1685 | { |
---|
1686 | if (p_LmIsConstant(a->z,nacRing)) |
---|
1687 | { |
---|
1688 | return nacIsOne(pGetCoeff(a->z)); |
---|
1689 | } |
---|
1690 | else return FALSE; |
---|
1691 | } |
---|
1692 | #if 0 |
---|
1693 | x = a->z; |
---|
1694 | y = a->n; |
---|
1695 | do |
---|
1696 | { |
---|
1697 | if (napComp(x, y)) |
---|
1698 | return FALSE; |
---|
1699 | else |
---|
1700 | { |
---|
1701 | t = nacSub(pGetCoeff(x), pGetCoeff(y)); |
---|
1702 | if (!nacIsZero(t)) |
---|
1703 | { |
---|
1704 | n_Delete(&t,nacRing); |
---|
1705 | return FALSE; |
---|
1706 | } |
---|
1707 | else |
---|
1708 | n_Delete(&t,nacRing); |
---|
1709 | } |
---|
1710 | pIter(x); |
---|
1711 | pIter(y); |
---|
1712 | } |
---|
1713 | while ((x!=NULL) && (y!=NULL)); |
---|
1714 | if ((x!=NULL) || (y!=NULL)) return FALSE; |
---|
1715 | p_Delete(&a->z,nacRing); |
---|
1716 | p_Delete(&a->n,nacRing); |
---|
1717 | a->z = p_ISet(1,nacRing); |
---|
1718 | a->n = NULL; |
---|
1719 | return TRUE; |
---|
1720 | #else |
---|
1721 | return FALSE; |
---|
1722 | #endif |
---|
1723 | } |
---|
1724 | |
---|
1725 | /*2 |
---|
1726 | * za == -1 ? |
---|
1727 | */ |
---|
1728 | BOOLEAN ntIsMOne(number za) |
---|
1729 | { |
---|
1730 | lnumber a = (lnumber)za; |
---|
1731 | napoly x, y; |
---|
1732 | number t; |
---|
1733 | if (a==NULL) return FALSE; |
---|
1734 | #ifdef LDEBUG |
---|
1735 | omCheckAddrSize(a,sizeof(snumber)); |
---|
1736 | if (a->z==NULL) |
---|
1737 | { |
---|
1738 | WerrorS("internal zero error(5)"); |
---|
1739 | return FALSE; |
---|
1740 | } |
---|
1741 | #endif |
---|
1742 | if (a->n==NULL) |
---|
1743 | { |
---|
1744 | if (p_LmIsConstant(a->z,nacRing)) return nacIsMOne(pGetCoeff(a->z)); |
---|
1745 | /*else return FALSE;*/ |
---|
1746 | } |
---|
1747 | return FALSE; |
---|
1748 | } |
---|
1749 | |
---|
1750 | /*2 |
---|
1751 | * returns the i-th power of p (i>=0) |
---|
1752 | */ |
---|
1753 | void ntPower(number p, int i, number *rc) |
---|
1754 | { |
---|
1755 | number x; |
---|
1756 | *rc = ntInit(1,currRing); |
---|
1757 | for (; i > 0; i--) |
---|
1758 | { |
---|
1759 | x = ntMult(*rc, p); |
---|
1760 | ntDelete(rc,currRing); |
---|
1761 | *rc = x; |
---|
1762 | } |
---|
1763 | } |
---|
1764 | |
---|
1765 | /*2 |
---|
1766 | * result =gcd(a,b) |
---|
1767 | */ |
---|
1768 | number ntGcd(number a, number b, const ring r) |
---|
1769 | { |
---|
1770 | if (a==NULL) return ntCopy(b); |
---|
1771 | if (b==NULL) return ntCopy(a); |
---|
1772 | |
---|
1773 | lnumber x, y; |
---|
1774 | lnumber result = (lnumber)omAlloc0Bin(rnumber_bin); |
---|
1775 | |
---|
1776 | x = (lnumber)a; |
---|
1777 | y = (lnumber)b; |
---|
1778 | #ifndef HAVE_FACTORY |
---|
1779 | result->z = napGcd(x->z, y->z); // change from napGcd0 |
---|
1780 | #else |
---|
1781 | int c=ABS(nGetChar()); |
---|
1782 | if (c==1) c=0; |
---|
1783 | setCharacteristic( c ); |
---|
1784 | |
---|
1785 | napoly rz=napGcd(x->z, y->z); |
---|
1786 | CanonicalForm F, G, R; |
---|
1787 | R=convSingPFactoryP(rz,r->algring); |
---|
1788 | p_Normalize(x->z,nacRing); |
---|
1789 | F=convSingPFactoryP(x->z,r->algring)/R; |
---|
1790 | p_Normalize(y->z,nacRing); |
---|
1791 | G=convSingPFactoryP(y->z,r->algring)/R; |
---|
1792 | F = gcd( F, G ); |
---|
1793 | if (F.isOne()) |
---|
1794 | result->z= rz; |
---|
1795 | else |
---|
1796 | { |
---|
1797 | p_Delete(&rz,r->algring); |
---|
1798 | result->z=convFactoryPSingP( F*R,r->algring ); |
---|
1799 | p_Normalize(result->z,nacRing); |
---|
1800 | } |
---|
1801 | #endif |
---|
1802 | ntTest((number)result); |
---|
1803 | return (number)result; |
---|
1804 | } |
---|
1805 | |
---|
1806 | |
---|
1807 | /*2 |
---|
1808 | * ntNumbOfPar = 1: |
---|
1809 | * clears denominator algebraic case; |
---|
1810 | * tries to simplify ratio transcendental case; |
---|
1811 | * |
---|
1812 | * cancels monomials |
---|
1813 | * occuring in denominator |
---|
1814 | * and enumerator ? ntNumbOfPar != 1; |
---|
1815 | * |
---|
1816 | * #defines for Factory: |
---|
1817 | * FACTORY_GCD_TEST: do not apply built in gcd for |
---|
1818 | * univariate polynomials, always use Factory |
---|
1819 | */ |
---|
1820 | //#define FACTORY_GCD_TEST |
---|
1821 | void ntCoefNormalize(number pp) |
---|
1822 | { |
---|
1823 | if (pp==NULL) return; |
---|
1824 | lnumber p = (lnumber)pp; |
---|
1825 | number nz; // all denom. of the numerator |
---|
1826 | nz=p_GetAllDenom(p->z,nacRing); |
---|
1827 | BOOLEAN norm=FALSE; |
---|
1828 | if (!n_IsOne(nz,nacRing)) |
---|
1829 | { |
---|
1830 | norm=TRUE; |
---|
1831 | p->z=p_Mult_nn(p->z,nz,nacRing); |
---|
1832 | if (p->n==NULL) |
---|
1833 | { |
---|
1834 | p->n=p_NSet(nz,nacRing); |
---|
1835 | } |
---|
1836 | else |
---|
1837 | { |
---|
1838 | p->n=p_Mult_nn(p->n,nz,nacRing); |
---|
1839 | n_Delete(&nz, nacRing); |
---|
1840 | } |
---|
1841 | } |
---|
1842 | else |
---|
1843 | { |
---|
1844 | n_Delete(&nz, nacRing); |
---|
1845 | } |
---|
1846 | if (norm) |
---|
1847 | { |
---|
1848 | norm=FALSE; |
---|
1849 | p_Normalize(p->z,nacRing); |
---|
1850 | p_Normalize(p->n,nacRing); |
---|
1851 | } |
---|
1852 | number nn; |
---|
1853 | nn=p_GetAllDenom(p->n,nacRing); |
---|
1854 | if (!n_IsOne(nn,nacRing)) |
---|
1855 | { |
---|
1856 | norm=TRUE; |
---|
1857 | p->n=p_Mult_nn(p->n,nn,nacRing); |
---|
1858 | p->z=p_Mult_nn(p->z,nn,nacRing); |
---|
1859 | n_Delete(&nn, nacRing); |
---|
1860 | } |
---|
1861 | else |
---|
1862 | { |
---|
1863 | n_Delete(&nn, nacRing); |
---|
1864 | } |
---|
1865 | if (norm) |
---|
1866 | { |
---|
1867 | p_Normalize(p->z,nacRing); |
---|
1868 | p_Normalize(p->n,nacRing); |
---|
1869 | } |
---|
1870 | // remove common factors in n, z: |
---|
1871 | if (p->n!=NULL) |
---|
1872 | { |
---|
1873 | poly pp=p->z; |
---|
1874 | nz=n_Copy(pGetCoeff(pp),nacRing); |
---|
1875 | pIter(pp); |
---|
1876 | while(pp!=NULL) |
---|
1877 | { |
---|
1878 | if (n_IsOne(nz,nacRing)) break; |
---|
1879 | number d=n_Gcd(nz,pGetCoeff(pp),nacRing); |
---|
1880 | n_Delete(&nz,nacRing); nz=d; |
---|
1881 | pIter(pp); |
---|
1882 | } |
---|
1883 | if (!n_IsOne(nz,nacRing)) |
---|
1884 | { |
---|
1885 | pp=p->n; |
---|
1886 | nn=n_Copy(pGetCoeff(pp),nacRing); |
---|
1887 | pIter(pp); |
---|
1888 | while(pp!=NULL) |
---|
1889 | { |
---|
1890 | if (n_IsOne(nn,nacRing)) break; |
---|
1891 | number d=n_Gcd(nn,pGetCoeff(pp),nacRing); |
---|
1892 | n_Delete(&nn,nacRing); nn=d; |
---|
1893 | pIter(pp); |
---|
1894 | } |
---|
1895 | number ng=n_Gcd(nz,nn,nacRing); |
---|
1896 | n_Delete(&nn,nacRing); |
---|
1897 | if (!n_IsOne(ng,nacRing)) |
---|
1898 | { |
---|
1899 | number ni=n_Invers(ng,nacRing); |
---|
1900 | p->z=p_Mult_nn(p->z,ni,nacRing); |
---|
1901 | p->n=p_Mult_nn(p->n,ni,nacRing); |
---|
1902 | p_Normalize(p->z,nacRing); |
---|
1903 | p_Normalize(p->n,nacRing); |
---|
1904 | n_Delete(&ni,nacRing); |
---|
1905 | } |
---|
1906 | n_Delete(&ng,nacRing); |
---|
1907 | } |
---|
1908 | n_Delete(&nz,nacRing); |
---|
1909 | } |
---|
1910 | if (p->n!=NULL) |
---|
1911 | { |
---|
1912 | if(!nacGreaterZero(pGetCoeff(p->n))) |
---|
1913 | { |
---|
1914 | p->z=napNeg(p->z); |
---|
1915 | p->n=napNeg(p->n); |
---|
1916 | } |
---|
1917 | |
---|
1918 | if (/*(p->n!=NULL) && */ |
---|
1919 | (p_IsConstant(p->n,nacRing)) |
---|
1920 | && (n_IsOne(pGetCoeff(p->n),nacRing))) |
---|
1921 | { |
---|
1922 | p_Delete(&(p->n), nacRing); |
---|
1923 | p->n = NULL; |
---|
1924 | } |
---|
1925 | } |
---|
1926 | } |
---|
1927 | |
---|
1928 | void ntNormalize(number &pp) |
---|
1929 | { |
---|
1930 | |
---|
1931 | //ntTest(pp); // input may not be "normal" |
---|
1932 | lnumber p = (lnumber)pp; |
---|
1933 | |
---|
1934 | if (p==NULL) |
---|
1935 | return; |
---|
1936 | ntCoefNormalize(pp); |
---|
1937 | p->s = 2; |
---|
1938 | napoly x = p->z; |
---|
1939 | napoly y = p->n; |
---|
1940 | |
---|
1941 | BOOLEAN norm=FALSE; |
---|
1942 | |
---|
1943 | if (y==NULL) return; |
---|
1944 | |
---|
1945 | if ((x!=NULL) && (y!=NULL)) |
---|
1946 | { |
---|
1947 | int i; |
---|
1948 | for (i=ntNumbOfPar-1; i>=0; i--) |
---|
1949 | { |
---|
1950 | napoly xx=x; |
---|
1951 | napoly yy=y; |
---|
1952 | int m = napExpi(i, yy, xx); |
---|
1953 | if (m != 0) // in this case xx!=NULL!=yy |
---|
1954 | { |
---|
1955 | while (xx != NULL) |
---|
1956 | { |
---|
1957 | napAddExp(xx,i+1, -m); |
---|
1958 | pIter(xx); |
---|
1959 | } |
---|
1960 | while (yy != NULL) |
---|
1961 | { |
---|
1962 | napAddExp(yy,i+1, -m); |
---|
1963 | pIter(yy); |
---|
1964 | } |
---|
1965 | } |
---|
1966 | } |
---|
1967 | } |
---|
1968 | if (p_LmIsConstant(y,nacRing)) /* i.e. => simplify to (1/c)*z / monom */ |
---|
1969 | { |
---|
1970 | if (nacIsOne(pGetCoeff(y))) |
---|
1971 | { |
---|
1972 | p_LmDelete(&y,nacRing); |
---|
1973 | p->n = NULL; |
---|
1974 | ntTest(pp); |
---|
1975 | return; |
---|
1976 | } |
---|
1977 | number h1 = nacInvers(pGetCoeff(y)); |
---|
1978 | nacNormalize(h1); |
---|
1979 | napMultN(x, h1); |
---|
1980 | n_Delete(&h1,nacRing); |
---|
1981 | p_LmDelete(&y,nacRing); |
---|
1982 | p->n = NULL; |
---|
1983 | ntTest(pp); |
---|
1984 | return; |
---|
1985 | } |
---|
1986 | #ifndef FACTORY_GCD_TEST |
---|
1987 | if (ntNumbOfPar == 1) /* apply built-in gcd */ |
---|
1988 | { |
---|
1989 | napoly x1,y1; |
---|
1990 | if (p_GetExp(x,1,nacRing) >= p_GetExp(y,1,nacRing)) |
---|
1991 | { |
---|
1992 | x1 = napCopy(x); |
---|
1993 | y1 = napCopy(y); |
---|
1994 | } |
---|
1995 | else |
---|
1996 | { |
---|
1997 | x1 = napCopy(y); |
---|
1998 | y1 = napCopy(x); |
---|
1999 | } |
---|
2000 | napoly r; |
---|
2001 | loop |
---|
2002 | { |
---|
2003 | r = ntRemainder(x1, y1); |
---|
2004 | if ((r==NULL) || (pNext(r)==NULL)) break; |
---|
2005 | x1 = y1; |
---|
2006 | y1 = r; |
---|
2007 | } |
---|
2008 | if (r!=NULL) |
---|
2009 | { |
---|
2010 | p_Delete(&r,nacRing); |
---|
2011 | p_Delete(&y1,nacRing); |
---|
2012 | } |
---|
2013 | else |
---|
2014 | { |
---|
2015 | napDivMod(x, y1, &(p->z), &r); |
---|
2016 | napDivMod(y, y1, &(p->n), &r); |
---|
2017 | p_Delete(&y1,nacRing); |
---|
2018 | } |
---|
2019 | x = p->z; |
---|
2020 | y = p->n; |
---|
2021 | /* collect all denoms from y and multiply x and y by it */ |
---|
2022 | if (ntIsChar0) |
---|
2023 | { |
---|
2024 | number n=napLcm(y); |
---|
2025 | napMultN(x,n); |
---|
2026 | napMultN(y,n); |
---|
2027 | n_Delete(&n,nacRing); |
---|
2028 | while(x!=NULL) |
---|
2029 | { |
---|
2030 | nacNormalize(pGetCoeff(x)); |
---|
2031 | pIter(x); |
---|
2032 | } |
---|
2033 | x = p->z; |
---|
2034 | while(y!=NULL) |
---|
2035 | { |
---|
2036 | nacNormalize(pGetCoeff(y)); |
---|
2037 | pIter(y); |
---|
2038 | } |
---|
2039 | y = p->n; |
---|
2040 | } |
---|
2041 | if (pNext(y)==NULL) |
---|
2042 | { |
---|
2043 | if (nacIsOne(pGetCoeff(y))) |
---|
2044 | { |
---|
2045 | if (p_GetExp(y,1,nacRing)==0) |
---|
2046 | { |
---|
2047 | p_LmDelete(&y,nacRing); |
---|
2048 | p->n = NULL; |
---|
2049 | } |
---|
2050 | ntTest(pp); |
---|
2051 | return; |
---|
2052 | } |
---|
2053 | } |
---|
2054 | } |
---|
2055 | #endif /* FACTORY_GCD_TEST */ |
---|
2056 | #ifdef HAVE_FACTORY |
---|
2057 | #ifndef FACTORY_GCD_TEST |
---|
2058 | else |
---|
2059 | #endif |
---|
2060 | { |
---|
2061 | napoly xx,yy; |
---|
2062 | singclap_algdividecontent(x,y,xx,yy); |
---|
2063 | if (xx!=NULL) |
---|
2064 | { |
---|
2065 | p->z=xx; |
---|
2066 | p->n=yy; |
---|
2067 | p_Delete(&x,nacRing); |
---|
2068 | p_Delete(&y,nacRing); |
---|
2069 | } |
---|
2070 | } |
---|
2071 | #endif |
---|
2072 | /* remove common factors from z and n */ |
---|
2073 | x=p->z; |
---|
2074 | y=p->n; |
---|
2075 | if(!nacGreaterZero(pGetCoeff(y))) |
---|
2076 | { |
---|
2077 | x=napNeg(x); |
---|
2078 | y=napNeg(y); |
---|
2079 | } |
---|
2080 | number g=nacCopy(pGetCoeff(x)); |
---|
2081 | pIter(x); |
---|
2082 | while (x!=NULL) |
---|
2083 | { |
---|
2084 | number d=nacGcd(g,pGetCoeff(x), nacRing); |
---|
2085 | if(nacIsOne(d)) |
---|
2086 | { |
---|
2087 | n_Delete(&g,nacRing); |
---|
2088 | n_Delete(&d,nacRing); |
---|
2089 | ntTest(pp); |
---|
2090 | return; |
---|
2091 | } |
---|
2092 | n_Delete(&g,nacRing); |
---|
2093 | g = d; |
---|
2094 | pIter(x); |
---|
2095 | } |
---|
2096 | while (y!=NULL) |
---|
2097 | { |
---|
2098 | number d=nacGcd(g,pGetCoeff(y), nacRing); |
---|
2099 | if(nacIsOne(d)) |
---|
2100 | { |
---|
2101 | n_Delete(&g,nacRing); |
---|
2102 | n_Delete(&d,nacRing); |
---|
2103 | ntTest(pp); |
---|
2104 | return; |
---|
2105 | } |
---|
2106 | n_Delete(&g,nacRing); |
---|
2107 | g = d; |
---|
2108 | pIter(y); |
---|
2109 | } |
---|
2110 | x=p->z; |
---|
2111 | y=p->n; |
---|
2112 | while (x!=NULL) |
---|
2113 | { |
---|
2114 | number d = nacIntDiv(pGetCoeff(x),g); |
---|
2115 | napSetCoeff(x,d); |
---|
2116 | pIter(x); |
---|
2117 | } |
---|
2118 | while (y!=NULL) |
---|
2119 | { |
---|
2120 | number d = nacIntDiv(pGetCoeff(y),g); |
---|
2121 | napSetCoeff(y,d); |
---|
2122 | pIter(y); |
---|
2123 | } |
---|
2124 | n_Delete(&g,nacRing); |
---|
2125 | ntTest(pp); |
---|
2126 | } |
---|
2127 | |
---|
2128 | /*2 |
---|
2129 | * returns in result->n 1 |
---|
2130 | * and in result->z the lcm(a->z,b->n) |
---|
2131 | */ |
---|
2132 | number ntLcm(number la, number lb, const ring r) |
---|
2133 | { |
---|
2134 | lnumber result; |
---|
2135 | lnumber a = (lnumber)la; |
---|
2136 | lnumber b = (lnumber)lb; |
---|
2137 | result = (lnumber)omAlloc0Bin(rnumber_bin); |
---|
2138 | ntTest(la); |
---|
2139 | ntTest(lb); |
---|
2140 | napoly x = p_Copy(a->z, r->algring); |
---|
2141 | number t = napLcm(b->z); // get all denom of b->z |
---|
2142 | if (!nacIsOne(t)) |
---|
2143 | { |
---|
2144 | number bt, rr; |
---|
2145 | napoly xx=x; |
---|
2146 | while (xx!=NULL) |
---|
2147 | { |
---|
2148 | bt = nacGcd(t, pGetCoeff(xx), r->algring); |
---|
2149 | rr = nacMult(t, pGetCoeff(xx)); |
---|
2150 | n_Delete(&pGetCoeff(xx),r->algring); |
---|
2151 | pGetCoeff(xx) = nacDiv(rr, bt); |
---|
2152 | nacNormalize(pGetCoeff(xx)); |
---|
2153 | n_Delete(&bt,r->algring); |
---|
2154 | n_Delete(&rr,r->algring); |
---|
2155 | pIter(xx); |
---|
2156 | } |
---|
2157 | } |
---|
2158 | n_Delete(&t,r->algring); |
---|
2159 | result->z = x; |
---|
2160 | #ifdef HAVE_FACTORY |
---|
2161 | if (b->n!=NULL) |
---|
2162 | { |
---|
2163 | result->z=singclap_alglcm(result->z,b->n); |
---|
2164 | p_Delete(&x,r->algring); |
---|
2165 | } |
---|
2166 | #endif |
---|
2167 | ntTest(la); |
---|
2168 | ntTest(lb); |
---|
2169 | ntTest((number)result); |
---|
2170 | return ((number)result); |
---|
2171 | } |
---|
2172 | |
---|
2173 | /*2 |
---|
2174 | * map Z/p -> Q(a) |
---|
2175 | */ |
---|
2176 | number ntMapP0(number c) |
---|
2177 | { |
---|
2178 | if (npIsZero(c)) return NULL; |
---|
2179 | lnumber l=(lnumber)omAllocBin(rnumber_bin); |
---|
2180 | l->s=2; |
---|
2181 | l->z=(napoly)p_Init(nacRing); |
---|
2182 | int i=(int)((long)c); |
---|
2183 | if (i>((long)ntMapRing->ch>>2)) i-=(long)ntMapRing->ch; |
---|
2184 | pGetCoeff(l->z)=nlInit(i, nacRing); |
---|
2185 | l->n=NULL; |
---|
2186 | return (number)l; |
---|
2187 | } |
---|
2188 | |
---|
2189 | /*2 |
---|
2190 | * map Q -> Q(a) |
---|
2191 | */ |
---|
2192 | number ntMap00(number c) |
---|
2193 | { |
---|
2194 | if (nlIsZero(c)) return NULL; |
---|
2195 | lnumber l=(lnumber)omAllocBin(rnumber_bin); |
---|
2196 | l->s=0; |
---|
2197 | l->z=(napoly)p_Init(nacRing); |
---|
2198 | pGetCoeff(l->z)=nlCopy(c); |
---|
2199 | l->n=NULL; |
---|
2200 | return (number)l; |
---|
2201 | } |
---|
2202 | |
---|
2203 | /*2 |
---|
2204 | * map Z/p -> Z/p(a) |
---|
2205 | */ |
---|
2206 | number ntMapPP(number c) |
---|
2207 | { |
---|
2208 | if (npIsZero(c)) return NULL; |
---|
2209 | lnumber l=(lnumber)omAllocBin(rnumber_bin); |
---|
2210 | l->s=2; |
---|
2211 | l->z=(napoly)p_Init(nacRing); |
---|
2212 | pGetCoeff(l->z)=c; /* omit npCopy, because npCopy is a no-op */ |
---|
2213 | l->n=NULL; |
---|
2214 | return (number)l; |
---|
2215 | } |
---|
2216 | |
---|
2217 | /*2 |
---|
2218 | * map Z/p' -> Z/p(a) |
---|
2219 | */ |
---|
2220 | number ntMapPP1(number c) |
---|
2221 | { |
---|
2222 | if (npIsZero(c)) return NULL; |
---|
2223 | int i=(int)((long)c); |
---|
2224 | if (i>(long)ntMapRing->ch) i-=(long)ntMapRing->ch; |
---|
2225 | number n=npInit(i,ntMapRing); |
---|
2226 | if (npIsZero(n)) return NULL; |
---|
2227 | lnumber l=(lnumber)omAllocBin(rnumber_bin); |
---|
2228 | l->s=2; |
---|
2229 | l->z=(napoly)p_Init(nacRing); |
---|
2230 | pGetCoeff(l->z)=n; |
---|
2231 | l->n=NULL; |
---|
2232 | return (number)l; |
---|
2233 | } |
---|
2234 | |
---|
2235 | /*2 |
---|
2236 | * map Q -> Z/p(a) |
---|
2237 | */ |
---|
2238 | number ntMap0P(number c) |
---|
2239 | { |
---|
2240 | if (nlIsZero(c)) return NULL; |
---|
2241 | number n=npInit(nlModP(c,npPrimeM),nacRing); |
---|
2242 | if (npIsZero(n)) return NULL; |
---|
2243 | npTest(n); |
---|
2244 | lnumber l=(lnumber)omAllocBin(rnumber_bin); |
---|
2245 | l->s=2; |
---|
2246 | l->z=(napoly)p_Init(nacRing); |
---|
2247 | pGetCoeff(l->z)=n; |
---|
2248 | l->n=NULL; |
---|
2249 | return (number)l; |
---|
2250 | } |
---|
2251 | |
---|
2252 | /*2 |
---|
2253 | * map _(a) -> _(b) |
---|
2254 | */ |
---|
2255 | number ntMapQaQb(number c) |
---|
2256 | { |
---|
2257 | if (c==NULL) return NULL; |
---|
2258 | lnumber erg= (lnumber)omAlloc0Bin(rnumber_bin); |
---|
2259 | lnumber src =(lnumber)c; |
---|
2260 | erg->s=src->s; |
---|
2261 | erg->z=napMap(src->z); |
---|
2262 | erg->n=napMap(src->n); |
---|
2263 | return (number)erg; |
---|
2264 | } |
---|
2265 | |
---|
2266 | nMapFunc ntSetMap(const ring src, const ring dst) |
---|
2267 | { |
---|
2268 | ntMapRing=src; |
---|
2269 | if (rField_is_Q_a(dst)) /* -> Q(a) */ |
---|
2270 | { |
---|
2271 | if (rField_is_Q(src)) |
---|
2272 | { |
---|
2273 | return ntMap00; /*Q -> Q(a)*/ |
---|
2274 | } |
---|
2275 | if (rField_is_Zp(src)) |
---|
2276 | { |
---|
2277 | return ntMapP0; /* Z/p -> Q(a)*/ |
---|
2278 | } |
---|
2279 | if (rField_is_Q_a(src)) |
---|
2280 | { |
---|
2281 | int i; |
---|
2282 | ntParsToCopy=0; |
---|
2283 | for(i=0;i<rPar(src);i++) |
---|
2284 | { |
---|
2285 | if ((i>=rPar(dst)) |
---|
2286 | ||(strcmp(src->parameter[i],dst->parameter[i])!=0)) |
---|
2287 | return NULL; |
---|
2288 | ntParsToCopy++; |
---|
2289 | } |
---|
2290 | nacMap=nacCopy; |
---|
2291 | if ((ntParsToCopy==rPar(dst))&&(ntParsToCopy==rPar(src))) |
---|
2292 | return ntCopy; /* Q(a) -> Q(a) */ |
---|
2293 | return ntMapQaQb; /* Q(a..) -> Q(a..) */ |
---|
2294 | } |
---|
2295 | } |
---|
2296 | /*-----------------------------------------------------*/ |
---|
2297 | if (rField_is_Zp_a(dst)) /* -> Z/p(a) */ |
---|
2298 | { |
---|
2299 | if (rField_is_Q(src)) |
---|
2300 | { |
---|
2301 | return ntMap0P; /*Q -> Z/p(a)*/ |
---|
2302 | } |
---|
2303 | if (rField_is_Zp(src)) |
---|
2304 | { |
---|
2305 | if (src->ch==dst->ch) |
---|
2306 | { |
---|
2307 | return ntMapPP; /* Z/p -> Z/p(a)*/ |
---|
2308 | } |
---|
2309 | else |
---|
2310 | { |
---|
2311 | return ntMapPP1; /* Z/p' -> Z/p(a)*/ |
---|
2312 | } |
---|
2313 | } |
---|
2314 | if (rField_is_Zp_a(src)) |
---|
2315 | { |
---|
2316 | if (rChar(src)==rChar(dst)) |
---|
2317 | { |
---|
2318 | nacMap=nacCopy; |
---|
2319 | } |
---|
2320 | else |
---|
2321 | { |
---|
2322 | nacMap = npMapP; |
---|
2323 | } |
---|
2324 | int i; |
---|
2325 | ntParsToCopy=0; |
---|
2326 | for(i=0;i<rPar(src);i++) |
---|
2327 | { |
---|
2328 | if ((i>=rPar(dst)) |
---|
2329 | ||(strcmp(src->parameter[i],dst->parameter[i])!=0)) |
---|
2330 | return NULL; |
---|
2331 | ntParsToCopy++; |
---|
2332 | } |
---|
2333 | if ((ntParsToCopy==rPar(dst))&&(ntParsToCopy==rPar(src)) |
---|
2334 | && (nacMap==nacCopy)) |
---|
2335 | return ntCopy; /* Z/p(a) -> Z/p(a) */ |
---|
2336 | return ntMapQaQb; /* Z/p(a),Z/p'(a) -> Z/p(b)*/ |
---|
2337 | } |
---|
2338 | } |
---|
2339 | return NULL; /* default */ |
---|
2340 | } |
---|
2341 | |
---|
2342 | /*2 |
---|
2343 | * convert a napoly number into a poly |
---|
2344 | */ |
---|
2345 | poly ntPermNumber(number z, int * par_perm, int P, ring oldRing) |
---|
2346 | { |
---|
2347 | if (z==NULL) return NULL; |
---|
2348 | poly res=NULL; |
---|
2349 | poly p; |
---|
2350 | napoly za=((lnumber)z)->z; |
---|
2351 | napoly zb=((lnumber)z)->n; |
---|
2352 | nMapFunc nMap=ntSetMap(oldRing,currRing); |
---|
2353 | if (currRing->parameter!=NULL) |
---|
2354 | nMap=currRing->algring->cf->cfSetMap(oldRing->algring, nacRing); |
---|
2355 | else |
---|
2356 | nMap=currRing->cf->cfSetMap(oldRing->algring, currRing); |
---|
2357 | if (nMap==NULL) return NULL; /* emergency exit only */ |
---|
2358 | do |
---|
2359 | { |
---|
2360 | p = pInit(); |
---|
2361 | pNext(p)=NULL; |
---|
2362 | nNew(&pGetCoeff(p)); |
---|
2363 | int i; |
---|
2364 | for(i=pVariables;i;i--) |
---|
2365 | pSetExp(p,i, 0); |
---|
2366 | if (rRing_has_Comp(currRing)) pSetComp(p, 0); |
---|
2367 | napoly pa=NULL; |
---|
2368 | lnumber pan; |
---|
2369 | if (currRing->parameter!=NULL) |
---|
2370 | { |
---|
2371 | assume(oldRing->algring!=NULL); |
---|
2372 | pGetCoeff(p)=(number)omAlloc0Bin(rnumber_bin); |
---|
2373 | pan=(lnumber)pGetCoeff(p); |
---|
2374 | pan->s=2; |
---|
2375 | pan->z=napInitz(nMap(pGetCoeff(za))); |
---|
2376 | pa=pan->z; |
---|
2377 | } |
---|
2378 | else |
---|
2379 | { |
---|
2380 | pGetCoeff(p)=nMap(pGetCoeff(za)); |
---|
2381 | } |
---|
2382 | for(i=0;i<P;i++) |
---|
2383 | { |
---|
2384 | if(napGetExpFrom(za,i+1,oldRing)!=0) |
---|
2385 | { |
---|
2386 | if(par_perm==NULL) |
---|
2387 | { |
---|
2388 | if ((rPar(currRing)>=i) && (pa!=NULL)) |
---|
2389 | { |
---|
2390 | napSetExp(pa,i+1,napGetExpFrom(za,i+1,oldRing)); |
---|
2391 | p_Setm(pa,nacRing); |
---|
2392 | } |
---|
2393 | else |
---|
2394 | { |
---|
2395 | pDelete(&p); |
---|
2396 | break; |
---|
2397 | } |
---|
2398 | } |
---|
2399 | else if(par_perm[i]>0) |
---|
2400 | pSetExp(p,par_perm[i],napGetExpFrom(za,i+1,oldRing)); |
---|
2401 | else if((par_perm[i]<0)&&(pa!=NULL)) |
---|
2402 | { |
---|
2403 | napSetExp(pa,-par_perm[i], napGetExpFrom(za,i+1,oldRing)); |
---|
2404 | p_Setm(pa,nacRing); |
---|
2405 | } |
---|
2406 | else |
---|
2407 | { |
---|
2408 | pDelete(&p); |
---|
2409 | break; |
---|
2410 | } |
---|
2411 | } |
---|
2412 | } |
---|
2413 | if (p!=NULL) |
---|
2414 | { |
---|
2415 | pSetm(p); |
---|
2416 | if (zb!=NULL) |
---|
2417 | { |
---|
2418 | if (currRing->P>0) |
---|
2419 | { |
---|
2420 | pan->n=napPerm(zb,par_perm,oldRing,nMap); |
---|
2421 | if(pan->n==NULL) /* error in mapping or mapping to variable */ |
---|
2422 | pDelete(&p); |
---|
2423 | } |
---|
2424 | else |
---|
2425 | pDelete(&p); |
---|
2426 | } |
---|
2427 | pTest(p); |
---|
2428 | res=pAdd(res,p); |
---|
2429 | } |
---|
2430 | pIter(za); |
---|
2431 | } |
---|
2432 | while (za!=NULL); |
---|
2433 | pTest(res); |
---|
2434 | return res; |
---|
2435 | } |
---|
2436 | |
---|
2437 | number ntGetDenom(number &n, const ring r) |
---|
2438 | { |
---|
2439 | lnumber x=(lnumber)n; |
---|
2440 | if (x->n!=NULL) |
---|
2441 | { |
---|
2442 | lnumber rr=(lnumber)omAlloc0Bin(rnumber_bin); |
---|
2443 | rr->z=p_Copy(x->n,r->algring); |
---|
2444 | rr->s = 2; |
---|
2445 | return (number)rr; |
---|
2446 | } |
---|
2447 | return n_Init(1,r); |
---|
2448 | } |
---|
2449 | |
---|
2450 | number ntGetNumerator(number &n, const ring r) |
---|
2451 | { |
---|
2452 | lnumber x=(lnumber)n; |
---|
2453 | lnumber rr=(lnumber)omAlloc0Bin(rnumber_bin); |
---|
2454 | rr->z=p_Copy(x->z,r->algring); |
---|
2455 | rr->s = 2; |
---|
2456 | return (number)rr; |
---|
2457 | } |
---|
2458 | |
---|
2459 | #ifdef LDEBUG |
---|
2460 | BOOLEAN ntDBTest(number a, const char *f,const int l) |
---|
2461 | { |
---|
2462 | lnumber x=(lnumber)a; |
---|
2463 | if (x == NULL) |
---|
2464 | return TRUE; |
---|
2465 | #ifdef LDEBUG |
---|
2466 | omCheckAddrSize(a, sizeof(snumber)); |
---|
2467 | #endif |
---|
2468 | napoly p = x->z; |
---|
2469 | if (p==NULL) |
---|
2470 | { |
---|
2471 | Print("0/* in %s:%d\n",f,l); |
---|
2472 | return FALSE; |
---|
2473 | } |
---|
2474 | while(p!=NULL) |
---|
2475 | { |
---|
2476 | if (( ntIsChar0 && nlIsZero(pGetCoeff(p))) |
---|
2477 | || ((!ntIsChar0) && npIsZero(pGetCoeff(p)))) |
---|
2478 | { |
---|
2479 | Print("coeff 0 in %s:%d\n",f,l); |
---|
2480 | return FALSE; |
---|
2481 | } |
---|
2482 | if (ntIsChar0 && !(nlDBTest(pGetCoeff(p),f,l))) |
---|
2483 | return FALSE; |
---|
2484 | pIter(p); |
---|
2485 | } |
---|
2486 | p = x->n; |
---|
2487 | while(p!=NULL) |
---|
2488 | { |
---|
2489 | if (ntIsChar0 && !(nlDBTest(pGetCoeff(p),f,l))) |
---|
2490 | return FALSE; |
---|
2491 | pIter(p); |
---|
2492 | } |
---|
2493 | return TRUE; |
---|
2494 | } |
---|
2495 | #endif |
---|