1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* $Id: modulop.cc,v 1.2 2005-07-05 16:32:33 Singular Exp $ */ |
---|
5 | /* |
---|
6 | * ABSTRACT: numbers modulo p (<=32003) |
---|
7 | */ |
---|
8 | |
---|
9 | #include <string.h> |
---|
10 | #include "mod2.h" |
---|
11 | #include <mylimits.h> |
---|
12 | #include "structs.h" |
---|
13 | #include "febase.h" |
---|
14 | #include "omalloc.h" |
---|
15 | #include "numbers.h" |
---|
16 | #include "longrat.h" |
---|
17 | #include "mpr_complex.h" |
---|
18 | #include "ring.h" |
---|
19 | #include "modulop.h" |
---|
20 | |
---|
21 | long npPrimeM=0; |
---|
22 | int npGen=0; |
---|
23 | long npPminus1M=0; |
---|
24 | long npMapPrime; |
---|
25 | |
---|
26 | #ifdef HAVE_DIV_MOD |
---|
27 | CARDINAL *npInvTable=NULL; |
---|
28 | #endif |
---|
29 | |
---|
30 | #if !defined(HAVE_DIV_MOD) || !defined(HAVE_MULT_MOD) |
---|
31 | CARDINAL *npExpTable=NULL; |
---|
32 | CARDINAL *npLogTable=NULL; |
---|
33 | #endif |
---|
34 | |
---|
35 | |
---|
36 | BOOLEAN npGreaterZero (number k) |
---|
37 | { |
---|
38 | int h = (int) k; |
---|
39 | return ((int)h !=0) && (h <= (npPrimeM>>1)); |
---|
40 | } |
---|
41 | |
---|
42 | //unsigned long npMultMod(unsigned long a, unsigned long b) |
---|
43 | //{ |
---|
44 | // unsigned long c = a*b; |
---|
45 | // c = c % npPrimeM; |
---|
46 | // assume(c == (unsigned long) npMultM((number) a, (number) b)); |
---|
47 | // return c; |
---|
48 | //} |
---|
49 | |
---|
50 | number npMult (number a,number b) |
---|
51 | { |
---|
52 | if (((long)a == 0) || ((long)b == 0)) |
---|
53 | return (number)0; |
---|
54 | else |
---|
55 | return npMultM(a,b); |
---|
56 | } |
---|
57 | |
---|
58 | /*2 |
---|
59 | * create a number from int |
---|
60 | */ |
---|
61 | number npInit (int i) |
---|
62 | { |
---|
63 | long ii=i; |
---|
64 | while (ii < 0) ii += npPrimeM; |
---|
65 | while ((ii>1) && (ii >= npPrimeM)) ii -= npPrimeM; |
---|
66 | return (number)ii; |
---|
67 | } |
---|
68 | |
---|
69 | /*2 |
---|
70 | * convert a number to int (-p/2 .. p/2) |
---|
71 | */ |
---|
72 | int npInt(number &n) |
---|
73 | { |
---|
74 | if ((long)n > (npPrimeM >>1)) return (int)((long)n -npPrimeM); |
---|
75 | else return (int)n; |
---|
76 | } |
---|
77 | |
---|
78 | number npAdd (number a, number b) |
---|
79 | { |
---|
80 | return npAddM(a,b); |
---|
81 | } |
---|
82 | |
---|
83 | number npSub (number a, number b) |
---|
84 | { |
---|
85 | return npSubM(a,b); |
---|
86 | } |
---|
87 | |
---|
88 | BOOLEAN npIsZero (number a) |
---|
89 | { |
---|
90 | return 0 == (long)a; |
---|
91 | } |
---|
92 | |
---|
93 | BOOLEAN npIsOne (number a) |
---|
94 | { |
---|
95 | return 1 == (long)a; |
---|
96 | } |
---|
97 | |
---|
98 | BOOLEAN npIsMOne (number a) |
---|
99 | { |
---|
100 | return ((npPminus1M == (long)a)&&((long)1!=(long)a)); |
---|
101 | } |
---|
102 | |
---|
103 | #ifdef HAVE_DIV_MOD |
---|
104 | #if 1 //ifdef HAVE_NTL // in ntl.a |
---|
105 | //extern void XGCD(long& d, long& s, long& t, long a, long b); |
---|
106 | #include <NTL/ZZ.h> |
---|
107 | #ifdef NTL_CLIENT |
---|
108 | NTL_CLIENT |
---|
109 | #endif |
---|
110 | #else |
---|
111 | void XGCD(long& d, long& s, long& t, long a, long b) |
---|
112 | { |
---|
113 | long u, v, u0, v0, u1, v1, u2, v2, q, r; |
---|
114 | |
---|
115 | long aneg = 0, bneg = 0; |
---|
116 | |
---|
117 | if (a < 0) { |
---|
118 | a = -a; |
---|
119 | aneg = 1; |
---|
120 | } |
---|
121 | |
---|
122 | if (b < 0) { |
---|
123 | b = -b; |
---|
124 | bneg = 1; |
---|
125 | } |
---|
126 | |
---|
127 | u1=1; v1=0; |
---|
128 | u2=0; v2=1; |
---|
129 | u = a; v = b; |
---|
130 | |
---|
131 | while (v != 0) { |
---|
132 | q = u / v; |
---|
133 | r = u % v; |
---|
134 | u = v; |
---|
135 | v = r; |
---|
136 | u0 = u2; |
---|
137 | v0 = v2; |
---|
138 | u2 = u1 - q*u2; |
---|
139 | v2 = v1- q*v2; |
---|
140 | u1 = u0; |
---|
141 | v1 = v0; |
---|
142 | } |
---|
143 | |
---|
144 | if (aneg) |
---|
145 | u1 = -u1; |
---|
146 | |
---|
147 | if (bneg) |
---|
148 | v1 = -v1; |
---|
149 | |
---|
150 | d = u; |
---|
151 | s = u1; |
---|
152 | t = v1; |
---|
153 | } |
---|
154 | #endif |
---|
155 | |
---|
156 | long InvMod(long a) |
---|
157 | { |
---|
158 | long d, s, t; |
---|
159 | |
---|
160 | XGCD(d, s, t, a, npPrimeM); |
---|
161 | assume (d == 1); |
---|
162 | if (s < 0) |
---|
163 | return s + npPrimeM; |
---|
164 | else |
---|
165 | return s; |
---|
166 | } |
---|
167 | #endif |
---|
168 | |
---|
169 | inline number npInversM (number c) |
---|
170 | { |
---|
171 | #ifndef HAVE_DIV_MOD |
---|
172 | return (number)npExpTable[npPminus1M - npLogTable[(long)c]]; |
---|
173 | #else |
---|
174 | long inv=npInvTable[(long)c]; |
---|
175 | if (inv==0) |
---|
176 | { |
---|
177 | inv=InvMod((long)c); |
---|
178 | npInvTable[(long)c]=inv; |
---|
179 | } |
---|
180 | return (number)inv; |
---|
181 | #endif |
---|
182 | } |
---|
183 | |
---|
184 | number npDiv (number a,number b) |
---|
185 | { |
---|
186 | if ((long)a==0) |
---|
187 | return (number)0; |
---|
188 | #ifndef HAVE_DIV_MOD |
---|
189 | else if ((long)b==0) |
---|
190 | { |
---|
191 | WerrorS("div by 0"); |
---|
192 | return (number)0; |
---|
193 | } |
---|
194 | else |
---|
195 | { |
---|
196 | int s = npLogTable[(long)a] - npLogTable[(long)b]; |
---|
197 | if (s < 0) |
---|
198 | s += npPminus1M; |
---|
199 | return (number)npExpTable[s]; |
---|
200 | } |
---|
201 | #else |
---|
202 | number inv=npInversM(b); |
---|
203 | return npMultM(a,inv); |
---|
204 | #endif |
---|
205 | } |
---|
206 | number npInvers (number c) |
---|
207 | { |
---|
208 | if ((long)c==0) |
---|
209 | { |
---|
210 | WerrorS("1/0"); |
---|
211 | return (number)0; |
---|
212 | } |
---|
213 | return npInversM(c); |
---|
214 | } |
---|
215 | |
---|
216 | number npNeg (number c) |
---|
217 | { |
---|
218 | if ((long)c==0) return c; |
---|
219 | return npNegM(c); |
---|
220 | } |
---|
221 | |
---|
222 | BOOLEAN npGreater (number a,number b) |
---|
223 | { |
---|
224 | //return (long)a != (long)b; |
---|
225 | return (long)a > (long)b; |
---|
226 | } |
---|
227 | |
---|
228 | BOOLEAN npEqual (number a,number b) |
---|
229 | { |
---|
230 | // return (long)a == (long)b; |
---|
231 | return npEqualM(a,b); |
---|
232 | } |
---|
233 | |
---|
234 | void npWrite (number &a) |
---|
235 | { |
---|
236 | if ((long)a > (npPrimeM >>1)) StringAppend("-%d",(int)(npPrimeM-((long)a))); |
---|
237 | else StringAppend("%d",(int)a); |
---|
238 | } |
---|
239 | |
---|
240 | void npPower (number a, int i, number * result) |
---|
241 | { |
---|
242 | if (i==0) |
---|
243 | { |
---|
244 | //npInit(1,result); |
---|
245 | *(long *)result = 1; |
---|
246 | } |
---|
247 | else if (i==1) |
---|
248 | { |
---|
249 | *result = a; |
---|
250 | } |
---|
251 | else |
---|
252 | { |
---|
253 | npPower(a,i-1,result); |
---|
254 | *result = npMultM(a,*result); |
---|
255 | } |
---|
256 | } |
---|
257 | |
---|
258 | char* npEati(char *s, int *i) |
---|
259 | { |
---|
260 | |
---|
261 | if (((*s) >= '0') && ((*s) <= '9')) |
---|
262 | { |
---|
263 | (*i) = 0; |
---|
264 | do |
---|
265 | { |
---|
266 | (*i) *= 10; |
---|
267 | (*i) += *s++ - '0'; |
---|
268 | if ((*i) >= (MAX_INT_VAL / 10)) (*i) = (*i) % npPrimeM; |
---|
269 | } |
---|
270 | while (((*s) >= '0') && ((*s) <= '9')); |
---|
271 | if ((*i) >= npPrimeM) (*i) = (*i) % npPrimeM; |
---|
272 | } |
---|
273 | else (*i) = 1; |
---|
274 | return s; |
---|
275 | } |
---|
276 | |
---|
277 | char * npRead (char *s, number *a) |
---|
278 | { |
---|
279 | int z; |
---|
280 | int n=1; |
---|
281 | |
---|
282 | s = npEati(s, &z); |
---|
283 | if ((*s) == '/') |
---|
284 | { |
---|
285 | s++; |
---|
286 | s = npEati(s, &n); |
---|
287 | } |
---|
288 | if (n == 1) |
---|
289 | *a = (number)z; |
---|
290 | else |
---|
291 | #ifdef NV_OPS |
---|
292 | if (npPrimeM>NV_MAX_PRIME) |
---|
293 | *a = nvDiv((number)z,(number)n); |
---|
294 | else |
---|
295 | #endif |
---|
296 | *a = npDiv((number)z,(number)n); |
---|
297 | return s; |
---|
298 | } |
---|
299 | |
---|
300 | /*2 |
---|
301 | * the last used charcteristic |
---|
302 | */ |
---|
303 | //int npGetChar() |
---|
304 | //{ |
---|
305 | // return npPrimeM; |
---|
306 | //} |
---|
307 | |
---|
308 | /*2 |
---|
309 | * set the charcteristic (allocate and init tables) |
---|
310 | */ |
---|
311 | |
---|
312 | void npSetChar(int c, ring r) |
---|
313 | { |
---|
314 | #ifdef NV_OPS |
---|
315 | if (r->cf->npPrimeM >NV_MAX_PRIME) return; |
---|
316 | #endif |
---|
317 | { |
---|
318 | // if (c==npPrimeM) return; |
---|
319 | if ((c>1) || (c<(-1))) |
---|
320 | { |
---|
321 | if (c>1) npPrimeM = c; |
---|
322 | else npPrimeM = -c; |
---|
323 | npPminus1M = npPrimeM - 1; |
---|
324 | #ifdef HAVE_DIV_MOD |
---|
325 | npInvTable=r->cf->npInvTable; |
---|
326 | #endif |
---|
327 | #if !defined(HAVE_DIV_MOD) || !defined(HAVE_MULT_MOD) |
---|
328 | npExpTable=r->cf->npExpTable; |
---|
329 | npLogTable=r->cf->npLogTable; |
---|
330 | npGen = npExpTable[1]; |
---|
331 | #endif |
---|
332 | } |
---|
333 | else |
---|
334 | { |
---|
335 | npPrimeM=0; |
---|
336 | #ifdef HAVE_DIV_MOD |
---|
337 | npInvTable=NULL; |
---|
338 | #endif |
---|
339 | #if !defined(HAVE_DIV_MOD) || !defined(HAVE_MULT_MOD) |
---|
340 | npExpTable=NULL; |
---|
341 | npLogTable=NULL; |
---|
342 | #endif |
---|
343 | } |
---|
344 | } |
---|
345 | |
---|
346 | void npInitChar(int c, ring r) |
---|
347 | { |
---|
348 | int i, w; |
---|
349 | |
---|
350 | if ((c>1) || (c<(-1))) |
---|
351 | { |
---|
352 | if (c>1) r->cf->npPrimeM = c; |
---|
353 | else r->cf->npPrimeM = -c; |
---|
354 | r->cf->npPminus1M = r->cf->npPrimeM - 1; |
---|
355 | #ifdef NV_OPS |
---|
356 | if (r->cf->npPrimeM <=NV_MAX_PRIME) |
---|
357 | #endif |
---|
358 | { |
---|
359 | #if !defined(HAVE_DIV_MOD) || !defined(HAVE_MULT_MOD) |
---|
360 | r->cf->npExpTable=(CARDINAL *)omAlloc( r->cf->npPrimeM*sizeof(CARDINAL) ); |
---|
361 | r->cf->npLogTable=(CARDINAL *)omAlloc( r->cf->npPrimeM*sizeof(CARDINAL) ); |
---|
362 | r->cf->npExpTable[0] = 1; |
---|
363 | r->cf->npLogTable[0] = 0; |
---|
364 | if (r->cf->npPrimeM > 2) |
---|
365 | { |
---|
366 | w = 1; |
---|
367 | loop |
---|
368 | { |
---|
369 | r->cf->npLogTable[1] = 0; |
---|
370 | w++; |
---|
371 | i = 0; |
---|
372 | loop |
---|
373 | { |
---|
374 | i++; |
---|
375 | r->cf->npExpTable[i] =(int)(((long)w * (long)r->cf->npExpTable[i-1]) |
---|
376 | % r->cf->npPrimeM); |
---|
377 | r->cf->npLogTable[r->cf->npExpTable[i]] = i; |
---|
378 | if (/*(i == npPrimeM - 1 ) ||*/ (r->cf->npExpTable[i] == 1)) |
---|
379 | break; |
---|
380 | } |
---|
381 | if (i == r->cf->npPrimeM - 1) |
---|
382 | break; |
---|
383 | } |
---|
384 | } |
---|
385 | else |
---|
386 | { |
---|
387 | r->cf->npExpTable[1] = 1; |
---|
388 | r->cf->npLogTable[1] = 0; |
---|
389 | } |
---|
390 | #endif |
---|
391 | #ifdef HAVE_DIV_MOD |
---|
392 | r->cf->npInvTable=(CARDINAL*)omAlloc0( r->cf->npPrimeM*sizeof(CARDINAL) ); |
---|
393 | #endif |
---|
394 | } |
---|
395 | } |
---|
396 | else |
---|
397 | { |
---|
398 | WarnS("nInitChar failed"); |
---|
399 | } |
---|
400 | } |
---|
401 | |
---|
402 | #ifdef LDEBUG |
---|
403 | BOOLEAN npDBTest (number a, char *f, int l) |
---|
404 | { |
---|
405 | if (((long)a<0) || ((long)a>npPrimeM)) |
---|
406 | { |
---|
407 | return FALSE; |
---|
408 | } |
---|
409 | return TRUE; |
---|
410 | } |
---|
411 | #endif |
---|
412 | |
---|
413 | number npMap0(number from) |
---|
414 | { |
---|
415 | return npInit(nlModP(from,npPrimeM)); |
---|
416 | } |
---|
417 | |
---|
418 | number npMapP(number from) |
---|
419 | { |
---|
420 | long i = (long)from; |
---|
421 | if (i>npMapPrime/2) |
---|
422 | { |
---|
423 | i-=npMapPrime; |
---|
424 | while (i < 0) i+=npPrimeM; |
---|
425 | } |
---|
426 | i%=npPrimeM; |
---|
427 | return (number)i; |
---|
428 | } |
---|
429 | |
---|
430 | static number npMapLongR(number from) |
---|
431 | { |
---|
432 | gmp_float *ff=(gmp_float*)from; |
---|
433 | mpf_t *f=ff->_mpfp(); |
---|
434 | number res; |
---|
435 | lint *dest,*ndest; |
---|
436 | int size,i; |
---|
437 | int e,al,bl,iz,in; |
---|
438 | mp_ptr qp,dd,nn; |
---|
439 | |
---|
440 | size = (*f)[0]._mp_size; |
---|
441 | if (size == 0) |
---|
442 | return npInit(0); |
---|
443 | if(size<0) |
---|
444 | size = -size; |
---|
445 | |
---|
446 | qp = (*f)[0]._mp_d; |
---|
447 | while(qp[0]==0) |
---|
448 | { |
---|
449 | qp++; |
---|
450 | size--; |
---|
451 | } |
---|
452 | |
---|
453 | if(npPrimeM>2) |
---|
454 | e=(*f)[0]._mp_exp-size; |
---|
455 | else |
---|
456 | e=0; |
---|
457 | res = (number)omAllocBin(rnumber_bin); |
---|
458 | #if defined(LDEBUG) |
---|
459 | res->debug=123456; |
---|
460 | #endif |
---|
461 | dest = &(res->z); |
---|
462 | |
---|
463 | if (e<0) |
---|
464 | { |
---|
465 | al = dest->_mp_size = size; |
---|
466 | if (al<2) al = 2; |
---|
467 | dd = (mp_ptr)omAlloc(sizeof(mp_limb_t)*al); |
---|
468 | for (i=0;i<size;i++) dd[i] = qp[i]; |
---|
469 | bl = 1-e; |
---|
470 | nn = (mp_ptr)omAlloc(sizeof(mp_limb_t)*bl); |
---|
471 | nn[bl-1] = 1; |
---|
472 | for (i=bl-2;i>=0;i--) nn[i] = 0; |
---|
473 | ndest = &(res->n); |
---|
474 | ndest->_mp_d = nn; |
---|
475 | ndest->_mp_alloc = ndest->_mp_size = bl; |
---|
476 | res->s = 0; |
---|
477 | in=mpz_mmod_ui(NULL,ndest,npPrimeM); |
---|
478 | mpz_clear(ndest); |
---|
479 | } |
---|
480 | else |
---|
481 | { |
---|
482 | al = dest->_mp_size = size+e; |
---|
483 | if (al<2) al = 2; |
---|
484 | dd = (mp_ptr)omAlloc(sizeof(mp_limb_t)*al); |
---|
485 | for (i=0;i<size;i++) dd[i+e] = qp[i]; |
---|
486 | for (i=0;i<e;i++) dd[i] = 0; |
---|
487 | res->s = 3; |
---|
488 | } |
---|
489 | |
---|
490 | dest->_mp_d = dd; |
---|
491 | dest->_mp_alloc = al; |
---|
492 | iz=mpz_mmod_ui(NULL,dest,npPrimeM); |
---|
493 | mpz_clear(dest); |
---|
494 | omFreeBin((ADDRESS)res, rnumber_bin); |
---|
495 | if(res->s==0) |
---|
496 | iz=(int)npDiv((number)iz,(number)in); |
---|
497 | return (number)iz; |
---|
498 | } |
---|
499 | |
---|
500 | nMapFunc npSetMap(ring src, ring dst) |
---|
501 | { |
---|
502 | if (rField_is_Q(src)) |
---|
503 | { |
---|
504 | return npMap0; |
---|
505 | } |
---|
506 | if ( rField_is_Zp(src) ) |
---|
507 | { |
---|
508 | if (rChar(src) == rChar(dst)) |
---|
509 | { |
---|
510 | return ndCopy; |
---|
511 | } |
---|
512 | else |
---|
513 | { |
---|
514 | npMapPrime=rChar(src); |
---|
515 | return npMapP; |
---|
516 | } |
---|
517 | } |
---|
518 | if (rField_is_long_R(src)) |
---|
519 | { |
---|
520 | return npMapLongR; |
---|
521 | } |
---|
522 | return NULL; /* default */ |
---|
523 | } |
---|
524 | |
---|
525 | // ----------------------------------------------------------- |
---|
526 | // operation for very large primes (32003< p < 2^31-1) |
---|
527 | // ---------------------------------------------------------- |
---|
528 | #ifdef NV_OPS |
---|
529 | |
---|
530 | number nvMult (number a,number b) |
---|
531 | { |
---|
532 | if (((long)a == 0) || ((long)b == 0)) |
---|
533 | return (number)0; |
---|
534 | else |
---|
535 | return nvMultM(a,b); |
---|
536 | } |
---|
537 | |
---|
538 | long nvInvMod(long a) |
---|
539 | { |
---|
540 | long s, t; |
---|
541 | |
---|
542 | long u, v, u0, v0, u1, v1, u2, v2, q, r; |
---|
543 | |
---|
544 | u1=1; v1=0; |
---|
545 | u2=0; v2=1; |
---|
546 | u = a; v = npPrimeM; |
---|
547 | |
---|
548 | while (v != 0) { |
---|
549 | q = u / v; |
---|
550 | r = u % v; |
---|
551 | u = v; |
---|
552 | v = r; |
---|
553 | u0 = u2; |
---|
554 | v0 = v2; |
---|
555 | u2 = u1 - q*u2; |
---|
556 | v2 = v1- q*v2; |
---|
557 | u1 = u0; |
---|
558 | v1 = v0; |
---|
559 | } |
---|
560 | |
---|
561 | s = u1; |
---|
562 | //t = v1; |
---|
563 | if (s < 0) |
---|
564 | return s + npPrimeM; |
---|
565 | else |
---|
566 | return s; |
---|
567 | } |
---|
568 | |
---|
569 | inline number nvInversM (number c) |
---|
570 | { |
---|
571 | long inv=nvInvMod((long)c); |
---|
572 | return (number)inv; |
---|
573 | } |
---|
574 | |
---|
575 | number nvDiv (number a,number b) |
---|
576 | { |
---|
577 | if ((long)a==0) |
---|
578 | return (number)0; |
---|
579 | else if ((long)b==0) |
---|
580 | { |
---|
581 | WerrorS("div by 0"); |
---|
582 | return (number)0; |
---|
583 | } |
---|
584 | else |
---|
585 | { |
---|
586 | number inv=nvInversM(b); |
---|
587 | return nvMultM(a,inv); |
---|
588 | } |
---|
589 | } |
---|
590 | number nvInvers (number c) |
---|
591 | { |
---|
592 | if ((long)c==0) |
---|
593 | { |
---|
594 | WerrorS("1/0"); |
---|
595 | return (number)0; |
---|
596 | } |
---|
597 | return nvInversM(c); |
---|
598 | } |
---|
599 | #endif |
---|