1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /*************************************************************** |
---|
5 | * File: p_polys.cc |
---|
6 | * Purpose: implementation of currRing independent poly procedures |
---|
7 | * Author: obachman (Olaf Bachmann) |
---|
8 | * Created: 8/00 |
---|
9 | * Version: $Id$ |
---|
10 | *******************************************************************/ |
---|
11 | |
---|
12 | |
---|
13 | #include <kernel/mod2.h> |
---|
14 | |
---|
15 | #include <kernel/structs.h> |
---|
16 | #include <kernel/p_polys.h> |
---|
17 | #include <kernel/ring.h> |
---|
18 | #include <kernel/ideals.h> |
---|
19 | #include <kernel/int64vec.h> |
---|
20 | #ifndef NDEBUG |
---|
21 | #include <kernel/febase.h> |
---|
22 | #endif |
---|
23 | |
---|
24 | /*************************************************************** |
---|
25 | * |
---|
26 | * Completing what needs to be set for the monomial |
---|
27 | * |
---|
28 | ***************************************************************/ |
---|
29 | // this is special for the syz stuff |
---|
30 | static int* _components = NULL; |
---|
31 | static long* _componentsShifted = NULL; |
---|
32 | static int _componentsExternal = 0; |
---|
33 | |
---|
34 | BOOLEAN pSetm_error=0; |
---|
35 | |
---|
36 | #ifndef NDEBUG |
---|
37 | # define MYTEST 0 |
---|
38 | #else /* ifndef NDEBUG */ |
---|
39 | # define MYTEST 0 |
---|
40 | #endif /* ifndef NDEBUG */ |
---|
41 | |
---|
42 | void p_Setm_General(poly p, const ring r) |
---|
43 | { |
---|
44 | p_LmCheckPolyRing(p, r); |
---|
45 | int pos=0; |
---|
46 | if (r->typ!=NULL) |
---|
47 | { |
---|
48 | loop |
---|
49 | { |
---|
50 | long ord=0; |
---|
51 | sro_ord* o=&(r->typ[pos]); |
---|
52 | switch(o->ord_typ) |
---|
53 | { |
---|
54 | case ro_dp: |
---|
55 | { |
---|
56 | int a,e; |
---|
57 | a=o->data.dp.start; |
---|
58 | e=o->data.dp.end; |
---|
59 | for(int i=a;i<=e;i++) ord+=p_GetExp(p,i,r); |
---|
60 | p->exp[o->data.dp.place]=ord; |
---|
61 | break; |
---|
62 | } |
---|
63 | case ro_wp_neg: |
---|
64 | ord=POLY_NEGWEIGHT_OFFSET; |
---|
65 | // no break; |
---|
66 | case ro_wp: |
---|
67 | { |
---|
68 | int a,e; |
---|
69 | a=o->data.wp.start; |
---|
70 | e=o->data.wp.end; |
---|
71 | int *w=o->data.wp.weights; |
---|
72 | #if 1 |
---|
73 | for(int i=a;i<=e;i++) ord+=p_GetExp(p,i,r)*w[i-a]; |
---|
74 | #else |
---|
75 | long ai; |
---|
76 | int ei,wi; |
---|
77 | for(int i=a;i<=e;i++) |
---|
78 | { |
---|
79 | ei=p_GetExp(p,i,r); |
---|
80 | wi=w[i-a]; |
---|
81 | ai=ei*wi; |
---|
82 | if (ai/ei!=wi) pSetm_error=TRUE; |
---|
83 | ord+=ai; |
---|
84 | if (ord<ai) pSetm_error=TRUE; |
---|
85 | } |
---|
86 | #endif |
---|
87 | p->exp[o->data.wp.place]=ord; |
---|
88 | break; |
---|
89 | } |
---|
90 | case ro_wp64: |
---|
91 | { |
---|
92 | int64 ord=0; |
---|
93 | int a,e; |
---|
94 | a=o->data.wp64.start; |
---|
95 | e=o->data.wp64.end; |
---|
96 | int64 *w=o->data.wp64.weights64; |
---|
97 | int64 ei,wi,ai; |
---|
98 | for(int i=a;i<=e;i++) |
---|
99 | { |
---|
100 | //Print("exp %d w %d \n",p_GetExp(p,i,r),(int)w[i-a]); |
---|
101 | //ord+=((int64)p_GetExp(p,i,r))*w[i-a]; |
---|
102 | ei=(int64)p_GetExp(p,i,r); |
---|
103 | wi=w[i-a]; |
---|
104 | ai=ei*wi; |
---|
105 | if(ei!=0 && ai/ei!=wi) |
---|
106 | { |
---|
107 | pSetm_error=TRUE; |
---|
108 | #if SIZEOF_LONG == 4 |
---|
109 | Print("ai %lld, wi %lld\n",ai,wi); |
---|
110 | #else |
---|
111 | Print("ai %ld, wi %ld\n",ai,wi); |
---|
112 | #endif |
---|
113 | } |
---|
114 | ord+=ai; |
---|
115 | if (ord<ai) |
---|
116 | { |
---|
117 | pSetm_error=TRUE; |
---|
118 | #if SIZEOF_LONG == 4 |
---|
119 | Print("ai %lld, ord %lld\n",ai,ord); |
---|
120 | #else |
---|
121 | Print("ai %ld, ord %ld\n",ai,ord); |
---|
122 | #endif |
---|
123 | } |
---|
124 | } |
---|
125 | int64 mask=(int64)0x7fffffff; |
---|
126 | long a_0=(long)(ord&mask); //2^31 |
---|
127 | long a_1=(long)(ord >>31 ); /*(ord/(mask+1));*/ |
---|
128 | |
---|
129 | //Print("mask: %x, ord: %d, a_0: %d, a_1: %d\n" |
---|
130 | //,(int)mask,(int)ord,(int)a_0,(int)a_1); |
---|
131 | //Print("mask: %d",mask); |
---|
132 | |
---|
133 | p->exp[o->data.wp64.place]=a_1; |
---|
134 | p->exp[o->data.wp64.place+1]=a_0; |
---|
135 | // if(p_Setm_error) Print("***************************\n |
---|
136 | // ***************************\n |
---|
137 | // **WARNING: overflow error**\n |
---|
138 | // ***************************\n |
---|
139 | // ***************************\n"); |
---|
140 | break; |
---|
141 | } |
---|
142 | case ro_cp: |
---|
143 | { |
---|
144 | int a,e; |
---|
145 | a=o->data.cp.start; |
---|
146 | e=o->data.cp.end; |
---|
147 | int pl=o->data.cp.place; |
---|
148 | for(int i=a;i<=e;i++) { p->exp[pl]=p_GetExp(p,i,r); pl++; } |
---|
149 | break; |
---|
150 | } |
---|
151 | case ro_syzcomp: |
---|
152 | { |
---|
153 | int c=p_GetComp(p,r); |
---|
154 | long sc = c; |
---|
155 | int* Components = (_componentsExternal ? _components : |
---|
156 | o->data.syzcomp.Components); |
---|
157 | long* ShiftedComponents = (_componentsExternal ? _componentsShifted: |
---|
158 | o->data.syzcomp.ShiftedComponents); |
---|
159 | if (ShiftedComponents != NULL) |
---|
160 | { |
---|
161 | assume(Components != NULL); |
---|
162 | assume(c == 0 || Components[c] != 0); |
---|
163 | sc = ShiftedComponents[Components[c]]; |
---|
164 | assume(c == 0 || sc != 0); |
---|
165 | } |
---|
166 | p->exp[o->data.syzcomp.place]=sc; |
---|
167 | break; |
---|
168 | } |
---|
169 | case ro_syz: |
---|
170 | { |
---|
171 | const unsigned long c = p_GetComp(p, r); |
---|
172 | const short place = o->data.syz.place; |
---|
173 | const int limit = o->data.syz.limit; |
---|
174 | |
---|
175 | if (c > limit) |
---|
176 | p->exp[place] = o->data.syz.curr_index; |
---|
177 | else if (c > 0) |
---|
178 | { |
---|
179 | assume( (1 <= c) && (c <= limit) ); |
---|
180 | p->exp[place]= o->data.syz.syz_index[c]; |
---|
181 | } |
---|
182 | else |
---|
183 | { |
---|
184 | assume(c == 0); |
---|
185 | p->exp[place]= 0; |
---|
186 | } |
---|
187 | break; |
---|
188 | } |
---|
189 | // Prefix for Induced Schreyer ordering |
---|
190 | case ro_isTemp: // Do nothing?? (to be removed into suffix later on...?) |
---|
191 | { |
---|
192 | assume(p != NULL); |
---|
193 | |
---|
194 | #ifndef NDEBUG |
---|
195 | #if MYTEST |
---|
196 | Print("p_Setm_General: isTemp ord: pos: %d, p: ", pos); p_DebugPrint(p, r, r, 1); |
---|
197 | #endif |
---|
198 | #endif |
---|
199 | int c = p_GetComp(p, r); |
---|
200 | |
---|
201 | assume( c >= 0 ); |
---|
202 | |
---|
203 | // Let's simulate case ro_syz above.... |
---|
204 | // Should accumulate (by Suffix) and be a level indicator |
---|
205 | const int* const pVarOffset = o->data.isTemp.pVarOffset; |
---|
206 | |
---|
207 | assume( pVarOffset != NULL ); |
---|
208 | |
---|
209 | // TODO: Can this be done in the suffix??? |
---|
210 | for( int i = 1; i <= r->N; i++ ) // No v[0] here!!! |
---|
211 | { |
---|
212 | const int vo = pVarOffset[i]; |
---|
213 | if( vo != -1) // TODO: optimize: can be done once! |
---|
214 | { |
---|
215 | // Hans! Please don't break it again! p_SetExp(p, ..., r, vo) is correct: |
---|
216 | p_SetExp(p, p_GetExp(p, i, r), r, vo); // copy put them verbatim |
---|
217 | // Hans! Please don't break it again! p_GetExp(p, r, vo) is correct: |
---|
218 | assume( p_GetExp(p, r, vo) == p_GetExp(p, i, r) ); // copy put them verbatim |
---|
219 | } |
---|
220 | } |
---|
221 | |
---|
222 | #ifndef NDEBUG |
---|
223 | for( int i = 1; i <= r->N; i++ ) // No v[0] here!!! |
---|
224 | { |
---|
225 | const int vo = pVarOffset[i]; |
---|
226 | if( vo != -1) // TODO: optimize: can be done once! |
---|
227 | { |
---|
228 | // Hans! Please don't break it again! p_GetExp(p, r, vo) is correct: |
---|
229 | assume( p_GetExp(p, r, vo) == p_GetExp(p, i, r) ); // copy put them verbatim |
---|
230 | } |
---|
231 | } |
---|
232 | #endif |
---|
233 | |
---|
234 | #ifndef NDEBUG |
---|
235 | #if MYTEST |
---|
236 | PrintS("Initial Value: "); p_DebugPrint(p, r, r, 1); |
---|
237 | #endif |
---|
238 | #endif |
---|
239 | break; |
---|
240 | } |
---|
241 | |
---|
242 | // Suffix for Induced Schreyer ordering |
---|
243 | case ro_is: |
---|
244 | { |
---|
245 | #ifndef NDEBUG |
---|
246 | #if MYTEST |
---|
247 | Print("p_Setm_General: ro_is ord: pos: %d, p: ", pos); p_DebugPrint(p, r, r, 1); |
---|
248 | #endif |
---|
249 | #endif |
---|
250 | |
---|
251 | assume(p != NULL); |
---|
252 | |
---|
253 | int c = p_GetComp(p, r); |
---|
254 | |
---|
255 | assume( c >= 0 ); |
---|
256 | const ideal F = o->data.is.F; |
---|
257 | const int limit = o->data.is.limit; |
---|
258 | |
---|
259 | if( F != NULL && c > limit ) |
---|
260 | { |
---|
261 | #ifndef NDEBUG |
---|
262 | #if MYTEST |
---|
263 | Print("p_Setm_General: ro_is : in rSetm: pos: %d, c: %d > limit: %d\n", c, pos, limit); // p_DebugPrint(p, r, r, 1); |
---|
264 | #endif |
---|
265 | #endif |
---|
266 | |
---|
267 | c -= limit; |
---|
268 | assume( c > 0 ); |
---|
269 | c--; |
---|
270 | |
---|
271 | assume( c < IDELEMS(F) ); // What about others??? |
---|
272 | |
---|
273 | const poly pp = F->m[c]; // get reference monomial!!! |
---|
274 | |
---|
275 | |
---|
276 | #ifndef NDEBUG |
---|
277 | #if MYTEST |
---|
278 | Print("Respective F[c - %d: %d] pp: ", limit, c); |
---|
279 | p_DebugPrint(pp, r, r, 1); |
---|
280 | #endif |
---|
281 | #endif |
---|
282 | |
---|
283 | |
---|
284 | assume(pp != NULL); |
---|
285 | if(pp == NULL) break; |
---|
286 | |
---|
287 | const int start = o->data.is.start; |
---|
288 | const int end = o->data.is.end; |
---|
289 | |
---|
290 | assume(start <= end); |
---|
291 | |
---|
292 | // const int limit = o->data.is.limit; |
---|
293 | assume( limit >= 0 ); |
---|
294 | |
---|
295 | // const int st = o->data.isTemp.start; |
---|
296 | |
---|
297 | if( c > limit ) |
---|
298 | p->exp[start] = 1; |
---|
299 | // else |
---|
300 | // p->exp[start] = 0; |
---|
301 | |
---|
302 | |
---|
303 | #ifndef NDEBUG |
---|
304 | Print("p_Setm_General: is(-Temp-) :: c: %d, limit: %d, [st:%d] ===>>> %d\n", c, limit, start, p->exp[start]); |
---|
305 | #endif |
---|
306 | |
---|
307 | |
---|
308 | for( int i = start; i <= end; i++) // v[0] may be here... |
---|
309 | p->exp[i] += pp->exp[i]; // !!!!!!!! ADD corresponding LT(F) |
---|
310 | |
---|
311 | |
---|
312 | |
---|
313 | |
---|
314 | #ifndef NDEBUG |
---|
315 | const int* const pVarOffset = o->data.is.pVarOffset; |
---|
316 | |
---|
317 | assume( pVarOffset != NULL ); |
---|
318 | |
---|
319 | for( int i = 1; i <= r->N; i++ ) // No v[0] here!!! |
---|
320 | { |
---|
321 | const int vo = pVarOffset[i]; |
---|
322 | if( vo != -1) // TODO: optimize: can be done once! |
---|
323 | // Hans! Please don't break it again! p_GetExp(p/pp, r, vo) is correct: |
---|
324 | assume( p_GetExp(p, r, vo) == (p_GetExp(p, i, r) + p_GetExp(pp, r, vo)) ); |
---|
325 | } |
---|
326 | // TODO: how to check this for computed values??? |
---|
327 | #endif |
---|
328 | #ifndef NDEBUG |
---|
329 | #if MYTEST |
---|
330 | PrintS("IS::Suffix::Result: "); // p_Write(p, r, r); |
---|
331 | p_DebugPrint(p, r, r, 1); |
---|
332 | #endif |
---|
333 | #endif |
---|
334 | |
---|
335 | } else |
---|
336 | { |
---|
337 | const int* const pVarOffset = o->data.is.pVarOffset; |
---|
338 | |
---|
339 | // What about v[0] - component: it will be added later by |
---|
340 | // suffix!!! |
---|
341 | // TODO: Test it! |
---|
342 | const int vo = pVarOffset[0]; |
---|
343 | if( vo != -1 ) |
---|
344 | p->exp[vo] = c; // initial component v[0]! |
---|
345 | |
---|
346 | #ifndef NDEBUG |
---|
347 | #if MYTEST |
---|
348 | Print("p_Setm_General: ro_is :: c: %d <= limit: %d, vo: %d, exp: %d\n", c, limit, vo, p->exp[vo]); |
---|
349 | p_DebugPrint(p, r, r, 1); |
---|
350 | #endif |
---|
351 | #endif |
---|
352 | } |
---|
353 | |
---|
354 | |
---|
355 | break; |
---|
356 | } |
---|
357 | default: |
---|
358 | dReportError("wrong ord in rSetm:%d\n",o->ord_typ); |
---|
359 | return; |
---|
360 | } |
---|
361 | pos++; |
---|
362 | if (pos == r->OrdSize) return; |
---|
363 | } |
---|
364 | } |
---|
365 | } |
---|
366 | |
---|
367 | void p_Setm_Syz(poly p, ring r, int* Components, long* ShiftedComponents) |
---|
368 | { |
---|
369 | _components = Components; |
---|
370 | _componentsShifted = ShiftedComponents; |
---|
371 | _componentsExternal = 1; |
---|
372 | p_Setm_General(p, r); |
---|
373 | _componentsExternal = 0; |
---|
374 | } |
---|
375 | |
---|
376 | // dummy for lp, ls, etc |
---|
377 | void p_Setm_Dummy(poly p, const ring r) |
---|
378 | { |
---|
379 | p_LmCheckPolyRing(p, r); |
---|
380 | } |
---|
381 | |
---|
382 | // for dp, Dp, ds, etc |
---|
383 | void p_Setm_TotalDegree(poly p, const ring r) |
---|
384 | { |
---|
385 | p_LmCheckPolyRing(p, r); |
---|
386 | p->exp[r->pOrdIndex] = p_Totaldegree(p, r); |
---|
387 | } |
---|
388 | |
---|
389 | // for wp, Wp, ws, etc |
---|
390 | void p_Setm_WFirstTotalDegree(poly p, const ring r) |
---|
391 | { |
---|
392 | p_LmCheckPolyRing(p, r); |
---|
393 | p->exp[r->pOrdIndex] = pWFirstTotalDegree(p, r); |
---|
394 | } |
---|
395 | |
---|
396 | p_SetmProc p_GetSetmProc(ring r) |
---|
397 | { |
---|
398 | // covers lp, rp, ls, |
---|
399 | if (r->typ == NULL) return p_Setm_Dummy; |
---|
400 | |
---|
401 | if (r->OrdSize == 1) |
---|
402 | { |
---|
403 | if (r->typ[0].ord_typ == ro_dp && |
---|
404 | r->typ[0].data.dp.start == 1 && |
---|
405 | r->typ[0].data.dp.end == r->N && |
---|
406 | r->typ[0].data.dp.place == r->pOrdIndex) |
---|
407 | return p_Setm_TotalDegree; |
---|
408 | if (r->typ[0].ord_typ == ro_wp && |
---|
409 | r->typ[0].data.wp.start == 1 && |
---|
410 | r->typ[0].data.wp.end == r->N && |
---|
411 | r->typ[0].data.wp.place == r->pOrdIndex && |
---|
412 | r->typ[0].data.wp.weights == r->firstwv) |
---|
413 | return p_Setm_WFirstTotalDegree; |
---|
414 | } |
---|
415 | return p_Setm_General; |
---|
416 | } |
---|
417 | |
---|
418 | |
---|
419 | /* -------------------------------------------------------------------*/ |
---|
420 | /* several possibilities for pFDeg: the degree of the head term */ |
---|
421 | |
---|
422 | /* comptible with ordering */ |
---|
423 | long pDeg(poly a, const ring r) |
---|
424 | { |
---|
425 | p_LmCheckPolyRing(a, r); |
---|
426 | return p_GetOrder(a, r); |
---|
427 | } |
---|
428 | |
---|
429 | // pWTotalDegree for weighted orderings |
---|
430 | // whose first block covers all variables |
---|
431 | static inline long _pWFirstTotalDegree(poly p, const ring r) |
---|
432 | { |
---|
433 | int i; |
---|
434 | long sum = 0; |
---|
435 | |
---|
436 | for (i=1; i<= r->firstBlockEnds; i++) |
---|
437 | { |
---|
438 | sum += p_GetExp(p, i, r)*r->firstwv[i-1]; |
---|
439 | } |
---|
440 | return sum; |
---|
441 | } |
---|
442 | |
---|
443 | long pWFirstTotalDegree(poly p, const ring r) |
---|
444 | { |
---|
445 | return (long) _pWFirstTotalDegree(p, r); |
---|
446 | } |
---|
447 | |
---|
448 | /*2 |
---|
449 | * compute the degree of the leading monomial of p |
---|
450 | * with respect to weigths from the ordering |
---|
451 | * the ordering is not compatible with degree so do not use p->Order |
---|
452 | */ |
---|
453 | long pWTotaldegree(poly p, const ring r) |
---|
454 | { |
---|
455 | p_LmCheckPolyRing(p, r); |
---|
456 | int i, k; |
---|
457 | long j =0; |
---|
458 | |
---|
459 | // iterate through each block: |
---|
460 | for (i=0;r->order[i]!=0;i++) |
---|
461 | { |
---|
462 | int b0=r->block0[i]; |
---|
463 | int b1=r->block1[i]; |
---|
464 | switch(r->order[i]) |
---|
465 | { |
---|
466 | case ringorder_M: |
---|
467 | for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++) |
---|
468 | { // in jedem block: |
---|
469 | j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/]*r->OrdSgn; |
---|
470 | } |
---|
471 | break; |
---|
472 | case ringorder_wp: |
---|
473 | case ringorder_ws: |
---|
474 | case ringorder_Wp: |
---|
475 | case ringorder_Ws: |
---|
476 | for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++) |
---|
477 | { // in jedem block: |
---|
478 | j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/]; |
---|
479 | } |
---|
480 | break; |
---|
481 | case ringorder_lp: |
---|
482 | case ringorder_ls: |
---|
483 | case ringorder_rs: |
---|
484 | case ringorder_dp: |
---|
485 | case ringorder_ds: |
---|
486 | case ringorder_Dp: |
---|
487 | case ringorder_Ds: |
---|
488 | case ringorder_rp: |
---|
489 | for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++) |
---|
490 | { |
---|
491 | j+= p_GetExp(p,k,r); |
---|
492 | } |
---|
493 | break; |
---|
494 | case ringorder_a64: |
---|
495 | { |
---|
496 | int64* w=(int64*)r->wvhdl[i]; |
---|
497 | for (k=0;k<=(b1 /*r->block1[i]*/ - b0 /*r->block0[i]*/);k++) |
---|
498 | { |
---|
499 | //there should be added a line which checks if w[k]>2^31 |
---|
500 | j+= p_GetExp(p,k+1, r)*(long)w[k]; |
---|
501 | } |
---|
502 | //break; |
---|
503 | return j; |
---|
504 | } |
---|
505 | case ringorder_c: |
---|
506 | case ringorder_C: |
---|
507 | case ringorder_S: |
---|
508 | case ringorder_s: |
---|
509 | case ringorder_IS: |
---|
510 | case ringorder_aa: |
---|
511 | break; |
---|
512 | case ringorder_a: |
---|
513 | for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++) |
---|
514 | { // only one line |
---|
515 | j+= p_GetExp(p,k, r)*r->wvhdl[i][ k- b0 /*r->block0[i]*/]; |
---|
516 | } |
---|
517 | //break; |
---|
518 | return j; |
---|
519 | |
---|
520 | #ifndef NDEBUG |
---|
521 | default: |
---|
522 | Print("missing order %d in pWTotaldegree\n",r->order[i]); |
---|
523 | break; |
---|
524 | #endif |
---|
525 | } |
---|
526 | } |
---|
527 | return j; |
---|
528 | } |
---|
529 | |
---|
530 | int pWeight(int i, const ring r) |
---|
531 | { |
---|
532 | if ((r->firstwv==NULL) || (i>r->firstBlockEnds)) |
---|
533 | { |
---|
534 | return 1; |
---|
535 | } |
---|
536 | return r->firstwv[i-1]; |
---|
537 | } |
---|
538 | |
---|
539 | long pWDegree(poly p, const ring r) |
---|
540 | { |
---|
541 | if (r->firstwv==NULL) return p_Totaldegree(p, r); |
---|
542 | p_LmCheckPolyRing(p, r); |
---|
543 | int i, k; |
---|
544 | long j =0; |
---|
545 | |
---|
546 | for(i=1;i<=r->firstBlockEnds;i++) |
---|
547 | j+=p_GetExp(p, i, r)*r->firstwv[i-1]; |
---|
548 | |
---|
549 | for (;i<=r->N;i++) |
---|
550 | j+=p_GetExp(p,i, r)*pWeight(i, r); |
---|
551 | |
---|
552 | return j; |
---|
553 | } |
---|
554 | |
---|
555 | |
---|
556 | /* ---------------------------------------------------------------------*/ |
---|
557 | /* several possibilities for pLDeg: the maximal degree of a monomial in p*/ |
---|
558 | /* compute in l also the pLength of p */ |
---|
559 | |
---|
560 | /*2 |
---|
561 | * compute the length of a polynomial (in l) |
---|
562 | * and the degree of the monomial with maximal degree: the last one |
---|
563 | */ |
---|
564 | long pLDeg0(poly p,int *l, const ring r) |
---|
565 | { |
---|
566 | p_CheckPolyRing(p, r); |
---|
567 | long k= p_GetComp(p, r); |
---|
568 | int ll=1; |
---|
569 | |
---|
570 | if (k > 0) |
---|
571 | { |
---|
572 | while ((pNext(p)!=NULL) && (p_GetComp(pNext(p), r)==k)) |
---|
573 | { |
---|
574 | pIter(p); |
---|
575 | ll++; |
---|
576 | } |
---|
577 | } |
---|
578 | else |
---|
579 | { |
---|
580 | while (pNext(p)!=NULL) |
---|
581 | { |
---|
582 | pIter(p); |
---|
583 | ll++; |
---|
584 | } |
---|
585 | } |
---|
586 | *l=ll; |
---|
587 | return r->pFDeg(p, r); |
---|
588 | } |
---|
589 | |
---|
590 | /*2 |
---|
591 | * compute the length of a polynomial (in l) |
---|
592 | * and the degree of the monomial with maximal degree: the last one |
---|
593 | * but search in all components before syzcomp |
---|
594 | */ |
---|
595 | long pLDeg0c(poly p,int *l, const ring r) |
---|
596 | { |
---|
597 | assume(p!=NULL); |
---|
598 | #ifdef PDEBUG |
---|
599 | _p_Test(p,r,PDEBUG); |
---|
600 | #endif |
---|
601 | p_CheckPolyRing(p, r); |
---|
602 | long o; |
---|
603 | int ll=1; |
---|
604 | |
---|
605 | if (! rIsSyzIndexRing(r)) |
---|
606 | { |
---|
607 | while (pNext(p) != NULL) |
---|
608 | { |
---|
609 | pIter(p); |
---|
610 | ll++; |
---|
611 | } |
---|
612 | o = r->pFDeg(p, r); |
---|
613 | } |
---|
614 | else |
---|
615 | { |
---|
616 | int curr_limit = rGetCurrSyzLimit(r); |
---|
617 | poly pp = p; |
---|
618 | while ((p=pNext(p))!=NULL) |
---|
619 | { |
---|
620 | if (p_GetComp(p, r)<=curr_limit/*syzComp*/) |
---|
621 | ll++; |
---|
622 | else break; |
---|
623 | pp = p; |
---|
624 | } |
---|
625 | #ifdef PDEBUG |
---|
626 | _p_Test(pp,r,PDEBUG); |
---|
627 | #endif |
---|
628 | o = r->pFDeg(pp, r); |
---|
629 | } |
---|
630 | *l=ll; |
---|
631 | return o; |
---|
632 | } |
---|
633 | |
---|
634 | /*2 |
---|
635 | * compute the length of a polynomial (in l) |
---|
636 | * and the degree of the monomial with maximal degree: the first one |
---|
637 | * this works for the polynomial case with degree orderings |
---|
638 | * (both c,dp and dp,c) |
---|
639 | */ |
---|
640 | long pLDegb(poly p,int *l, const ring r) |
---|
641 | { |
---|
642 | p_CheckPolyRing(p, r); |
---|
643 | long k= p_GetComp(p, r); |
---|
644 | long o = r->pFDeg(p, r); |
---|
645 | int ll=1; |
---|
646 | |
---|
647 | if (k != 0) |
---|
648 | { |
---|
649 | while (((p=pNext(p))!=NULL) && (p_GetComp(p, r)==k)) |
---|
650 | { |
---|
651 | ll++; |
---|
652 | } |
---|
653 | } |
---|
654 | else |
---|
655 | { |
---|
656 | while ((p=pNext(p)) !=NULL) |
---|
657 | { |
---|
658 | ll++; |
---|
659 | } |
---|
660 | } |
---|
661 | *l=ll; |
---|
662 | return o; |
---|
663 | } |
---|
664 | |
---|
665 | /*2 |
---|
666 | * compute the length of a polynomial (in l) |
---|
667 | * and the degree of the monomial with maximal degree: |
---|
668 | * this is NOT the last one, we have to look for it |
---|
669 | */ |
---|
670 | long pLDeg1(poly p,int *l, const ring r) |
---|
671 | { |
---|
672 | p_CheckPolyRing(p, r); |
---|
673 | long k= p_GetComp(p, r); |
---|
674 | int ll=1; |
---|
675 | long t,max; |
---|
676 | |
---|
677 | max=r->pFDeg(p, r); |
---|
678 | if (k > 0) |
---|
679 | { |
---|
680 | while (((p=pNext(p))!=NULL) && (p_GetComp(p, r)==k)) |
---|
681 | { |
---|
682 | t=r->pFDeg(p, r); |
---|
683 | if (t>max) max=t; |
---|
684 | ll++; |
---|
685 | } |
---|
686 | } |
---|
687 | else |
---|
688 | { |
---|
689 | while ((p=pNext(p))!=NULL) |
---|
690 | { |
---|
691 | t=r->pFDeg(p, r); |
---|
692 | if (t>max) max=t; |
---|
693 | ll++; |
---|
694 | } |
---|
695 | } |
---|
696 | *l=ll; |
---|
697 | return max; |
---|
698 | } |
---|
699 | |
---|
700 | /*2 |
---|
701 | * compute the length of a polynomial (in l) |
---|
702 | * and the degree of the monomial with maximal degree: |
---|
703 | * this is NOT the last one, we have to look for it |
---|
704 | * in all components |
---|
705 | */ |
---|
706 | long pLDeg1c(poly p,int *l, const ring r) |
---|
707 | { |
---|
708 | p_CheckPolyRing(p, r); |
---|
709 | int ll=1; |
---|
710 | long t,max; |
---|
711 | |
---|
712 | max=r->pFDeg(p, r); |
---|
713 | if (rIsSyzIndexRing(r)) |
---|
714 | { |
---|
715 | long limit = rGetCurrSyzLimit(r); |
---|
716 | while ((p=pNext(p))!=NULL) |
---|
717 | { |
---|
718 | if (p_GetComp(p, r)<=limit) |
---|
719 | { |
---|
720 | if ((t=r->pFDeg(p, r))>max) max=t; |
---|
721 | ll++; |
---|
722 | } |
---|
723 | else break; |
---|
724 | } |
---|
725 | } |
---|
726 | else |
---|
727 | { |
---|
728 | while ((p=pNext(p))!=NULL) |
---|
729 | { |
---|
730 | if ((t=r->pFDeg(p, r))>max) max=t; |
---|
731 | ll++; |
---|
732 | } |
---|
733 | } |
---|
734 | *l=ll; |
---|
735 | return max; |
---|
736 | } |
---|
737 | |
---|
738 | // like pLDeg1, only pFDeg == pDeg |
---|
739 | long pLDeg1_Deg(poly p,int *l, const ring r) |
---|
740 | { |
---|
741 | assume(r->pFDeg == pDeg); |
---|
742 | p_CheckPolyRing(p, r); |
---|
743 | long k= p_GetComp(p, r); |
---|
744 | int ll=1; |
---|
745 | long t,max; |
---|
746 | |
---|
747 | max=p_GetOrder(p, r); |
---|
748 | if (k > 0) |
---|
749 | { |
---|
750 | while (((p=pNext(p))!=NULL) && (p_GetComp(p, r)==k)) |
---|
751 | { |
---|
752 | t=p_GetOrder(p, r); |
---|
753 | if (t>max) max=t; |
---|
754 | ll++; |
---|
755 | } |
---|
756 | } |
---|
757 | else |
---|
758 | { |
---|
759 | while ((p=pNext(p))!=NULL) |
---|
760 | { |
---|
761 | t=p_GetOrder(p, r); |
---|
762 | if (t>max) max=t; |
---|
763 | ll++; |
---|
764 | } |
---|
765 | } |
---|
766 | *l=ll; |
---|
767 | return max; |
---|
768 | } |
---|
769 | |
---|
770 | long pLDeg1c_Deg(poly p,int *l, const ring r) |
---|
771 | { |
---|
772 | assume(r->pFDeg == pDeg); |
---|
773 | p_CheckPolyRing(p, r); |
---|
774 | int ll=1; |
---|
775 | long t,max; |
---|
776 | |
---|
777 | max=p_GetOrder(p, r); |
---|
778 | if (rIsSyzIndexRing(r)) |
---|
779 | { |
---|
780 | long limit = rGetCurrSyzLimit(r); |
---|
781 | while ((p=pNext(p))!=NULL) |
---|
782 | { |
---|
783 | if (p_GetComp(p, r)<=limit) |
---|
784 | { |
---|
785 | if ((t=p_GetOrder(p, r))>max) max=t; |
---|
786 | ll++; |
---|
787 | } |
---|
788 | else break; |
---|
789 | } |
---|
790 | } |
---|
791 | else |
---|
792 | { |
---|
793 | while ((p=pNext(p))!=NULL) |
---|
794 | { |
---|
795 | if ((t=p_GetOrder(p, r))>max) max=t; |
---|
796 | ll++; |
---|
797 | } |
---|
798 | } |
---|
799 | *l=ll; |
---|
800 | return max; |
---|
801 | } |
---|
802 | |
---|
803 | // like pLDeg1, only pFDeg == pTotoalDegree |
---|
804 | long pLDeg1_Totaldegree(poly p,int *l, const ring r) |
---|
805 | { |
---|
806 | p_CheckPolyRing(p, r); |
---|
807 | long k= p_GetComp(p, r); |
---|
808 | int ll=1; |
---|
809 | long t,max; |
---|
810 | |
---|
811 | max=p_Totaldegree(p, r); |
---|
812 | if (k > 0) |
---|
813 | { |
---|
814 | while (((p=pNext(p))!=NULL) && (p_GetComp(p, r)==k)) |
---|
815 | { |
---|
816 | t=p_Totaldegree(p, r); |
---|
817 | if (t>max) max=t; |
---|
818 | ll++; |
---|
819 | } |
---|
820 | } |
---|
821 | else |
---|
822 | { |
---|
823 | while ((p=pNext(p))!=NULL) |
---|
824 | { |
---|
825 | t=p_Totaldegree(p, r); |
---|
826 | if (t>max) max=t; |
---|
827 | ll++; |
---|
828 | } |
---|
829 | } |
---|
830 | *l=ll; |
---|
831 | return max; |
---|
832 | } |
---|
833 | |
---|
834 | long pLDeg1c_Totaldegree(poly p,int *l, const ring r) |
---|
835 | { |
---|
836 | p_CheckPolyRing(p, r); |
---|
837 | int ll=1; |
---|
838 | long t,max; |
---|
839 | |
---|
840 | max=p_Totaldegree(p, r); |
---|
841 | if (rIsSyzIndexRing(r)) |
---|
842 | { |
---|
843 | long limit = rGetCurrSyzLimit(r); |
---|
844 | while ((p=pNext(p))!=NULL) |
---|
845 | { |
---|
846 | if (p_GetComp(p, r)<=limit) |
---|
847 | { |
---|
848 | if ((t=p_Totaldegree(p, r))>max) max=t; |
---|
849 | ll++; |
---|
850 | } |
---|
851 | else break; |
---|
852 | } |
---|
853 | } |
---|
854 | else |
---|
855 | { |
---|
856 | while ((p=pNext(p))!=NULL) |
---|
857 | { |
---|
858 | if ((t=p_Totaldegree(p, r))>max) max=t; |
---|
859 | ll++; |
---|
860 | } |
---|
861 | } |
---|
862 | *l=ll; |
---|
863 | return max; |
---|
864 | } |
---|
865 | |
---|
866 | // like pLDeg1, only pFDeg == pWFirstTotalDegree |
---|
867 | long pLDeg1_WFirstTotalDegree(poly p,int *l, const ring r) |
---|
868 | { |
---|
869 | p_CheckPolyRing(p, r); |
---|
870 | long k= p_GetComp(p, r); |
---|
871 | int ll=1; |
---|
872 | long t,max; |
---|
873 | |
---|
874 | max=_pWFirstTotalDegree(p, r); |
---|
875 | if (k > 0) |
---|
876 | { |
---|
877 | while (((p=pNext(p))!=NULL) && (p_GetComp(p, r)==k)) |
---|
878 | { |
---|
879 | t=_pWFirstTotalDegree(p, r); |
---|
880 | if (t>max) max=t; |
---|
881 | ll++; |
---|
882 | } |
---|
883 | } |
---|
884 | else |
---|
885 | { |
---|
886 | while ((p=pNext(p))!=NULL) |
---|
887 | { |
---|
888 | t=_pWFirstTotalDegree(p, r); |
---|
889 | if (t>max) max=t; |
---|
890 | ll++; |
---|
891 | } |
---|
892 | } |
---|
893 | *l=ll; |
---|
894 | return max; |
---|
895 | } |
---|
896 | |
---|
897 | long pLDeg1c_WFirstTotalDegree(poly p,int *l, const ring r) |
---|
898 | { |
---|
899 | p_CheckPolyRing(p, r); |
---|
900 | int ll=1; |
---|
901 | long t,max; |
---|
902 | |
---|
903 | max=_pWFirstTotalDegree(p, r); |
---|
904 | if (rIsSyzIndexRing(r)) |
---|
905 | { |
---|
906 | long limit = rGetCurrSyzLimit(r); |
---|
907 | while ((p=pNext(p))!=NULL) |
---|
908 | { |
---|
909 | if (p_GetComp(p, r)<=limit) |
---|
910 | { |
---|
911 | if ((t=p_Totaldegree(p, r))>max) max=t; |
---|
912 | ll++; |
---|
913 | } |
---|
914 | else break; |
---|
915 | } |
---|
916 | } |
---|
917 | else |
---|
918 | { |
---|
919 | while ((p=pNext(p))!=NULL) |
---|
920 | { |
---|
921 | if ((t=p_Totaldegree(p, r))>max) max=t; |
---|
922 | ll++; |
---|
923 | } |
---|
924 | } |
---|
925 | *l=ll; |
---|
926 | return max; |
---|
927 | } |
---|
928 | |
---|
929 | /*************************************************************** |
---|
930 | * |
---|
931 | * Maximal Exponent business |
---|
932 | * |
---|
933 | ***************************************************************/ |
---|
934 | |
---|
935 | static inline unsigned long |
---|
936 | p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r, |
---|
937 | unsigned long number_of_exp) |
---|
938 | { |
---|
939 | const unsigned long bitmask = r->bitmask; |
---|
940 | unsigned long ml1 = l1 & bitmask; |
---|
941 | unsigned long ml2 = l2 & bitmask; |
---|
942 | unsigned long max = (ml1 > ml2 ? ml1 : ml2); |
---|
943 | unsigned long j = number_of_exp - 1; |
---|
944 | |
---|
945 | if (j > 0) |
---|
946 | { |
---|
947 | unsigned long mask = bitmask << r->BitsPerExp; |
---|
948 | while (1) |
---|
949 | { |
---|
950 | ml1 = l1 & mask; |
---|
951 | ml2 = l2 & mask; |
---|
952 | max |= ((ml1 > ml2 ? ml1 : ml2) & mask); |
---|
953 | j--; |
---|
954 | if (j == 0) break; |
---|
955 | mask = mask << r->BitsPerExp; |
---|
956 | } |
---|
957 | } |
---|
958 | return max; |
---|
959 | } |
---|
960 | |
---|
961 | static inline unsigned long |
---|
962 | p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r) |
---|
963 | { |
---|
964 | return p_GetMaxExpL2(l1, l2, r, r->ExpPerLong); |
---|
965 | } |
---|
966 | |
---|
967 | poly p_GetMaxExpP(poly p, const ring r) |
---|
968 | { |
---|
969 | p_CheckPolyRing(p, r); |
---|
970 | if (p == NULL) return p_Init(r); |
---|
971 | poly max = p_LmInit(p, r); |
---|
972 | pIter(p); |
---|
973 | if (p == NULL) return max; |
---|
974 | int i, offset; |
---|
975 | unsigned long l_p, l_max; |
---|
976 | unsigned long divmask = r->divmask; |
---|
977 | |
---|
978 | do |
---|
979 | { |
---|
980 | offset = r->VarL_Offset[0]; |
---|
981 | l_p = p->exp[offset]; |
---|
982 | l_max = max->exp[offset]; |
---|
983 | // do the divisibility trick to find out whether l has an exponent |
---|
984 | if (l_p > l_max || |
---|
985 | (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask))) |
---|
986 | max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r); |
---|
987 | |
---|
988 | for (i=1; i<r->VarL_Size; i++) |
---|
989 | { |
---|
990 | offset = r->VarL_Offset[i]; |
---|
991 | l_p = p->exp[offset]; |
---|
992 | l_max = max->exp[offset]; |
---|
993 | // do the divisibility trick to find out whether l has an exponent |
---|
994 | if (l_p > l_max || |
---|
995 | (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask))) |
---|
996 | max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r); |
---|
997 | } |
---|
998 | pIter(p); |
---|
999 | } |
---|
1000 | while (p != NULL); |
---|
1001 | return max; |
---|
1002 | } |
---|
1003 | |
---|
1004 | unsigned long p_GetMaxExpL(poly p, const ring r, unsigned long l_max) |
---|
1005 | { |
---|
1006 | unsigned long l_p, divmask = r->divmask; |
---|
1007 | int i; |
---|
1008 | |
---|
1009 | while (p != NULL) |
---|
1010 | { |
---|
1011 | l_p = p->exp[r->VarL_Offset[0]]; |
---|
1012 | if (l_p > l_max || |
---|
1013 | (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask))) |
---|
1014 | l_max = p_GetMaxExpL2(l_max, l_p, r); |
---|
1015 | for (i=1; i<r->VarL_Size; i++) |
---|
1016 | { |
---|
1017 | l_p = p->exp[r->VarL_Offset[i]]; |
---|
1018 | // do the divisibility trick to find out whether l has an exponent |
---|
1019 | if (l_p > l_max || |
---|
1020 | (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask))) |
---|
1021 | l_max = p_GetMaxExpL2(l_max, l_p, r); |
---|
1022 | } |
---|
1023 | pIter(p); |
---|
1024 | } |
---|
1025 | return l_max; |
---|
1026 | } |
---|
1027 | |
---|
1028 | |
---|
1029 | |
---|
1030 | |
---|
1031 | /*************************************************************** |
---|
1032 | * |
---|
1033 | * Misc things |
---|
1034 | * |
---|
1035 | ***************************************************************/ |
---|
1036 | // returns TRUE, if all monoms have the same component |
---|
1037 | BOOLEAN p_OneComp(poly p, const ring r) |
---|
1038 | { |
---|
1039 | if(p!=NULL) |
---|
1040 | { |
---|
1041 | long i = p_GetComp(p, r); |
---|
1042 | while (pNext(p)!=NULL) |
---|
1043 | { |
---|
1044 | pIter(p); |
---|
1045 | if(i != p_GetComp(p, r)) return FALSE; |
---|
1046 | } |
---|
1047 | } |
---|
1048 | return TRUE; |
---|
1049 | } |
---|
1050 | |
---|
1051 | /*2 |
---|
1052 | *test if a monomial /head term is a pure power |
---|
1053 | */ |
---|
1054 | int p_IsPurePower(const poly p, const ring r) |
---|
1055 | { |
---|
1056 | int i,k=0; |
---|
1057 | |
---|
1058 | for (i=r->N;i;i--) |
---|
1059 | { |
---|
1060 | if (p_GetExp(p,i, r)!=0) |
---|
1061 | { |
---|
1062 | if(k!=0) return 0; |
---|
1063 | k=i; |
---|
1064 | } |
---|
1065 | } |
---|
1066 | return k; |
---|
1067 | } |
---|
1068 | |
---|
1069 | /*2 |
---|
1070 | *test if a polynomial is univariate |
---|
1071 | * return -1 for constant, |
---|
1072 | * 0 for not univariate,s |
---|
1073 | * i if dep. on var(i) |
---|
1074 | */ |
---|
1075 | int p_IsUnivariate(poly p, const ring r) |
---|
1076 | { |
---|
1077 | int i,k=-1; |
---|
1078 | |
---|
1079 | while (p!=NULL) |
---|
1080 | { |
---|
1081 | for (i=r->N;i;i--) |
---|
1082 | { |
---|
1083 | if (p_GetExp(p,i, r)!=0) |
---|
1084 | { |
---|
1085 | if((k!=-1)&&(k!=i)) return 0; |
---|
1086 | k=i; |
---|
1087 | } |
---|
1088 | } |
---|
1089 | pIter(p); |
---|
1090 | } |
---|
1091 | return k; |
---|
1092 | } |
---|
1093 | |
---|
1094 | // set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0 |
---|
1095 | int p_GetVariables(poly p, int * e, const ring r) |
---|
1096 | { |
---|
1097 | int i; |
---|
1098 | int n=0; |
---|
1099 | while(p!=NULL) |
---|
1100 | { |
---|
1101 | n=0; |
---|
1102 | for(i=r->N; i>0; i--) |
---|
1103 | { |
---|
1104 | if(e[i]==0) |
---|
1105 | { |
---|
1106 | if (p_GetExp(p,i,r)>0) |
---|
1107 | { |
---|
1108 | e[i]=1; |
---|
1109 | n++; |
---|
1110 | } |
---|
1111 | } |
---|
1112 | else |
---|
1113 | n++; |
---|
1114 | } |
---|
1115 | if (n==r->N) break; |
---|
1116 | pIter(p); |
---|
1117 | } |
---|
1118 | return n; |
---|
1119 | } |
---|
1120 | |
---|
1121 | |
---|
1122 | /*2 |
---|
1123 | * returns a polynomial representing the integer i |
---|
1124 | */ |
---|
1125 | poly p_ISet(int i, const ring r) |
---|
1126 | { |
---|
1127 | poly rc = NULL; |
---|
1128 | if (i!=0) |
---|
1129 | { |
---|
1130 | rc = p_Init(r); |
---|
1131 | pSetCoeff0(rc,n_Init(i,r)); |
---|
1132 | if (r->cf->nIsZero(p_GetCoeff(rc,r))) |
---|
1133 | p_LmDelete(&rc,r); |
---|
1134 | } |
---|
1135 | return rc; |
---|
1136 | } |
---|
1137 | |
---|
1138 | /*2 |
---|
1139 | * an optimized version of p_ISet for the special case 1 |
---|
1140 | */ |
---|
1141 | poly p_One(const ring r) |
---|
1142 | { |
---|
1143 | poly rc = p_Init(r); |
---|
1144 | pSetCoeff0(rc,n_Init(1,r)); |
---|
1145 | return rc; |
---|
1146 | } |
---|
1147 | |
---|
1148 | /*2 |
---|
1149 | * returns a polynomial representing the number n |
---|
1150 | * destroys n |
---|
1151 | */ |
---|
1152 | poly p_NSet(number n, const ring r) |
---|
1153 | { |
---|
1154 | if (r->cf->nIsZero(n)) |
---|
1155 | { |
---|
1156 | r->cf->cfDelete(&n, r); |
---|
1157 | return NULL; |
---|
1158 | } |
---|
1159 | else |
---|
1160 | { |
---|
1161 | poly rc = p_Init(r); |
---|
1162 | pSetCoeff0(rc,n); |
---|
1163 | return rc; |
---|
1164 | } |
---|
1165 | } |
---|
1166 | |
---|
1167 | /*************************************************************** |
---|
1168 | * |
---|
1169 | * p_ShallowDelete |
---|
1170 | * |
---|
1171 | ***************************************************************/ |
---|
1172 | #undef LINKAGE |
---|
1173 | #define LINKAGE |
---|
1174 | #undef p_Delete |
---|
1175 | #define p_Delete p_ShallowDelete |
---|
1176 | #undef n_Delete |
---|
1177 | #define n_Delete(n, r) ((void)0) |
---|
1178 | |
---|
1179 | #include <kernel/p_Delete__T.cc> |
---|
1180 | |
---|