1 | /*! \file kernel/polys.h Compatibility layer for legacy polynomial operations (over @ref currRing) |
---|
2 | |
---|
3 | Macro defines for legacy polynomial operations used in @ref kernel_page and @ref singular_page. |
---|
4 | They take no ring argument since they work with @ref currRing by default. |
---|
5 | Notice that they have different prefix: `p` instead of `p_`. |
---|
6 | |
---|
7 | See also related global ring variable and the correct ring changing routine: |
---|
8 | - \ref currRing |
---|
9 | - \ref rChangeCurrRing |
---|
10 | */ |
---|
11 | |
---|
12 | #ifndef POLYS_H |
---|
13 | #define POLYS_H |
---|
14 | |
---|
15 | #include "polys/monomials/ring.h" |
---|
16 | #include "polys/monomials/p_polys.h" |
---|
17 | |
---|
18 | EXTERN_VAR ring currRing; |
---|
19 | void rChangeCurrRing(ring r); |
---|
20 | |
---|
21 | #include "coeffs/numbers.h" |
---|
22 | |
---|
23 | /*************************************************************** |
---|
24 | * |
---|
25 | * Primitives for accessing and setting fields of a poly |
---|
26 | * poly must be != NULL |
---|
27 | * |
---|
28 | ***************************************************************/ |
---|
29 | |
---|
30 | /// deletes old coeff before setting the new one |
---|
31 | #define pSetCoeff(p,n) p_SetCoeff(p,n,currRing) |
---|
32 | |
---|
33 | /// Order |
---|
34 | #define pGetOrder(p) p_GetOrder(p, currRing) |
---|
35 | |
---|
36 | /// Component |
---|
37 | #define pGetComp(p) (int)__p_GetComp(p, currRing) |
---|
38 | #define pSetComp(p,v) p_SetComp(p,v, currRing) |
---|
39 | |
---|
40 | /// Exponent |
---|
41 | #define pGetExp(p,i) p_GetExp(p, i, currRing) |
---|
42 | #define pSetExp(p,i,v) p_SetExp(p, i, v, currRing) |
---|
43 | #define pIncrExp(p,i) p_IncrExp(p,i, currRing) |
---|
44 | #define pDecrExp(p,i) p_DecrExp(p,i, currRing) |
---|
45 | #define pAddExp(p,i,v) p_AddExp(p,i,v, currRing) |
---|
46 | #define pSubExp(p,i,v) p_SubExp(p,i,v, currRing) |
---|
47 | #define pMultExp(p,i,v) p_MultExp(p,i,v, currRing) |
---|
48 | #define pGetExpSum(p1, p2, i) p_GetExpSum(p1, p2, i, currRing) |
---|
49 | #define pGetExpDiff(p1, p2, i) p_GetExpDiff(p1, p2, i, currRing) |
---|
50 | |
---|
51 | |
---|
52 | /*************************************************************** |
---|
53 | * |
---|
54 | * Allocation/Initialization/Deletion |
---|
55 | * except for pHead, all polys must be != NULL |
---|
56 | * |
---|
57 | ***************************************************************/ |
---|
58 | /// allocates the space for a new monomial -- no initialization !!! |
---|
59 | #define pNew() p_New(currRing) |
---|
60 | /// allocates a new monomial and initializes everything to 0 |
---|
61 | #define pInit() p_Init(currRing,currRing->PolyBin) |
---|
62 | /// like pInit, except that expvector is initialized to that of p, |
---|
63 | /// p must be != NULL |
---|
64 | #define pLmInit(p) p_LmInit(p, currRing) |
---|
65 | /// returns newly allocated copy of Lm(p), coef is copied, next=NULL, |
---|
66 | /// p might be NULL |
---|
67 | #define pHead(p) p_Head(p, currRing) |
---|
68 | /// frees the space of the monomial m, assumes m != NULL |
---|
69 | /// coef is not freed, m is not advanced |
---|
70 | static inline void pLmFree(poly p) {p_LmFree(p, currRing);} |
---|
71 | /// like pLmFree, but advances p |
---|
72 | static inline void pLmFree(poly *p) {p_LmFree(p, currRing);} |
---|
73 | /// assumes p != NULL, deletes p, returns pNext(p) |
---|
74 | #define pLmFreeAndNext(p) p_LmFreeAndNext(p, currRing) |
---|
75 | /// assume p != NULL, deletes Lm(p)->coef and Lm(p) |
---|
76 | #define pLmDelete(p) p_LmDelete(p, currRing) |
---|
77 | /// like pLmDelete, returns pNext(p) |
---|
78 | #define pLmDeleteAndNext(p) p_LmDeleteAndNext(p, currRing) |
---|
79 | |
---|
80 | /*************************************************************** |
---|
81 | * |
---|
82 | * Operation on ExpVectors: assumes polys != NULL |
---|
83 | * |
---|
84 | ***************************************************************/ |
---|
85 | |
---|
86 | #define pExpVectorCopy(d_p, s_p) p_ExpVectorCopy(d_p, s_p, currRing) |
---|
87 | #define pExpVectorAdd(p1, p2) p_ExpVectorAdd(p1, p2, currRing) |
---|
88 | #define pExpVectorSub(p1, p2) p_ExpVectorSub(p1, p2, currRing) |
---|
89 | #define pExpVectorAddSub(p1, p2, p3) p_ExpVectorAddSub(p1, p2, p3, currRing) |
---|
90 | #define pExpVectorSum(pr, p1, p2) p_ExpVectorSum(pr, p1, p2, currRing) |
---|
91 | #define pExpVectorDiff(pr, p1, p2) p_ExpVectorDiff(pr, p1, p2, currRing) |
---|
92 | |
---|
93 | /// Gets a copy of (resp. set) the exponent vector, where e is assumed |
---|
94 | /// to point to (r->N +1)*sizeof(long) memory. Exponents are |
---|
95 | /// filled in as follows: comp, e_1, .., e_n |
---|
96 | #define pGetExpV(p, e) p_GetExpV(p, e, currRing) |
---|
97 | #define pSetExpV(p, e) p_SetExpV(p, e, currRing) |
---|
98 | |
---|
99 | /*************************************************************** |
---|
100 | * |
---|
101 | * Comparisons: they are all done without regarding coeffs |
---|
102 | * |
---|
103 | ***************************************************************/ |
---|
104 | /// returns 0|1|-1 if p=q|p>q|p<q w.r.t monomial ordering |
---|
105 | #define pLmCmp(p,q) p_LmCmp(p,q,currRing) |
---|
106 | /// executes axtionE|actionG|actionS if p=q|p>q|p<q w.r.t monomial ordering |
---|
107 | /// action should be a "goto ..." |
---|
108 | #define pLmCmpAction(p,q, actionE, actionG, actionS) \ |
---|
109 | _p_LmCmpAction(p,q,currRing, actionE, actionG,actionS) |
---|
110 | |
---|
111 | #define pLmEqual(p1, p2) p_ExpVectorEqual(p1, p2, currRing) |
---|
112 | |
---|
113 | /// pCmp: args may be NULL |
---|
114 | /// returns: (p2==NULL ? 1 : (p1 == NULL ? -1 : p_LmCmp(p1, p2))) |
---|
115 | #define pCmp(p1, p2) p_Cmp(p1, p2, currRing) |
---|
116 | |
---|
117 | /*************************************************************** |
---|
118 | * |
---|
119 | * Comparisons: these are all done regarding coeffs |
---|
120 | * |
---|
121 | ***************************************************************/ |
---|
122 | |
---|
123 | #define pLtCmp(p,q) p_LtCmp(p,q,currRing) |
---|
124 | #define pLtCmpNoAbs(p,q) p_LtCmpNoAbs(p,q,currRing) |
---|
125 | #define pLtCmpOrdSgnDiffM(p,q) p_LtCmpOrdSgnDiffM(p,q,currRing) |
---|
126 | #define pLtCmpOrdSgnDiffP(p,q) p_LtCmpOrdSgnDiffP(p,q,currRing) |
---|
127 | #define pLtCmpOrdSgnEqM(p,q) p_LtCmpOrdSgnEqM(p,q,currRing) |
---|
128 | #define pLtCmpOrdSgnEqP(p,q) p_LtCmpOrdSgnEqP(p,q,currRing) |
---|
129 | |
---|
130 | /*************************************************************** |
---|
131 | * |
---|
132 | * Divisiblity tests, args must be != NULL, except for |
---|
133 | * pDivisbleBy |
---|
134 | * |
---|
135 | ***************************************************************/ |
---|
136 | /// returns TRUE, if leading monom of a divides leading monom of b |
---|
137 | /// i.e., if there exists a expvector c > 0, s.t. b = a + c; |
---|
138 | #define pDivisibleBy(a, b) p_DivisibleBy(a,b,currRing) |
---|
139 | /// like pDivisibleBy, except that it is assumed that a!=NULL, b!=NULL |
---|
140 | #define pLmDivisibleBy(a,b) p_LmDivisibleBy(a,b,currRing) |
---|
141 | /// like pLmDivisibleBy, does not check components |
---|
142 | #define pLmDivisibleByNoComp(a, b) p_LmDivisibleByNoComp(a,b,currRing) |
---|
143 | /// Divisibility tests based on Short Exponent vectors |
---|
144 | /// sev_a == pGetShortExpVector(a) |
---|
145 | /// not_sev_b == ~ pGetShortExpVector(b) |
---|
146 | #define pLmShortDivisibleBy(a, sev_a, b, not_sev_b) \ |
---|
147 | p_LmShortDivisibleBy(a, sev_a, b, not_sev_b, currRing) |
---|
148 | #define pLmRingShortDivisibleBy(a, sev_a, b, not_sev_b) \ |
---|
149 | p_LmRingShortDivisibleBy(a, sev_a, b, not_sev_b, currRing) |
---|
150 | /// returns the "Short Exponent Vector" -- used to speed up divisibility |
---|
151 | /// tests (see polys-impl.cc ) |
---|
152 | #define pGetShortExpVector(a) p_GetShortExpVector(a, currRing) |
---|
153 | |
---|
154 | #ifdef HAVE_RINGS |
---|
155 | /// divisibility check over ground ring (which may contain zero divisors); |
---|
156 | /// TRUE iff LT(f) divides LT(g), i.e., LT(f)*c*m = LT(g), for some |
---|
157 | /// coefficient c and some monomial m; |
---|
158 | /// does not take components into account */ |
---|
159 | #define pDivisibleByRingCase(f,g) p_DivisibleByRingCase(f,g,currRing) |
---|
160 | #endif |
---|
161 | |
---|
162 | /// polynomial division a/b, ignoring the rest |
---|
163 | /// via singclap_pdivide resp. idLift |
---|
164 | /// destroys a,b |
---|
165 | poly p_Divide(poly a, poly b, const ring r); |
---|
166 | /// polynomial division a/b, ignoring the rest |
---|
167 | /// via singclap_pdivide resp. idLift |
---|
168 | /// does not destroy a,b |
---|
169 | poly pp_Divide(poly a, poly b, const ring r); |
---|
170 | poly p_DivRem(poly a, poly b, poly &rest, const ring r); /*julia*/ |
---|
171 | |
---|
172 | /// polynomial gcd |
---|
173 | /// via singclap_gcd_r resp. idSyzygies |
---|
174 | /// destroys f and g |
---|
175 | poly singclap_gcd ( poly f, poly g, const ring r ); |
---|
176 | |
---|
177 | |
---|
178 | |
---|
179 | /*************************************************************** |
---|
180 | * |
---|
181 | * Copying/Deletion of polys: args may be NULL |
---|
182 | * |
---|
183 | ***************************************************************/ |
---|
184 | /// return a copy of the poly |
---|
185 | #define pCopy(p) p_Copy(p, currRing) |
---|
186 | #define pDelete(p_ptr) p_Delete(p_ptr, currRing) |
---|
187 | |
---|
188 | /*************************************************************** |
---|
189 | * |
---|
190 | * Copying/Deletion of polys: args may be NULL |
---|
191 | * - p/q as arg mean a poly |
---|
192 | * - m a monomial |
---|
193 | * - n a number |
---|
194 | * - pp (resp. qq, mm, nn) means arg is constant |
---|
195 | * - p (resp, q, m, n) means arg is destroyed |
---|
196 | * |
---|
197 | ***************************************************************/ |
---|
198 | #define pNeg(p) p_Neg(p, currRing) |
---|
199 | #define ppMult_nn(p, n) pp_Mult_nn(p, n, currRing) |
---|
200 | #define pMult_nn(p, n) p_Mult_nn(p, n, currRing) |
---|
201 | #define ppMult_mm(p, m) pp_Mult_mm(p, m, currRing) |
---|
202 | #define pMult_mm(p, m) p_Mult_mm(p, m, currRing) |
---|
203 | #define pAdd(p, q) p_Add_q(p, q, currRing) |
---|
204 | #define pPower(p, q) p_Power(p, q, currRing) |
---|
205 | #define pMinus_mm_Mult_qq(p, m, q) p_Minus_mm_Mult_qq(p, m, q, currRing) |
---|
206 | #define pPlus_mm_Mult_qq(p, m, q) p_Plus_mm_Mult_qq(p, m, q, currRing) |
---|
207 | #define pMult(p, q) p_Mult_q(p, q, currRing) |
---|
208 | #define ppMult_qq(p, q) pp_Mult_qq(p, q, currRing) |
---|
209 | // p*Coeff(m) for such monomials pm of p, for which m is divisble by pm |
---|
210 | #define ppMult_Coeff_mm_DivSelect(p, m) pp_Mult_Coeff_mm_DivSelect(p, m, currRing) |
---|
211 | /************************************************************************* |
---|
212 | * |
---|
213 | * Sort routines |
---|
214 | * |
---|
215 | *************************************************************************/ |
---|
216 | /// sorts p, assumes all monomials in p are different |
---|
217 | #define pSortMerger(p) p_SortMerge(p, currRing) |
---|
218 | #define pSort(p) p_SortMerge(p, currRing) |
---|
219 | |
---|
220 | /// sorts p, p may have equal monomials |
---|
221 | #define pSortAdd(p) p_SortAdd(p, currRing) |
---|
222 | |
---|
223 | |
---|
224 | /// Assume: If considered only as poly in any component of p |
---|
225 | /// (say, monomials of other components of p are set to 0), |
---|
226 | /// then p is already sorted correctly |
---|
227 | #define pSortCompCorrect(p) pSort(p) |
---|
228 | |
---|
229 | /*************************************************************** |
---|
230 | * |
---|
231 | * Predicates on polys/Lm's |
---|
232 | * |
---|
233 | ***************************************************************/ |
---|
234 | /// return true if p is either NULL, or if all exponents |
---|
235 | /// of p are 0, Comp of p might be != 0 |
---|
236 | #define pIsConstantComp(p) p_IsConstantComp(p, currRing) |
---|
237 | /// like above, except that Comp must be 0 |
---|
238 | #define pIsConstant(p) p_IsConstant(p,currRing) |
---|
239 | /// return true if the Lm is a constant <>0 |
---|
240 | #define pIsUnit(p) p_IsUnit(p,currRing) |
---|
241 | /// like above, except that p must be != NULL |
---|
242 | #define pLmIsConstantComp(p) p_LmIsConstantComp(p, currRing) |
---|
243 | #define pLmIsConstant(p) p_LmIsConstant(p,currRing) |
---|
244 | |
---|
245 | /// return TRUE if all monomials of p are constant |
---|
246 | #define pIsConstantPoly(p) p_IsConstantPoly(p, currRing) |
---|
247 | |
---|
248 | #define pIsPurePower(p) p_IsPurePower(p, currRing) |
---|
249 | #define pIsUnivariate(p) p_IsUnivariate(p, currRing) |
---|
250 | #define pIsVector(p) (pGetComp(p)>0) |
---|
251 | #define pGetVariables(p,e) p_GetVariables(p, e, currRing) |
---|
252 | |
---|
253 | /*************************************************************** |
---|
254 | * |
---|
255 | * Old stuff |
---|
256 | * |
---|
257 | ***************************************************************/ |
---|
258 | |
---|
259 | typedef poly* polyset; |
---|
260 | |
---|
261 | /*-------------predicate on polys ----------------------*/ |
---|
262 | #define pHasNotCFRing(p1,p2) p_HasNotCFRing(p1,p2,currRing) |
---|
263 | #define pHasNotCF(p1,p2) p_HasNotCF(p1,p2,currRing) |
---|
264 | /*has no common factor ?*/ |
---|
265 | #define pSplit(p,r) p_Split(p,r) |
---|
266 | /*p => IN(p), r => REST(p) */ |
---|
267 | |
---|
268 | |
---|
269 | |
---|
270 | /*-----------the ordering of monomials:-------------*/ |
---|
271 | #define pSetm(p) p_Setm(p, currRing) |
---|
272 | /// TODO: |
---|
273 | #define pSetmComp(p) p_Setm(p, currRing) |
---|
274 | |
---|
275 | /*************************************************************** |
---|
276 | * |
---|
277 | * Degree stuff -- see p_polys.cc for explanations |
---|
278 | * |
---|
279 | ***************************************************************/ |
---|
280 | #define pWeight(i) p_Weight(i,currRing) |
---|
281 | |
---|
282 | static inline long pTotaldegree(poly p) { return p_Totaldegree(p,currRing); } |
---|
283 | #define pWTotaldegree(p) p_WTotaldegree(p,currRing) |
---|
284 | #define pWDegree(p) p_WDegree(p,currRing) |
---|
285 | |
---|
286 | /*-------------operations on polynomials:------------*/ |
---|
287 | #define pSub(a,b) p_Sub(a,b,currRing) |
---|
288 | |
---|
289 | #define pmInit(a,b) p_mInit(a,b,currRing) |
---|
290 | |
---|
291 | /* ----------------- define to enable new p_procs -----*/ |
---|
292 | |
---|
293 | #define pMDivide(a,b) p_MDivide(a,b,currRing) |
---|
294 | #define pDivideM(a,b) p_DivideM(a,b,currRing) |
---|
295 | #define pLcm(a,b,m) p_Lcm(a,b,m,currRing) |
---|
296 | #define pDiff(a,b) p_Diff(a,b,currRing) |
---|
297 | #define pDiffOp(a,b,m) p_DiffOp(a,b,m,currRing) |
---|
298 | |
---|
299 | #define pMaxComp(p) p_MaxComp(p, currRing) |
---|
300 | #define pMinComp(p) p_MinComp(p, currRing) |
---|
301 | |
---|
302 | #define pOneComp(p) p_OneComp(p, currRing) |
---|
303 | #define pSetCompP(a,i) p_SetCompP(a, i, currRing) |
---|
304 | |
---|
305 | // let's inline those, so that we can call them from the debugger |
---|
306 | inline char* pString(poly p) {return p_String(p, currRing, currRing);} |
---|
307 | inline void pString0(poly p) {p_String0(p, currRing, currRing);} |
---|
308 | inline void pWrite(poly p) {p_Write(p, currRing, currRing);} |
---|
309 | inline void pWrite0(poly p) {p_Write0(p, currRing, currRing);} |
---|
310 | inline void wrp(poly p) {p_wrp(p, currRing, currRing);} |
---|
311 | |
---|
312 | #define pISet(i) p_ISet(i,currRing) |
---|
313 | #define pNSet(n) p_NSet(n,currRing) |
---|
314 | |
---|
315 | #define pOne() p_One(currRing) |
---|
316 | |
---|
317 | #define pNormalize(p) p_Normalize(p,currRing) |
---|
318 | #define pSize(p) p_Size(p,currRing) |
---|
319 | |
---|
320 | |
---|
321 | /// homogenizes p by multiplying certain powers of the varnum-th variable |
---|
322 | #define pHomogen(p,varnum) p_Homogen(p,varnum,currRing) |
---|
323 | |
---|
324 | BOOLEAN pIsHomogeneous (poly p); |
---|
325 | // // replaces the maximal powers of the leading monomial of p2 in p1 by |
---|
326 | // // the same powers of n, utility for dehomogenization |
---|
327 | // #define pDehomogen(p1,p2,n) p_Dehomgen(p1,p2,n,currRing) |
---|
328 | // #define pIsHomogen(p) p_IsHomggen(p,currRing) |
---|
329 | #define pIsHomogen(p) p_IsHomogen(p,currRing) |
---|
330 | |
---|
331 | /*BOOLEAN pVectorHasUnitM(poly p, int * k);*/ |
---|
332 | #define pVectorHasUnitB(p,k) p_VectorHasUnitB(p,k,currRing) |
---|
333 | #define pVectorHasUnit(p,k,l) p_VectorHasUnit(p,k,l,currRing) |
---|
334 | #define pTakeOutComp1(p,k) p_TakeOutComp1(p,k,currRing) |
---|
335 | |
---|
336 | /// Splits *p into two polys: *q which consists of all monoms with |
---|
337 | /// component == comp and *p of all other monoms *lq == pLength(*q) |
---|
338 | /// On return all components pf *q == 0 |
---|
339 | inline void pTakeOutComp(poly *p, long comp, poly *q, int *lq, const ring R = currRing) |
---|
340 | { |
---|
341 | return p_TakeOutComp(p, comp, q, lq, R); |
---|
342 | } |
---|
343 | |
---|
344 | |
---|
345 | /// This is something weird -- Don't use it, unless you know what you are doing |
---|
346 | inline poly pTakeOutComp(poly * p, int k, const ring R = currRing) |
---|
347 | { |
---|
348 | return p_TakeOutComp(p, k, R); |
---|
349 | } |
---|
350 | |
---|
351 | /* old spielwiese |
---|
352 | #define pTakeOutComp(p,k,q,lq) p_TakeOutComp(p,k,q,lq,currRing) |
---|
353 | |
---|
354 | // Similar to pTakeOutComp, except that only those components are |
---|
355 | // taken out whose Order == order |
---|
356 | // ASSUME: monomial ordering is Order compatible, i.e., if m1, m2 Monoms then |
---|
357 | // m1 >= m2 ==> pGetOrder(m1) >= pGetOrder(m2) |
---|
358 | #define pDecrOrdTakeOutComp(p,c,o,q,lq) p_DecrOrdTakeOutComp(p,c,o,q,lq,currRing) |
---|
359 | */ |
---|
360 | void pSetPolyComp(poly p, int comp); |
---|
361 | #define pDeleteComp(p,k) p_DeleteComp(p,k,currRing) |
---|
362 | |
---|
363 | inline void pNorm(poly p){ p_Norm(p, currRing); } |
---|
364 | |
---|
365 | |
---|
366 | #define pSubst(p,n,e) p_Subst(p,n,e,currRing) |
---|
367 | #define ppJet(p,m) pp_Jet(p,m,currRing) |
---|
368 | #define pJet(p,m) p_Jet(p,m,currRing) |
---|
369 | #define ppJetW(p,m,iv) pp_JetW(p,m,iv,currRing) |
---|
370 | #define pJetW(p,m,iv) p_JetW(p,m,iv,currRing) |
---|
371 | #define pMinDeg(p,w) p_MinDeg(p,w,currRing) |
---|
372 | #define pSeries(n,p,u,w) p_Series(n,p,u,w,currRing) |
---|
373 | // maximum weighted degree of all monomials of p, w is indexed from |
---|
374 | // 1..pVariables |
---|
375 | |
---|
376 | /// Deprecated: only for compatibility with older code! |
---|
377 | #define pDegW(p,w) p_DegW(p,w,currRing) |
---|
378 | |
---|
379 | /*-----------type conversions ----------------------------*/ |
---|
380 | // void pVec2Polys(poly v, polyset *p, int *len); |
---|
381 | #define pVar(m) p_Var(m,currRing) |
---|
382 | |
---|
383 | /*-----------specials for spoly-computations--------------*/ |
---|
384 | |
---|
385 | /// Returns TRUE if |
---|
386 | /// * LM(p) | LM(lcm) |
---|
387 | /// * LC(p) | LC(lcm) only if ring |
---|
388 | /// * Exists i, j: |
---|
389 | /// * LE(p, i) != LE(lcm, i) |
---|
390 | /// * LE(p1, i) != LE(lcm, i) ==> LCM(p1, p) != lcm |
---|
391 | /// * LE(p, j) != LE(lcm, j) |
---|
392 | /// * LE(p2, j) != LE(lcm, j) ==> LCM(p2, p) != lcm |
---|
393 | BOOLEAN pCompareChain (poly p, poly p1, poly p2, poly lcm, const ring R = currRing); |
---|
394 | |
---|
395 | #ifdef HAVE_RATGRING |
---|
396 | BOOLEAN pCompareChainPart (poly p, poly p1, poly p2, poly lcm, const ring R = currRing); |
---|
397 | #endif |
---|
398 | |
---|
399 | |
---|
400 | #define pEqualPolys(p1,p2) p_EqualPolys(p1,p2,currRing) |
---|
401 | |
---|
402 | |
---|
403 | |
---|
404 | /// returns the length of a polynomial (numbers of monomials) |
---|
405 | /// respect syzComp |
---|
406 | static inline poly pLast(poly a, int &length) { return p_Last (a, length, currRing); } |
---|
407 | static inline poly pLast(poly a) { int l; return pLast(a, l); } |
---|
408 | |
---|
409 | /*************************************************************** |
---|
410 | * |
---|
411 | * PDEBUG stuff |
---|
412 | * |
---|
413 | ***************************************************************/ |
---|
414 | #ifdef PDEBUG |
---|
415 | #define pTest(p) _p_Test(p, currRing, PDEBUG) |
---|
416 | #define pLmTest(p) _p_LmTest(p, currRing, PDEBUG) |
---|
417 | |
---|
418 | #else // ! PDEBUG |
---|
419 | |
---|
420 | #define pTest(p) do {} while (0) |
---|
421 | #define pLmTest(p) do {} while (0) |
---|
422 | #endif |
---|
423 | |
---|
424 | #endif // POLYS_H |
---|