1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* $Id: rmodulo2m.cc,v 1.25 2009-07-03 13:14:10 seelisch Exp $ */ |
---|
5 | /* |
---|
6 | * ABSTRACT: numbers modulo 2^m |
---|
7 | */ |
---|
8 | |
---|
9 | #include <string.h> |
---|
10 | #include "mod2.h" |
---|
11 | |
---|
12 | #ifdef HAVE_RINGS |
---|
13 | #include <mylimits.h> |
---|
14 | #include "structs.h" |
---|
15 | #include "febase.h" |
---|
16 | #include "omalloc.h" |
---|
17 | #include "numbers.h" |
---|
18 | #include "longrat.h" |
---|
19 | #include "mpr_complex.h" |
---|
20 | #include "ring.h" |
---|
21 | #include "rmodulo2m.h" |
---|
22 | #include "si_gmp.h" |
---|
23 | |
---|
24 | int nr2mExp; |
---|
25 | NATNUMBER nr2mModul; |
---|
26 | |
---|
27 | /* |
---|
28 | * Multiply two numbers |
---|
29 | */ |
---|
30 | number nr2mMult (number a,number b) |
---|
31 | { |
---|
32 | if (((NATNUMBER)a == 0) || ((NATNUMBER)b == 0)) |
---|
33 | return (number)0; |
---|
34 | else |
---|
35 | return nr2mMultM(a,b); |
---|
36 | } |
---|
37 | |
---|
38 | /* |
---|
39 | * Give the smallest non unit k, such that a * x = k = b * y has a solution |
---|
40 | */ |
---|
41 | number nr2mLcm (number a,number b,ring r) |
---|
42 | { |
---|
43 | NATNUMBER res = 0; |
---|
44 | if ((NATNUMBER) a == 0) a = (number) 1; |
---|
45 | if ((NATNUMBER) b == 0) b = (number) 1; |
---|
46 | while ((NATNUMBER) a % 2 == 0) |
---|
47 | { |
---|
48 | a = (number) ((NATNUMBER) a / 2); |
---|
49 | if ((NATNUMBER) b % 2 == 0) b = (number) ((NATNUMBER) b / 2); |
---|
50 | res++; |
---|
51 | } |
---|
52 | while ((NATNUMBER) b % 2 == 0) |
---|
53 | { |
---|
54 | b = (number) ((NATNUMBER) b / 2); |
---|
55 | res++; |
---|
56 | } |
---|
57 | return (number) (1L << res); // (2**res) |
---|
58 | } |
---|
59 | |
---|
60 | /* |
---|
61 | * Give the largest non unit k, such that a = x * k, b = y * k has |
---|
62 | * a solution. |
---|
63 | */ |
---|
64 | number nr2mGcd (number a,number b,ring r) |
---|
65 | { |
---|
66 | NATNUMBER res = 0; |
---|
67 | if ((NATNUMBER) a == 0 && (NATNUMBER) b == 0) return (number) 1; |
---|
68 | while ((NATNUMBER) a % 2 == 0 && (NATNUMBER) b % 2 == 0) |
---|
69 | { |
---|
70 | a = (number) ((NATNUMBER) a / 2); |
---|
71 | b = (number) ((NATNUMBER) b / 2); |
---|
72 | res++; |
---|
73 | } |
---|
74 | // if ((NATNUMBER) b % 2 == 0) |
---|
75 | // { |
---|
76 | // return (number) ((1L << res));// * (NATNUMBER) a); // (2**res)*a a ist Einheit |
---|
77 | // } |
---|
78 | // else |
---|
79 | // { |
---|
80 | return (number) ((1L << res));// * (NATNUMBER) b); // (2**res)*b b ist Einheit |
---|
81 | // } |
---|
82 | } |
---|
83 | |
---|
84 | /* |
---|
85 | * Give the largest non unit k, such that a = x * k, b = y * k has |
---|
86 | * a solution. |
---|
87 | */ |
---|
88 | number nr2mExtGcd (number a, number b, number *s, number *t) |
---|
89 | { |
---|
90 | NATNUMBER res = 0; |
---|
91 | if ((NATNUMBER) a == 0 && (NATNUMBER) b == 0) return (number) 1; |
---|
92 | while ((NATNUMBER) a % 2 == 0 && (NATNUMBER) b % 2 == 0) |
---|
93 | { |
---|
94 | a = (number) ((NATNUMBER) a / 2); |
---|
95 | b = (number) ((NATNUMBER) b / 2); |
---|
96 | res++; |
---|
97 | } |
---|
98 | if ((NATNUMBER) b % 2 == 0) |
---|
99 | { |
---|
100 | *t = NULL; |
---|
101 | *s = nr2mInvers(a); |
---|
102 | return (number) ((1L << res));// * (NATNUMBER) a); // (2**res)*a a ist Einheit |
---|
103 | } |
---|
104 | else |
---|
105 | { |
---|
106 | *s = NULL; |
---|
107 | *t = nr2mInvers(b); |
---|
108 | return (number) ((1L << res));// * (NATNUMBER) b); // (2**res)*b b ist Einheit |
---|
109 | } |
---|
110 | } |
---|
111 | |
---|
112 | void nr2mPower (number a, int i, number * result) |
---|
113 | { |
---|
114 | if (i==0) |
---|
115 | { |
---|
116 | //npInit(1,result); |
---|
117 | *(NATNUMBER *)result = 1; |
---|
118 | } |
---|
119 | else if (i==1) |
---|
120 | { |
---|
121 | *result = a; |
---|
122 | } |
---|
123 | else |
---|
124 | { |
---|
125 | nr2mPower(a,i-1,result); |
---|
126 | *result = nr2mMultM(a,*result); |
---|
127 | } |
---|
128 | } |
---|
129 | |
---|
130 | /* |
---|
131 | * create a number from int |
---|
132 | */ |
---|
133 | number nr2mInit (int i) |
---|
134 | { |
---|
135 | long ii = i; |
---|
136 | while (ii < 0) ii += nr2mModul; |
---|
137 | while ((ii>1) && (ii >= nr2mModul)) ii -= nr2mModul; |
---|
138 | return (number) ii; |
---|
139 | } |
---|
140 | |
---|
141 | /* |
---|
142 | * convert a number to int (-p/2 .. p/2) |
---|
143 | */ |
---|
144 | int nr2mInt(number &n) |
---|
145 | { |
---|
146 | if ((NATNUMBER)n > (nr2mModul >>1)) return (int)((NATNUMBER)n - nr2mModul); |
---|
147 | else return (int)((NATNUMBER)n); |
---|
148 | } |
---|
149 | |
---|
150 | number nr2mAdd (number a, number b) |
---|
151 | { |
---|
152 | return nr2mAddM(a,b); |
---|
153 | } |
---|
154 | |
---|
155 | number nr2mSub (number a, number b) |
---|
156 | { |
---|
157 | return nr2mSubM(a,b); |
---|
158 | } |
---|
159 | |
---|
160 | BOOLEAN nr2mIsUnit (number a) |
---|
161 | { |
---|
162 | return ((NATNUMBER) a % 2 == 1); |
---|
163 | } |
---|
164 | |
---|
165 | number nr2mGetUnit (number k) |
---|
166 | { |
---|
167 | if (k == NULL) |
---|
168 | return (number) 1; |
---|
169 | NATNUMBER tmp = (NATNUMBER) k; |
---|
170 | while (tmp % 2 == 0) |
---|
171 | tmp = tmp / 2; |
---|
172 | return (number) tmp; |
---|
173 | } |
---|
174 | |
---|
175 | BOOLEAN nr2mIsZero (number a) |
---|
176 | { |
---|
177 | return 0 == (NATNUMBER)a; |
---|
178 | } |
---|
179 | |
---|
180 | BOOLEAN nr2mIsOne (number a) |
---|
181 | { |
---|
182 | return 1 == (NATNUMBER)a; |
---|
183 | } |
---|
184 | |
---|
185 | BOOLEAN nr2mIsMOne (number a) |
---|
186 | { |
---|
187 | return (nr2mModul == (NATNUMBER)a + 1) && (nr2mModul != 2); |
---|
188 | } |
---|
189 | |
---|
190 | BOOLEAN nr2mEqual (number a,number b) |
---|
191 | { |
---|
192 | return nr2mEqualM(a,b); |
---|
193 | } |
---|
194 | |
---|
195 | BOOLEAN nr2mGreater (number a,number b) |
---|
196 | { |
---|
197 | return nr2mDivBy(a, b); |
---|
198 | } |
---|
199 | |
---|
200 | BOOLEAN nr2mDivBy (number a,number b) |
---|
201 | { |
---|
202 | if (a == NULL) |
---|
203 | return (nr2mModul % (NATNUMBER) b) == 0; |
---|
204 | else |
---|
205 | return ((NATNUMBER) a % (NATNUMBER) b) == 0; |
---|
206 | /* |
---|
207 | if ((NATNUMBER) a == 0) return TRUE; |
---|
208 | if ((NATNUMBER) b == 0) return FALSE; |
---|
209 | while ((NATNUMBER) a % 2 == 0 && (NATNUMBER) b % 2 == 0) |
---|
210 | { |
---|
211 | a = (number) ((NATNUMBER) a / 2); |
---|
212 | b = (number) ((NATNUMBER) b / 2); |
---|
213 | } |
---|
214 | return ((NATNUMBER) b % 2 == 1); |
---|
215 | */ |
---|
216 | } |
---|
217 | |
---|
218 | int nr2mDivComp(number as, number bs) |
---|
219 | { |
---|
220 | NATNUMBER a = (NATNUMBER) as; |
---|
221 | NATNUMBER b = (NATNUMBER) bs; |
---|
222 | assume(a != 0 && b != 0); |
---|
223 | while (a % 2 == 0 && b % 2 == 0) |
---|
224 | { |
---|
225 | a = a / 2; |
---|
226 | b = b / 2; |
---|
227 | } |
---|
228 | if (a % 2 == 0) |
---|
229 | { |
---|
230 | return -1; |
---|
231 | } |
---|
232 | else |
---|
233 | { |
---|
234 | if (b % 2 == 1) |
---|
235 | { |
---|
236 | return 0; |
---|
237 | } |
---|
238 | else |
---|
239 | { |
---|
240 | return 1; |
---|
241 | } |
---|
242 | } |
---|
243 | } |
---|
244 | |
---|
245 | BOOLEAN nr2mGreaterZero (number k) |
---|
246 | { |
---|
247 | return ((NATNUMBER) k !=0) && ((NATNUMBER) k <= (nr2mModul>>1)); |
---|
248 | } |
---|
249 | |
---|
250 | //#ifdef HAVE_DIV_MOD |
---|
251 | #if 1 //ifdef HAVE_NTL // in ntl.a |
---|
252 | //extern void XGCD(long& d, long& s, long& t, long a, long b); |
---|
253 | #include <NTL/ZZ.h> |
---|
254 | #ifdef NTL_CLIENT |
---|
255 | NTL_CLIENT |
---|
256 | #endif |
---|
257 | #else |
---|
258 | void XGCD(long& d, long& s, long& t, long a, long b) |
---|
259 | { |
---|
260 | long u, v, u0, v0, u1, v1, u2, v2, q, r; |
---|
261 | |
---|
262 | long aneg = 0, bneg = 0; |
---|
263 | |
---|
264 | if (a < 0) { |
---|
265 | a = -a; |
---|
266 | aneg = 1; |
---|
267 | } |
---|
268 | |
---|
269 | if (b < 0) { |
---|
270 | b = -b; |
---|
271 | bneg = 1; |
---|
272 | } |
---|
273 | |
---|
274 | u1=1; v1=0; |
---|
275 | u2=0; v2=1; |
---|
276 | u = a; v = b; |
---|
277 | |
---|
278 | while (v != 0) { |
---|
279 | q = u / v; |
---|
280 | r = u % v; |
---|
281 | u = v; |
---|
282 | v = r; |
---|
283 | u0 = u2; |
---|
284 | v0 = v2; |
---|
285 | u2 = u1 - q*u2; |
---|
286 | v2 = v1- q*v2; |
---|
287 | u1 = u0; |
---|
288 | v1 = v0; |
---|
289 | } |
---|
290 | |
---|
291 | if (aneg) |
---|
292 | u1 = -u1; |
---|
293 | |
---|
294 | if (bneg) |
---|
295 | v1 = -v1; |
---|
296 | |
---|
297 | d = u; |
---|
298 | s = u1; |
---|
299 | t = v1; |
---|
300 | } |
---|
301 | #endif |
---|
302 | |
---|
303 | NATNUMBER InvMod(NATNUMBER a) |
---|
304 | { |
---|
305 | long d, s, t; |
---|
306 | |
---|
307 | XGCD(d, s, t, a, nr2mModul); |
---|
308 | assume (d == 1); |
---|
309 | if (s < 0) |
---|
310 | return s + nr2mModul; |
---|
311 | else |
---|
312 | return s; |
---|
313 | } |
---|
314 | //#endif |
---|
315 | |
---|
316 | inline number nr2mInversM (number c) |
---|
317 | { |
---|
318 | // Table !!! |
---|
319 | NATNUMBER inv; |
---|
320 | inv = InvMod((NATNUMBER)c); |
---|
321 | return (number) inv; |
---|
322 | } |
---|
323 | |
---|
324 | number nr2mDiv (number a,number b) |
---|
325 | { |
---|
326 | if ((NATNUMBER)a==0) |
---|
327 | return (number)0; |
---|
328 | else if ((NATNUMBER)b%2==0) |
---|
329 | { |
---|
330 | if ((NATNUMBER)b != 0) |
---|
331 | { |
---|
332 | while ((NATNUMBER) b%2 == 0 && (NATNUMBER) a%2 == 0) |
---|
333 | { |
---|
334 | a = (number) ((NATNUMBER) a / 2); |
---|
335 | b = (number) ((NATNUMBER) b / 2); |
---|
336 | } |
---|
337 | } |
---|
338 | if ((NATNUMBER) b%2 == 0) |
---|
339 | { |
---|
340 | WarnS("Division not possible, even by cancelling zero divisors."); |
---|
341 | WarnS("Result is integer division without remainder."); |
---|
342 | return (number) ((NATNUMBER) a / (NATNUMBER) b); |
---|
343 | } |
---|
344 | } |
---|
345 | return (number) nr2mMult(a, nr2mInversM(b)); |
---|
346 | } |
---|
347 | |
---|
348 | number nr2mMod (number a, number b) |
---|
349 | { |
---|
350 | /* |
---|
351 | We need to return the number r which is uniquely determined by the |
---|
352 | following two properties: |
---|
353 | (1) 0 <= r < |b| (with respect to '<' and '<=' performed in Z x Z) |
---|
354 | (2) There exists some k in the integers Z such that a = k * b + r. |
---|
355 | Consider g := gcd(2^m, |b|). Note that then |b|/g is a unit in Z/2^m. |
---|
356 | Now, there are three cases: |
---|
357 | (a) g = 1 |
---|
358 | Then |b| is a unit in Z/2^m, i.e. |b| (and also b) divides a. |
---|
359 | Thus r = 0. |
---|
360 | (b) g <> 1 and g divides a |
---|
361 | Then a = (a/g) * (|b|/g)^(-1) * b (up to sign), i.e. again r = 0. |
---|
362 | (c) g <> 1 and g does not divide a |
---|
363 | Let's denote the division with remainder of a by g as follows: |
---|
364 | a = s * g + t. Then t = a - s * g = a - s * (|b|/g)^(-1) * |b| |
---|
365 | fulfills (1) and (2), i.e. r := t is the correct result. Hence |
---|
366 | in this third case, r is the remainder of division of a by g in Z. |
---|
367 | This algorithm is the same as for the case Z/n, except that we may |
---|
368 | compute the gcd of |b| and 2^m "by hand": We just extract the highest |
---|
369 | power of 2 (<= 2^m) that is contained in b. |
---|
370 | */ |
---|
371 | NATNUMBER g = 1; |
---|
372 | NATNUMBER b_div = b; |
---|
373 | if (b_div < 0) b_div = - b_div; // b_div now represents |b| |
---|
374 | NATNUMBER r = 0; |
---|
375 | while ((g < nr2mModul) && (b_div > 0) && (b_div % 2 == 0)) |
---|
376 | { |
---|
377 | b_div = b_div >> 1; |
---|
378 | g = g << 1; |
---|
379 | } // g is now the gcd of 2^m and |b| |
---|
380 | |
---|
381 | if (g != 1) r = (NATNUMBER)a % g; |
---|
382 | return (number)r; |
---|
383 | } |
---|
384 | |
---|
385 | number nr2mIntDiv (number a,number b) |
---|
386 | { |
---|
387 | if ((NATNUMBER)a==0) |
---|
388 | { |
---|
389 | if ((NATNUMBER)b==0) |
---|
390 | return (number) 1; |
---|
391 | if ((NATNUMBER)b==1) |
---|
392 | return (number) 0; |
---|
393 | return (number) (nr2mModul / (NATNUMBER) b); |
---|
394 | } |
---|
395 | else |
---|
396 | { |
---|
397 | if ((NATNUMBER)b==0) |
---|
398 | return (number) 0; |
---|
399 | return (number) ((NATNUMBER) a / (NATNUMBER) b); |
---|
400 | } |
---|
401 | } |
---|
402 | |
---|
403 | number nr2mInvers (number c) |
---|
404 | { |
---|
405 | if ((NATNUMBER)c%2==0) |
---|
406 | { |
---|
407 | WerrorS("division by zero divisor"); |
---|
408 | return (number)0; |
---|
409 | } |
---|
410 | return nr2mInversM(c); |
---|
411 | } |
---|
412 | |
---|
413 | number nr2mNeg (number c) |
---|
414 | { |
---|
415 | if ((NATNUMBER)c==0) return c; |
---|
416 | return nr2mNegM(c); |
---|
417 | } |
---|
418 | |
---|
419 | number nr2mMapMachineInt(number from) |
---|
420 | { |
---|
421 | NATNUMBER i = ((NATNUMBER) from) % nr2mModul; |
---|
422 | return (number) i; |
---|
423 | } |
---|
424 | |
---|
425 | number nr2mMapZp(number from) |
---|
426 | { |
---|
427 | long ii = (long) from; |
---|
428 | while (ii < 0) ii += nr2mModul; |
---|
429 | while ((ii>1) && (ii >= nr2mModul)) ii -= nr2mModul; |
---|
430 | return (number) ii; |
---|
431 | } |
---|
432 | |
---|
433 | number nr2mMapQ(number from) |
---|
434 | { |
---|
435 | int_number erg = (int_number) omAlloc(sizeof(MP_INT)); // evtl. spaeter mit bin |
---|
436 | mpz_init(erg); |
---|
437 | |
---|
438 | nlGMP(from, (number) erg); |
---|
439 | mpz_mod_ui(erg, erg, nr2mModul); |
---|
440 | number r = (number) mpz_get_ui(erg); |
---|
441 | |
---|
442 | mpz_clear(erg); |
---|
443 | omFree((ADDRESS) erg); |
---|
444 | return (number) r; |
---|
445 | } |
---|
446 | |
---|
447 | number nr2mMapGMP(number from) |
---|
448 | { |
---|
449 | int_number erg = (int_number) omAlloc(sizeof(MP_INT)); // evtl. spaeter mit bin |
---|
450 | mpz_init(erg); |
---|
451 | |
---|
452 | mpz_mod_ui(erg, (int_number) from, nr2mModul); |
---|
453 | number r = (number) mpz_get_ui(erg); |
---|
454 | |
---|
455 | mpz_clear(erg); |
---|
456 | omFree((ADDRESS) erg); |
---|
457 | return (number) r; |
---|
458 | } |
---|
459 | |
---|
460 | nMapFunc nr2mSetMap(ring src, ring dst) |
---|
461 | { |
---|
462 | if (rField_is_Ring_2toM(src) |
---|
463 | && (src->ringflagb >= dst->ringflagb)) |
---|
464 | { |
---|
465 | return nr2mMapMachineInt; |
---|
466 | } |
---|
467 | if (rField_is_Ring_Z(src)) |
---|
468 | { |
---|
469 | return nr2mMapGMP; |
---|
470 | } |
---|
471 | if (rField_is_Q(src)) |
---|
472 | { |
---|
473 | return nr2mMapQ; |
---|
474 | } |
---|
475 | if (rField_is_Zp(src) |
---|
476 | && (src->ch == 2) |
---|
477 | && (dst->ringflagb == 1)) |
---|
478 | { |
---|
479 | return nr2mMapZp; |
---|
480 | } |
---|
481 | if (rField_is_Ring_PtoM(src) || rField_is_Ring_ModN(src)) |
---|
482 | { |
---|
483 | // Computing the n of Z/n |
---|
484 | int_number modul = (int_number) omAlloc(sizeof(MP_INT)); // evtl. spaeter mit bin |
---|
485 | mpz_init(modul); |
---|
486 | mpz_set(modul, src->ringflaga); |
---|
487 | mpz_pow_ui(modul, modul, src->ringflagb); |
---|
488 | if (mpz_divisible_2exp_p(modul, dst->ringflagb)) |
---|
489 | { |
---|
490 | mpz_clear(modul); |
---|
491 | omFree((ADDRESS) modul); |
---|
492 | return nr2mMapGMP; |
---|
493 | } |
---|
494 | mpz_clear(modul); |
---|
495 | omFree((ADDRESS) modul); |
---|
496 | } |
---|
497 | return NULL; // default |
---|
498 | } |
---|
499 | |
---|
500 | /* |
---|
501 | * set the exponent (allocate and init tables) (TODO) |
---|
502 | */ |
---|
503 | |
---|
504 | void nr2mSetExp(int m, ring r) |
---|
505 | { |
---|
506 | if (m>1) |
---|
507 | { |
---|
508 | nr2mExp = m; |
---|
509 | nr2mModul = 2; |
---|
510 | for (int i = 1; i < m; i++) { |
---|
511 | nr2mModul = nr2mModul * 2; |
---|
512 | } |
---|
513 | } |
---|
514 | else |
---|
515 | { |
---|
516 | nr2mExp=2; |
---|
517 | nr2mModul=4; |
---|
518 | } |
---|
519 | } |
---|
520 | |
---|
521 | void nr2mInitExp(int m, ring r) |
---|
522 | { |
---|
523 | nr2mSetExp(m, r); |
---|
524 | if (m<2) WarnS("nInitExp failed: using Z/2^2"); |
---|
525 | } |
---|
526 | |
---|
527 | #ifdef LDEBUG |
---|
528 | BOOLEAN nr2mDBTest (number a, const char *f, const int l) |
---|
529 | { |
---|
530 | if (((NATNUMBER)a<0) || ((NATNUMBER)a>nr2mModul)) |
---|
531 | { |
---|
532 | return FALSE; |
---|
533 | } |
---|
534 | return TRUE; |
---|
535 | } |
---|
536 | #endif |
---|
537 | |
---|
538 | void nr2mWrite (number &a) |
---|
539 | { |
---|
540 | if ((NATNUMBER)a > (nr2mModul >>1)) StringAppend("-%d",(int)(nr2mModul-((NATNUMBER)a))); |
---|
541 | else StringAppend("%d",(int)((NATNUMBER)a)); |
---|
542 | } |
---|
543 | |
---|
544 | static const char* nr2mEati(const char *s, int *i) |
---|
545 | { |
---|
546 | |
---|
547 | if (((*s) >= '0') && ((*s) <= '9')) |
---|
548 | { |
---|
549 | (*i) = 0; |
---|
550 | do |
---|
551 | { |
---|
552 | (*i) *= 10; |
---|
553 | (*i) += *s++ - '0'; |
---|
554 | if ((*i) >= (MAX_INT_VAL / 10)) (*i) = (*i) % nr2mModul; |
---|
555 | } |
---|
556 | while (((*s) >= '0') && ((*s) <= '9')); |
---|
557 | if ((*i) >= nr2mModul) (*i) = (*i) % nr2mModul; |
---|
558 | } |
---|
559 | else (*i) = 1; |
---|
560 | return s; |
---|
561 | } |
---|
562 | |
---|
563 | const char * nr2mRead (const char *s, number *a) |
---|
564 | { |
---|
565 | int z; |
---|
566 | int n=1; |
---|
567 | |
---|
568 | s = nr2mEati(s, &z); |
---|
569 | if ((*s) == '/') |
---|
570 | { |
---|
571 | s++; |
---|
572 | s = nr2mEati(s, &n); |
---|
573 | } |
---|
574 | if (n == 1) |
---|
575 | *a = (number)z; |
---|
576 | else |
---|
577 | *a = nr2mDiv((number)z,(number)n); |
---|
578 | return s; |
---|
579 | } |
---|
580 | #endif |
---|