/**************************************** * Computer Algebra System SINGULAR * ****************************************/ /* $Id$ */ /* * ABSTRACT: numbers modulo 2^m */ #include #include #ifdef HAVE_RINGS #include #include #include #include #include #include #include #include #include #include int nr2mExp; /* * Multiply two numbers */ number nr2mMult (number a, number b) { if (((NATNUMBER)a == 0) || ((NATNUMBER)b == 0)) return (number)0; else return nr2mMultM(a,b); } /* * Give the smallest non unit k, such that a * x = k = b * y has a solution */ number nr2mLcm (number a,number b,ring r) { NATNUMBER res = 0; if ((NATNUMBER) a == 0) a = (number) 1; if ((NATNUMBER) b == 0) b = (number) 1; while ((NATNUMBER) a % 2 == 0) { a = (number) ((NATNUMBER) a / 2); if ((NATNUMBER) b % 2 == 0) b = (number) ((NATNUMBER) b / 2); res++; } while ((NATNUMBER) b % 2 == 0) { b = (number) ((NATNUMBER) b / 2); res++; } return (number) (1L << res); // (2**res) } /* * Give the largest non unit k, such that a = x * k, b = y * k has * a solution. */ number nr2mGcd (number a,number b,ring r) { NATNUMBER res = 0; if ((NATNUMBER) a == 0 && (NATNUMBER) b == 0) return (number) 1; while ((NATNUMBER) a % 2 == 0 && (NATNUMBER) b % 2 == 0) { a = (number) ((NATNUMBER) a / 2); b = (number) ((NATNUMBER) b / 2); res++; } // if ((NATNUMBER) b % 2 == 0) // { // return (number) ((1L << res));// * (NATNUMBER) a); // (2**res)*a a ist Einheit // } // else // { return (number) ((1L << res));// * (NATNUMBER) b); // (2**res)*b b ist Einheit // } } /* * Give the largest non unit k, such that a = x * k, b = y * k has * a solution. */ number nr2mExtGcd (number a, number b, number *s, number *t) { NATNUMBER res = 0; if ((NATNUMBER) a == 0 && (NATNUMBER) b == 0) return (number) 1; while ((NATNUMBER) a % 2 == 0 && (NATNUMBER) b % 2 == 0) { a = (number) ((NATNUMBER) a / 2); b = (number) ((NATNUMBER) b / 2); res++; } if ((NATNUMBER) b % 2 == 0) { *t = NULL; *s = nr2mInvers(a); return (number) ((1L << res));// * (NATNUMBER) a); // (2**res)*a a ist Einheit } else { *s = NULL; *t = nr2mInvers(b); return (number) ((1L << res));// * (NATNUMBER) b); // (2**res)*b b ist Einheit } } void nr2mPower (number a, int i, number * result) { if (i==0) { *(NATNUMBER *)result = 1; } else if (i==1) { *result = a; } else { nr2mPower(a,i-1,result); *result = nr2mMultM(a,*result); } } /* * create a number from int */ number nr2mInit (int i, const ring r) { if (i == 0) return (number)(NATNUMBER)i; long ii = i; NATNUMBER j = (NATNUMBER)1; if (ii < 0) { j = currRing->nr2mModul; ii = -ii; } NATNUMBER k = (NATNUMBER)ii; k = k & currRing->nr2mModul; /* now we have: from = j * k mod 2^m */ return (number)nr2mMult((number)j, (number)k); } /* * convert a number to an int in ]-k/2 .. k/2], * where k = 2^m; i.e., an int in ]-2^(m-1) .. 2^(m-1)]; * note that the code computes a long which will then * automatically casted to int */ int nr2mInt(number &n, const ring r) { NATNUMBER nn = (unsigned long)(NATNUMBER)n & r->nr2mModul; unsigned long l = r->nr2mModul >> 1; l++; if (l == 0) return (int)(signed long)(NATNUMBER)nn; else if ((NATNUMBER)nn > l) return (int)((NATNUMBER)nn - r->nr2mModul - 1); else return (int)((NATNUMBER)nn); } number nr2mAdd (number a, number b) { return nr2mAddM(a,b); } number nr2mSub (number a, number b) { return nr2mSubM(a,b); } BOOLEAN nr2mIsUnit (number a) { return ((NATNUMBER) a % 2 == 1); } number nr2mGetUnit (number k) { if (k == NULL) return (number) 1; NATNUMBER tmp = (NATNUMBER) k; while (tmp % 2 == 0) tmp = tmp / 2; return (number) tmp; } BOOLEAN nr2mIsZero (number a) { return 0 == (NATNUMBER)a; } BOOLEAN nr2mIsOne (number a) { return 1 == (NATNUMBER)a; } BOOLEAN nr2mIsMOne (number a) { return (currRing->nr2mModul == (NATNUMBER)a); } BOOLEAN nr2mEqual (number a, number b) { return nr2mEqualM(a,b); } BOOLEAN nr2mGreater (number a, number b) { return nr2mDivBy(a, b); } BOOLEAN nr2mDivBy (number a, number b) { if ((NATNUMBER)a == 0) return TRUE; if ((NATNUMBER)b == 0) return FALSE; return ((NATNUMBER)a % (NATNUMBER)b) == 0; } int nr2mDivComp(number as, number bs) { NATNUMBER a = (NATNUMBER) as; NATNUMBER b = (NATNUMBER) bs; assume(a != 0 && b != 0); while (a % 2 == 0 && b % 2 == 0) { a = a / 2; b = b / 2; } if (a % 2 == 0) { return -1; } else { if (b % 2 == 1) { return 0; } else { return 1; } } } /* TRUE iff 0 < k <= 2^m / 2 */ BOOLEAN nr2mGreaterZero (number k) { if ((NATNUMBER)k == 0) return FALSE; if ((NATNUMBER)k > ((currRing->nr2mModul >> 1) + 1)) return FALSE; return TRUE; } /* assumes that 'a' is odd, i.e., a unit in Z/2^m, and computes the extended gcd of 'a' and 2^m, in order to find some 's' and 't' such that a * s + 2^m * t = gcd(a, 2^m) = 1; this code will always find a positive 's' */ void specialXGCD(unsigned long& s, unsigned long a) { int_number u = (int_number)omAlloc(sizeof(mpz_t)); mpz_init_set_ui(u, a); int_number u0 = (int_number)omAlloc(sizeof(mpz_t)); mpz_init(u0); int_number u1 = (int_number)omAlloc(sizeof(mpz_t)); mpz_init_set_ui(u1, 1); int_number u2 = (int_number)omAlloc(sizeof(mpz_t)); mpz_init(u2); int_number v = (int_number)omAlloc(sizeof(mpz_t)); mpz_init_set_ui(v, currRing->nr2mModul); mpz_add_ui(v, v, 1); /* now: v = 2^m */ int_number v0 = (int_number)omAlloc(sizeof(mpz_t)); mpz_init(v0); int_number v1 = (int_number)omAlloc(sizeof(mpz_t)); mpz_init(v1); int_number v2 = (int_number)omAlloc(sizeof(mpz_t)); mpz_init_set_ui(v2, 1); int_number q = (int_number)omAlloc(sizeof(mpz_t)); mpz_init(q); int_number r = (int_number)omAlloc(sizeof(mpz_t)); mpz_init(r); while (mpz_cmp_ui(v, 0) != 0) /* i.e., while v != 0 */ { mpz_div(q, u, v); mpz_mod(r, u, v); mpz_set(u, v); mpz_set(v, r); mpz_set(u0, u2); mpz_set(v0, v2); mpz_mul(u2, u2, q); mpz_sub(u2, u1, u2); /* u2 = u1 - q * u2 */ mpz_mul(v2, v2, q); mpz_sub(v2, v1, v2); /* v2 = v1 - q * v2 */ mpz_set(u1, u0); mpz_set(v1, v0); } while (mpz_cmp_ui(u1, 0) < 0) /* i.e., while u1 < 0 */ { /* we add 2^m = (2^m - 1) + 1 to u1: */ mpz_add_ui(u1, u1, currRing->nr2mModul); mpz_add_ui(u1, u1, 1); } s = mpz_get_ui(u1); /* now: 0 <= s <= 2^m - 1 */ mpz_clear(u); omFree((ADDRESS)u); mpz_clear(u0); omFree((ADDRESS)u0); mpz_clear(u1); omFree((ADDRESS)u1); mpz_clear(u2); omFree((ADDRESS)u2); mpz_clear(v); omFree((ADDRESS)v); mpz_clear(v0); omFree((ADDRESS)v0); mpz_clear(v1); omFree((ADDRESS)v1); mpz_clear(v2); omFree((ADDRESS)v2); mpz_clear(q); omFree((ADDRESS)q); mpz_clear(r); omFree((ADDRESS)r); } NATNUMBER InvMod(NATNUMBER a) { assume((NATNUMBER)a % 2 != 0); unsigned long s; specialXGCD(s, a); return s; } //#endif inline number nr2mInversM (number c) { assume((NATNUMBER)c % 2 != 0); return (number)InvMod((NATNUMBER)c); } number nr2mDiv (number a,number b) { if ((NATNUMBER)a==0) return (number)0; else if ((NATNUMBER)b%2==0) { if ((NATNUMBER)b != 0) { while ((NATNUMBER) b%2 == 0 && (NATNUMBER) a%2 == 0) { a = (number) ((NATNUMBER) a / 2); b = (number) ((NATNUMBER) b / 2); } } if ((NATNUMBER) b%2 == 0) { WerrorS("Division not possible, even by cancelling zero divisors."); WerrorS("Result is integer division without remainder."); return (number) ((NATNUMBER) a / (NATNUMBER) b); } } return (number) nr2mMult(a, nr2mInversM(b)); } number nr2mMod (number a, number b) { /* We need to return the number r which is uniquely determined by the following two properties: (1) 0 <= r < |b| (with respect to '<' and '<=' performed in Z x Z) (2) There exists some k in the integers Z such that a = k * b + r. Consider g := gcd(2^m, |b|). Note that then |b|/g is a unit in Z/2^m. Now, there are three cases: (a) g = 1 Then |b| is a unit in Z/2^m, i.e. |b| (and also b) divides a. Thus r = 0. (b) g <> 1 and g divides a Then a = (a/g) * (|b|/g)^(-1) * b (up to sign), i.e. again r = 0. (c) g <> 1 and g does not divide a Let's denote the division with remainder of a by g as follows: a = s * g + t. Then t = a - s * g = a - s * (|b|/g)^(-1) * |b| fulfills (1) and (2), i.e. r := t is the correct result. Hence in this third case, r is the remainder of division of a by g in Z. This algorithm is the same as for the case Z/n, except that we may compute the gcd of |b| and 2^m "by hand": We just extract the highest power of 2 (<= 2^m) that is contained in b. */ assume((NATNUMBER)b != 0); NATNUMBER g = 1; NATNUMBER b_div = (NATNUMBER)b; if (b_div < 0) b_div = -b_div; // b_div now represents |b| NATNUMBER r = 0; while ((g < currRing->nr2mModul) && (b_div > 0) && (b_div % 2 == 0)) { b_div = b_div >> 1; g = g << 1; } // g is now the gcd of 2^m and |b| if (g != 1) r = (NATNUMBER)a % g; return (number)r; } number nr2mIntDiv (number a,number b) { assume((NATNUMBER)b != 0); return (number) ((NATNUMBER) a / (NATNUMBER) b); } number nr2mInvers (number c) { if ((NATNUMBER)c%2==0) { WerrorS("division by zero divisor"); return (number)0; } return nr2mInversM(c); } number nr2mNeg (number c) { if ((NATNUMBER)c==0) return c; return nr2mNegM(c); } number nr2mMapMachineInt(number from) { NATNUMBER i = ((NATNUMBER) from) & currRing->nr2mModul; return (number) i; } number nr2mMapZp(number from) { long ii = (long)from; NATNUMBER j = (NATNUMBER)1; if (ii < 0) { j = currRing->nr2mModul; ii = -ii; } NATNUMBER i = (NATNUMBER)ii; i = i & currRing->nr2mModul; /* now we have: from = j * i mod 2^m */ return (number)nr2mMult((number)i, (number)j); } number nr2mMapQ(number from) { int_number erg = (int_number) omAlloc(sizeof(mpz_t)); mpz_init(erg); int_number k = (int_number) omAlloc(sizeof(mpz_t)); mpz_init_set_ui(k, currRing->nr2mModul); nlGMP(from, (number)erg); mpz_and(erg, erg, k); number r = (number)mpz_get_ui(erg); mpz_clear(erg); omFree((ADDRESS)erg); mpz_clear(k); omFree((ADDRESS)k); return (number) r; } number nr2mMapGMP(number from) { int_number erg = (int_number) omAlloc(sizeof(mpz_t)); mpz_init(erg); int_number k = (int_number) omAlloc(sizeof(mpz_t)); mpz_init_set_ui(k, currRing->nr2mModul); mpz_and(erg, (int_number)from, k); number r = (number) mpz_get_ui(erg); mpz_clear(erg); omFree((ADDRESS)erg); mpz_clear(k); omFree((ADDRESS)k); return (number) r; } nMapFunc nr2mSetMap(const ring src, const ring dst) { if (rField_is_Ring_2toM(src) && (src->ringflagb >= dst->ringflagb)) { return nr2mMapMachineInt; } if (rField_is_Ring_Z(src)) { return nr2mMapGMP; } if (rField_is_Q(src)) { return nr2mMapQ; } if (rField_is_Zp(src) && (src->ch == 2) && (dst->ringflagb == 1)) { return nr2mMapZp; } if (rField_is_Ring_PtoM(src) || rField_is_Ring_ModN(src)) { // Computing the n of Z/n int_number modul = (int_number) omAlloc(sizeof(mpz_t)); // evtl. spaeter mit bin mpz_init(modul); mpz_set(modul, src->ringflaga); mpz_pow_ui(modul, modul, src->ringflagb); if (mpz_divisible_2exp_p(modul, dst->ringflagb)) { mpz_clear(modul); omFree((ADDRESS) modul); return nr2mMapGMP; } mpz_clear(modul); omFree((ADDRESS) modul); } return NULL; // default } /* * set the exponent (allocate and init tables) (TODO) */ void nr2mSetExp(int m, const ring r) { if (m > 1) { nr2mExp = m; /* we want nr2mModul to be the bit pattern '11..1' consisting of m one's: */ r->nr2mModul = 1; for (int i = 1; i < m; i++) r->nr2mModul = (r->nr2mModul * 2) + 1; } else { nr2mExp = 2; r->nr2mModul = 3; /* i.e., '11' in binary representation */ } } void nr2mInitExp(int m, const ring r) { nr2mSetExp(m, r); if (m < 2) WarnS("nr2mInitExp failed: we go on with Z/2^2"); } #ifdef LDEBUG BOOLEAN nr2mDBTest (number a, const char *f, const int l) { if ((NATNUMBER)a < 0) return FALSE; if (((NATNUMBER)a & currRing->nr2mModul) != (NATNUMBER)a) return FALSE; return TRUE; } #endif void nr2mWrite (number &a, const ring r) { int i = nr2mInt(a, r); StringAppend("%d", i); } static const char* nr2mEati(const char *s, int *i) { if (((*s) >= '0') && ((*s) <= '9')) { (*i) = 0; do { (*i) *= 10; (*i) += *s++ - '0'; if ((*i) >= (MAX_INT_VAL / 10)) (*i) = (*i) & currRing->nr2mModul; } while (((*s) >= '0') && ((*s) <= '9')); (*i) = (*i) & currRing->nr2mModul; } else (*i) = 1; return s; } const char * nr2mRead (const char *s, number *a) { int z; int n=1; s = nr2mEati(s, &z); if ((*s) == '/') { s++; s = nr2mEati(s, &n); } if (n == 1) *a = (number)z; else *a = nr2mDiv((number)z,(number)n); return s; } #endif