1 | #ifndef RMODULO2M_H |
---|
2 | #define RMODULO2M_H |
---|
3 | /**************************************** |
---|
4 | * Computer Algebra System SINGULAR * |
---|
5 | ****************************************/ |
---|
6 | /* $Id$ */ |
---|
7 | /* |
---|
8 | * ABSTRACT: numbers modulo 2^m |
---|
9 | */ |
---|
10 | #ifdef HAVE_RINGS |
---|
11 | #include "structs.h" |
---|
12 | |
---|
13 | extern int nr2mExp; |
---|
14 | extern NATNUMBER nr2mModul; |
---|
15 | |
---|
16 | BOOLEAN nr2mGreaterZero (number k); |
---|
17 | number nr2mMult (number a, number b); |
---|
18 | number nr2mInit (int i, const ring r); |
---|
19 | int nr2mInt (number &n, const ring r); |
---|
20 | number nr2mAdd (number a, number b); |
---|
21 | number nr2mSub (number a, number b); |
---|
22 | void nr2mPower (number a, int i, number * result); |
---|
23 | BOOLEAN nr2mIsZero (number a); |
---|
24 | BOOLEAN nr2mIsOne (number a); |
---|
25 | BOOLEAN nr2mIsMOne (number a); |
---|
26 | BOOLEAN nr2mIsUnit (number a); |
---|
27 | number nr2mGetUnit (number a); |
---|
28 | number nr2mDiv (number a, number b); |
---|
29 | number nr2mIntDiv (number a,number b); |
---|
30 | number nr2mMod (number a,number b); |
---|
31 | number nr2mNeg (number c); |
---|
32 | number nr2mInvers (number c); |
---|
33 | BOOLEAN nr2mGreater (number a, number b); |
---|
34 | BOOLEAN nr2mDivBy (number a, number b); |
---|
35 | int nr2mDivComp (number a, number b); |
---|
36 | BOOLEAN nr2mEqual (number a, number b); |
---|
37 | number nr2mLcm (number a,number b, ring r); |
---|
38 | number nr2mGcd (number a,number b,ring r); |
---|
39 | number nr2mExtGcd (number a, number b, number *s, number *t); |
---|
40 | nMapFunc nr2mSetMap (ring src, ring dst); |
---|
41 | void nr2mWrite (number &a); |
---|
42 | const char * nr2mRead (const char *s, number *a); |
---|
43 | char * nr2mName (number n); |
---|
44 | #ifdef LDEBUG |
---|
45 | BOOLEAN nr2mDBTest (number a, const char *f, const int l); |
---|
46 | #endif |
---|
47 | void nr2mSetExp(int c, const ring r); |
---|
48 | void nr2mInitExp(int c, const ring r); |
---|
49 | |
---|
50 | |
---|
51 | static inline number nr2mMultM(number a, number b) |
---|
52 | { |
---|
53 | return (number) |
---|
54 | ((((NATNUMBER) a)*((NATNUMBER) b)) % ((NATNUMBER) currRing->nr2mModul)); |
---|
55 | } |
---|
56 | |
---|
57 | static inline number nr2mAddM(number a, number b) |
---|
58 | { |
---|
59 | NATNUMBER r = (NATNUMBER)a + (NATNUMBER)b; |
---|
60 | return (number) (r >= currRing->nr2mModul ? r - currRing->nr2mModul : r); |
---|
61 | } |
---|
62 | |
---|
63 | static inline number nr2mSubM(number a, number b) |
---|
64 | { |
---|
65 | return (number)((NATNUMBER)a<(NATNUMBER)b ? |
---|
66 | currRing->nr2mModul-(NATNUMBER)b+(NATNUMBER)a : (NATNUMBER)a-(NATNUMBER)b); |
---|
67 | } |
---|
68 | |
---|
69 | #define nr2mNegM(A) (number)(currRing->nr2mModul-(NATNUMBER)(A)) |
---|
70 | #define nr2mEqualM(A,B) ((A)==(B)) |
---|
71 | |
---|
72 | number nr2mMapQ(number from); |
---|
73 | #endif |
---|
74 | #endif |
---|