1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* $Id: rmodulon.cc,v 1.35 2009-07-03 13:14:10 seelisch Exp $ */ |
---|
5 | /* |
---|
6 | * ABSTRACT: numbers modulo n |
---|
7 | */ |
---|
8 | |
---|
9 | #include <string.h> |
---|
10 | #include "mod2.h" |
---|
11 | #include <mylimits.h> |
---|
12 | #include "structs.h" |
---|
13 | #include "febase.h" |
---|
14 | #include "omalloc.h" |
---|
15 | #include "numbers.h" |
---|
16 | #include "longrat.h" |
---|
17 | #include "mpr_complex.h" |
---|
18 | #include "ring.h" |
---|
19 | #include "rmodulon.h" |
---|
20 | #include "si_gmp.h" |
---|
21 | |
---|
22 | #ifdef HAVE_RINGS |
---|
23 | #define gmp_nrn_bin gmp_nrz_bin |
---|
24 | extern omBin gmp_nrz_bin; |
---|
25 | |
---|
26 | int_number nrnModul = NULL; |
---|
27 | int_number nrnMinusOne = NULL; |
---|
28 | unsigned long nrnExponent = 0; |
---|
29 | |
---|
30 | /* |
---|
31 | * create a number from int |
---|
32 | */ |
---|
33 | number nrnInit (int i) |
---|
34 | { |
---|
35 | int_number erg = (int_number) omAllocBin(gmp_nrn_bin); |
---|
36 | mpz_init_set_si(erg, i); |
---|
37 | mpz_mod(erg, erg, nrnModul); |
---|
38 | return (number) erg; |
---|
39 | } |
---|
40 | |
---|
41 | void nrnDelete(number *a, const ring r) |
---|
42 | { |
---|
43 | if (*a == NULL) return; |
---|
44 | mpz_clear((int_number) *a); |
---|
45 | omFreeBin((ADDRESS) *a, gmp_nrn_bin); |
---|
46 | *a = NULL; |
---|
47 | } |
---|
48 | |
---|
49 | number nrnCopy(number a) |
---|
50 | { |
---|
51 | int_number erg = (int_number) omAllocBin(gmp_nrn_bin); |
---|
52 | mpz_init_set(erg, (int_number) a); |
---|
53 | return (number) erg; |
---|
54 | } |
---|
55 | |
---|
56 | number cfrnCopy(number a, const ring r) |
---|
57 | { |
---|
58 | return nrnCopy(a); |
---|
59 | } |
---|
60 | |
---|
61 | int nrnSize(number a) |
---|
62 | { |
---|
63 | if (a == NULL) return 0; |
---|
64 | return sizeof(MP_INT); |
---|
65 | } |
---|
66 | |
---|
67 | /* |
---|
68 | * convert a number to int (-p/2 .. p/2) |
---|
69 | */ |
---|
70 | int nrnInt(number &n) |
---|
71 | { |
---|
72 | return (int) mpz_get_si( (int_number) &n); |
---|
73 | } |
---|
74 | |
---|
75 | /* |
---|
76 | * Multiply two numbers |
---|
77 | */ |
---|
78 | number nrnMult (number a, number b) |
---|
79 | { |
---|
80 | int_number erg = (int_number) omAllocBin(gmp_nrn_bin); |
---|
81 | mpz_init(erg); |
---|
82 | mpz_mul(erg, (int_number) a, (int_number) b); |
---|
83 | mpz_mod(erg, erg, nrnModul); |
---|
84 | return (number) erg; |
---|
85 | } |
---|
86 | |
---|
87 | void nrnPower (number a, int i, number * result) |
---|
88 | { |
---|
89 | int_number erg = (int_number) omAllocBin(gmp_nrn_bin); |
---|
90 | mpz_init(erg); |
---|
91 | mpz_powm_ui(erg, (int_number) a, i, nrnModul); |
---|
92 | *result = (number) erg; |
---|
93 | } |
---|
94 | |
---|
95 | number nrnAdd (number a, number b) |
---|
96 | { |
---|
97 | int_number erg = (int_number) omAllocBin(gmp_nrn_bin); |
---|
98 | mpz_init(erg); |
---|
99 | mpz_add(erg, (int_number) a, (int_number) b); |
---|
100 | mpz_mod(erg, erg, nrnModul); |
---|
101 | return (number) erg; |
---|
102 | } |
---|
103 | |
---|
104 | number nrnSub (number a, number b) |
---|
105 | { |
---|
106 | int_number erg = (int_number) omAllocBin(gmp_nrn_bin); |
---|
107 | mpz_init(erg); |
---|
108 | mpz_sub(erg, (int_number) a, (int_number) b); |
---|
109 | mpz_mod(erg, erg, nrnModul); |
---|
110 | return (number) erg; |
---|
111 | } |
---|
112 | |
---|
113 | number nrnNeg (number c) |
---|
114 | { |
---|
115 | // nNeg inplace !!! |
---|
116 | mpz_sub((int_number) c, nrnModul, (int_number) c); |
---|
117 | return c; |
---|
118 | } |
---|
119 | |
---|
120 | number nrnInvers (number c) |
---|
121 | { |
---|
122 | int_number erg = (int_number) omAllocBin(gmp_nrn_bin); |
---|
123 | mpz_init(erg); |
---|
124 | mpz_invert(erg, (int_number) c, nrnModul); |
---|
125 | return (number) erg; |
---|
126 | } |
---|
127 | |
---|
128 | /* |
---|
129 | * Give the smallest non unit k, such that a * x = k = b * y has a solution |
---|
130 | * TODO: lcm(gcd,gcd) besser als gcd(lcm) ? |
---|
131 | */ |
---|
132 | number nrnLcm (number a,number b,ring r) |
---|
133 | { |
---|
134 | number erg = nrnGcd(NULL, a, NULL); |
---|
135 | number tmp = nrnGcd(NULL, b, NULL); |
---|
136 | mpz_lcm((int_number) erg, (int_number) erg, (int_number) tmp); |
---|
137 | nrnDelete(&tmp, NULL); |
---|
138 | return (number) erg; |
---|
139 | } |
---|
140 | |
---|
141 | /* |
---|
142 | * Give the largest non unit k, such that a = x * k, b = y * k has |
---|
143 | * a solution. |
---|
144 | */ |
---|
145 | number nrnGcd (number a,number b,ring r) |
---|
146 | { |
---|
147 | if ((a == NULL) && (b == NULL)) return nrnInit(0); |
---|
148 | int_number erg = (int_number) omAllocBin(gmp_nrn_bin); |
---|
149 | mpz_init_set(erg, nrnModul); |
---|
150 | if (a != NULL) mpz_gcd(erg, erg, (int_number) a); |
---|
151 | if (b != NULL) mpz_gcd(erg, erg, (int_number) b); |
---|
152 | return (number) erg; |
---|
153 | } |
---|
154 | |
---|
155 | /* Not needed any more, but may have room for improvement |
---|
156 | number nrnGcd3 (number a,number b, number c,ring r) |
---|
157 | { |
---|
158 | int_number erg = (int_number) omAllocBin(gmp_nrn_bin); |
---|
159 | mpz_init(erg); |
---|
160 | if (a == NULL) a = (number) nrnModul; |
---|
161 | if (b == NULL) b = (number) nrnModul; |
---|
162 | if (c == NULL) c = (number) nrnModul; |
---|
163 | mpz_gcd(erg, (int_number) a, (int_number) b); |
---|
164 | mpz_gcd(erg, erg, (int_number) c); |
---|
165 | mpz_gcd(erg, erg, nrnModul); |
---|
166 | return (number) erg; |
---|
167 | } |
---|
168 | */ |
---|
169 | |
---|
170 | /* |
---|
171 | * Give the largest non unit k, such that a = x * k, b = y * k has |
---|
172 | * a solution and r, s, s.t. k = s*a + t*b |
---|
173 | */ |
---|
174 | number nrnExtGcd (number a, number b, number *s, number *t) |
---|
175 | { |
---|
176 | int_number erg = (int_number) omAllocBin(gmp_nrn_bin); |
---|
177 | int_number bs = (int_number) omAllocBin(gmp_nrn_bin); |
---|
178 | int_number bt = (int_number) omAllocBin(gmp_nrn_bin); |
---|
179 | mpz_init(erg); |
---|
180 | mpz_init(bs); |
---|
181 | mpz_init(bt); |
---|
182 | mpz_gcdext(erg, bs, bt, (int_number) a, (int_number) b); |
---|
183 | mpz_mod(bs, bs, nrnModul); |
---|
184 | mpz_mod(bt, bt, nrnModul); |
---|
185 | *s = (number) bs; |
---|
186 | *t = (number) bt; |
---|
187 | return (number) erg; |
---|
188 | } |
---|
189 | |
---|
190 | BOOLEAN nrnIsZero (number a) |
---|
191 | { |
---|
192 | return 0 == mpz_cmpabs_ui((int_number) a, 0); |
---|
193 | } |
---|
194 | |
---|
195 | BOOLEAN nrnIsOne (number a) |
---|
196 | { |
---|
197 | return 0 == mpz_cmp_si((int_number) a, 1); |
---|
198 | } |
---|
199 | |
---|
200 | BOOLEAN nrnIsMOne (number a) |
---|
201 | { |
---|
202 | return 0 == mpz_cmp((int_number) a, nrnMinusOne); |
---|
203 | } |
---|
204 | |
---|
205 | BOOLEAN nrnEqual (number a,number b) |
---|
206 | { |
---|
207 | return 0 == mpz_cmp((int_number) a, (int_number) b); |
---|
208 | } |
---|
209 | |
---|
210 | BOOLEAN nrnGreater (number a,number b) |
---|
211 | { |
---|
212 | return 0 < mpz_cmp((int_number) a, (int_number) b); |
---|
213 | } |
---|
214 | |
---|
215 | BOOLEAN nrnGreaterZero (number k) |
---|
216 | { |
---|
217 | return 0 < mpz_cmp_si((int_number) k, 0); |
---|
218 | } |
---|
219 | |
---|
220 | BOOLEAN nrnIsUnit (number a) |
---|
221 | { |
---|
222 | number tmp = nrnGcd(a, (number) nrnModul, NULL); |
---|
223 | bool res = nrnIsOne(tmp); |
---|
224 | nrnDelete(&tmp, NULL); |
---|
225 | return res; |
---|
226 | } |
---|
227 | |
---|
228 | number nrnGetUnit (number k) |
---|
229 | { |
---|
230 | if (mpz_divisible_p(nrnModul, (int_number) k)) return nrnInit(1); |
---|
231 | |
---|
232 | int_number unit = (int_number) nrnGcd(k, 0, currRing); |
---|
233 | mpz_tdiv_q(unit, (int_number) k, unit); |
---|
234 | int_number gcd = (int_number) nrnGcd((number) unit, 0, currRing); |
---|
235 | if (!nrnIsOne((number) gcd)) |
---|
236 | { |
---|
237 | int_number ctmp; |
---|
238 | // tmp := unit^2 |
---|
239 | int_number tmp = (int_number) nrnMult((number) unit,(number) unit); |
---|
240 | // gcd_new := gcd(tmp, 0) |
---|
241 | int_number gcd_new = (int_number) nrnGcd((number) tmp, 0, currRing); |
---|
242 | while (!nrnEqual((number) gcd_new,(number) gcd)) |
---|
243 | { |
---|
244 | // gcd := gcd_new |
---|
245 | ctmp = gcd; |
---|
246 | gcd = gcd_new; |
---|
247 | gcd_new = ctmp; |
---|
248 | // tmp := tmp * unit |
---|
249 | mpz_mul(tmp, tmp, unit); |
---|
250 | mpz_mod(tmp, tmp, nrnModul); |
---|
251 | // gcd_new := gcd(tmp, 0) |
---|
252 | mpz_gcd(gcd_new, tmp, nrnModul); |
---|
253 | } |
---|
254 | // unit := unit + nrnModul / gcd_new |
---|
255 | mpz_tdiv_q(tmp, nrnModul, gcd_new); |
---|
256 | mpz_add(unit, unit, tmp); |
---|
257 | mpz_mod(unit, unit, nrnModul); |
---|
258 | nrnDelete((number*) &gcd_new, NULL); |
---|
259 | nrnDelete((number*) &tmp, NULL); |
---|
260 | } |
---|
261 | nrnDelete((number*) &gcd, NULL); |
---|
262 | return (number) unit; |
---|
263 | } |
---|
264 | |
---|
265 | BOOLEAN nrnDivBy (number a,number b) |
---|
266 | { |
---|
267 | if (a == NULL) |
---|
268 | return mpz_divisible_p(nrnModul, (int_number) b); |
---|
269 | else |
---|
270 | return mpz_divisible_p((int_number) a, (int_number) b); |
---|
271 | /* |
---|
272 | number bs = nrnGcd(a, b, NULL); |
---|
273 | mpz_tdiv_q((int_number) bs, (int_number) b, (int_number) bs); |
---|
274 | bool res = nrnIsUnit(bs); |
---|
275 | nrnDelete(&bs, NULL); |
---|
276 | return res; |
---|
277 | */ |
---|
278 | } |
---|
279 | |
---|
280 | int nrnDivComp(number a, number b) |
---|
281 | { |
---|
282 | if (nrnEqual(a, b)) return 0; |
---|
283 | if (mpz_divisible_p((int_number) a, (int_number) b)) return -1; |
---|
284 | if (mpz_divisible_p((int_number) b, (int_number) a)) return 1; |
---|
285 | return 2; |
---|
286 | } |
---|
287 | |
---|
288 | number nrnDiv (number a,number b) |
---|
289 | { |
---|
290 | if (a == NULL) a = (number) nrnModul; |
---|
291 | int_number erg = (int_number) omAllocBin(gmp_nrn_bin); |
---|
292 | mpz_init(erg); |
---|
293 | if (mpz_divisible_p((int_number) a, (int_number) b)) |
---|
294 | { |
---|
295 | mpz_divexact(erg, (int_number) a, (int_number) b); |
---|
296 | return (number) erg; |
---|
297 | } |
---|
298 | else |
---|
299 | { |
---|
300 | int_number gcd = (int_number) nrnGcd(a, b, NULL); |
---|
301 | mpz_divexact(erg, (int_number) b, gcd); |
---|
302 | if (!nrnIsUnit((number) erg)) |
---|
303 | { |
---|
304 | WarnS("Division not possible, even by cancelling zero divisors."); |
---|
305 | WarnS("Result is integer division without remainder."); |
---|
306 | mpz_tdiv_q(erg, (int_number) a, (int_number) b); |
---|
307 | nrnDelete((number*) &gcd, NULL); |
---|
308 | return (number) erg; |
---|
309 | } |
---|
310 | // a / gcd(a,b) * [b / gcd (a,b)]^(-1) |
---|
311 | int_number tmp = (int_number) nrnInvers((number) erg); |
---|
312 | mpz_divexact(erg, (int_number) a, gcd); |
---|
313 | mpz_mul(erg, erg, tmp); |
---|
314 | nrnDelete((number*) &gcd, NULL); |
---|
315 | nrnDelete((number*) &tmp, NULL); |
---|
316 | mpz_mod(erg, erg, nrnModul); |
---|
317 | return (number) erg; |
---|
318 | } |
---|
319 | } |
---|
320 | |
---|
321 | number nrnMod (number a, number b) |
---|
322 | { |
---|
323 | /* |
---|
324 | We need to return the number r which is uniquely determined by the |
---|
325 | following two properties: |
---|
326 | (1) 0 <= r < |b| (with respect to '<' and '<=' performed in Z x Z) |
---|
327 | (2) There exists some k in the integers Z such that a = k * b + r. |
---|
328 | Consider g := gcd(n, |b|). Note that then |b|/g is a unit in Z/n. |
---|
329 | Now, there are three cases: |
---|
330 | (a) g = 1 |
---|
331 | Then |b| is a unit in Z/n, i.e. |b| (and also b) divides a. |
---|
332 | Thus r = 0. |
---|
333 | (b) g <> 1 and g divides a |
---|
334 | Then a = (a/g) * (|b|/g)^(-1) * b (up to sign), i.e. again r = 0. |
---|
335 | (c) g <> 1 and g does not divide a |
---|
336 | Then denote the division with remainder of a by g as this: |
---|
337 | a = s * g + t. Then t = a - s * g = a - s * (|b|/g)^(-1) * |b| |
---|
338 | fulfills (1) and (2), i.e. r := t is the correct result. Hence |
---|
339 | in this third case, r is the remainder of division of a by g in Z. |
---|
340 | */ |
---|
341 | int_number g = (int_number) omAllocBin(gmp_nrn_bin); |
---|
342 | int_number b_abs = (int_number) omAllocBin(gmp_nrn_bin); |
---|
343 | int_number r = (int_number) omAllocBin(gmp_nrn_bin); |
---|
344 | mpz_init(g); |
---|
345 | mpz_init_set(b_abs,(int_number)b); |
---|
346 | mpz_init_set_si(r,(long)0); |
---|
347 | if (mpz_isNeg(b_abs)) mpz_neg(b_abs, b_abs); // b_abs now represents |b| |
---|
348 | mpz_gcd(g, (int_number) nrnModul, b_abs); // g is now as above |
---|
349 | if (mpz_cmp_si(g, (long)1) != 0) mpz_mod(r, (int_number)a, g); // the case g <> 1 |
---|
350 | mpz_clear(g); |
---|
351 | mpz_clear(b_abs); |
---|
352 | omFreeBin(g, gmp_nrn_bin); |
---|
353 | omFreeBin(b_abs, gmp_nrn_bin); |
---|
354 | return (number)r; |
---|
355 | } |
---|
356 | |
---|
357 | number nrnIntDiv (number a,number b) |
---|
358 | { |
---|
359 | int_number erg = (int_number) omAllocBin(gmp_nrn_bin); |
---|
360 | mpz_init(erg); |
---|
361 | if (a == NULL) a = (number) nrnModul; |
---|
362 | mpz_tdiv_q(erg, (int_number) a, (int_number) b); |
---|
363 | return (number) erg; |
---|
364 | } |
---|
365 | |
---|
366 | /* |
---|
367 | * Helper function for computing the module |
---|
368 | */ |
---|
369 | |
---|
370 | int_number nrnMapCoef = NULL; |
---|
371 | |
---|
372 | number nrnMapModN(number from) |
---|
373 | { |
---|
374 | return nrnMult(from, (number) nrnMapCoef); |
---|
375 | } |
---|
376 | |
---|
377 | number nrnMap2toM(number from) |
---|
378 | { |
---|
379 | int_number erg = (int_number) omAllocBin(gmp_nrn_bin); |
---|
380 | mpz_init(erg); |
---|
381 | mpz_mul_ui(erg, nrnMapCoef, (NATNUMBER) from); |
---|
382 | mpz_mod(erg, erg, nrnModul); |
---|
383 | return (number) erg; |
---|
384 | } |
---|
385 | |
---|
386 | number nrnMapZp(number from) |
---|
387 | { |
---|
388 | int_number erg = (int_number) omAllocBin(gmp_nrn_bin); |
---|
389 | mpz_init(erg); |
---|
390 | mpz_mul_si(erg, nrnMapCoef, (NATNUMBER) from); |
---|
391 | mpz_mod(erg, erg, nrnModul); |
---|
392 | return (number) erg; |
---|
393 | } |
---|
394 | |
---|
395 | number nrnMapGMP(number from) |
---|
396 | { |
---|
397 | int_number erg = (int_number) omAllocBin(gmp_nrn_bin); |
---|
398 | mpz_init(erg); |
---|
399 | mpz_mod(erg, (int_number) from, nrnModul); |
---|
400 | return (number) erg; |
---|
401 | } |
---|
402 | |
---|
403 | number nrnMapQ(number from) |
---|
404 | { |
---|
405 | int_number erg = (int_number) omAllocBin(gmp_nrn_bin); |
---|
406 | mpz_init(erg); |
---|
407 | nlGMP(from, (number) erg); |
---|
408 | mpz_mod(erg, erg, nrnModul); |
---|
409 | return (number) erg; |
---|
410 | } |
---|
411 | |
---|
412 | nMapFunc nrnSetMap(ring src, ring dst) |
---|
413 | { |
---|
414 | /* dst = currRing */ |
---|
415 | if (rField_is_Ring_Z(src)) |
---|
416 | { |
---|
417 | return nrnMapGMP; |
---|
418 | } |
---|
419 | if (rField_is_Q(src)) |
---|
420 | { |
---|
421 | return nrnMapQ; |
---|
422 | } |
---|
423 | // Some type of Z/n ring / field |
---|
424 | if (rField_is_Ring_ModN(src) || rField_is_Ring_PtoM(src) || rField_is_Ring_2toM(src) || rField_is_Zp(src)) |
---|
425 | { |
---|
426 | if ( (src->ringtype > 0) |
---|
427 | && (mpz_cmp(src->ringflaga, dst->ringflaga) == 0) |
---|
428 | && (src->ringflagb == dst->ringflagb)) return nrnMapGMP; |
---|
429 | else |
---|
430 | { |
---|
431 | int_number nrnMapModul = (int_number) omAllocBin(gmp_nrn_bin); |
---|
432 | // Computing the n of Z/n |
---|
433 | if (rField_is_Zp(src)) |
---|
434 | { |
---|
435 | mpz_init_set_si(nrnMapModul, src->ch); |
---|
436 | } |
---|
437 | else |
---|
438 | { |
---|
439 | mpz_init(nrnMapModul); |
---|
440 | mpz_set(nrnMapModul, src->ringflaga); |
---|
441 | mpz_pow_ui(nrnMapModul, nrnMapModul, src->ringflagb); |
---|
442 | } |
---|
443 | // nrnMapCoef = 1 in dst if dst is a subring of src |
---|
444 | // nrnMapCoef = 0 in dst / src if src is a subring of dst |
---|
445 | if (nrnMapCoef == NULL) |
---|
446 | { |
---|
447 | nrnMapCoef = (int_number) omAllocBin(gmp_nrn_bin); |
---|
448 | mpz_init(nrnMapCoef); |
---|
449 | } |
---|
450 | if (mpz_divisible_p(nrnMapModul, nrnModul)) |
---|
451 | { |
---|
452 | mpz_set_si(nrnMapCoef, 1); |
---|
453 | } |
---|
454 | else |
---|
455 | if (nrnDivBy(NULL, (number) nrnMapModul)) |
---|
456 | { |
---|
457 | mpz_divexact(nrnMapCoef, nrnModul, nrnMapModul); |
---|
458 | int_number tmp = nrnModul; |
---|
459 | nrnModul = nrnMapModul; |
---|
460 | if (!nrnIsUnit((number) nrnMapCoef)) |
---|
461 | { |
---|
462 | nrnModul = tmp; |
---|
463 | nrnDelete((number*) &nrnMapModul, currRing); |
---|
464 | return NULL; |
---|
465 | } |
---|
466 | int_number inv = (int_number) nrnInvers((number) nrnMapCoef); |
---|
467 | nrnModul = tmp; |
---|
468 | mpz_mul(nrnMapCoef, nrnMapCoef, inv); |
---|
469 | mpz_mod(nrnMapCoef, nrnMapCoef, nrnModul); |
---|
470 | nrnDelete((number*) &inv, currRing); |
---|
471 | } |
---|
472 | else |
---|
473 | { |
---|
474 | nrnDelete((number*) &nrnMapModul, currRing); |
---|
475 | return NULL; |
---|
476 | } |
---|
477 | nrnDelete((number*) &nrnMapModul, currRing); |
---|
478 | if (rField_is_Ring_2toM(src)) |
---|
479 | return nrnMap2toM; |
---|
480 | else if (rField_is_Zp(src)) |
---|
481 | return nrnMapZp; |
---|
482 | else |
---|
483 | return nrnMapModN; |
---|
484 | } |
---|
485 | } |
---|
486 | return NULL; // default |
---|
487 | } |
---|
488 | |
---|
489 | /* |
---|
490 | * set the exponent (allocate and init tables) (TODO) |
---|
491 | */ |
---|
492 | |
---|
493 | void nrnSetExp(int m, ring r) |
---|
494 | { |
---|
495 | if ((nrnModul != NULL) && (mpz_cmp(nrnModul, r->ringflaga) == 0) && (nrnExponent == r->ringflagb)) return; |
---|
496 | |
---|
497 | nrnExponent = r->ringflagb; |
---|
498 | if (nrnModul == NULL) |
---|
499 | { |
---|
500 | nrnModul = (int_number) omAllocBin(gmp_nrn_bin); |
---|
501 | mpz_init(nrnModul); |
---|
502 | nrnMinusOne = (int_number) omAllocBin(gmp_nrn_bin); |
---|
503 | mpz_init(nrnMinusOne); |
---|
504 | } |
---|
505 | mpz_set(nrnModul, r->ringflaga); |
---|
506 | mpz_pow_ui(nrnModul, nrnModul, nrnExponent); |
---|
507 | mpz_sub_ui(nrnMinusOne, nrnModul, 1); |
---|
508 | } |
---|
509 | |
---|
510 | void nrnInitExp(int m, ring r) |
---|
511 | { |
---|
512 | nrnSetExp(m, r); |
---|
513 | |
---|
514 | if (mpz_cmp_ui(nrnModul,2) <= 0) |
---|
515 | { |
---|
516 | WarnS("nrnInitExp failed"); |
---|
517 | } |
---|
518 | } |
---|
519 | |
---|
520 | #ifdef LDEBUG |
---|
521 | BOOLEAN nrnDBTest (number a, const char *f, const int l) |
---|
522 | { |
---|
523 | if ( (mpz_cmp_si((int_number) a, 0) < 0) || (mpz_cmp((int_number) a, nrnModul) > 0) ) |
---|
524 | { |
---|
525 | return FALSE; |
---|
526 | } |
---|
527 | return TRUE; |
---|
528 | } |
---|
529 | #endif |
---|
530 | |
---|
531 | void nrnWrite (number &a) |
---|
532 | { |
---|
533 | char *s,*z; |
---|
534 | if (a==NULL) |
---|
535 | { |
---|
536 | StringAppendS("o"); |
---|
537 | } |
---|
538 | else |
---|
539 | { |
---|
540 | int l=mpz_sizeinbase((int_number) a, 10); |
---|
541 | if (a->s<2) l=si_max(l,mpz_sizeinbase((int_number) a,10)); |
---|
542 | l+=2; |
---|
543 | s=(char*)omAlloc(l); |
---|
544 | z=mpz_get_str(s,10,(int_number) a); |
---|
545 | StringAppendS(z); |
---|
546 | omFreeSize((ADDRESS)s,l); |
---|
547 | } |
---|
548 | } |
---|
549 | |
---|
550 | /*2 |
---|
551 | * extracts a long integer from s, returns the rest (COPY FROM longrat0.cc) |
---|
552 | */ |
---|
553 | static const char * nlCPEatLongC(char *s, MP_INT *i) |
---|
554 | { |
---|
555 | const char * start=s; |
---|
556 | if (!(*s >= '0' && *s <= '9')) |
---|
557 | { |
---|
558 | mpz_init_set_si(i, 1); |
---|
559 | return s; |
---|
560 | } |
---|
561 | mpz_init(i); |
---|
562 | while (*s >= '0' && *s <= '9') s++; |
---|
563 | if (*s=='\0') |
---|
564 | { |
---|
565 | mpz_set_str(i,start,10); |
---|
566 | } |
---|
567 | else |
---|
568 | { |
---|
569 | char c=*s; |
---|
570 | *s='\0'; |
---|
571 | mpz_set_str(i,start,10); |
---|
572 | *s=c; |
---|
573 | } |
---|
574 | return s; |
---|
575 | } |
---|
576 | |
---|
577 | const char * nrnRead (const char *s, number *a) |
---|
578 | { |
---|
579 | int_number z = (int_number) omAllocBin(gmp_nrn_bin); |
---|
580 | { |
---|
581 | s = nlCPEatLongC((char *)s, z); |
---|
582 | } |
---|
583 | mpz_mod(z, z, nrnModul); |
---|
584 | *a = (number) z; |
---|
585 | return s; |
---|
586 | } |
---|
587 | #endif |
---|