/**************************************** * Computer Algebra System SINGULAR * ****************************************/ /* $Id$ */ /* * ABSTRACT: numbers modulo n */ #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_RINGS extern omBin gmp_nrz_bin; int_number nrnMinusOne = NULL; unsigned long nrnExponent = 0; /* * create a number from int */ number nrnInit (int i, const ring r) { int_number erg = (int_number) omAllocBin(gmp_nrz_bin); mpz_init_set_si(erg, i); mpz_mod(erg, erg, r->nrnModul); return (number) erg; } void nrnDelete(number *a, const ring r) { if (*a == NULL) return; mpz_clear((int_number) *a); omFreeBin((ADDRESS) *a, gmp_nrz_bin); *a = NULL; } number nrnCopy(number a) { int_number erg = (int_number) omAllocBin(gmp_nrz_bin); mpz_init_set(erg, (int_number) a); return (number) erg; } number cfrnCopy(number a, const ring r) { return nrnCopy(a); } int nrnSize(number a) { if (a == NULL) return 0; return sizeof(mpz_t); } /* * convert a number to int */ int nrnInt(number &n, const ring r) { return (int) mpz_get_si( (int_number) n); } /* * Multiply two numbers */ number nrnMult (number a, number b) { int_number erg = (int_number) omAllocBin(gmp_nrz_bin); mpz_init(erg); mpz_mul(erg, (int_number) a, (int_number) b); mpz_mod(erg, erg, currRing->nrnModul); return (number) erg; } void nrnPower (number a, int i, number * result) { int_number erg = (int_number) omAllocBin(gmp_nrz_bin); mpz_init(erg); mpz_powm_ui(erg, (int_number) a, i, currRing->nrnModul); *result = (number) erg; } number nrnAdd (number a, number b) { int_number erg = (int_number) omAllocBin(gmp_nrz_bin); mpz_init(erg); mpz_add(erg, (int_number) a, (int_number) b); mpz_mod(erg, erg, currRing->nrnModul); return (number) erg; } number nrnSub (number a, number b) { int_number erg = (int_number) omAllocBin(gmp_nrz_bin); mpz_init(erg); mpz_sub(erg, (int_number) a, (int_number) b); mpz_mod(erg, erg, currRing->nrnModul); return (number) erg; } number nrnNeg (number c) { // nNeg inplace !!! mpz_sub((int_number) c, currRing->nrnModul, (int_number) c); return c; } number nrnInvers (number c) { int_number erg = (int_number) omAllocBin(gmp_nrz_bin); mpz_init(erg); mpz_invert(erg, (int_number) c, currRing->nrnModul); return (number) erg; } /* * Give the smallest non unit k, such that a * x = k = b * y has a solution * TODO: lcm(gcd,gcd) besser als gcd(lcm) ? */ number nrnLcm (number a,number b,ring r) { number erg = nrnGcd(NULL, a, r); number tmp = nrnGcd(NULL, b, r); mpz_lcm((int_number) erg, (int_number) erg, (int_number) tmp); nrnDelete(&tmp, NULL); return (number) erg; } /* * Give the largest non unit k, such that a = x * k, b = y * k has * a solution. */ number nrnGcd (number a,number b,ring r) { if ((a == NULL) && (b == NULL)) return nrnInit(0,r); int_number erg = (int_number) omAllocBin(gmp_nrz_bin); mpz_init_set(erg, r->nrnModul); if (a != NULL) mpz_gcd(erg, erg, (int_number) a); if (b != NULL) mpz_gcd(erg, erg, (int_number) b); return (number) erg; } /* Not needed any more, but may have room for improvement number nrnGcd3 (number a,number b, number c,ring r) { int_number erg = (int_number) omAllocBin(gmp_nrz_bin); mpz_init(erg); if (a == NULL) a = (number) r->nrnModul; if (b == NULL) b = (number) r->nrnModul; if (c == NULL) c = (number) r->nrnModul; mpz_gcd(erg, (int_number) a, (int_number) b); mpz_gcd(erg, erg, (int_number) c); mpz_gcd(erg, erg, r->nrnModul); return (number) erg; } */ /* * Give the largest non unit k, such that a = x * k, b = y * k has * a solution and r, s, s.t. k = s*a + t*b */ number nrnExtGcd (number a, number b, number *s, number *t) { int_number erg = (int_number) omAllocBin(gmp_nrz_bin); int_number bs = (int_number) omAllocBin(gmp_nrz_bin); int_number bt = (int_number) omAllocBin(gmp_nrz_bin); mpz_init(erg); mpz_init(bs); mpz_init(bt); mpz_gcdext(erg, bs, bt, (int_number) a, (int_number) b); mpz_mod(bs, bs, currRing->nrnModul); mpz_mod(bt, bt, currRing->nrnModul); *s = (number) bs; *t = (number) bt; return (number) erg; } BOOLEAN nrnIsZero (number a) { #ifdef LDEBUG if (a == NULL) return FALSE; #endif return 0 == mpz_cmpabs_ui((int_number) a, 0); } BOOLEAN nrnIsOne (number a) { #ifdef LDEBUG if (a == NULL) return FALSE; #endif return 0 == mpz_cmp_si((int_number) a, 1); } BOOLEAN nrnIsMOne (number a) { #ifdef LDEBUG if (a == NULL) return FALSE; #endif return 0 == mpz_cmp((int_number) a, nrnMinusOne); } BOOLEAN nrnEqual (number a,number b) { return 0 == mpz_cmp((int_number) a, (int_number) b); } BOOLEAN nrnGreater (number a,number b) { return 0 < mpz_cmp((int_number) a, (int_number) b); } BOOLEAN nrnGreaterZero (number k) { return 0 < mpz_cmp_si((int_number) k, 0); } BOOLEAN nrnIsUnit (number a) { number tmp = nrnGcd(a, (number) currRing->nrnModul, currRing); bool res = nrnIsOne(tmp); nrnDelete(&tmp, NULL); return res; } number nrnGetUnit (number k) { if (mpz_divisible_p(currRing->nrnModul, (int_number) k)) return nrnInit(1,currRing); int_number unit = (int_number) nrnGcd(k, 0, currRing); mpz_tdiv_q(unit, (int_number) k, unit); int_number gcd = (int_number) nrnGcd((number) unit, 0, currRing); if (!nrnIsOne((number) gcd)) { int_number ctmp; // tmp := unit^2 int_number tmp = (int_number) nrnMult((number) unit,(number) unit); // gcd_new := gcd(tmp, 0) int_number gcd_new = (int_number) nrnGcd((number) tmp, 0, currRing); while (!nrnEqual((number) gcd_new,(number) gcd)) { // gcd := gcd_new ctmp = gcd; gcd = gcd_new; gcd_new = ctmp; // tmp := tmp * unit mpz_mul(tmp, tmp, unit); mpz_mod(tmp, tmp, currRing->nrnModul); // gcd_new := gcd(tmp, 0) mpz_gcd(gcd_new, tmp, currRing->nrnModul); } // unit := unit + nrnModul / gcd_new mpz_tdiv_q(tmp, currRing->nrnModul, gcd_new); mpz_add(unit, unit, tmp); mpz_mod(unit, unit, currRing->nrnModul); nrnDelete((number*) &gcd_new, NULL); nrnDelete((number*) &tmp, NULL); } nrnDelete((number*) &gcd, NULL); return (number) unit; } BOOLEAN nrnDivBy (number a, number b) { if (a == NULL) return mpz_divisible_p(currRing->nrnModul, (int_number)b); else { /* b divides a iff b/gcd(a, b) is a unit in the given ring: */ number n = nrnGcd(a, b, currRing); mpz_tdiv_q((int_number)n, (int_number)b, (int_number)n); bool result = nrnIsUnit(n); nrnDelete(&n, NULL); return result; } } int nrnDivComp(number a, number b) { if (nrnEqual(a, b)) return 2; if (mpz_divisible_p((int_number) a, (int_number) b)) return -1; if (mpz_divisible_p((int_number) b, (int_number) a)) return 1; return 0; } number nrnDiv (number a,number b) { if (a == NULL) a = (number) currRing->nrnModul; int_number erg = (int_number) omAllocBin(gmp_nrz_bin); mpz_init(erg); if (mpz_divisible_p((int_number) a, (int_number) b)) { mpz_divexact(erg, (int_number) a, (int_number) b); return (number) erg; } else { int_number gcd = (int_number) nrnGcd(a, b, currRing); mpz_divexact(erg, (int_number) b, gcd); if (!nrnIsUnit((number) erg)) { WerrorS("Division not possible, even by cancelling zero divisors."); WerrorS("Result is integer division without remainder."); mpz_tdiv_q(erg, (int_number) a, (int_number) b); nrnDelete((number*) &gcd, NULL); return (number) erg; } // a / gcd(a,b) * [b / gcd (a,b)]^(-1) int_number tmp = (int_number) nrnInvers((number) erg); mpz_divexact(erg, (int_number) a, gcd); mpz_mul(erg, erg, tmp); nrnDelete((number*) &gcd, NULL); nrnDelete((number*) &tmp, NULL); mpz_mod(erg, erg, currRing->nrnModul); return (number) erg; } } number nrnMod (number a, number b) { /* We need to return the number r which is uniquely determined by the following two properties: (1) 0 <= r < |b| (with respect to '<' and '<=' performed in Z x Z) (2) There exists some k in the integers Z such that a = k * b + r. Consider g := gcd(n, |b|). Note that then |b|/g is a unit in Z/n. Now, there are three cases: (a) g = 1 Then |b| is a unit in Z/n, i.e. |b| (and also b) divides a. Thus r = 0. (b) g <> 1 and g divides a Then a = (a/g) * (|b|/g)^(-1) * b (up to sign), i.e. again r = 0. (c) g <> 1 and g does not divide a Then denote the division with remainder of a by g as this: a = s * g + t. Then t = a - s * g = a - s * (|b|/g)^(-1) * |b| fulfills (1) and (2), i.e. r := t is the correct result. Hence in this third case, r is the remainder of division of a by g in Z. Remark: according to mpz_mod: a,b are always non-negative */ int_number g = (int_number) omAllocBin(gmp_nrz_bin); int_number r = (int_number) omAllocBin(gmp_nrz_bin); mpz_init(g); mpz_init_set_si(r,(long)0); mpz_gcd(g, (int_number) currRing->nrnModul, (int_number)b); // g is now as above if (mpz_cmp_si(g, (long)1) != 0) mpz_mod(r, (int_number)a, g); // the case g <> 1 mpz_clear(g); omFreeBin(g, gmp_nrz_bin); return (number)r; } number nrnIntDiv (number a,number b) { int_number erg = (int_number) omAllocBin(gmp_nrz_bin); mpz_init(erg); if (a == NULL) a = (number) currRing->nrnModul; mpz_tdiv_q(erg, (int_number) a, (int_number) b); return (number) erg; } /* * Helper function for computing the module */ int_number nrnMapCoef = NULL; number nrnMapModN(number from) { return nrnMult(from, (number) nrnMapCoef); } number nrnMap2toM(number from) { int_number erg = (int_number) omAllocBin(gmp_nrz_bin); mpz_init(erg); mpz_mul_ui(erg, nrnMapCoef, (NATNUMBER) from); mpz_mod(erg, erg, currRing->nrnModul); return (number) erg; } number nrnMapZp(number from) { int_number erg = (int_number) omAllocBin(gmp_nrz_bin); mpz_init(erg); mpz_mul_si(erg, nrnMapCoef, (NATNUMBER) from); mpz_mod(erg, erg, currRing->nrnModul); return (number) erg; } number nrnMapGMP(number from) { int_number erg = (int_number) omAllocBin(gmp_nrz_bin); mpz_init(erg); mpz_mod(erg, (int_number) from, currRing->nrnModul); return (number) erg; } number nrnMapQ(number from) { int_number erg = (int_number) omAllocBin(gmp_nrz_bin); mpz_init(erg); nlGMP(from, (number) erg); mpz_mod(erg, erg, currRing->nrnModul); return (number) erg; } nMapFunc nrnSetMap(const ring src, const ring dst) { /* dst = currRing */ if (rField_is_Ring_Z(src)) { return nrnMapGMP; } if (rField_is_Q(src)) { return nrnMapQ; } // Some type of Z/n ring / field if (rField_is_Ring_ModN(src) || rField_is_Ring_PtoM(src) || rField_is_Ring_2toM(src) || rField_is_Zp(src)) { if ( (src->ringtype > 0) && (mpz_cmp(src->ringflaga, dst->ringflaga) == 0) && (src->ringflagb == dst->ringflagb)) return nrnMapGMP; else { int_number nrnMapModul = (int_number) omAllocBin(gmp_nrz_bin); // Computing the n of Z/n if (rField_is_Zp(src)) { mpz_init_set_si(nrnMapModul, src->ch); } else { mpz_init(nrnMapModul); mpz_set(nrnMapModul, src->ringflaga); mpz_pow_ui(nrnMapModul, nrnMapModul, src->ringflagb); } // nrnMapCoef = 1 in dst if dst is a subring of src // nrnMapCoef = 0 in dst / src if src is a subring of dst if (nrnMapCoef == NULL) { nrnMapCoef = (int_number) omAllocBin(gmp_nrz_bin); mpz_init(nrnMapCoef); } if (mpz_divisible_p(nrnMapModul, currRing->nrnModul)) { mpz_set_si(nrnMapCoef, 1); } else if (nrnDivBy(NULL, (number) nrnMapModul)) { mpz_divexact(nrnMapCoef, currRing->nrnModul, nrnMapModul); int_number tmp = currRing->nrnModul; currRing->nrnModul = nrnMapModul; if (!nrnIsUnit((number) nrnMapCoef)) { currRing->nrnModul = tmp; nrnDelete((number*) &nrnMapModul, currRing); return NULL; } int_number inv = (int_number) nrnInvers((number) nrnMapCoef); currRing->nrnModul = tmp; mpz_mul(nrnMapCoef, nrnMapCoef, inv); mpz_mod(nrnMapCoef, nrnMapCoef, currRing->nrnModul); nrnDelete((number*) &inv, currRing); } else { nrnDelete((number*) &nrnMapModul, currRing); return NULL; } nrnDelete((number*) &nrnMapModul, currRing); if (rField_is_Ring_2toM(src)) return nrnMap2toM; else if (rField_is_Zp(src)) return nrnMapZp; else return nrnMapModN; } } return NULL; // default } /* * set the exponent (allocate and init tables) (TODO) */ void nrnSetExp(int m, ring r) { if ((r->nrnModul != NULL) && (mpz_cmp(r->nrnModul, r->ringflaga) == 0) && (nrnExponent == r->ringflagb)) return; nrnExponent = r->ringflagb; if (r->nrnModul == NULL) { r->nrnModul = (int_number) omAllocBin(gmp_nrz_bin); mpz_init(r->nrnModul); nrnMinusOne = (int_number) omAllocBin(gmp_nrz_bin); mpz_init(nrnMinusOne); } mpz_set(r->nrnModul, r->ringflaga); mpz_pow_ui(r->nrnModul, r->nrnModul, nrnExponent); mpz_sub_ui(nrnMinusOne, r->nrnModul, 1); } void nrnInitExp(int m, ring r) { nrnSetExp(m, r); if (mpz_cmp_ui(r->nrnModul,2) <= 0) { WarnS("nrnInitExp failed"); } } #ifdef LDEBUG BOOLEAN nrnDBTest (number a, const char *f, const int l) { if (a==NULL) return TRUE; if ( (mpz_cmp_si((int_number) a, 0) < 0) || (mpz_cmp((int_number) a, currRing->nrnModul) > 0) ) { return FALSE; } return TRUE; } #endif /*2 * extracts a long integer from s, returns the rest (COPY FROM longrat0.cc) */ static const char * nlCPEatLongC(char *s, mpz_ptr i) { const char * start=s; if (!(*s >= '0' && *s <= '9')) { mpz_init_set_si(i, 1); return s; } mpz_init(i); while (*s >= '0' && *s <= '9') s++; if (*s=='\0') { mpz_set_str(i,start,10); } else { char c=*s; *s='\0'; mpz_set_str(i,start,10); *s=c; } return s; } const char * nrnRead (const char *s, number *a) { int_number z = (int_number) omAllocBin(gmp_nrz_bin); { s = nlCPEatLongC((char *)s, z); } mpz_mod(z, z, currRing->nrnModul); *a = (number) z; return s; } #endif