1 | #ifndef RMODULON_H |
---|
2 | #define RMODULON_H |
---|
3 | /**************************************** |
---|
4 | * Computer Algebra System SINGULAR * |
---|
5 | ****************************************/ |
---|
6 | /* $Id: rmodulon.h,v 1.4 2007-06-20 09:39:25 wienand Exp $ */ |
---|
7 | /* |
---|
8 | * ABSTRACT: numbers modulo n |
---|
9 | */ |
---|
10 | #ifdef HAVE_RINGMODN |
---|
11 | #include "structs.h" |
---|
12 | |
---|
13 | #ifndef NATNUMBER |
---|
14 | #define NATNUMBER unsigned long |
---|
15 | #endif |
---|
16 | |
---|
17 | extern int nrnExp; |
---|
18 | extern NATNUMBER nrnModul; |
---|
19 | |
---|
20 | BOOLEAN nrnGreaterZero (number k); |
---|
21 | number nrnMult (number a, number b); |
---|
22 | number nrnInit (int i); |
---|
23 | int nrnInt (number &n); |
---|
24 | number nrnAdd (number a, number b); |
---|
25 | number nrnSub (number a, number b); |
---|
26 | void nrnPower (number a, int i, number * result); |
---|
27 | BOOLEAN nrnIsZero (number a); |
---|
28 | BOOLEAN nrnIsOne (number a); |
---|
29 | BOOLEAN nrnIsMOne (number a); |
---|
30 | BOOLEAN nrnIsUnit (number a); |
---|
31 | number nrnGetUnit (number a); |
---|
32 | number nrnDiv (number a, number b); |
---|
33 | number nrnIntDiv (number a,number b); |
---|
34 | number nrnNeg (number c); |
---|
35 | number nrnInvers (number c); |
---|
36 | BOOLEAN nrnGreater (number a, number b); |
---|
37 | BOOLEAN nrnDivBy (number a, number b); |
---|
38 | int nrnComp (number a, number b); |
---|
39 | BOOLEAN nrnEqual (number a, number b); |
---|
40 | number nrnLcm (number a,number b, ring r); |
---|
41 | number nrnGcd (number a,number b,ring r); |
---|
42 | number nrnExtGcd (number a, number b, number *s, number *t); |
---|
43 | nMapFunc nrnSetMap (ring src, ring dst); |
---|
44 | void nrnWrite (number &a); |
---|
45 | char * nrnRead (char *s, number *a); |
---|
46 | char * nrnName (number n); |
---|
47 | #ifdef LDEBUG |
---|
48 | BOOLEAN nrnDBTest (number a, char *f, int l); |
---|
49 | #endif |
---|
50 | void nrnSetExp(int c, ring r); |
---|
51 | void nrnInitExp(int c, ring r); |
---|
52 | |
---|
53 | |
---|
54 | static inline number nrnMultM(number a, number b) |
---|
55 | { |
---|
56 | return (number) |
---|
57 | ((((NATNUMBER) a)*((NATNUMBER) b)) % ((NATNUMBER) nrnModul)); |
---|
58 | } |
---|
59 | |
---|
60 | static inline number nrnAddM(number a, number b) |
---|
61 | { |
---|
62 | NATNUMBER r = (NATNUMBER)a + (NATNUMBER)b; |
---|
63 | return (number) (r >= nrnModul ? r - nrnModul : r); |
---|
64 | } |
---|
65 | |
---|
66 | static inline number nrnSubM(number a, number b) |
---|
67 | { |
---|
68 | return (number)((NATNUMBER)a<(NATNUMBER)b ? |
---|
69 | nrnModul-(NATNUMBER)b+(NATNUMBER)a : (NATNUMBER)a-(NATNUMBER)b); |
---|
70 | } |
---|
71 | |
---|
72 | #define nrnNegM(A) (number)(nrnModul-(NATNUMBER)(A)) |
---|
73 | #define nrnEqualM(A,B) ((A)==(B)) |
---|
74 | |
---|
75 | #endif |
---|
76 | #endif |
---|