1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /*************************************************************** |
---|
5 | * File: sca.cc |
---|
6 | * Purpose: supercommutative kernel procedures |
---|
7 | * Author: motsak (Oleksandr Motsak) |
---|
8 | * Created: 2006/12/18 |
---|
9 | * Version: $Id: sca.cc,v 1.21 2008-06-23 08:45:22 Singular Exp $ |
---|
10 | *******************************************************************/ |
---|
11 | |
---|
12 | #define OM_CHECK 4 |
---|
13 | #define OM_TRACK 5 |
---|
14 | |
---|
15 | // #define PDEBUG 2 |
---|
16 | #include "mod2.h" |
---|
17 | |
---|
18 | #ifdef HAVE_PLURAL |
---|
19 | // for |
---|
20 | #define PLURAL_INTERNAL_DECLARATIONS |
---|
21 | #include "sca.h" |
---|
22 | #include "gring.h" |
---|
23 | |
---|
24 | |
---|
25 | #include "febase.h" |
---|
26 | |
---|
27 | #include "p_polys.h" |
---|
28 | #include "kutil.h" |
---|
29 | #include "ideals.h" |
---|
30 | #include "intvec.h" |
---|
31 | #include "polys.h" |
---|
32 | |
---|
33 | #include "ring.h" |
---|
34 | #include "numbers.h" |
---|
35 | #include "matpol.h" |
---|
36 | #include "kbuckets.h" |
---|
37 | #include "kstd1.h" |
---|
38 | #include "sbuckets.h" |
---|
39 | #include "prCopy.h" |
---|
40 | #include "p_Mult_q.h" |
---|
41 | #include "p_MemAdd.h" |
---|
42 | |
---|
43 | #include "kutil.h" |
---|
44 | #include "kstd1.h" |
---|
45 | |
---|
46 | #include "weight.h" |
---|
47 | |
---|
48 | |
---|
49 | // poly functions defined in p_Procs : |
---|
50 | |
---|
51 | // return pPoly * pMonom; preserve pPoly and pMonom. |
---|
52 | poly sca_pp_Mult_mm(const poly pPoly, const poly pMonom, const ring rRing, poly &); |
---|
53 | |
---|
54 | // return pMonom * pPoly; preserve pPoly and pMonom. |
---|
55 | poly sca_mm_Mult_pp(const poly pMonom, const poly pPoly, const ring rRing); |
---|
56 | |
---|
57 | // return pPoly * pMonom; preserve pMonom, destroy or reuse pPoly. |
---|
58 | poly sca_p_Mult_mm(poly pPoly, const poly pMonom, const ring rRing); |
---|
59 | |
---|
60 | // return pMonom * pPoly; preserve pMonom, destroy or reuse pPoly. |
---|
61 | poly sca_mm_Mult_p(const poly pMonom, poly pPoly, const ring rRing); |
---|
62 | |
---|
63 | |
---|
64 | // compute the spolynomial of p1 and p2 |
---|
65 | poly sca_SPoly(const poly p1, const poly p2, const ring r); |
---|
66 | poly sca_ReduceSpoly(const poly p1, poly p2, const ring r); |
---|
67 | |
---|
68 | // Modified Plural's Buchberger's algorithmus. |
---|
69 | ideal sca_gr_bba(const ideal F, const ideal Q, const intvec *, const intvec *, kStrategy strat); |
---|
70 | |
---|
71 | // Modified modern Sinuglar Buchberger's algorithm. |
---|
72 | ideal sca_bba(const ideal F, const ideal Q, const intvec *w, const intvec *, kStrategy strat); |
---|
73 | |
---|
74 | // Modified modern Sinuglar Mora's algorithm. |
---|
75 | ideal sca_mora(const ideal F, const ideal Q, const intvec *w, const intvec *, kStrategy strat); |
---|
76 | |
---|
77 | |
---|
78 | |
---|
79 | //////////////////////////////////////////////////////////////////////////////////////////////////// |
---|
80 | // Super Commutative Algabra extension by Motsak |
---|
81 | //////////////////////////////////////////////////////////////////////////////////////////////////// |
---|
82 | |
---|
83 | |
---|
84 | |
---|
85 | |
---|
86 | |
---|
87 | // returns the sign of: lm(pMonomM) * lm(pMonomMM), |
---|
88 | // preserves input, may return +/-1, 0 |
---|
89 | inline int sca_Sign_mm_Mult_mm( const poly pMonomM, const poly pMonomMM, const ring rRing ) |
---|
90 | { |
---|
91 | #ifdef PDEBUG |
---|
92 | p_Test(pMonomM, rRing); |
---|
93 | p_Test(pMonomMM, rRing); |
---|
94 | #endif |
---|
95 | |
---|
96 | const unsigned int iFirstAltVar = scaFirstAltVar(rRing); |
---|
97 | const unsigned int iLastAltVar = scaLastAltVar(rRing); |
---|
98 | |
---|
99 | unsigned int tpower = 0; |
---|
100 | unsigned int cpower = 0; |
---|
101 | |
---|
102 | for( unsigned int j = iLastAltVar; j >= iFirstAltVar; j-- ) |
---|
103 | { |
---|
104 | const unsigned int iExpM = p_GetExp(pMonomM, j, rRing); |
---|
105 | const unsigned int iExpMM = p_GetExp(pMonomMM, j, rRing); |
---|
106 | |
---|
107 | if( iExpMM != 0 ) |
---|
108 | { |
---|
109 | if( iExpM != 0 ) |
---|
110 | { |
---|
111 | return 0; // lm(pMonomM) * lm(pMonomMM) == 0 |
---|
112 | } |
---|
113 | tpower += cpower; // compute degree of (-1). |
---|
114 | } |
---|
115 | |
---|
116 | cpower += iExpM; |
---|
117 | } |
---|
118 | |
---|
119 | if( (tpower&1) != 0 ) // degree is odd => negate coeff. |
---|
120 | return -1; |
---|
121 | |
---|
122 | return(1); |
---|
123 | } |
---|
124 | |
---|
125 | |
---|
126 | |
---|
127 | |
---|
128 | // returns and changes pMonomM: lt(pMonomM) = lt(pMonomM) * lt(pMonomMM), |
---|
129 | // preserves pMonomMM. may return NULL! |
---|
130 | // if result != NULL => next(result) = next(pMonomM), lt(result) = lt(pMonomM) * lt(pMonomMM) |
---|
131 | // if result == NULL => pMonomM MUST BE deleted manually! |
---|
132 | inline poly sca_m_Mult_mm( poly pMonomM, const poly pMonomMM, const ring rRing ) |
---|
133 | { |
---|
134 | #ifdef PDEBUG |
---|
135 | p_Test(pMonomM, rRing); |
---|
136 | p_Test(pMonomMM, rRing); |
---|
137 | #endif |
---|
138 | |
---|
139 | const unsigned int iFirstAltVar = scaFirstAltVar(rRing); |
---|
140 | const unsigned int iLastAltVar = scaLastAltVar(rRing); |
---|
141 | |
---|
142 | unsigned int tpower = 0; |
---|
143 | unsigned int cpower = 0; |
---|
144 | |
---|
145 | for( unsigned int j = iLastAltVar; j >= iFirstAltVar; j-- ) |
---|
146 | { |
---|
147 | const unsigned int iExpM = p_GetExp(pMonomM, j, rRing); |
---|
148 | const unsigned int iExpMM = p_GetExp(pMonomMM, j, rRing); |
---|
149 | |
---|
150 | if( iExpMM != 0 ) |
---|
151 | { |
---|
152 | if( iExpM != 0 ) // result is zero! |
---|
153 | { |
---|
154 | return NULL; // we do nothing with pMonomM in this case! |
---|
155 | } |
---|
156 | |
---|
157 | tpower += cpower; // compute degree of (-1). |
---|
158 | } |
---|
159 | |
---|
160 | cpower += iExpM; |
---|
161 | } |
---|
162 | |
---|
163 | p_ExpVectorAdd(pMonomM, pMonomMM, rRing); // "exponents" are additive!!! |
---|
164 | |
---|
165 | number nCoeffM = p_GetCoeff(pMonomM, rRing); // no new copy! should be deleted! |
---|
166 | |
---|
167 | if( (tpower&1) != 0 ) // degree is odd => negate coeff. |
---|
168 | nCoeffM = n_Neg(nCoeffM, rRing); // negate nCoeff (will destroy the original number) |
---|
169 | |
---|
170 | const number nCoeffMM = p_GetCoeff(pMonomMM, rRing); // no new copy! |
---|
171 | |
---|
172 | number nCoeff = n_Mult(nCoeffM, nCoeffMM, rRing); // new number! |
---|
173 | |
---|
174 | p_SetCoeff(pMonomM, nCoeff, rRing); // delete lc(pMonomM) and set lc(pMonomM) = nCoeff |
---|
175 | |
---|
176 | #ifdef PDEBUG |
---|
177 | p_Test(pMonomM, rRing); |
---|
178 | #endif |
---|
179 | |
---|
180 | return(pMonomM); |
---|
181 | } |
---|
182 | |
---|
183 | // returns and changes pMonomM: lt(pMonomM) = lt(pMonomMM) * lt(pMonomM), |
---|
184 | // preserves pMonomMM. may return NULL! |
---|
185 | // if result != NULL => next(result) = next(pMonomM), lt(result) = lt(pMonomMM) * lt(pMonomM) |
---|
186 | // if result == NULL => pMonomM MUST BE deleted manually! |
---|
187 | inline poly sca_mm_Mult_m( const poly pMonomMM, poly pMonomM, const ring rRing ) |
---|
188 | { |
---|
189 | #ifdef PDEBUG |
---|
190 | p_Test(pMonomM, rRing); |
---|
191 | p_Test(pMonomMM, rRing); |
---|
192 | #endif |
---|
193 | |
---|
194 | const unsigned int iFirstAltVar = scaFirstAltVar(rRing); |
---|
195 | const unsigned int iLastAltVar = scaLastAltVar(rRing); |
---|
196 | |
---|
197 | unsigned int tpower = 0; |
---|
198 | unsigned int cpower = 0; |
---|
199 | |
---|
200 | for( unsigned int j = iLastAltVar; j >= iFirstAltVar; j-- ) |
---|
201 | { |
---|
202 | const unsigned int iExpMM = p_GetExp(pMonomMM, j, rRing); |
---|
203 | const unsigned int iExpM = p_GetExp(pMonomM, j, rRing); |
---|
204 | |
---|
205 | if( iExpM != 0 ) |
---|
206 | { |
---|
207 | if( iExpMM != 0 ) // result is zero! |
---|
208 | { |
---|
209 | return NULL; // we do nothing with pMonomM in this case! |
---|
210 | } |
---|
211 | |
---|
212 | tpower += cpower; // compute degree of (-1). |
---|
213 | } |
---|
214 | |
---|
215 | cpower += iExpMM; |
---|
216 | } |
---|
217 | |
---|
218 | p_ExpVectorAdd(pMonomM, pMonomMM, rRing); // "exponents" are additive!!! |
---|
219 | |
---|
220 | number nCoeffM = p_GetCoeff(pMonomM, rRing); // no new copy! should be deleted! |
---|
221 | |
---|
222 | if( (tpower&1) != 0 ) // degree is odd => negate coeff. |
---|
223 | nCoeffM = n_Neg(nCoeffM, rRing); // negate nCoeff (will destroy the original number), creates new number! |
---|
224 | |
---|
225 | const number nCoeffMM = p_GetCoeff(pMonomMM, rRing); // no new copy! |
---|
226 | |
---|
227 | number nCoeff = n_Mult(nCoeffM, nCoeffMM, rRing); // new number! |
---|
228 | |
---|
229 | p_SetCoeff(pMonomM, nCoeff, rRing); // delete lc(pMonomM) and set lc(pMonomM) = nCoeff |
---|
230 | |
---|
231 | #ifdef PDEBUG |
---|
232 | p_Test(pMonomM, rRing); |
---|
233 | #endif |
---|
234 | |
---|
235 | return(pMonomM); |
---|
236 | } |
---|
237 | |
---|
238 | |
---|
239 | |
---|
240 | // returns: result = lt(pMonom1) * lt(pMonom2), |
---|
241 | // preserves pMonom1, pMonom2. may return NULL! |
---|
242 | // if result != NULL => next(result) = NULL, lt(result) = lt(pMonom1) * lt(pMonom2) |
---|
243 | inline poly sca_mm_Mult_mm( poly pMonom1, const poly pMonom2, const ring rRing ) |
---|
244 | { |
---|
245 | #ifdef PDEBUG |
---|
246 | p_Test(pMonom1, rRing); |
---|
247 | p_Test(pMonom2, rRing); |
---|
248 | #endif |
---|
249 | |
---|
250 | const unsigned int iFirstAltVar = scaFirstAltVar(rRing); |
---|
251 | const unsigned int iLastAltVar = scaLastAltVar(rRing); |
---|
252 | |
---|
253 | unsigned int tpower = 0; |
---|
254 | unsigned int cpower = 0; |
---|
255 | |
---|
256 | for( unsigned int j = iLastAltVar; j >= iFirstAltVar; j-- ) |
---|
257 | { |
---|
258 | const unsigned int iExp1 = p_GetExp(pMonom1, j, rRing); |
---|
259 | const unsigned int iExp2 = p_GetExp(pMonom2, j, rRing); |
---|
260 | |
---|
261 | if( iExp2 != 0 ) |
---|
262 | { |
---|
263 | if( iExp1 != 0 ) // result is zero! |
---|
264 | { |
---|
265 | return NULL; |
---|
266 | } |
---|
267 | |
---|
268 | tpower += cpower; // compute degree of (-1). |
---|
269 | } |
---|
270 | |
---|
271 | cpower += iExp1; |
---|
272 | } |
---|
273 | |
---|
274 | poly pResult; |
---|
275 | omTypeAllocBin(poly, pResult, rRing->PolyBin); |
---|
276 | p_SetRingOfLm(pResult, rRing); |
---|
277 | |
---|
278 | p_ExpVectorSum(pResult, pMonom1, pMonom2, rRing); // "exponents" are additive!!! |
---|
279 | |
---|
280 | pNext(pResult) = NULL; |
---|
281 | |
---|
282 | const number nCoeff1 = p_GetCoeff(pMonom1, rRing); // no new copy! |
---|
283 | const number nCoeff2 = p_GetCoeff(pMonom2, rRing); // no new copy! |
---|
284 | |
---|
285 | number nCoeff = n_Mult(nCoeff1, nCoeff2, rRing); // new number! |
---|
286 | |
---|
287 | if( (tpower&1) != 0 ) // degree is odd => negate coeff. |
---|
288 | nCoeff = n_Neg(nCoeff, rRing); // negate nCoeff (will destroy the original number) |
---|
289 | |
---|
290 | p_SetCoeff0(pResult, nCoeff, rRing); // set lc(pResult) = nCoeff, no destruction! |
---|
291 | |
---|
292 | #ifdef PDEBUG |
---|
293 | p_Test(pResult, rRing); |
---|
294 | #endif |
---|
295 | |
---|
296 | return(pResult); |
---|
297 | } |
---|
298 | |
---|
299 | // returns: result = x_i * lt(pMonom), |
---|
300 | // preserves pMonom. may return NULL! |
---|
301 | // if result != NULL => next(result) = NULL, lt(result) = x_i * lt(pMonom) |
---|
302 | inline poly sca_xi_Mult_mm(unsigned int i, const poly pMonom, const ring rRing) |
---|
303 | { |
---|
304 | #ifdef PDEBUG |
---|
305 | p_Test(pMonom, rRing); |
---|
306 | #endif |
---|
307 | |
---|
308 | assume( i <= scaLastAltVar(rRing)); |
---|
309 | assume( scaFirstAltVar(rRing) <= i ); |
---|
310 | |
---|
311 | if( p_GetExp(pMonom, i, rRing) != 0 ) // => result is zero! |
---|
312 | return NULL; |
---|
313 | |
---|
314 | const unsigned int iFirstAltVar = scaFirstAltVar(rRing); |
---|
315 | |
---|
316 | unsigned int cpower = 0; |
---|
317 | |
---|
318 | for( unsigned int j = iFirstAltVar; j < i ; j++ ) |
---|
319 | cpower += p_GetExp(pMonom, j, rRing); |
---|
320 | |
---|
321 | poly pResult = p_LmInit(pMonom, rRing); |
---|
322 | |
---|
323 | p_SetExp(pResult, i, 1, rRing); // pResult*=X_i && |
---|
324 | p_Setm(pResult, rRing); // addjust degree after previous step! |
---|
325 | |
---|
326 | number nCoeff = n_Copy(p_GetCoeff(pMonom, rRing), rRing); // new number! |
---|
327 | |
---|
328 | if( (cpower&1) != 0 ) // degree is odd => negate coeff. |
---|
329 | nCoeff = n_Neg(nCoeff, rRing); // negate nCoeff (will destroy the original number) |
---|
330 | |
---|
331 | p_SetCoeff0(pResult, nCoeff, rRing); // set lc(pResult) = nCoeff, no destruction! |
---|
332 | |
---|
333 | #ifdef PDEBUG |
---|
334 | p_Test(pResult, rRing); |
---|
335 | #endif |
---|
336 | |
---|
337 | return(pResult); |
---|
338 | } |
---|
339 | |
---|
340 | //-----------------------------------------------------------------------------------// |
---|
341 | |
---|
342 | // return poly = pPoly * pMonom; preserve pMonom, destroy or reuse pPoly. |
---|
343 | poly sca_p_Mult_mm(poly pPoly, const poly pMonom, const ring rRing) |
---|
344 | { |
---|
345 | assume( rIsSCA(rRing) ); |
---|
346 | |
---|
347 | #ifdef PDEBUG |
---|
348 | // Print("sca_p_Mult_mm\n"); // ! |
---|
349 | |
---|
350 | p_Test(pPoly, rRing); |
---|
351 | p_Test(pMonom, rRing); |
---|
352 | #endif |
---|
353 | |
---|
354 | if( pPoly == NULL ) |
---|
355 | return NULL; |
---|
356 | |
---|
357 | if( pMonom == NULL ) |
---|
358 | { |
---|
359 | // pPoly != NULL => |
---|
360 | p_Delete( &pPoly, rRing ); |
---|
361 | |
---|
362 | return NULL; |
---|
363 | } |
---|
364 | |
---|
365 | const int iComponentMonomM = p_GetComp(pMonom, rRing); |
---|
366 | |
---|
367 | poly p = pPoly; poly* ppPrev = &pPoly; |
---|
368 | |
---|
369 | loop |
---|
370 | { |
---|
371 | #ifdef PDEBUG |
---|
372 | p_Test(p, rRing); |
---|
373 | #endif |
---|
374 | const int iComponent = p_GetComp(p, rRing); |
---|
375 | |
---|
376 | if( iComponent!=0 ) |
---|
377 | { |
---|
378 | if( iComponentMonomM!=0 ) // TODO: make global if on iComponentMonomM =?= 0 |
---|
379 | { |
---|
380 | // REPORT_ERROR |
---|
381 | Werror("sca_p_Mult_mm: exponent mismatch %d and %d\n", iComponent, iComponentMonomM); |
---|
382 | // what should we do further?!? |
---|
383 | |
---|
384 | p_Delete( &pPoly, rRing); // delete the result AND rest |
---|
385 | return NULL; |
---|
386 | } |
---|
387 | #ifdef PDEBUG |
---|
388 | if(iComponentMonomM==0 ) |
---|
389 | { |
---|
390 | dReportError("sca_p_Mult_mm: Multiplication in the left module from the right"); |
---|
391 | } |
---|
392 | #endif |
---|
393 | } |
---|
394 | |
---|
395 | // terms will be in the same order because of quasi-ordering! |
---|
396 | poly v = sca_m_Mult_mm(p, pMonom, rRing); |
---|
397 | |
---|
398 | if( v != NULL ) |
---|
399 | { |
---|
400 | ppPrev = &pNext(p); // fixed! |
---|
401 | |
---|
402 | // *p is changed if v != NULL ( p == v ) |
---|
403 | pIter(p); |
---|
404 | |
---|
405 | if( p == NULL ) |
---|
406 | break; |
---|
407 | } |
---|
408 | else |
---|
409 | { // Upps! Zero!!! we must kill this term! |
---|
410 | |
---|
411 | // |
---|
412 | p = p_LmDeleteAndNext(p, rRing); |
---|
413 | |
---|
414 | *ppPrev = p; |
---|
415 | |
---|
416 | if( p == NULL ) |
---|
417 | break; |
---|
418 | } |
---|
419 | |
---|
420 | |
---|
421 | } |
---|
422 | |
---|
423 | #ifdef PDEBUG |
---|
424 | p_Test(pPoly,rRing); |
---|
425 | #endif |
---|
426 | |
---|
427 | return(pPoly); |
---|
428 | } |
---|
429 | |
---|
430 | // return new poly = pPoly * pMonom; preserve pPoly and pMonom. |
---|
431 | poly sca_pp_Mult_mm(const poly pPoly, const poly pMonom, const ring rRing, poly &) |
---|
432 | { |
---|
433 | assume( rIsSCA(rRing) ); |
---|
434 | |
---|
435 | #ifdef PDEBUG |
---|
436 | // Print("sca_pp_Mult_mm\n"); // ! |
---|
437 | |
---|
438 | p_Test(pPoly, rRing); |
---|
439 | p_Test(pMonom, rRing); |
---|
440 | #endif |
---|
441 | |
---|
442 | if( ( pPoly == NULL ) || ( pMonom == NULL ) ) |
---|
443 | return NULL; |
---|
444 | |
---|
445 | const int iComponentMonomM = p_GetComp(pMonom, rRing); |
---|
446 | |
---|
447 | poly pResult = NULL; |
---|
448 | poly* ppPrev = &pResult; |
---|
449 | |
---|
450 | for( poly p = pPoly; p!= NULL; pIter(p) ) |
---|
451 | { |
---|
452 | #ifdef PDEBUG |
---|
453 | p_Test(p, rRing); |
---|
454 | #endif |
---|
455 | const int iComponent = p_GetComp(p, rRing); |
---|
456 | |
---|
457 | if( iComponent!=0 ) |
---|
458 | { |
---|
459 | if( iComponentMonomM!=0 ) // TODO: make global if on iComponentMonomM =?= 0 |
---|
460 | { |
---|
461 | // REPORT_ERROR |
---|
462 | Werror("sca_pp_Mult_mm: exponent mismatch %d and %d\n", iComponent, iComponentMonomM); |
---|
463 | // what should we do further?!? |
---|
464 | |
---|
465 | p_Delete( &pResult, rRing); // delete the result |
---|
466 | return NULL; |
---|
467 | } |
---|
468 | |
---|
469 | #ifdef PDEBUG |
---|
470 | if(iComponentMonomM==0 ) |
---|
471 | { |
---|
472 | dReportError("sca_pp_Mult_mm: Multiplication in the left module from the right"); |
---|
473 | } |
---|
474 | #endif |
---|
475 | } |
---|
476 | |
---|
477 | // terms will be in the same order because of quasi-ordering! |
---|
478 | poly v = sca_mm_Mult_mm(p, pMonom, rRing); |
---|
479 | |
---|
480 | if( v != NULL ) |
---|
481 | { |
---|
482 | *ppPrev = v; |
---|
483 | ppPrev = &pNext(v); |
---|
484 | } |
---|
485 | |
---|
486 | } |
---|
487 | |
---|
488 | #ifdef PDEBUG |
---|
489 | p_Test(pResult,rRing); |
---|
490 | #endif |
---|
491 | |
---|
492 | return(pResult); |
---|
493 | } |
---|
494 | |
---|
495 | //-----------------------------------------------------------------------------------// |
---|
496 | |
---|
497 | // return x_i * pPoly; preserve pPoly. |
---|
498 | inline poly sca_xi_Mult_pp(unsigned int i, const poly pPoly, const ring rRing) |
---|
499 | { |
---|
500 | assume( rIsSCA(rRing) ); |
---|
501 | |
---|
502 | #ifdef PDEBUG |
---|
503 | p_Test(pPoly, rRing); |
---|
504 | #endif |
---|
505 | |
---|
506 | assume(i <= scaLastAltVar(rRing)); |
---|
507 | assume(scaFirstAltVar(rRing) <= i); |
---|
508 | |
---|
509 | if( pPoly == NULL ) |
---|
510 | return NULL; |
---|
511 | |
---|
512 | poly pResult = NULL; |
---|
513 | poly* ppPrev = &pResult; |
---|
514 | |
---|
515 | for( poly p = pPoly; p!= NULL; pIter(p) ) |
---|
516 | { |
---|
517 | |
---|
518 | // terms will be in the same order because of quasi-ordering! |
---|
519 | poly v = sca_xi_Mult_mm(i, p, rRing); |
---|
520 | |
---|
521 | #ifdef PDEBUG |
---|
522 | p_Test(v, rRing); |
---|
523 | #endif |
---|
524 | |
---|
525 | if( v != NULL ) |
---|
526 | { |
---|
527 | *ppPrev = v; |
---|
528 | ppPrev = &pNext(*ppPrev); |
---|
529 | } |
---|
530 | } |
---|
531 | |
---|
532 | |
---|
533 | #ifdef PDEBUG |
---|
534 | p_Test(pResult, rRing); |
---|
535 | #endif |
---|
536 | |
---|
537 | return(pResult); |
---|
538 | } |
---|
539 | |
---|
540 | |
---|
541 | // return new poly = pMonom * pPoly; preserve pPoly and pMonom. |
---|
542 | poly sca_mm_Mult_pp(const poly pMonom, const poly pPoly, const ring rRing) |
---|
543 | { |
---|
544 | assume( rIsSCA(rRing) ); |
---|
545 | |
---|
546 | #ifdef PDEBUG |
---|
547 | // Print("sca_mm_Mult_pp\n"); // ! |
---|
548 | |
---|
549 | p_Test(pPoly, rRing); |
---|
550 | p_Test(pMonom, rRing); |
---|
551 | #endif |
---|
552 | |
---|
553 | if( ( pPoly == NULL ) || ( pMonom == NULL ) ) |
---|
554 | return NULL; |
---|
555 | |
---|
556 | const int iComponentMonomM = p_GetComp(pMonom, rRing); |
---|
557 | |
---|
558 | poly pResult = NULL; |
---|
559 | poly* ppPrev = &pResult; |
---|
560 | |
---|
561 | for( poly p = pPoly; p!= NULL; pIter(p) ) |
---|
562 | { |
---|
563 | #ifdef PDEBUG |
---|
564 | p_Test(p, rRing); |
---|
565 | #endif |
---|
566 | const int iComponent = p_GetComp(p, rRing); |
---|
567 | |
---|
568 | if( iComponentMonomM!=0 ) |
---|
569 | { |
---|
570 | if( iComponent!=0 ) // TODO: make global if on iComponentMonomM =?= 0 |
---|
571 | { |
---|
572 | // REPORT_ERROR |
---|
573 | Werror("sca_mm_Mult_pp: exponent mismatch %d and %d\n", iComponent, iComponentMonomM); |
---|
574 | // what should we do further?!? |
---|
575 | |
---|
576 | p_Delete( &pResult, rRing); // delete the result |
---|
577 | return NULL; |
---|
578 | } |
---|
579 | #ifdef PDEBUG |
---|
580 | if(iComponent==0 ) |
---|
581 | { |
---|
582 | dReportError("sca_mm_Mult_pp: Multiplication in the left module from the right!"); |
---|
583 | // PrintS("mm = "); p_Write(pMonom, rRing); |
---|
584 | // PrintS("pp = "); p_Write(pPoly, rRing); |
---|
585 | // assume(iComponent!=0); |
---|
586 | } |
---|
587 | #endif |
---|
588 | } |
---|
589 | |
---|
590 | // terms will be in the same order because of quasi-ordering! |
---|
591 | poly v = sca_mm_Mult_mm(pMonom, p, rRing); |
---|
592 | |
---|
593 | if( v != NULL ) |
---|
594 | { |
---|
595 | *ppPrev = v; |
---|
596 | ppPrev = &pNext(*ppPrev); // nice line ;-) |
---|
597 | } |
---|
598 | } |
---|
599 | |
---|
600 | #ifdef PDEBUG |
---|
601 | p_Test(pResult,rRing); |
---|
602 | #endif |
---|
603 | |
---|
604 | return(pResult); |
---|
605 | } |
---|
606 | |
---|
607 | |
---|
608 | // return poly = pMonom * pPoly; preserve pMonom, destroy or reuse pPoly. |
---|
609 | poly sca_mm_Mult_p(const poly pMonom, poly pPoly, const ring rRing) // !!!!! the MOST used procedure !!!!! |
---|
610 | { |
---|
611 | assume( rIsSCA(rRing) ); |
---|
612 | |
---|
613 | #ifdef PDEBUG |
---|
614 | p_Test(pPoly, rRing); |
---|
615 | p_Test(pMonom, rRing); |
---|
616 | #endif |
---|
617 | |
---|
618 | if( pPoly == NULL ) |
---|
619 | return NULL; |
---|
620 | |
---|
621 | if( pMonom == NULL ) |
---|
622 | { |
---|
623 | // pPoly != NULL => |
---|
624 | p_Delete( &pPoly, rRing ); |
---|
625 | return NULL; |
---|
626 | } |
---|
627 | |
---|
628 | const int iComponentMonomM = p_GetComp(pMonom, rRing); |
---|
629 | |
---|
630 | poly p = pPoly; poly* ppPrev = &pPoly; |
---|
631 | |
---|
632 | loop |
---|
633 | { |
---|
634 | #ifdef PDEBUG |
---|
635 | if( !p_Test(p, rRing) ) |
---|
636 | { |
---|
637 | Print("p is wrong!"); |
---|
638 | p_Write(p,rRing); |
---|
639 | } |
---|
640 | #endif |
---|
641 | |
---|
642 | const int iComponent = p_GetComp(p, rRing); |
---|
643 | |
---|
644 | if( iComponentMonomM!=0 ) |
---|
645 | { |
---|
646 | if( iComponent!=0 ) |
---|
647 | { |
---|
648 | // REPORT_ERROR |
---|
649 | Werror("sca_mm_Mult_p: exponent mismatch %d and %d\n", iComponent, iComponentMonomM); |
---|
650 | // what should we do further?!? |
---|
651 | |
---|
652 | p_Delete( &pPoly, rRing); // delete the result |
---|
653 | return NULL; |
---|
654 | } |
---|
655 | #ifdef PDEBUG |
---|
656 | if(iComponent==0) |
---|
657 | { |
---|
658 | dReportError("sca_mm_Mult_p: Multiplication in the left module from the right!"); |
---|
659 | // PrintS("mm = "); p_Write(pMonom, rRing); |
---|
660 | // PrintS("p = "); p_Write(pPoly, rRing); |
---|
661 | // assume(iComponent!=0); |
---|
662 | } |
---|
663 | #endif |
---|
664 | } |
---|
665 | |
---|
666 | // terms will be in the same order because of quasi-ordering! |
---|
667 | poly v = sca_mm_Mult_m(pMonom, p, rRing); |
---|
668 | |
---|
669 | if( v != NULL ) |
---|
670 | { |
---|
671 | ppPrev = &pNext(p); |
---|
672 | |
---|
673 | // *p is changed if v != NULL ( p == v ) |
---|
674 | pIter(p); |
---|
675 | |
---|
676 | if( p == NULL ) |
---|
677 | break; |
---|
678 | } |
---|
679 | else |
---|
680 | { // Upps! Zero!!! we must kill this term! |
---|
681 | p = p_LmDeleteAndNext(p, rRing); |
---|
682 | |
---|
683 | *ppPrev = p; |
---|
684 | |
---|
685 | if( p == NULL ) |
---|
686 | break; |
---|
687 | } |
---|
688 | } |
---|
689 | |
---|
690 | #ifdef PDEBUG |
---|
691 | if( !p_Test(pPoly, rRing) ) |
---|
692 | { |
---|
693 | Print("pPoly is wrong!"); |
---|
694 | p_Write(pPoly, rRing); |
---|
695 | } |
---|
696 | #endif |
---|
697 | |
---|
698 | return(pPoly); |
---|
699 | } |
---|
700 | |
---|
701 | //-----------------------------------------------------------------------------------// |
---|
702 | |
---|
703 | #ifdef PDEBUG |
---|
704 | #endif |
---|
705 | |
---|
706 | |
---|
707 | |
---|
708 | |
---|
709 | //-----------------------------------------------------------------------------------// |
---|
710 | |
---|
711 | // GB computation routines: |
---|
712 | |
---|
713 | /*4 |
---|
714 | * creates the S-polynomial of p1 and p2 |
---|
715 | * does not destroy p1 and p2 |
---|
716 | */ |
---|
717 | poly sca_SPoly( const poly p1, const poly p2, const ring r ) |
---|
718 | { |
---|
719 | assume( rIsSCA(r) ); |
---|
720 | |
---|
721 | const long lCompP1 = p_GetComp(p1,r); |
---|
722 | const long lCompP2 = p_GetComp(p2,r); |
---|
723 | |
---|
724 | if ((lCompP1!=lCompP2) && (lCompP1!=0) && (lCompP2!=0)) |
---|
725 | { |
---|
726 | #ifdef PDEBUG |
---|
727 | dReportError("sca_SPoly: different non-zero components!\n"); |
---|
728 | #endif |
---|
729 | return(NULL); |
---|
730 | } |
---|
731 | |
---|
732 | poly pL = p_Lcm(p1, p2, si_max(lCompP1, lCompP2), r); // pL = lcm( lm(p1), lm(p2) ) |
---|
733 | |
---|
734 | poly m1 = p_ISet(1, r); |
---|
735 | p_ExpVectorDiff(m1, pL, p1, r); // m1 = pL / lm(p1) |
---|
736 | |
---|
737 | //p_SetComp(m1,0,r); |
---|
738 | //p_Setm(m1,r); |
---|
739 | #ifdef PDEBUG |
---|
740 | p_Test(m1,r); |
---|
741 | #endif |
---|
742 | |
---|
743 | |
---|
744 | poly m2 = p_ISet(1, r); |
---|
745 | p_ExpVectorDiff (m2, pL, p2, r); // m2 = pL / lm(p2) |
---|
746 | |
---|
747 | //p_SetComp(m2,0,r); |
---|
748 | //p_Setm(m2,r); |
---|
749 | #ifdef PDEBUG |
---|
750 | p_Test(m2,r); |
---|
751 | #endif |
---|
752 | |
---|
753 | p_Delete(&pL,r); |
---|
754 | |
---|
755 | number C1 = n_Copy(p_GetCoeff(p1,r),r); // C1 = lc(p1) |
---|
756 | number C2 = n_Copy(p_GetCoeff(p2,r),r); // C2 = lc(p2) |
---|
757 | |
---|
758 | number C = nGcd(C1,C2,r); // C = gcd(C1, C2) |
---|
759 | |
---|
760 | if (!n_IsOne(C, r)) // if C != 1 |
---|
761 | { |
---|
762 | C1=n_Div(C1, C, r); // C1 = C1 / C |
---|
763 | C2=n_Div(C2, C, r); // C2 = C2 / C |
---|
764 | } |
---|
765 | |
---|
766 | n_Delete(&C,r); // destroy the number C |
---|
767 | |
---|
768 | const int iSignSum = sca_Sign_mm_Mult_mm (m1, p1, r) + sca_Sign_mm_Mult_mm (m2, p2, r); |
---|
769 | // zero if different signs |
---|
770 | |
---|
771 | assume( (iSignSum*iSignSum == 0) || (iSignSum*iSignSum == 4) ); |
---|
772 | |
---|
773 | if( iSignSum != 0 ) // the same sign! |
---|
774 | C2=n_Neg (C2, r); |
---|
775 | |
---|
776 | p_SetCoeff(m1, C2, r); // lc(m1) = C2!!! |
---|
777 | p_SetCoeff(m2, C1, r); // lc(m2) = C1!!! |
---|
778 | |
---|
779 | poly tmp1 = nc_mm_Mult_pp (m1, pNext(p1), r); // tmp1 = m1 * tail(p1), |
---|
780 | p_Delete(&m1,r); // => n_Delete(&C1,r); |
---|
781 | |
---|
782 | poly tmp2 = nc_mm_Mult_pp (m2, pNext(p2), r); // tmp1 = m2 * tail(p2), |
---|
783 | p_Delete(&m2,r); // => n_Delete(&C1,r); |
---|
784 | |
---|
785 | poly spoly = p_Add_q (tmp1, tmp2, r); // spoly = spoly(lt(p1), lt(p2)) + m1 * tail(p1), delete tmp1,2 |
---|
786 | |
---|
787 | if (spoly!=NULL) pCleardenom (spoly); // r? |
---|
788 | // if (spoly!=NULL) pContent (spoly); // r? |
---|
789 | |
---|
790 | #ifdef PDEBUG |
---|
791 | p_Test (spoly, r); |
---|
792 | #endif |
---|
793 | |
---|
794 | return(spoly); |
---|
795 | } |
---|
796 | |
---|
797 | |
---|
798 | |
---|
799 | |
---|
800 | /*2 |
---|
801 | * reduction of p2 with p1 |
---|
802 | * do not destroy p1, but p2 |
---|
803 | * p1 divides p2 -> for use in NF algorithm |
---|
804 | */ |
---|
805 | poly sca_ReduceSpoly(const poly p1, poly p2, const ring r) |
---|
806 | { |
---|
807 | assume( rIsSCA(r) ); |
---|
808 | |
---|
809 | assume( p1 != NULL ); |
---|
810 | |
---|
811 | const long lCompP1 = p_GetComp (p1, r); |
---|
812 | const long lCompP2 = p_GetComp (p2, r); |
---|
813 | |
---|
814 | if ((lCompP1!=lCompP2) && (lCompP1!=0) && (lCompP2!=0)) |
---|
815 | { |
---|
816 | #ifdef PDEBUG |
---|
817 | dReportError("sca_ReduceSpoly: different non-zero components!"); |
---|
818 | #endif |
---|
819 | return(NULL); |
---|
820 | } |
---|
821 | |
---|
822 | poly m = p_ISet (1, r); |
---|
823 | p_ExpVectorDiff (m, p2, p1, r); // m = lm(p2) / lm(p1) |
---|
824 | //p_Setm(m,r); |
---|
825 | #ifdef PDEBUG |
---|
826 | p_Test (m,r); |
---|
827 | #endif |
---|
828 | |
---|
829 | number C1 = n_Copy( p_GetCoeff(p1, r), r); |
---|
830 | number C2 = n_Copy( p_GetCoeff(p2, r), r); |
---|
831 | |
---|
832 | /* GCD stuff */ |
---|
833 | number C = nGcd(C1, C2, r); |
---|
834 | |
---|
835 | if (!n_IsOne(C, r)) |
---|
836 | { |
---|
837 | C1 = n_Div(C1, C, r); |
---|
838 | C2 = n_Div(C2, C, r); |
---|
839 | } |
---|
840 | n_Delete(&C,r); |
---|
841 | |
---|
842 | const int iSign = sca_Sign_mm_Mult_mm( m, p1, r ); |
---|
843 | |
---|
844 | if(iSign == 1) |
---|
845 | C2 = n_Neg(C2,r); |
---|
846 | |
---|
847 | p_SetCoeff(m, C2, r); |
---|
848 | |
---|
849 | #ifdef PDEBUG |
---|
850 | p_Test(m,r); |
---|
851 | #endif |
---|
852 | |
---|
853 | p2 = p_LmDeleteAndNext( p2, r ); |
---|
854 | |
---|
855 | p2 = p_Mult_nn(p2, C1, r); // p2 !!! |
---|
856 | n_Delete(&C1,r); |
---|
857 | |
---|
858 | poly T = nc_mm_Mult_pp(m, pNext(p1), r); |
---|
859 | p_Delete(&m, r); |
---|
860 | |
---|
861 | p2 = p_Add_q(p2, T, r); |
---|
862 | |
---|
863 | if ( p2!=NULL ) pContent(p2); // r? |
---|
864 | |
---|
865 | #ifdef PDEBUG |
---|
866 | p_Test(p2,r); |
---|
867 | #endif |
---|
868 | |
---|
869 | return(p2); |
---|
870 | } |
---|
871 | |
---|
872 | |
---|
873 | void addLObject(LObject& h, kStrategy& strat) |
---|
874 | { |
---|
875 | if(h.IsNull()) return; |
---|
876 | |
---|
877 | strat->initEcart(&h); |
---|
878 | h.sev=0; // pGetShortExpVector(h.p); |
---|
879 | |
---|
880 | // add h into S and L |
---|
881 | int pos=posInS(strat, strat->sl, h.p, h.ecart); |
---|
882 | |
---|
883 | if ( (pos <= strat->sl) && (pComparePolys(h.p, strat->S[pos])) ) |
---|
884 | { |
---|
885 | if (TEST_OPT_PROT) |
---|
886 | PrintS("d\n"); |
---|
887 | } |
---|
888 | else |
---|
889 | { |
---|
890 | if (TEST_OPT_INTSTRATEGY) |
---|
891 | { |
---|
892 | pCleardenom(h.p); |
---|
893 | } |
---|
894 | else |
---|
895 | { |
---|
896 | pNorm(h.p); |
---|
897 | pContent(h.p); |
---|
898 | } |
---|
899 | |
---|
900 | if ((strat->syzComp==0)||(!strat->homog)) |
---|
901 | { |
---|
902 | h.p = redtailBba(h.p,pos-1,strat); |
---|
903 | |
---|
904 | if (TEST_OPT_INTSTRATEGY) |
---|
905 | { |
---|
906 | // pCleardenom(h.p); |
---|
907 | pContent(h.p); |
---|
908 | } |
---|
909 | else |
---|
910 | { |
---|
911 | pNorm(h.p); |
---|
912 | } |
---|
913 | } |
---|
914 | |
---|
915 | if(h.IsNull()) return; |
---|
916 | |
---|
917 | /* statistic */ |
---|
918 | if (TEST_OPT_PROT) |
---|
919 | { |
---|
920 | PrintS("s\n"); |
---|
921 | } |
---|
922 | |
---|
923 | #ifdef KDEBUG |
---|
924 | if (TEST_OPT_DEBUG) |
---|
925 | { |
---|
926 | PrintS("new s:"); |
---|
927 | wrp(h.p); |
---|
928 | PrintLn(); |
---|
929 | } |
---|
930 | #endif |
---|
931 | |
---|
932 | enterpairs(h.p, strat->sl, h.ecart, 0, strat); |
---|
933 | |
---|
934 | pos=0; |
---|
935 | |
---|
936 | if (strat->sl!=-1) pos = posInS(strat, strat->sl, h.p, h.ecart); |
---|
937 | |
---|
938 | strat->enterS(h, pos, strat, -1); |
---|
939 | |
---|
940 | if (h.lcm!=NULL) pLmFree(h.lcm); |
---|
941 | } |
---|
942 | |
---|
943 | |
---|
944 | } |
---|
945 | |
---|
946 | #ifndef NDEBUG |
---|
947 | |
---|
948 | // set it here if needed. |
---|
949 | #define MYTEST 0 |
---|
950 | |
---|
951 | #else |
---|
952 | |
---|
953 | #define MYTEST 0 |
---|
954 | |
---|
955 | #endif |
---|
956 | |
---|
957 | #define OUTPUT 0 |
---|
958 | |
---|
959 | |
---|
960 | ideal sca_gr_bba(const ideal F, const ideal Q, const intvec *, const intvec *, kStrategy strat) |
---|
961 | { |
---|
962 | #if MYTEST |
---|
963 | // PrintS("<sca_gr_bba>\n"); |
---|
964 | #endif |
---|
965 | |
---|
966 | assume(rIsSCA(currRing)); |
---|
967 | |
---|
968 | #ifndef NDEBUG |
---|
969 | idTest(F); |
---|
970 | idTest(Q); |
---|
971 | #endif |
---|
972 | |
---|
973 | #ifdef HAVE_PLURAL |
---|
974 | #if MYTEST |
---|
975 | PrintS("currRing: \n"); |
---|
976 | rWrite(currRing); |
---|
977 | #ifdef RDEBUG |
---|
978 | rDebugPrint(currRing); |
---|
979 | #endif |
---|
980 | |
---|
981 | PrintS("F: \n"); |
---|
982 | idPrint(F); |
---|
983 | PrintS("Q: \n"); |
---|
984 | idPrint(Q); |
---|
985 | #endif |
---|
986 | #endif |
---|
987 | |
---|
988 | |
---|
989 | const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing); |
---|
990 | const unsigned int m_iLastAltVar = scaLastAltVar(currRing); |
---|
991 | |
---|
992 | ideal tempF = id_KillSquares(F, m_iFirstAltVar, m_iLastAltVar, currRing); |
---|
993 | ideal tempQ = Q; |
---|
994 | |
---|
995 | if(Q == currQuotient) |
---|
996 | tempQ = SCAQuotient(currRing); |
---|
997 | |
---|
998 | bool bIdHomog = id_IsSCAHomogeneous(tempF, NULL, NULL, currRing); // wCx == wCy == NULL! |
---|
999 | |
---|
1000 | assume( !bIdHomog || strat->homog ); // bIdHomog =====[implies]>>>>> strat->homog |
---|
1001 | |
---|
1002 | strat->homog = strat->homog && bIdHomog; |
---|
1003 | |
---|
1004 | assume( strat->homog == bIdHomog ); |
---|
1005 | |
---|
1006 | #if MYTEST |
---|
1007 | { |
---|
1008 | Print("ideal tempF: \n"); |
---|
1009 | idPrint(tempF); |
---|
1010 | Print("ideal tempQ: \n"); |
---|
1011 | idPrint(tempQ); |
---|
1012 | } |
---|
1013 | #endif |
---|
1014 | |
---|
1015 | int srmax, lrmax; |
---|
1016 | int olddeg, reduc; |
---|
1017 | int red_result = 1; |
---|
1018 | // int hilbeledeg = 1, minimcnt = 0; |
---|
1019 | int hilbcount = 0; |
---|
1020 | |
---|
1021 | initBuchMoraCrit(strat); // set Gebauer, honey, sugarCrit |
---|
1022 | |
---|
1023 | nc_gr_initBba(tempF,strat); // set enterS, red, initEcart, initEcartPair |
---|
1024 | |
---|
1025 | initBuchMoraPos(strat); |
---|
1026 | |
---|
1027 | |
---|
1028 | // ?? set spSpolyShort, reduce ??? |
---|
1029 | |
---|
1030 | initBuchMora(tempF, tempQ, strat); // SCAQuotient(currRing) instead of Q == squares!!!!!!! |
---|
1031 | |
---|
1032 | strat->posInT=posInT110; // !!! |
---|
1033 | |
---|
1034 | srmax = strat->sl; |
---|
1035 | reduc = olddeg = lrmax = 0; |
---|
1036 | |
---|
1037 | |
---|
1038 | /* compute------------------------------------------------------- */ |
---|
1039 | for(; strat->Ll >= 0; |
---|
1040 | #ifdef KDEBUG |
---|
1041 | strat->P.lcm = NULL, |
---|
1042 | #endif |
---|
1043 | kTest(strat) |
---|
1044 | ) |
---|
1045 | { |
---|
1046 | if (strat->Ll > lrmax) lrmax =strat->Ll;/*stat.*/ |
---|
1047 | |
---|
1048 | #ifdef KDEBUG |
---|
1049 | if (TEST_OPT_DEBUG) messageSets(strat); |
---|
1050 | #endif |
---|
1051 | |
---|
1052 | if (strat->Ll== 0) strat->interpt=TRUE; |
---|
1053 | |
---|
1054 | if (TEST_OPT_DEGBOUND |
---|
1055 | && ((strat->honey |
---|
1056 | && (strat->L[strat->Ll].ecart+pFDeg(strat->L[strat->Ll].p,currRing)>Kstd1_deg)) |
---|
1057 | || ((!strat->honey) && (pFDeg(strat->L[strat->Ll].p,currRing)>Kstd1_deg)))) |
---|
1058 | { |
---|
1059 | /* |
---|
1060 | *stops computation if |
---|
1061 | * 24 IN test and the degree +ecart of L[strat->Ll] is bigger then |
---|
1062 | *a predefined number Kstd1_deg |
---|
1063 | */ |
---|
1064 | while (strat->Ll >= 0) deleteInL(strat->L,&strat->Ll,strat->Ll,strat); |
---|
1065 | break; |
---|
1066 | } |
---|
1067 | |
---|
1068 | /* picks the last element from the lazyset L */ |
---|
1069 | strat->P = strat->L[strat->Ll]; |
---|
1070 | strat->Ll--; |
---|
1071 | |
---|
1072 | //kTest(strat); |
---|
1073 | |
---|
1074 | // assume(pNext(strat->P.p) != strat->tail); // !??? |
---|
1075 | if(strat->P.IsNull()) continue; |
---|
1076 | |
---|
1077 | |
---|
1078 | if( pNext(strat->P.p) == strat->tail ) |
---|
1079 | { |
---|
1080 | // deletes the int spoly and computes SPoly |
---|
1081 | pLmFree(strat->P.p); // ??? |
---|
1082 | strat->P.p = nc_CreateSpoly(strat->P.p1, strat->P.p2, currRing); |
---|
1083 | } |
---|
1084 | |
---|
1085 | if(strat->P.IsNull()) continue; |
---|
1086 | |
---|
1087 | // poly save = NULL; |
---|
1088 | // |
---|
1089 | // if(pNext(strat->P.p) != NULL) |
---|
1090 | // save = p_Copy(strat->P.p, currRing); |
---|
1091 | |
---|
1092 | strat->initEcart(&strat->P); // remove it? |
---|
1093 | |
---|
1094 | if (TEST_OPT_PROT) |
---|
1095 | message((strat->honey ? strat->P.ecart : 0) + strat->P.pFDeg(), &olddeg,&reduc,strat, red_result); |
---|
1096 | |
---|
1097 | // reduction of the element chosen from L wrt S |
---|
1098 | strat->red(&strat->P,strat); |
---|
1099 | |
---|
1100 | if(strat->P.IsNull()) continue; |
---|
1101 | |
---|
1102 | addLObject(strat->P, strat); |
---|
1103 | |
---|
1104 | if (strat->sl > srmax) srmax = strat->sl; |
---|
1105 | |
---|
1106 | const poly save = strat->P.p; |
---|
1107 | |
---|
1108 | #ifdef PDEBUG |
---|
1109 | p_Test(save, currRing); |
---|
1110 | #endif |
---|
1111 | assume( save != NULL ); |
---|
1112 | |
---|
1113 | // SCA Specials: |
---|
1114 | |
---|
1115 | { |
---|
1116 | const poly p_next = pNext(save); |
---|
1117 | |
---|
1118 | if( p_next != NULL ) |
---|
1119 | for( unsigned int i = m_iFirstAltVar; i <= m_iLastAltVar; i++ ) |
---|
1120 | if( p_GetExp(save, i, currRing) != 0 ) |
---|
1121 | { |
---|
1122 | assume(p_GetExp(save, i, currRing) == 1); |
---|
1123 | |
---|
1124 | const poly tt = sca_pp_Mult_xi_pp(i, p_next, currRing); |
---|
1125 | |
---|
1126 | #ifdef PDEBUG |
---|
1127 | p_Test(tt, currRing); |
---|
1128 | #endif |
---|
1129 | |
---|
1130 | if( tt == NULL) continue; |
---|
1131 | |
---|
1132 | LObject h(tt); // h = x_i * P |
---|
1133 | |
---|
1134 | if (TEST_OPT_INTSTRATEGY) |
---|
1135 | { |
---|
1136 | // h.pCleardenom(); // also does a pContent |
---|
1137 | pContent(h.p); |
---|
1138 | } |
---|
1139 | else |
---|
1140 | { |
---|
1141 | h.pNorm(); |
---|
1142 | } |
---|
1143 | |
---|
1144 | strat->initEcart(&h); |
---|
1145 | |
---|
1146 | |
---|
1147 | // if (pOrdSgn==-1) |
---|
1148 | // { |
---|
1149 | // cancelunit(&h); // tries to cancel a unit |
---|
1150 | // deleteHC(&h, strat); |
---|
1151 | // } |
---|
1152 | |
---|
1153 | // if(h.IsNull()) continue; |
---|
1154 | |
---|
1155 | // if (TEST_OPT_PROT) |
---|
1156 | // message((strat->honey ? h.ecart : 0) + h.pFDeg(), &olddeg, &reduc, strat, red_result); |
---|
1157 | |
---|
1158 | // strat->red(&h, strat); // wrt S |
---|
1159 | // if(h.IsNull()) continue; |
---|
1160 | |
---|
1161 | // poly save = p_Copy(h.p, currRing); |
---|
1162 | |
---|
1163 | int pos; |
---|
1164 | |
---|
1165 | if (strat->Ll==-1) |
---|
1166 | pos =0; |
---|
1167 | else |
---|
1168 | pos = strat->posInL(strat->L,strat->Ll,&h,strat); |
---|
1169 | |
---|
1170 | h.sev = pGetShortExpVector(h.p); |
---|
1171 | enterL(&strat->L,&strat->Ll,&strat->Lmax,h,pos); |
---|
1172 | |
---|
1173 | // h.p = save; |
---|
1174 | // addLObject(h, strat); |
---|
1175 | |
---|
1176 | // if (strat->sl > srmax) srmax = strat->sl; |
---|
1177 | } |
---|
1178 | |
---|
1179 | // p_Delete( &save, currRing ); |
---|
1180 | } |
---|
1181 | |
---|
1182 | |
---|
1183 | } // for(;;) |
---|
1184 | |
---|
1185 | |
---|
1186 | #ifdef KDEBUG |
---|
1187 | if (TEST_OPT_DEBUG) messageSets(strat); |
---|
1188 | #endif |
---|
1189 | |
---|
1190 | /* release temp data-------------------------------- */ |
---|
1191 | exitBuchMora(strat); |
---|
1192 | |
---|
1193 | if (TEST_OPT_WEIGHTM) |
---|
1194 | { |
---|
1195 | pFDeg=pFDegOld; |
---|
1196 | pLDeg=pLDegOld; |
---|
1197 | if (ecartWeights) |
---|
1198 | { |
---|
1199 | omFreeSize((ADDRESS)ecartWeights,(pVariables+1)*sizeof(int)); |
---|
1200 | ecartWeights=NULL; |
---|
1201 | } |
---|
1202 | } |
---|
1203 | |
---|
1204 | if (TEST_OPT_PROT) messageStat(srmax,lrmax,hilbcount,strat); |
---|
1205 | |
---|
1206 | if (tempQ!=NULL) updateResult(strat->Shdl,tempQ,strat); |
---|
1207 | |
---|
1208 | id_Delete(&tempF, currRing); |
---|
1209 | |
---|
1210 | |
---|
1211 | /* complete reduction of the standard basis--------- */ |
---|
1212 | if (TEST_OPT_REDSB){ |
---|
1213 | // completeReduce(strat); // ??? |
---|
1214 | |
---|
1215 | ideal I = strat->Shdl; |
---|
1216 | ideal erg = kInterRed(I,tempQ); |
---|
1217 | assume(I!=erg); |
---|
1218 | id_Delete(&I, currRing); |
---|
1219 | strat->Shdl = erg; |
---|
1220 | } |
---|
1221 | |
---|
1222 | |
---|
1223 | #if MYTEST |
---|
1224 | // PrintS("</sca_gr_bba>\n"); |
---|
1225 | #endif |
---|
1226 | |
---|
1227 | return (strat->Shdl); |
---|
1228 | } |
---|
1229 | |
---|
1230 | |
---|
1231 | // should be used only inside nc_SetupQuotient! |
---|
1232 | // Check whether this our case: |
---|
1233 | // 1. rG is a commutative polynomial ring \otimes anticommutative algebra |
---|
1234 | // 2. factor ideal rGR->qideal contains squares of all alternating variables. |
---|
1235 | // |
---|
1236 | // if yes, make rGR a super-commutative algebra! |
---|
1237 | // NOTE: Factors of SuperCommutative Algebras are supported this way! |
---|
1238 | // |
---|
1239 | // rG == NULL means that there is no separate base G-algebra in this case take rGR == rG |
---|
1240 | bool sca_SetupQuotient(ring rGR, ring rG) |
---|
1241 | { |
---|
1242 | // return false; // test Plural |
---|
1243 | |
---|
1244 | ////////////////////////////////////////////////////////////////////////// |
---|
1245 | // checks... |
---|
1246 | ////////////////////////////////////////////////////////////////////////// |
---|
1247 | if( rG == NULL ) |
---|
1248 | rG = rGR; |
---|
1249 | |
---|
1250 | assume(rGR != NULL); |
---|
1251 | assume(rG != NULL); |
---|
1252 | assume(rIsPluralRing(rG)); |
---|
1253 | |
---|
1254 | |
---|
1255 | #if MYTEST |
---|
1256 | PrintS("sca_SetupQuotient(rGR, rG)"); |
---|
1257 | #endif |
---|
1258 | |
---|
1259 | const int N = rG->N; |
---|
1260 | |
---|
1261 | if(N < 2) |
---|
1262 | return false; |
---|
1263 | |
---|
1264 | |
---|
1265 | // if( (ncRingType(rG) != nc_skew) || (ncRingType(rG) != nc_comm) ) |
---|
1266 | // return false; |
---|
1267 | |
---|
1268 | #if OUTPUT |
---|
1269 | PrintS("sca_SetupQuotient: qring?\n"); |
---|
1270 | #endif |
---|
1271 | |
---|
1272 | if(rGR->qideal == NULL) // there will be a factor! |
---|
1273 | return false; |
---|
1274 | |
---|
1275 | #if OUTPUT |
---|
1276 | PrintS("sca_SetupQuotient: qideal!!!\n"); |
---|
1277 | #endif |
---|
1278 | |
---|
1279 | if((rG->qideal != NULL) && (rG != rGR) ) // we cannot change from factor to factor at the time, sorry! |
---|
1280 | return false; |
---|
1281 | |
---|
1282 | |
---|
1283 | int iAltVarEnd = -1; |
---|
1284 | int iAltVarStart = N+1; |
---|
1285 | |
---|
1286 | const ring rBase = rG->GetNC()->basering; |
---|
1287 | const matrix C = rG->GetNC()->C; // live in rBase! |
---|
1288 | |
---|
1289 | #if OUTPUT |
---|
1290 | PrintS("sca_SetupQuotient: AltVars?!\n"); |
---|
1291 | #endif |
---|
1292 | |
---|
1293 | for(int i = 1; i < N; i++) |
---|
1294 | { |
---|
1295 | for(int j = i + 1; j <= N; j++) |
---|
1296 | { |
---|
1297 | assume(MATELEM(C,i,j) != NULL); // after CallPlural! |
---|
1298 | number c = p_GetCoeff(MATELEM(C,i,j), rBase); |
---|
1299 | |
---|
1300 | if( n_IsMOne(c, rBase) ) |
---|
1301 | { |
---|
1302 | if( i < iAltVarStart) |
---|
1303 | iAltVarStart = i; |
---|
1304 | |
---|
1305 | if( j > iAltVarEnd) |
---|
1306 | iAltVarEnd = j; |
---|
1307 | } else |
---|
1308 | { |
---|
1309 | if( !n_IsOne(c, rBase) ) |
---|
1310 | { |
---|
1311 | #if OUTPUT |
---|
1312 | Print("Wrong Coeff at: [%d, %d]\n", i, j); |
---|
1313 | #endif |
---|
1314 | #if MYTEST |
---|
1315 | Print("Wrong Coeff at: [%d, %d]\n", i, j); |
---|
1316 | #endif |
---|
1317 | return false; |
---|
1318 | } |
---|
1319 | } |
---|
1320 | } |
---|
1321 | } |
---|
1322 | |
---|
1323 | #if MYTEST |
---|
1324 | Print("AltVars?1: [%d, %d]\n", iAltVarStart, iAltVarEnd); |
---|
1325 | #endif |
---|
1326 | |
---|
1327 | |
---|
1328 | if( (iAltVarEnd == -1) || (iAltVarStart == (N+1)) ) |
---|
1329 | return false; // either no alternating varables, or a single one => we are in commutative case! |
---|
1330 | |
---|
1331 | |
---|
1332 | for(int i = 1; i < N; i++) |
---|
1333 | { |
---|
1334 | for(int j = i + 1; j <= N; j++) |
---|
1335 | { |
---|
1336 | assume(MATELEM(C,i,j) != NULL); // after CallPlural! |
---|
1337 | number c = p_GetCoeff(MATELEM(C,i,j), rBase); |
---|
1338 | |
---|
1339 | if( (iAltVarStart <= i) && (j <= iAltVarEnd) ) // S <= i < j <= E |
---|
1340 | { // anticommutative part |
---|
1341 | if( !n_IsMOne(c, rBase) ) |
---|
1342 | { |
---|
1343 | #ifdef PDEBUG |
---|
1344 | #if OUTPUT |
---|
1345 | Print("Wrong Coeff at: [%d, %d]\n", i, j); |
---|
1346 | #endif |
---|
1347 | #endif |
---|
1348 | |
---|
1349 | #if MYTEST |
---|
1350 | Print("Wrong Coeff at: [%d, %d]\n", i, j); |
---|
1351 | #endif |
---|
1352 | return false; |
---|
1353 | } |
---|
1354 | } else |
---|
1355 | { // should commute |
---|
1356 | if( !n_IsOne(c, rBase) ) |
---|
1357 | { |
---|
1358 | #ifdef PDEBUG |
---|
1359 | #if OUTPUT |
---|
1360 | Print("Wrong Coeff at: [%d, %d]\n", i, j); |
---|
1361 | #endif |
---|
1362 | #endif |
---|
1363 | #if MYTEST |
---|
1364 | Print("Wrong Coeff at: [%d, %d]\n", i, j); |
---|
1365 | #endif |
---|
1366 | return false; |
---|
1367 | } |
---|
1368 | } |
---|
1369 | } |
---|
1370 | } |
---|
1371 | |
---|
1372 | #if MYTEST |
---|
1373 | Print("AltVars!?: [%d, %d]\n", iAltVarStart, iAltVarEnd); |
---|
1374 | #endif |
---|
1375 | |
---|
1376 | assume( 1 <= iAltVarStart ); |
---|
1377 | assume( iAltVarStart < iAltVarEnd ); |
---|
1378 | assume( iAltVarEnd <= N ); |
---|
1379 | |
---|
1380 | |
---|
1381 | |
---|
1382 | bool bWeChangeRing = false; |
---|
1383 | // for sanity |
---|
1384 | ring rSaveRing = currRing; |
---|
1385 | |
---|
1386 | if(rSaveRing != rG) |
---|
1387 | { |
---|
1388 | rChangeCurrRing(rG); |
---|
1389 | bWeChangeRing = true; |
---|
1390 | } |
---|
1391 | |
---|
1392 | |
---|
1393 | assume(rGR->qideal != NULL); |
---|
1394 | // assume(rG->qideal == NULL); // ? |
---|
1395 | |
---|
1396 | const ideal idQuotient = rGR->qideal; |
---|
1397 | |
---|
1398 | |
---|
1399 | #if MYTEST |
---|
1400 | Print("Analyzing quotient ideal:\n"); |
---|
1401 | idPrint(idQuotient); // in rG!!! |
---|
1402 | #endif |
---|
1403 | |
---|
1404 | |
---|
1405 | // check for |
---|
1406 | // y_{iAltVarStart}^2, y_{iAltVarStart+1}^2, \ldots, y_{iAltVarEnd}^2 (iAltVarEnd > iAltVarStart) |
---|
1407 | // to be within quotient ideal. |
---|
1408 | |
---|
1409 | bool bSCA = true; |
---|
1410 | |
---|
1411 | for ( int i = iAltVarStart; (i <= iAltVarEnd) && bSCA; i++ ) |
---|
1412 | { |
---|
1413 | poly square = p_ISet(1, rG); |
---|
1414 | p_SetExp(square, i, 2, rG); // square = var(i)^2. |
---|
1415 | p_Setm(square, rG); |
---|
1416 | |
---|
1417 | // square = NF( var(i)^2 | Q ) |
---|
1418 | // NOTE: rSaveRing == currRing now! |
---|
1419 | // NOTE: there is no better way to check this in general! |
---|
1420 | square = kNF(idQuotient, NULL, square, 0, 0); // must ran in currRing == rG! |
---|
1421 | |
---|
1422 | if( square != NULL ) // var(i)^2 is not in Q? |
---|
1423 | { |
---|
1424 | p_Delete(&square, rG); |
---|
1425 | bSCA = false; |
---|
1426 | } |
---|
1427 | } |
---|
1428 | |
---|
1429 | |
---|
1430 | if (bWeChangeRing) |
---|
1431 | { |
---|
1432 | rChangeCurrRing(rSaveRing); |
---|
1433 | } |
---|
1434 | |
---|
1435 | if(!bSCA) return false; |
---|
1436 | |
---|
1437 | |
---|
1438 | #ifdef PDEBUG |
---|
1439 | #if OUTPUT |
---|
1440 | Print("ScaVars!: [%d, %d]\n", iAltVarStart, iAltVarEnd); |
---|
1441 | #endif |
---|
1442 | #endif |
---|
1443 | |
---|
1444 | |
---|
1445 | ////////////////////////////////////////////////////////////////////////// |
---|
1446 | // ok... here we go. let's setup it!!! |
---|
1447 | ////////////////////////////////////////////////////////////////////////// |
---|
1448 | ideal tempQ = id_KillSquares(idQuotient, iAltVarStart, iAltVarEnd, rG); // in rG!!! |
---|
1449 | |
---|
1450 | idSkipZeroes( tempQ ); |
---|
1451 | |
---|
1452 | if( idIs0(tempQ) ) |
---|
1453 | rGR->GetNC()->SCAQuotient() = NULL; |
---|
1454 | else |
---|
1455 | rGR->GetNC()->SCAQuotient() = idrMoveR(tempQ, rG, rGR); // deletes tempQ! |
---|
1456 | |
---|
1457 | ncRingType( rGR, nc_exterior ); |
---|
1458 | |
---|
1459 | scaFirstAltVar( rGR, iAltVarStart ); |
---|
1460 | scaLastAltVar( rGR, iAltVarEnd ); |
---|
1461 | |
---|
1462 | |
---|
1463 | nc_p_ProcsSet(rGR, rGR->p_Procs); // !!!!!!!!!!!!!!!!! |
---|
1464 | |
---|
1465 | return true; |
---|
1466 | } |
---|
1467 | |
---|
1468 | |
---|
1469 | bool sca_ForceCommutative(ring rGR, int b, int e) |
---|
1470 | { |
---|
1471 | assume(rGR != NULL); |
---|
1472 | assume(rIsPluralRing(rGR)); |
---|
1473 | assume(!rIsSCA(rGR)); |
---|
1474 | |
---|
1475 | const int N = rGR->N; |
---|
1476 | |
---|
1477 | ring rSaveRing = currRing; |
---|
1478 | |
---|
1479 | if(rSaveRing != rGR) |
---|
1480 | rChangeCurrRing(rGR); |
---|
1481 | |
---|
1482 | const ideal idQuotient = rGR->qideal; |
---|
1483 | |
---|
1484 | |
---|
1485 | ideal tempQ = idQuotient; |
---|
1486 | |
---|
1487 | if( b <= N && e >= 1 ) |
---|
1488 | tempQ = id_KillSquares(idQuotient, b, e, rGR); |
---|
1489 | |
---|
1490 | idSkipZeroes( tempQ ); |
---|
1491 | |
---|
1492 | if( idIs0(tempQ) ) |
---|
1493 | rGR->GetNC()->SCAQuotient() = NULL; |
---|
1494 | else |
---|
1495 | rGR->GetNC()->SCAQuotient() = tempQ; |
---|
1496 | |
---|
1497 | ncRingType( rGR, nc_exterior ); |
---|
1498 | |
---|
1499 | scaFirstAltVar( rGR, b ); |
---|
1500 | scaLastAltVar( rGR, e ); |
---|
1501 | |
---|
1502 | |
---|
1503 | nc_p_ProcsSet(rGR, rGR->p_Procs); |
---|
1504 | |
---|
1505 | if(rSaveRing != rGR) |
---|
1506 | rChangeCurrRing(rSaveRing); |
---|
1507 | |
---|
1508 | return true; |
---|
1509 | |
---|
1510 | } |
---|
1511 | |
---|
1512 | // return x_i * pPoly; preserve pPoly. |
---|
1513 | poly sca_pp_Mult_xi_pp(unsigned int i, const poly pPoly, const ring rRing) |
---|
1514 | { |
---|
1515 | assume(1 <= i); |
---|
1516 | assume(i <= (unsigned int)rRing->N); |
---|
1517 | |
---|
1518 | if(rIsSCA(rRing)) |
---|
1519 | return sca_xi_Mult_pp(i, pPoly, rRing); |
---|
1520 | |
---|
1521 | |
---|
1522 | |
---|
1523 | poly xi = p_ISet(1, rRing); |
---|
1524 | p_SetExp(xi, i, 1, rRing); |
---|
1525 | p_Setm(xi, rRing); |
---|
1526 | |
---|
1527 | poly pResult = pp_Mult_qq(xi, pPoly, rRing); |
---|
1528 | |
---|
1529 | p_Delete( &xi, rRing); |
---|
1530 | |
---|
1531 | return pResult; |
---|
1532 | |
---|
1533 | } |
---|
1534 | |
---|
1535 | |
---|
1536 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
1537 | //************* SCA BBA *************************************************************// |
---|
1538 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
1539 | |
---|
1540 | // Under development!!! |
---|
1541 | ideal sca_bba (const ideal F, const ideal Q, const intvec *w, const intvec * /*hilb*/, kStrategy strat) |
---|
1542 | { |
---|
1543 | assume(rIsSCA(currRing)); |
---|
1544 | |
---|
1545 | const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing); |
---|
1546 | const unsigned int m_iLastAltVar = scaLastAltVar(currRing); |
---|
1547 | |
---|
1548 | ideal tempF = id_KillSquares(F, m_iFirstAltVar, m_iLastAltVar, currRing); |
---|
1549 | |
---|
1550 | ideal tempQ = Q; |
---|
1551 | |
---|
1552 | if(Q == currQuotient) |
---|
1553 | tempQ = SCAQuotient(currRing); |
---|
1554 | |
---|
1555 | // Q or tempQ will not be used below :((( |
---|
1556 | |
---|
1557 | bool bIdHomog = id_IsSCAHomogeneous(tempF, NULL, NULL, currRing); // wCx == wCy == NULL! |
---|
1558 | |
---|
1559 | assume( !bIdHomog || strat->homog ); // bIdHomog =====[implies]>>>>> strat->homog |
---|
1560 | |
---|
1561 | strat->homog = strat->homog && bIdHomog; |
---|
1562 | |
---|
1563 | #ifdef PDEBUG |
---|
1564 | assume( strat->homog == bIdHomog ); |
---|
1565 | #endif /*PDEBUG*/ |
---|
1566 | |
---|
1567 | |
---|
1568 | // PrintS("<sca>\n"); |
---|
1569 | |
---|
1570 | om_Opts.MinTrack = 5; // ??? |
---|
1571 | |
---|
1572 | int srmax, lrmax, red_result = 1; |
---|
1573 | int olddeg, reduc; |
---|
1574 | |
---|
1575 | // int hilbeledeg = 1, minimcnt = 0; |
---|
1576 | int hilbcount = 0; |
---|
1577 | |
---|
1578 | BOOLEAN withT = FALSE; |
---|
1579 | |
---|
1580 | initBuchMoraCrit(strat); // sets Gebauer, honey, sugarCrit // sca - ok??? |
---|
1581 | initBuchMoraPos(strat); // sets strat->posInL, strat->posInT // check!! (Plural's: ) |
---|
1582 | |
---|
1583 | // initHilbCrit(F, Q, &hilb, strat); |
---|
1584 | |
---|
1585 | // nc_gr_initBba(F,strat); |
---|
1586 | initBba(tempF, strat); // set enterS, red, initEcart, initEcartPair |
---|
1587 | |
---|
1588 | /*set enterS, spSpolyShort, reduce, red, initEcart, initEcartPair*/ |
---|
1589 | // ?? set spSpolyShort, reduce ??? |
---|
1590 | initBuchMora(tempF, NULL, strat); // Q = squares!!! |
---|
1591 | |
---|
1592 | // if (strat->minim>0) strat->M = idInit(IDELEMS(F),F->rank); |
---|
1593 | |
---|
1594 | srmax = strat->sl; |
---|
1595 | reduc = olddeg = lrmax = 0; |
---|
1596 | |
---|
1597 | #define NO_BUCKETS |
---|
1598 | |
---|
1599 | #ifndef NO_BUCKETS |
---|
1600 | if (!TEST_OPT_NOT_BUCKETS) |
---|
1601 | strat->use_buckets = 1; |
---|
1602 | #endif |
---|
1603 | |
---|
1604 | // redtailBBa against T for inhomogenous input |
---|
1605 | if (!K_TEST_OPT_OLDSTD) |
---|
1606 | withT = ! strat->homog; |
---|
1607 | |
---|
1608 | // strat->posInT = posInT_pLength; |
---|
1609 | kTest_TS(strat); |
---|
1610 | |
---|
1611 | #undef HAVE_TAIL_RING |
---|
1612 | |
---|
1613 | #ifdef HAVE_TAIL_RING |
---|
1614 | kStratInitChangeTailRing(strat); |
---|
1615 | #endif |
---|
1616 | |
---|
1617 | /////////////////////////////////////////////////////////////// |
---|
1618 | // SCA: |
---|
1619 | |
---|
1620 | /* compute------------------------------------------------------- */ |
---|
1621 | while (strat->Ll >= 0) |
---|
1622 | { |
---|
1623 | if (strat->Ll > lrmax) lrmax =strat->Ll;/*stat.*/ |
---|
1624 | |
---|
1625 | #ifdef KDEBUG |
---|
1626 | // loop_count++; |
---|
1627 | if (TEST_OPT_DEBUG) messageSets(strat); |
---|
1628 | #endif |
---|
1629 | |
---|
1630 | if (strat->Ll== 0) strat->interpt=TRUE; |
---|
1631 | |
---|
1632 | if (TEST_OPT_DEGBOUND |
---|
1633 | && ((strat->honey && (strat->L[strat->Ll].ecart+pFDeg(strat->L[strat->Ll].p,currRing)>Kstd1_deg)) |
---|
1634 | || ((!strat->honey) && (pFDeg(strat->L[strat->Ll].p,currRing)>Kstd1_deg)))) |
---|
1635 | { |
---|
1636 | /* |
---|
1637 | *stops computation if |
---|
1638 | * 24 IN test and the degree +ecart of L[strat->Ll] is bigger then |
---|
1639 | *a predefined number Kstd1_deg |
---|
1640 | */ |
---|
1641 | while ((strat->Ll >= 0) |
---|
1642 | && (strat->L[strat->Ll].p1!=NULL) && (strat->L[strat->Ll].p2!=NULL) |
---|
1643 | && ((strat->honey && (strat->L[strat->Ll].ecart+pFDeg(strat->L[strat->Ll].p,currRing)>Kstd1_deg)) |
---|
1644 | || ((!strat->honey) && (pFDeg(strat->L[strat->Ll].p,currRing)>Kstd1_deg))) |
---|
1645 | ) |
---|
1646 | deleteInL(strat->L,&strat->Ll,strat->Ll,strat); |
---|
1647 | if (strat->Ll<0) break; |
---|
1648 | else strat->noClearS=TRUE; |
---|
1649 | } |
---|
1650 | |
---|
1651 | /* picks the last element from the lazyset L */ |
---|
1652 | strat->P = strat->L[strat->Ll]; |
---|
1653 | strat->Ll--; |
---|
1654 | |
---|
1655 | |
---|
1656 | // assume(pNext(strat->P.p) != strat->tail); |
---|
1657 | |
---|
1658 | if(strat->P.IsNull()) continue; |
---|
1659 | |
---|
1660 | if (pNext(strat->P.p) == strat->tail) |
---|
1661 | { |
---|
1662 | // deletes the short spoly |
---|
1663 | pLmFree(strat->P.p); |
---|
1664 | |
---|
1665 | strat->P.p = nc_CreateSpoly(strat->P.p1, strat->P.p2, currRing); |
---|
1666 | if (strat->P.p!=NULL) strat->initEcart(&strat->P); |
---|
1667 | }// else |
---|
1668 | |
---|
1669 | |
---|
1670 | if(strat->P.IsNull()) continue; |
---|
1671 | |
---|
1672 | if (strat->P.p1 == NULL) |
---|
1673 | { |
---|
1674 | // if (strat->minim > 0) |
---|
1675 | // strat->P.p2=p_Copy(strat->P.p, currRing, strat->tailRing); |
---|
1676 | |
---|
1677 | |
---|
1678 | // for input polys, prepare reduction |
---|
1679 | strat->P.PrepareRed(strat->use_buckets); |
---|
1680 | } |
---|
1681 | |
---|
1682 | if (TEST_OPT_PROT) |
---|
1683 | message((strat->honey ? strat->P.ecart : 0) + strat->P.pFDeg(), |
---|
1684 | &olddeg,&reduc,strat, red_result); |
---|
1685 | |
---|
1686 | /* reduction of the element choosen from L */ |
---|
1687 | red_result = strat->red(&strat->P,strat); |
---|
1688 | |
---|
1689 | |
---|
1690 | // reduction to non-zero new poly |
---|
1691 | if (red_result == 1) |
---|
1692 | { |
---|
1693 | /* statistic */ |
---|
1694 | if (TEST_OPT_PROT) PrintS("s"); |
---|
1695 | |
---|
1696 | // get the polynomial (canonicalize bucket, make sure P.p is set) |
---|
1697 | strat->P.GetP(strat->lmBin); |
---|
1698 | |
---|
1699 | int pos = posInS(strat,strat->sl,strat->P.p,strat->P.ecart); |
---|
1700 | |
---|
1701 | // reduce the tail and normalize poly |
---|
1702 | if (TEST_OPT_INTSTRATEGY) |
---|
1703 | { |
---|
1704 | strat->P.pCleardenom(); |
---|
1705 | if ((TEST_OPT_REDSB)||(TEST_OPT_REDTAIL)) |
---|
1706 | { |
---|
1707 | strat->P.p = redtailBba(&(strat->P),pos-1,strat, withT); // !!! |
---|
1708 | strat->P.pCleardenom(); |
---|
1709 | } |
---|
1710 | } |
---|
1711 | else |
---|
1712 | { |
---|
1713 | strat->P.pNorm(); |
---|
1714 | if ((TEST_OPT_REDSB)||(TEST_OPT_REDTAIL)) |
---|
1715 | strat->P.p = redtailBba(&(strat->P),pos-1,strat, withT); |
---|
1716 | } |
---|
1717 | strat->P.is_normalized=nIsOne(pGetCoeff(strat->P.p)); |
---|
1718 | |
---|
1719 | #ifdef KDEBUG |
---|
1720 | if (TEST_OPT_DEBUG){PrintS(" ns:");strat->P.wrp();PrintLn();} |
---|
1721 | #endif |
---|
1722 | |
---|
1723 | // // min_std stuff |
---|
1724 | // if ((strat->P.p1==NULL) && (strat->minim>0)) |
---|
1725 | // { |
---|
1726 | // if (strat->minim==1) |
---|
1727 | // { |
---|
1728 | // strat->M->m[minimcnt]=p_Copy(strat->P.p,currRing,strat->tailRing); |
---|
1729 | // p_Delete(&strat->P.p2, currRing, strat->tailRing); |
---|
1730 | // } |
---|
1731 | // else |
---|
1732 | // { |
---|
1733 | // strat->M->m[minimcnt]=strat->P.p2; |
---|
1734 | // strat->P.p2=NULL; |
---|
1735 | // } |
---|
1736 | // if (strat->tailRing!=currRing && pNext(strat->M->m[minimcnt])!=NULL) |
---|
1737 | // pNext(strat->M->m[minimcnt]) |
---|
1738 | // = strat->p_shallow_copy_delete(pNext(strat->M->m[minimcnt]), |
---|
1739 | // strat->tailRing, currRing, |
---|
1740 | // currRing->PolyBin); |
---|
1741 | // minimcnt++; |
---|
1742 | // } |
---|
1743 | |
---|
1744 | // enter into S, L, and T |
---|
1745 | if(withT) |
---|
1746 | enterT(strat->P, strat); |
---|
1747 | |
---|
1748 | // L |
---|
1749 | enterpairs(strat->P.p,strat->sl,strat->P.ecart,pos,strat, strat->tl); |
---|
1750 | |
---|
1751 | // posInS only depends on the leading term |
---|
1752 | strat->enterS(strat->P, pos, strat, strat->tl); |
---|
1753 | |
---|
1754 | // if (hilb!=NULL) khCheck(Q,w,hilb,hilbeledeg,hilbcount,strat); |
---|
1755 | |
---|
1756 | // Print("[%d]",hilbeledeg); |
---|
1757 | if (strat->P.lcm!=NULL) pLmFree(strat->P.lcm); |
---|
1758 | |
---|
1759 | if (strat->sl>srmax) srmax = strat->sl; |
---|
1760 | |
---|
1761 | // ////////////////////////////////////////////////////////// |
---|
1762 | // SCA: |
---|
1763 | const poly pSave = strat->P.p; |
---|
1764 | const poly p_next = pNext(pSave); |
---|
1765 | |
---|
1766 | // if(0) |
---|
1767 | if( p_next != NULL ) |
---|
1768 | for( unsigned int i = m_iFirstAltVar; i <= m_iLastAltVar; i++ ) |
---|
1769 | if( p_GetExp(pSave, i, currRing) != 0 ) |
---|
1770 | { |
---|
1771 | assume(p_GetExp(pSave, i, currRing) == 1); |
---|
1772 | const poly p_new = sca_pp_Mult_xi_pp(i, p_next, currRing); |
---|
1773 | |
---|
1774 | #ifdef PDEBUG |
---|
1775 | p_Test(p_new, currRing); |
---|
1776 | #endif |
---|
1777 | |
---|
1778 | if( p_new == NULL) continue; |
---|
1779 | |
---|
1780 | LObject h(p_new); // h = x_i * strat->P |
---|
1781 | |
---|
1782 | if (TEST_OPT_INTSTRATEGY) |
---|
1783 | { |
---|
1784 | // h.pCleardenom(); // also does a pContent |
---|
1785 | pContent(h.p); |
---|
1786 | } |
---|
1787 | else |
---|
1788 | { |
---|
1789 | h.pNorm(); |
---|
1790 | } |
---|
1791 | |
---|
1792 | strat->initEcart(&h); |
---|
1793 | h.sev = pGetShortExpVector(h.p); |
---|
1794 | |
---|
1795 | int pos; |
---|
1796 | if (strat->Ll==-1) |
---|
1797 | pos =0; |
---|
1798 | else |
---|
1799 | pos = strat->posInL(strat->L,strat->Ll,&h,strat); |
---|
1800 | |
---|
1801 | enterL(&strat->L,&strat->Ll,&strat->Lmax,h,pos); |
---|
1802 | /* |
---|
1803 | h.sev = pGetShortExpVector(h.p); |
---|
1804 | strat->initEcart(&h); |
---|
1805 | |
---|
1806 | h.PrepareRed(strat->use_buckets); |
---|
1807 | |
---|
1808 | // reduction of the element choosen from L(?) |
---|
1809 | red_result = strat->red(&h,strat); |
---|
1810 | |
---|
1811 | // reduction to non-zero new poly |
---|
1812 | if (red_result != 1) continue; |
---|
1813 | |
---|
1814 | |
---|
1815 | int pos = posInS(strat,strat->sl,h.p,h.ecart); |
---|
1816 | |
---|
1817 | // reduce the tail and normalize poly |
---|
1818 | if (TEST_OPT_INTSTRATEGY) |
---|
1819 | { |
---|
1820 | h.pCleardenom(); |
---|
1821 | if ((TEST_OPT_REDSB)||(TEST_OPT_REDTAIL)) |
---|
1822 | { |
---|
1823 | h.p = redtailBba(&(h),pos-1,strat, withT); // !!! |
---|
1824 | h.pCleardenom(); |
---|
1825 | } |
---|
1826 | } |
---|
1827 | else |
---|
1828 | { |
---|
1829 | h.pNorm(); |
---|
1830 | if ((TEST_OPT_REDSB)||(TEST_OPT_REDTAIL)) |
---|
1831 | h.p = redtailBba(&(h),pos-1,strat, withT); |
---|
1832 | } |
---|
1833 | |
---|
1834 | #ifdef KDEBUG |
---|
1835 | if (TEST_OPT_DEBUG){PrintS(" N:");h.wrp();PrintLn();} |
---|
1836 | #endif |
---|
1837 | |
---|
1838 | // h.PrepareRed(strat->use_buckets); // ??? |
---|
1839 | |
---|
1840 | h.sev = pGetShortExpVector(h.p); |
---|
1841 | strat->initEcart(&h); |
---|
1842 | |
---|
1843 | if (strat->Ll==-1) |
---|
1844 | pos = 0; |
---|
1845 | else |
---|
1846 | pos = strat->posInL(strat->L,strat->Ll,&h,strat); |
---|
1847 | |
---|
1848 | enterL(&strat->L,&strat->Ll,&strat->Lmax,h,pos);*/ |
---|
1849 | |
---|
1850 | } // for all x_i \in Ann(lm(P)) |
---|
1851 | } // if red(P) != NULL |
---|
1852 | |
---|
1853 | // else if (strat->P.p1 == NULL && strat->minim > 0) |
---|
1854 | // { |
---|
1855 | // p_Delete(&strat->P.p2, currRing, strat->tailRing); |
---|
1856 | // } |
---|
1857 | |
---|
1858 | // #ifdef KDEBUG |
---|
1859 | memset(&(strat->P), 0, sizeof(strat->P)); |
---|
1860 | // #endif |
---|
1861 | |
---|
1862 | //kTest_TS(strat); // T is not used: cannot use this test |
---|
1863 | |
---|
1864 | // Print("\n$\n"); |
---|
1865 | |
---|
1866 | } |
---|
1867 | |
---|
1868 | #ifdef KDEBUG |
---|
1869 | if (TEST_OPT_DEBUG) messageSets(strat); |
---|
1870 | #endif |
---|
1871 | |
---|
1872 | /* complete reduction of the standard basis--------- */ |
---|
1873 | if (TEST_OPT_REDSB) completeReduce(strat); |
---|
1874 | |
---|
1875 | /* release temp data-------------------------------- */ |
---|
1876 | id_Delete(&tempF, currRing); |
---|
1877 | |
---|
1878 | exitBuchMora(strat); |
---|
1879 | |
---|
1880 | if (TEST_OPT_WEIGHTM) |
---|
1881 | { |
---|
1882 | pRestoreDegProcs(pFDegOld, pLDegOld); |
---|
1883 | if (ecartWeights) |
---|
1884 | { |
---|
1885 | omFreeSize((ADDRESS)ecartWeights,(pVariables+1)*sizeof(short)); |
---|
1886 | ecartWeights=NULL; |
---|
1887 | } |
---|
1888 | } |
---|
1889 | |
---|
1890 | if (TEST_OPT_PROT) messageStat(srmax,lrmax,hilbcount,strat); |
---|
1891 | |
---|
1892 | // if (Q!=NULL) updateResult(strat->Shdl,Q,strat); |
---|
1893 | // PrintS("</sca>\n"); |
---|
1894 | |
---|
1895 | return (strat->Shdl); |
---|
1896 | } |
---|
1897 | |
---|
1898 | |
---|
1899 | // ////////////////////////////////////////////////////////////////////////////// |
---|
1900 | // sca mora... |
---|
1901 | |
---|
1902 | // returns TRUE if mora should use buckets, false otherwise |
---|
1903 | static BOOLEAN kMoraUseBucket(kStrategy strat) |
---|
1904 | { |
---|
1905 | #ifdef MORA_USE_BUCKETS |
---|
1906 | if (TEST_OPT_NOT_BUCKETS) |
---|
1907 | return FALSE; |
---|
1908 | if (strat->red == redFirst) |
---|
1909 | { |
---|
1910 | #ifdef NO_LDEG |
---|
1911 | if (!strat->syzComp) |
---|
1912 | return TRUE; |
---|
1913 | #else |
---|
1914 | if ((strat->homog || strat->honey) && !strat->syzComp) |
---|
1915 | return TRUE; |
---|
1916 | #endif |
---|
1917 | } |
---|
1918 | else |
---|
1919 | { |
---|
1920 | assume(strat->red == redEcart); |
---|
1921 | if (strat->honey && !strat->syzComp) |
---|
1922 | return TRUE; |
---|
1923 | } |
---|
1924 | #endif |
---|
1925 | return FALSE; |
---|
1926 | } |
---|
1927 | |
---|
1928 | |
---|
1929 | #ifdef HAVE_ASSUME |
---|
1930 | static int sca_mora_count = 0; |
---|
1931 | static int sca_mora_loop_count; |
---|
1932 | #endif |
---|
1933 | |
---|
1934 | // ideal sca_mora (ideal F, ideal Q, intvec *w, intvec *, kStrategy strat) |
---|
1935 | ideal sca_mora(const ideal F, const ideal Q, const intvec *w, const intvec *, kStrategy strat) |
---|
1936 | { |
---|
1937 | assume(rIsSCA(currRing)); |
---|
1938 | |
---|
1939 | const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing); |
---|
1940 | const unsigned int m_iLastAltVar = scaLastAltVar(currRing); |
---|
1941 | |
---|
1942 | ideal tempF = id_KillSquares(F, m_iFirstAltVar, m_iLastAltVar, currRing); |
---|
1943 | |
---|
1944 | ideal tempQ = Q; |
---|
1945 | |
---|
1946 | if(Q == currQuotient) |
---|
1947 | tempQ = SCAQuotient(currRing); |
---|
1948 | |
---|
1949 | bool bIdHomog = id_IsSCAHomogeneous(tempF, NULL, NULL, currRing); // wCx == wCy == NULL! |
---|
1950 | |
---|
1951 | assume( !bIdHomog || strat->homog ); // bIdHomog =====[implies]>>>>> strat->homog |
---|
1952 | |
---|
1953 | strat->homog = strat->homog && bIdHomog; |
---|
1954 | |
---|
1955 | #ifdef PDEBUG |
---|
1956 | assume( strat->homog == bIdHomog ); |
---|
1957 | #endif /*PDEBUG*/ |
---|
1958 | |
---|
1959 | #ifdef HAVE_ASSUME |
---|
1960 | sca_mora_count++; |
---|
1961 | sca_mora_loop_count = 0; |
---|
1962 | #endif |
---|
1963 | |
---|
1964 | #ifdef KDEBUG |
---|
1965 | om_Opts.MinTrack = 5; |
---|
1966 | #endif |
---|
1967 | int srmax; |
---|
1968 | int lrmax = 0; |
---|
1969 | int olddeg = 0; |
---|
1970 | int reduc = 0; |
---|
1971 | int red_result = 1; |
---|
1972 | // int hilbeledeg=1; |
---|
1973 | int hilbcount=0; |
---|
1974 | |
---|
1975 | strat->update = TRUE; |
---|
1976 | /*- setting global variables ------------------- -*/ |
---|
1977 | initBuchMoraCrit(strat); |
---|
1978 | // initHilbCrit(F,NULL,&hilb,strat); // no Q! |
---|
1979 | initMora(tempF, strat); |
---|
1980 | initBuchMoraPos(strat); |
---|
1981 | /*Shdl=*/initBuchMora(tempF, tempQ, strat); // temp Q, F! |
---|
1982 | // if (TEST_OPT_FASTHC) missingAxis(&strat->lastAxis,strat); |
---|
1983 | /*updateS in initBuchMora has Hecketest |
---|
1984 | * and could have put strat->kHEdgdeFound FALSE*/ |
---|
1985 | #if 0 |
---|
1986 | if (ppNoether!=NULL) |
---|
1987 | { |
---|
1988 | strat->kHEdgeFound = TRUE; |
---|
1989 | } |
---|
1990 | if (strat->kHEdgeFound && strat->update) |
---|
1991 | { |
---|
1992 | firstUpdate(strat); |
---|
1993 | updateLHC(strat); |
---|
1994 | reorderL(strat); |
---|
1995 | } |
---|
1996 | if (TEST_OPT_FASTHC && (strat->lastAxis) && strat->posInLOldFlag) |
---|
1997 | { |
---|
1998 | strat->posInLOld = strat->posInL; |
---|
1999 | strat->posInLOldFlag = FALSE; |
---|
2000 | strat->posInL = posInL10; |
---|
2001 | updateL(strat); |
---|
2002 | reorderL(strat); |
---|
2003 | } |
---|
2004 | #endif |
---|
2005 | |
---|
2006 | srmax = strat->sl; |
---|
2007 | kTest_TS(strat); |
---|
2008 | |
---|
2009 | strat->use_buckets = kMoraUseBucket(strat); |
---|
2010 | /*- compute-------------------------------------------*/ |
---|
2011 | |
---|
2012 | #undef HAVE_TAIL_RING |
---|
2013 | |
---|
2014 | #ifdef HAVE_TAIL_RING |
---|
2015 | // if (strat->homog && strat->red == redFirst) |
---|
2016 | // kStratInitChangeTailRing(strat); |
---|
2017 | #endif |
---|
2018 | |
---|
2019 | |
---|
2020 | while (strat->Ll >= 0) |
---|
2021 | { |
---|
2022 | #ifdef HAVE_ASSUME |
---|
2023 | sca_mora_loop_count++; |
---|
2024 | #endif |
---|
2025 | if (lrmax< strat->Ll) lrmax=strat->Ll; /*stat*/ |
---|
2026 | //test_int_std(strat->kIdeal); |
---|
2027 | #ifdef KDEBUG |
---|
2028 | if (TEST_OPT_DEBUG) messageSets(strat); |
---|
2029 | #endif |
---|
2030 | if (TEST_OPT_DEGBOUND |
---|
2031 | && (strat->L[strat->Ll].ecart+strat->L[strat->Ll].GetpFDeg()> Kstd1_deg)) |
---|
2032 | { |
---|
2033 | /* |
---|
2034 | * stops computation if |
---|
2035 | * - 24 (degBound) |
---|
2036 | * && upper degree is bigger than Kstd1_deg |
---|
2037 | */ |
---|
2038 | while ((strat->Ll >= 0) |
---|
2039 | && (strat->L[strat->Ll].p1!=NULL) && (strat->L[strat->Ll].p2!=NULL) |
---|
2040 | && (strat->L[strat->Ll].ecart+strat->L[strat->Ll].GetpFDeg()> Kstd1_deg) |
---|
2041 | ) |
---|
2042 | { |
---|
2043 | deleteInL(strat->L,&strat->Ll,strat->Ll,strat); |
---|
2044 | //if (TEST_OPT_PROT) |
---|
2045 | //{ |
---|
2046 | // PrintS("D"); mflush(); |
---|
2047 | //} |
---|
2048 | } |
---|
2049 | if (strat->Ll<0) break; |
---|
2050 | else strat->noClearS=TRUE; |
---|
2051 | } |
---|
2052 | strat->P = strat->L[strat->Ll];/*- picks the last element from the lazyset L -*/ |
---|
2053 | if (strat->Ll==0) strat->interpt=TRUE; |
---|
2054 | strat->Ll--; |
---|
2055 | |
---|
2056 | // create the real Spoly |
---|
2057 | // assume(pNext(strat->P.p) != strat->tail); |
---|
2058 | |
---|
2059 | if(strat->P.IsNull()) continue; |
---|
2060 | |
---|
2061 | |
---|
2062 | if( pNext(strat->P.p) == strat->tail ) |
---|
2063 | { |
---|
2064 | // deletes the int spoly and computes SPoly |
---|
2065 | pLmFree(strat->P.p); // ??? |
---|
2066 | strat->P.p = nc_CreateSpoly(strat->P.p1, strat->P.p2, currRing); |
---|
2067 | } |
---|
2068 | |
---|
2069 | |
---|
2070 | |
---|
2071 | if (strat->P.p1 == NULL) |
---|
2072 | { |
---|
2073 | // for input polys, prepare reduction (buckets !) |
---|
2074 | strat->P.SetLength(strat->length_pLength); |
---|
2075 | strat->P.PrepareRed(strat->use_buckets); |
---|
2076 | } |
---|
2077 | |
---|
2078 | if (!strat->P.IsNull()) |
---|
2079 | { |
---|
2080 | // might be NULL from noether !!! |
---|
2081 | if (TEST_OPT_PROT) |
---|
2082 | message(strat->P.ecart+strat->P.GetpFDeg(),&olddeg,&reduc,strat, red_result); |
---|
2083 | // reduce |
---|
2084 | red_result = strat->red(&strat->P,strat); |
---|
2085 | } |
---|
2086 | |
---|
2087 | if (! strat->P.IsNull()) |
---|
2088 | { |
---|
2089 | strat->P.GetP(); |
---|
2090 | // statistics |
---|
2091 | if (TEST_OPT_PROT) PrintS("s"); |
---|
2092 | // normalization |
---|
2093 | if (!TEST_OPT_INTSTRATEGY) |
---|
2094 | strat->P.pNorm(); |
---|
2095 | // tailreduction |
---|
2096 | strat->P.p = redtail(&(strat->P),strat->sl,strat); |
---|
2097 | // set ecart -- might have changed because of tail reductions |
---|
2098 | if ((!strat->noTailReduction) && (!strat->honey)) |
---|
2099 | strat->initEcart(&strat->P); |
---|
2100 | // cancel unit |
---|
2101 | cancelunit(&strat->P); |
---|
2102 | // for char 0, clear denominators |
---|
2103 | if (TEST_OPT_INTSTRATEGY) |
---|
2104 | strat->P.pCleardenom(); |
---|
2105 | |
---|
2106 | // put in T |
---|
2107 | enterT(strat->P,strat); |
---|
2108 | // build new pairs |
---|
2109 | enterpairs(strat->P.p,strat->sl,strat->P.ecart,0,strat, strat->tl); |
---|
2110 | // put in S |
---|
2111 | strat->enterS(strat->P, |
---|
2112 | posInS(strat,strat->sl,strat->P.p, strat->P.ecart), |
---|
2113 | strat, strat->tl); |
---|
2114 | |
---|
2115 | |
---|
2116 | // clear strat->P |
---|
2117 | if (strat->P.lcm!=NULL) pLmFree(strat->P.lcm); |
---|
2118 | strat->P.lcm=NULL; |
---|
2119 | |
---|
2120 | if (strat->sl>srmax) srmax = strat->sl; /*stat.*/ |
---|
2121 | if (strat->Ll>lrmax) lrmax = strat->Ll; |
---|
2122 | |
---|
2123 | |
---|
2124 | |
---|
2125 | // ////////////////////////////////////////////////////////// |
---|
2126 | // SCA: |
---|
2127 | const poly pSave = strat->P.p; |
---|
2128 | const poly p_next = pNext(pSave); |
---|
2129 | |
---|
2130 | if(p_next != NULL) |
---|
2131 | for( unsigned int i = m_iFirstAltVar; i <= m_iLastAltVar; i++ ) |
---|
2132 | if( p_GetExp(pSave, i, currRing) != 0 ) |
---|
2133 | { |
---|
2134 | |
---|
2135 | assume(p_GetExp(pSave, i, currRing) == 1); |
---|
2136 | |
---|
2137 | const poly p_new = sca_pp_Mult_xi_pp(i, p_next, currRing); |
---|
2138 | |
---|
2139 | #ifdef PDEBUG |
---|
2140 | p_Test(p_new, currRing); |
---|
2141 | #endif |
---|
2142 | |
---|
2143 | if( p_new == NULL) continue; |
---|
2144 | |
---|
2145 | LObject h(p_new); // h = x_i * strat->P |
---|
2146 | |
---|
2147 | if (TEST_OPT_INTSTRATEGY) |
---|
2148 | h.pCleardenom(); // also does a pContent |
---|
2149 | else |
---|
2150 | h.pNorm(); |
---|
2151 | |
---|
2152 | strat->initEcart(&h); |
---|
2153 | h.sev = pGetShortExpVector(h.p); |
---|
2154 | |
---|
2155 | int pos; |
---|
2156 | |
---|
2157 | if (strat->Ll==-1) |
---|
2158 | pos = 0; |
---|
2159 | else |
---|
2160 | pos = strat->posInL(strat->L,strat->Ll,&h,strat); |
---|
2161 | |
---|
2162 | enterL(&strat->L,&strat->Ll,&strat->Lmax,h,pos); |
---|
2163 | |
---|
2164 | if (strat->Ll>lrmax) lrmax = strat->Ll; |
---|
2165 | } |
---|
2166 | |
---|
2167 | #ifdef KDEBUG |
---|
2168 | // make sure kTest_TS does not complain about strat->P |
---|
2169 | memset(&strat->P,0,sizeof(strat->P)); |
---|
2170 | #endif |
---|
2171 | } |
---|
2172 | #if 0 |
---|
2173 | if (strat->kHEdgeFound) |
---|
2174 | { |
---|
2175 | if ((BTEST1(27)) |
---|
2176 | || ((TEST_OPT_MULTBOUND) && (scMult0Int((strat->Shdl)) < mu))) |
---|
2177 | { |
---|
2178 | // obachman: is this still used ??? |
---|
2179 | /* |
---|
2180 | * stops computation if strat->kHEdgeFound and |
---|
2181 | * - 27 (finiteDeterminacyTest) |
---|
2182 | * or |
---|
2183 | * - 23 |
---|
2184 | * (multBound) |
---|
2185 | * && multiplicity of the ideal is smaller then a predefined number mu |
---|
2186 | */ |
---|
2187 | while (strat->Ll >= 0) deleteInL(strat->L,&strat->Ll,strat->Ll,strat); |
---|
2188 | } |
---|
2189 | } |
---|
2190 | #endif |
---|
2191 | kTest_TS(strat); |
---|
2192 | } |
---|
2193 | /*- complete reduction of the standard basis------------------------ -*/ |
---|
2194 | if (TEST_OPT_REDSB) completeReduce(strat); |
---|
2195 | /*- release temp data------------------------------- -*/ |
---|
2196 | exitBuchMora(strat); |
---|
2197 | /*- polynomials used for HECKE: HC, noether -*/ |
---|
2198 | if (BTEST1(27)) |
---|
2199 | { |
---|
2200 | if (strat->kHEdge!=NULL) |
---|
2201 | Kstd1_mu=pFDeg(strat->kHEdge,currRing); |
---|
2202 | else |
---|
2203 | Kstd1_mu=-1; |
---|
2204 | } |
---|
2205 | pDelete(&strat->kHEdge); |
---|
2206 | strat->update = TRUE; //??? |
---|
2207 | strat->lastAxis = 0; //??? |
---|
2208 | pDelete(&strat->kNoether); |
---|
2209 | omFreeSize((ADDRESS)strat->NotUsedAxis,(pVariables+1)*sizeof(BOOLEAN)); |
---|
2210 | if (TEST_OPT_PROT) messageStat(srmax,lrmax,hilbcount,strat); |
---|
2211 | if (TEST_OPT_WEIGHTM) |
---|
2212 | { |
---|
2213 | pRestoreDegProcs(pFDegOld, pLDegOld); |
---|
2214 | if (ecartWeights) |
---|
2215 | { |
---|
2216 | omFreeSize((ADDRESS)ecartWeights,(pVariables+1)*sizeof(short)); |
---|
2217 | ecartWeights=NULL; |
---|
2218 | } |
---|
2219 | } |
---|
2220 | if (tempQ!=NULL) updateResult(strat->Shdl,tempQ,strat); |
---|
2221 | idTest(strat->Shdl); |
---|
2222 | |
---|
2223 | id_Delete( &tempF, currRing); |
---|
2224 | |
---|
2225 | return (strat->Shdl); |
---|
2226 | } |
---|
2227 | |
---|
2228 | |
---|
2229 | |
---|
2230 | |
---|
2231 | |
---|
2232 | |
---|
2233 | void sca_p_ProcsSet(ring rGR, p_Procs_s* p_Procs) |
---|
2234 | { |
---|
2235 | |
---|
2236 | // "commutative" procedures: |
---|
2237 | rGR->p_Procs->p_Mult_mm = sca_p_Mult_mm; |
---|
2238 | rGR->p_Procs->pp_Mult_mm = sca_pp_Mult_mm; |
---|
2239 | |
---|
2240 | p_Procs->p_Mult_mm = sca_p_Mult_mm; |
---|
2241 | p_Procs->pp_Mult_mm = sca_pp_Mult_mm; |
---|
2242 | |
---|
2243 | // non-commutaitve |
---|
2244 | rGR->GetNC()->p_Procs.mm_Mult_p = sca_mm_Mult_p; |
---|
2245 | rGR->GetNC()->p_Procs.mm_Mult_pp = sca_mm_Mult_pp; |
---|
2246 | |
---|
2247 | |
---|
2248 | if (rGR->OrdSgn==-1) |
---|
2249 | { |
---|
2250 | #ifdef PDEBUG |
---|
2251 | // Print("Local case => GB == mora!\n"); |
---|
2252 | #endif |
---|
2253 | rGR->GetNC()->p_Procs.GB = sca_mora; // local ordering => Mora, otherwise - Buchberger! |
---|
2254 | } |
---|
2255 | else |
---|
2256 | { |
---|
2257 | #ifdef PDEBUG |
---|
2258 | // Print("Global case => GB == bba!\n"); |
---|
2259 | #endif |
---|
2260 | rGR->GetNC()->p_Procs.GB = sca_bba; // sca_gr_bba; // sca_bba? // sca_bba; |
---|
2261 | } |
---|
2262 | |
---|
2263 | |
---|
2264 | // rGR->GetNC()->p_Procs.GlobalGB = sca_gr_bba; |
---|
2265 | // rGR->GetNC()->p_Procs.LocalGB = sca_mora; |
---|
2266 | |
---|
2267 | |
---|
2268 | // rGR->GetNC()->p_Procs.SPoly = sca_SPoly; |
---|
2269 | // rGR->GetNC()->p_Procs.ReduceSPoly = sca_ReduceSpoly; |
---|
2270 | |
---|
2271 | #if 0 |
---|
2272 | |
---|
2273 | // Multiplication procedures: |
---|
2274 | |
---|
2275 | p_Procs->p_Mult_mm = sca_p_Mult_mm; |
---|
2276 | _p_procs->p_Mult_mm = sca_p_Mult_mm; |
---|
2277 | |
---|
2278 | p_Procs->pp_Mult_mm = sca_pp_Mult_mm; |
---|
2279 | _p_procs->pp_Mult_mm = sca_pp_Mult_mm; |
---|
2280 | |
---|
2281 | r->GetNC()->mmMultP() = sca_mm_Mult_p; |
---|
2282 | r->GetNC()->mmMultPP() = sca_mm_Mult_pp; |
---|
2283 | |
---|
2284 | r->GetNC()->GB() = sca_gr_bba; |
---|
2285 | /* |
---|
2286 | // ??????????????????????????????????????? coefficients swell... |
---|
2287 | r->GetNC()->SPoly() = sca_SPoly; |
---|
2288 | r->GetNC()->ReduceSPoly() = sca_ReduceSpoly; |
---|
2289 | */ |
---|
2290 | // r->GetNC()->BucketPolyRed() = gnc_kBucketPolyRed; |
---|
2291 | // r->GetNC()->BucketPolyRed_Z()= gnc_kBucketPolyRed_Z; |
---|
2292 | |
---|
2293 | #endif |
---|
2294 | } |
---|
2295 | |
---|
2296 | |
---|
2297 | // bi-Degree (x, y) of monomial "m" |
---|
2298 | // x-es and y-s are weighted by wx and wy resp. |
---|
2299 | // [optional] components have weights by wCx and wCy. |
---|
2300 | inline void m_GetBiDegree(const poly m, |
---|
2301 | const intvec *wx, const intvec *wy, |
---|
2302 | const intvec *wCx, const intvec *wCy, |
---|
2303 | int& dx, int& dy, const ring r) |
---|
2304 | { |
---|
2305 | const unsigned int N = r->N; |
---|
2306 | |
---|
2307 | p_Test(m, r); |
---|
2308 | |
---|
2309 | assume( wx != NULL ); |
---|
2310 | assume( wy != NULL ); |
---|
2311 | |
---|
2312 | assume( wx->cols() == 1 ); |
---|
2313 | assume( wy->cols() == 1 ); |
---|
2314 | |
---|
2315 | assume( (unsigned int)wx->rows() >= N ); |
---|
2316 | assume( (unsigned int)wy->rows() >= N ); |
---|
2317 | |
---|
2318 | int x = 0; |
---|
2319 | int y = 0; |
---|
2320 | |
---|
2321 | for(int i = N; i > 0; i--) |
---|
2322 | { |
---|
2323 | const int d = p_GetExp(m, i, r); |
---|
2324 | x += d * (*wx)[i-1]; |
---|
2325 | y += d * (*wy)[i-1]; |
---|
2326 | } |
---|
2327 | |
---|
2328 | if( (wCx != NULL) && (wCy != NULL) ) |
---|
2329 | { |
---|
2330 | const int c = p_GetComp(m, r); |
---|
2331 | |
---|
2332 | if( wCx->range(c) ) |
---|
2333 | x += (*wCx)[c]; |
---|
2334 | |
---|
2335 | if( wCy->range(c) ) |
---|
2336 | x += (*wCy)[c]; |
---|
2337 | } |
---|
2338 | |
---|
2339 | dx = x; |
---|
2340 | dy = y; |
---|
2341 | } |
---|
2342 | |
---|
2343 | // returns true if polynom p is bi-homogenous with respect to the given weights |
---|
2344 | // simultaneously sets bi-Degree |
---|
2345 | bool p_IsBiHomogeneous(const poly p, |
---|
2346 | const intvec *wx, const intvec *wy, |
---|
2347 | const intvec *wCx, const intvec *wCy, |
---|
2348 | int &dx, int &dy, |
---|
2349 | const ring r) |
---|
2350 | { |
---|
2351 | if( p == NULL ) |
---|
2352 | { |
---|
2353 | dx = 0; |
---|
2354 | dy = 0; |
---|
2355 | return true; |
---|
2356 | } |
---|
2357 | |
---|
2358 | poly q = p; |
---|
2359 | |
---|
2360 | |
---|
2361 | int ddx, ddy; |
---|
2362 | |
---|
2363 | m_GetBiDegree( q, wx, wy, wCx, wCy, ddx, ddy, r); // get bi degree of lm(p) |
---|
2364 | |
---|
2365 | pIter(q); |
---|
2366 | |
---|
2367 | for(; q != NULL; pIter(q) ) |
---|
2368 | { |
---|
2369 | int x, y; |
---|
2370 | |
---|
2371 | m_GetBiDegree( q, wx, wy, wCx, wCy, x, y, r); // get bi degree of q |
---|
2372 | |
---|
2373 | if ( (x != ddx) || (y != ddy) ) return false; |
---|
2374 | } |
---|
2375 | |
---|
2376 | dx = ddx; |
---|
2377 | dy = ddy; |
---|
2378 | |
---|
2379 | return true; |
---|
2380 | } |
---|
2381 | |
---|
2382 | |
---|
2383 | // returns true if id is bi-homogenous without respect to the given weights |
---|
2384 | bool id_IsBiHomogeneous(const ideal id, |
---|
2385 | const intvec *wx, const intvec *wy, |
---|
2386 | const intvec *wCx, const intvec *wCy, |
---|
2387 | const ring r) |
---|
2388 | { |
---|
2389 | if (id == NULL) return true; // zero ideal |
---|
2390 | |
---|
2391 | const int iSize = IDELEMS(id); |
---|
2392 | |
---|
2393 | if (iSize == 0) return true; |
---|
2394 | |
---|
2395 | bool b = true; |
---|
2396 | int x, y; |
---|
2397 | |
---|
2398 | for(int i = iSize - 1; (i >= 0 ) && b; i--) |
---|
2399 | b = p_IsBiHomogeneous(id->m[i], wx, wy, wCx, wCy, x, y, r); |
---|
2400 | |
---|
2401 | return b; |
---|
2402 | } |
---|
2403 | |
---|
2404 | |
---|
2405 | // returns an intvector with [nvars(r)] integers [1/0] |
---|
2406 | // 1 - for commutative variables |
---|
2407 | // 0 - for anticommutative variables |
---|
2408 | intvec *ivGetSCAXVarWeights(const ring r) |
---|
2409 | { |
---|
2410 | const unsigned int N = r->N; |
---|
2411 | |
---|
2412 | const int CommutativeVariable = 1; |
---|
2413 | const int AntiCommutativeVariable = 0; |
---|
2414 | |
---|
2415 | intvec* w = new intvec(N, 1, CommutativeVariable); |
---|
2416 | |
---|
2417 | if( rIsSCA(r) ) |
---|
2418 | { |
---|
2419 | const unsigned int m_iFirstAltVar = scaFirstAltVar(r); |
---|
2420 | const unsigned int m_iLastAltVar = scaLastAltVar(r); |
---|
2421 | |
---|
2422 | for (unsigned int i = m_iFirstAltVar; i<= m_iLastAltVar; i++) |
---|
2423 | { |
---|
2424 | (*w)[i-1] = AntiCommutativeVariable; |
---|
2425 | } |
---|
2426 | } |
---|
2427 | return w; |
---|
2428 | } |
---|
2429 | |
---|
2430 | |
---|
2431 | // returns an intvector with [nvars(r)] integers [1/0] |
---|
2432 | // 0 - for commutative variables |
---|
2433 | // 1 - for anticommutative variables |
---|
2434 | intvec *ivGetSCAYVarWeights(const ring r) |
---|
2435 | { |
---|
2436 | const unsigned int N = r->N; |
---|
2437 | |
---|
2438 | const int CommutativeVariable = 0; |
---|
2439 | const int AntiCommutativeVariable = 1; |
---|
2440 | |
---|
2441 | intvec* w = new intvec(N, 1, CommutativeVariable); |
---|
2442 | |
---|
2443 | if( rIsSCA(r) ) |
---|
2444 | { |
---|
2445 | const unsigned int m_iFirstAltVar = scaFirstAltVar(r); |
---|
2446 | const unsigned int m_iLastAltVar = scaLastAltVar(r); |
---|
2447 | |
---|
2448 | for (unsigned int i = m_iFirstAltVar; i<= m_iLastAltVar; i++) |
---|
2449 | { |
---|
2450 | (*w)[i-1] = AntiCommutativeVariable; |
---|
2451 | } |
---|
2452 | } |
---|
2453 | return w; |
---|
2454 | } |
---|
2455 | |
---|
2456 | |
---|
2457 | |
---|
2458 | |
---|
2459 | // reduce term lt(m) modulo <y_i^2> , i = iFirstAltVar .. iLastAltVar: |
---|
2460 | // either create a copy of m or return NULL |
---|
2461 | inline poly m_KillSquares(const poly m, |
---|
2462 | const unsigned int iFirstAltVar, const unsigned int iLastAltVar, |
---|
2463 | const ring r) |
---|
2464 | { |
---|
2465 | #ifdef PDEBUG |
---|
2466 | p_Test(m, r); |
---|
2467 | assume( (iFirstAltVar >= 1) && (iLastAltVar <= r->N) && (iFirstAltVar <= iLastAltVar) ); |
---|
2468 | |
---|
2469 | #if 0 |
---|
2470 | Print("m_KillSquares, m = "); // ! |
---|
2471 | p_Write(m, r); |
---|
2472 | #endif |
---|
2473 | #endif |
---|
2474 | |
---|
2475 | assume( m != NULL ); |
---|
2476 | |
---|
2477 | for(unsigned int k = iFirstAltVar; k <= iLastAltVar; k++) |
---|
2478 | if( p_GetExp(m, k, r) > 1 ) |
---|
2479 | return NULL; |
---|
2480 | |
---|
2481 | return p_Head(m, r); |
---|
2482 | } |
---|
2483 | |
---|
2484 | |
---|
2485 | // reduce polynomial p modulo <y_i^2> , i = iFirstAltVar .. iLastAltVar |
---|
2486 | poly p_KillSquares(const poly p, |
---|
2487 | const unsigned int iFirstAltVar, const unsigned int iLastAltVar, |
---|
2488 | const ring r) |
---|
2489 | { |
---|
2490 | #ifdef PDEBUG |
---|
2491 | p_Test(p, r); |
---|
2492 | |
---|
2493 | assume( (iFirstAltVar >= 1) && (iLastAltVar <= r->N) && (iFirstAltVar <= iLastAltVar) ); |
---|
2494 | |
---|
2495 | #if 0 |
---|
2496 | Print("p_KillSquares, p = "); // ! |
---|
2497 | p_Write(p, r); |
---|
2498 | #endif |
---|
2499 | #endif |
---|
2500 | |
---|
2501 | |
---|
2502 | if( p == NULL ) |
---|
2503 | return NULL; |
---|
2504 | |
---|
2505 | poly pResult = NULL; |
---|
2506 | poly* ppPrev = &pResult; |
---|
2507 | |
---|
2508 | for( poly q = p; q!= NULL; pIter(q) ) |
---|
2509 | { |
---|
2510 | #ifdef PDEBUG |
---|
2511 | p_Test(q, r); |
---|
2512 | #endif |
---|
2513 | |
---|
2514 | // terms will be in the same order because of quasi-ordering! |
---|
2515 | poly v = m_KillSquares(q, iFirstAltVar, iLastAltVar, r); |
---|
2516 | |
---|
2517 | if( v != NULL ) |
---|
2518 | { |
---|
2519 | *ppPrev = v; |
---|
2520 | ppPrev = &pNext(v); |
---|
2521 | } |
---|
2522 | |
---|
2523 | } |
---|
2524 | |
---|
2525 | #ifdef PDEBUG |
---|
2526 | p_Test(pResult, r); |
---|
2527 | #if 0 |
---|
2528 | Print("p_KillSquares => "); // ! |
---|
2529 | p_Write(pResult, r); |
---|
2530 | #endif |
---|
2531 | #endif |
---|
2532 | |
---|
2533 | return(pResult); |
---|
2534 | } |
---|
2535 | |
---|
2536 | |
---|
2537 | |
---|
2538 | |
---|
2539 | // reduces ideal id modulo <y_i^2> , i = iFirstAltVar .. iLastAltVar |
---|
2540 | // returns the reduced ideal or zero ideal. |
---|
2541 | ideal id_KillSquares(const ideal id, |
---|
2542 | const unsigned int iFirstAltVar, const unsigned int iLastAltVar, |
---|
2543 | const ring r) |
---|
2544 | { |
---|
2545 | if (id == NULL) return id; // zero ideal |
---|
2546 | |
---|
2547 | assume( (iFirstAltVar >= 1) && (iLastAltVar <= r->N) && (iFirstAltVar <= iLastAltVar) ); |
---|
2548 | |
---|
2549 | const int iSize = id->idelems(); |
---|
2550 | |
---|
2551 | if (iSize == 0) return id; |
---|
2552 | |
---|
2553 | ideal temp = idInit(iSize, id->rank); |
---|
2554 | |
---|
2555 | #if 0 |
---|
2556 | PrintS("<id_KillSquares>\n"); |
---|
2557 | { |
---|
2558 | Print("ideal id: \n"); |
---|
2559 | for (int i = 0; i < id->idelems(); i++) |
---|
2560 | { |
---|
2561 | Print("; id[%d] = ", i+1); |
---|
2562 | p_Write(id->m[i], r); |
---|
2563 | } |
---|
2564 | Print(";\n"); |
---|
2565 | PrintLn(); |
---|
2566 | } |
---|
2567 | #endif |
---|
2568 | |
---|
2569 | |
---|
2570 | for (int j = 0; j < iSize; j++) |
---|
2571 | temp->m[j] = p_KillSquares(id->m[j], iFirstAltVar, iLastAltVar, r); |
---|
2572 | |
---|
2573 | idSkipZeroes(temp); |
---|
2574 | |
---|
2575 | #if 0 |
---|
2576 | PrintS("<id_KillSquares>\n"); |
---|
2577 | { |
---|
2578 | Print("ideal temp: \n"); |
---|
2579 | for (int i = 0; i < temp->idelems(); i++) |
---|
2580 | { |
---|
2581 | Print("; temp[%d] = ", i+1); |
---|
2582 | p_Write(temp->m[i], r); |
---|
2583 | } |
---|
2584 | Print(";\n"); |
---|
2585 | PrintLn(); |
---|
2586 | } |
---|
2587 | PrintS("</id_KillSquares>\n"); |
---|
2588 | #endif |
---|
2589 | |
---|
2590 | // temp->rank = idRankFreeModule(temp, r); |
---|
2591 | |
---|
2592 | return temp; |
---|
2593 | } |
---|
2594 | |
---|
2595 | |
---|
2596 | |
---|
2597 | |
---|
2598 | #endif |
---|