1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* |
---|
5 | * ABSTRACT: kernel: utils for shift GB and free GB |
---|
6 | */ |
---|
7 | |
---|
8 | #ifdef HAVE_CONFIG_H |
---|
9 | #include "config.h" |
---|
10 | #endif /* HAVE_CONFIG_H */ |
---|
11 | #include <kernel/mod2.h> |
---|
12 | |
---|
13 | #ifdef HAVE_SHIFTBBA |
---|
14 | #include <kernel/febase.h> |
---|
15 | #include <polys/monomials/ring.h> |
---|
16 | #include <kernel/polys.h> |
---|
17 | #include <coeffs/numbers.h> |
---|
18 | #include <kernel/ideals.h> |
---|
19 | #include <polys/matpol.h> |
---|
20 | #include <polys/kbuckets.h> |
---|
21 | #include <kernel/kstd1.h> |
---|
22 | #include <polys/sbuckets.h> |
---|
23 | #include <polys/operations/p_Mult_q.h> |
---|
24 | #include <kernel/kutil.h> |
---|
25 | #include <kernel/structs.h> |
---|
26 | #include <omalloc/omalloc.h> |
---|
27 | #include <kernel/khstd.h> |
---|
28 | #include <polys/kbuckets.h> |
---|
29 | #include <polys/weight.h> |
---|
30 | #include <misc/intvec.h> |
---|
31 | #include <kernel/structs.h> |
---|
32 | #include <kernel/kInline.h> |
---|
33 | #include <kernel/stairc.h> |
---|
34 | #include <polys/weight.h> |
---|
35 | #include <misc/intvec.h> |
---|
36 | #include <kernel/timer.h> |
---|
37 | #include <kernel/shiftgb.h> |
---|
38 | #include <polys/nc/sca.h> |
---|
39 | |
---|
40 | |
---|
41 | #define freeT(A,v) omFreeSize((ADDRESS)A,(v+1)*sizeof(int)) |
---|
42 | |
---|
43 | |
---|
44 | /* TODO: write p* stuff as instances of p_* for all the functions */ |
---|
45 | /* p_* functions are new, p* are old */ |
---|
46 | |
---|
47 | poly p_LPshiftT(poly p, int sh, int uptodeg, int lV, kStrategy strat, const ring r) |
---|
48 | { |
---|
49 | /* assume shift takes place, shifts the poly p by sh */ |
---|
50 | /* p is like TObject: lm in currRing = r, tail in tailRing */ |
---|
51 | |
---|
52 | if (p==NULL) return(p); |
---|
53 | |
---|
54 | assume(p_LmCheckIsFromRing(p,r)); |
---|
55 | assume(p_CheckIsFromRing(pNext(p),strat->tailRing)); |
---|
56 | |
---|
57 | /* assume sh and uptodeg agree TODO check */ |
---|
58 | |
---|
59 | if (sh == 0) return(p); /* the zero shift */ |
---|
60 | |
---|
61 | poly q = NULL; |
---|
62 | poly s = p_mLPshift(p, sh, uptodeg, lV, r); // lm in currRing |
---|
63 | poly pp = pNext(p); |
---|
64 | |
---|
65 | while (pp != NULL) |
---|
66 | { |
---|
67 | q = p_Add_q(q, p_mLPshift(pp,sh,uptodeg,lV,strat->tailRing),strat->tailRing); |
---|
68 | pIter(pp); |
---|
69 | } |
---|
70 | pNext(s) = q; |
---|
71 | /* int version: returns TRUE if it was successful */ |
---|
72 | return(s); |
---|
73 | } |
---|
74 | |
---|
75 | |
---|
76 | poly p_LPshift(poly p, int sh, int uptodeg, int lV, const ring r) |
---|
77 | { |
---|
78 | /* assume shift takes place */ |
---|
79 | /* shifts the poly p from the ring r by sh */ |
---|
80 | |
---|
81 | /* assume sh and uptodeg agree TODO check */ |
---|
82 | |
---|
83 | if (p==NULL) return(p); |
---|
84 | if (sh == 0) return(p); /* the zero shift */ |
---|
85 | |
---|
86 | poly q = NULL; |
---|
87 | poly pp = p; // do not take copies |
---|
88 | while (pp!=NULL) |
---|
89 | { |
---|
90 | q = p_Add_q(q, p_mLPshift(pp,sh,uptodeg,lV,r),r); |
---|
91 | pIter(pp); |
---|
92 | } |
---|
93 | return(q); |
---|
94 | } |
---|
95 | |
---|
96 | poly p_mLPshift(poly p, int sh, int uptodeg, int lV, const ring r) |
---|
97 | { |
---|
98 | /* p is a monomial from the ring r */ |
---|
99 | |
---|
100 | if (sh == 0) return(p); /* the zero shift */ |
---|
101 | |
---|
102 | if (sh < 0 ) |
---|
103 | { |
---|
104 | #ifdef PDEBUG |
---|
105 | PrintS("pmLPshift: negative shift requested\n"); |
---|
106 | #endif |
---|
107 | return(NULL); /* violation, 2check */ |
---|
108 | } |
---|
109 | |
---|
110 | int L = p_mLastVblock(p,lV,r); |
---|
111 | if (L+sh-1 > uptodeg) |
---|
112 | { |
---|
113 | #ifdef PDEBUG |
---|
114 | PrintS("p_mLPshift: too big shift requested\n"); |
---|
115 | #endif |
---|
116 | return(NULL); /* violation, 2check */ |
---|
117 | } |
---|
118 | int *e=(int *)omAlloc0((r->N+1)*sizeof(int)); |
---|
119 | int *s=(int *)omAlloc0((r->N+1)*sizeof(int)); |
---|
120 | p_GetExpV(p,e,r); |
---|
121 | |
---|
122 | int j; |
---|
123 | // for (j=1; j<=r->N; j++) |
---|
124 | // L*lV gives the last position of the last block |
---|
125 | for (j=1; j<= L*lV ; j++) |
---|
126 | { |
---|
127 | if (e[j]==1) |
---|
128 | { |
---|
129 | s[j + (sh*lV)] = e[j]; /* actually 1 */ |
---|
130 | #ifdef PDEBUG |
---|
131 | omCheckAddr(s); |
---|
132 | #endif |
---|
133 | } |
---|
134 | #ifdef PDEBUG |
---|
135 | else |
---|
136 | { |
---|
137 | if (e[j]!=0) |
---|
138 | { |
---|
139 | // Print("p_mLPshift: ex[%d]=%d\n",j,e[j]); |
---|
140 | } |
---|
141 | } |
---|
142 | #endif |
---|
143 | } |
---|
144 | poly m = p_One(r); |
---|
145 | p_SetExpV(m,s,r); |
---|
146 | freeT(e, r->N); |
---|
147 | freeT(s, r->N); |
---|
148 | /* pSetm(m); */ /* done in the pSetExpV */ |
---|
149 | /* think on the component and coefficient */ |
---|
150 | // number c = pGetCoeff(p); |
---|
151 | // p_SetCoeff0(m,p_GetCoeff(p,r),r); |
---|
152 | p_SetComp(m,p_GetComp(p,r),r); // component is preserved |
---|
153 | p_SetCoeff0(m,n_Copy(p_GetCoeff(p,r),r->cf),r); // coeff is preserved |
---|
154 | return(m); |
---|
155 | } |
---|
156 | |
---|
157 | poly pLPshift(poly p, int sh, int uptodeg, int lV) |
---|
158 | { |
---|
159 | /* assume shift takes place */ |
---|
160 | /* shifts the poly p by sh */ |
---|
161 | /* deletes p */ |
---|
162 | |
---|
163 | /* assume sh and uptodeg agree */ |
---|
164 | |
---|
165 | if (sh == 0) return(p); /* the zero shift */ |
---|
166 | |
---|
167 | poly q = NULL; |
---|
168 | poly pp = p; // pCopy(p); |
---|
169 | while (pp!=NULL) |
---|
170 | { |
---|
171 | q = p_Add_q(q, pmLPshift(pp,sh,uptodeg,lV),currRing); |
---|
172 | pIter(pp); |
---|
173 | } |
---|
174 | /* delete pp? */ |
---|
175 | /* int version: returns TRUE if it was successful */ |
---|
176 | return(q); |
---|
177 | } |
---|
178 | |
---|
179 | poly pmLPshift(poly p, int sh, int uptodeg, int lV) |
---|
180 | { |
---|
181 | /* TODO: use a shortcut with p_ version */ |
---|
182 | /* pm is a monomial */ |
---|
183 | |
---|
184 | if (sh == 0) return(p); /* the zero shift */ |
---|
185 | |
---|
186 | if (sh < 0 ) |
---|
187 | { |
---|
188 | #ifdef PDEBUG |
---|
189 | PrintS("pmLPshift: negative shift requested\n"); |
---|
190 | #endif |
---|
191 | return(NULL); /* violation, 2check */ |
---|
192 | } |
---|
193 | |
---|
194 | int L = pmLastVblock(p,lV); |
---|
195 | if (L+sh-1 > uptodeg) |
---|
196 | { |
---|
197 | #ifdef PDEBUG |
---|
198 | PrintS("pmLPshift: too big shift requested\n"); |
---|
199 | #endif |
---|
200 | return(NULL); /* violation, 2check */ |
---|
201 | } |
---|
202 | int *e=(int *)omAlloc0((currRing->N+1)*sizeof(int)); |
---|
203 | int *s=(int *)omAlloc0((currRing->N+1)*sizeof(int)); |
---|
204 | pGetExpV(p,e); |
---|
205 | number c = pGetCoeff(p); |
---|
206 | int j; |
---|
207 | for (j=1; j<=currRing->N; j++) |
---|
208 | { |
---|
209 | if (e[j]==1) |
---|
210 | { |
---|
211 | s[j + (sh*lV)] = e[j]; /* actually 1 */ |
---|
212 | } |
---|
213 | } |
---|
214 | poly m = pOne(); |
---|
215 | pSetExpV(m,s); |
---|
216 | /* pSetm(m); */ /* done in the pSetExpV */ |
---|
217 | /* think on the component */ |
---|
218 | pSetCoeff0(m,c); |
---|
219 | freeT(e, currRing->N); |
---|
220 | freeT(s, currRing->N); |
---|
221 | return(m); |
---|
222 | } |
---|
223 | |
---|
224 | int pLastVblock(poly p, int lV) |
---|
225 | { |
---|
226 | /* returns the number of maximal block */ |
---|
227 | /* appearing among the monomials of p */ |
---|
228 | /* the 0th block is the 1st one */ |
---|
229 | poly q = p; //p_Copy(p,currRing); /* need it ? */ |
---|
230 | int ans = 0; |
---|
231 | int ansnew = 0; |
---|
232 | while (q!=NULL) |
---|
233 | { |
---|
234 | ansnew = pmLastVblock(q,lV); |
---|
235 | ans = si_max(ans,ansnew); |
---|
236 | pIter(q); |
---|
237 | } |
---|
238 | /* do not need to delete q */ |
---|
239 | return(ans); |
---|
240 | } |
---|
241 | |
---|
242 | int pmLastVblock(poly p, int lV) |
---|
243 | { |
---|
244 | /* for a monomial p, returns the number of the last block */ |
---|
245 | /* where a nonzero exponent is sitting */ |
---|
246 | if (pIsConstantPoly(p)) |
---|
247 | { |
---|
248 | return(int(0)); |
---|
249 | } |
---|
250 | int *e=(int *)omAlloc0((currRing->N+1)*sizeof(int)); |
---|
251 | pGetExpV(p,e); |
---|
252 | int j,b; |
---|
253 | j = currRing->N; |
---|
254 | while ( (!e[j]) && (j>=1) ) j--; |
---|
255 | freeT(e, currRing->N); |
---|
256 | if (j==0) |
---|
257 | { |
---|
258 | #ifdef PDEBUG |
---|
259 | PrintS("pmLastVblock: unexpected zero exponent vector\n"); |
---|
260 | #endif |
---|
261 | return(j); |
---|
262 | } |
---|
263 | b = (int)(j/lV) + 1; /* the number of the block, >=1 */ |
---|
264 | return (b); |
---|
265 | } |
---|
266 | |
---|
267 | int p_LastVblockT(poly p, int lV, kStrategy strat, const ring r) |
---|
268 | { |
---|
269 | /* returns the number of maximal block */ |
---|
270 | /* appearing among the monomials of p */ |
---|
271 | /* the 0th block is the 1st one */ |
---|
272 | |
---|
273 | /* p is like TObject: lm in currRing = r, tail in tailRing */ |
---|
274 | assume(p_LmCheckIsFromRing(p,r)); |
---|
275 | assume(p_CheckIsFromRing(pNext(p),strat->tailRing)); |
---|
276 | |
---|
277 | int ans = p_mLastVblock(p, lV, r); // Block of LM |
---|
278 | poly q = pNext(p); |
---|
279 | int ansnew = 0; |
---|
280 | while (q != NULL) |
---|
281 | { |
---|
282 | ansnew = p_mLastVblock(q, lV, strat->tailRing); |
---|
283 | ans = si_max(ans,ansnew); |
---|
284 | pIter(q); |
---|
285 | } |
---|
286 | /* do not need to delete q */ |
---|
287 | return(ans); |
---|
288 | } |
---|
289 | |
---|
290 | int p_LastVblock(poly p, int lV, const ring r) |
---|
291 | { |
---|
292 | /* returns the number of maximal block */ |
---|
293 | /* appearing among the monomials of p */ |
---|
294 | /* the 0th block is the 1st one */ |
---|
295 | poly q = p; //p_Copy(p,currRing); /* need it ? */ |
---|
296 | int ans = 0; |
---|
297 | int ansnew = 0; |
---|
298 | while (q!=NULL) |
---|
299 | { |
---|
300 | ansnew = p_mLastVblock(q, lV, r); |
---|
301 | ans = si_max(ans,ansnew); |
---|
302 | pIter(q); |
---|
303 | } |
---|
304 | /* do not need to delete q */ |
---|
305 | return(ans); |
---|
306 | } |
---|
307 | |
---|
308 | int p_mLastVblock(poly p, int lV, const ring r) |
---|
309 | { |
---|
310 | /* for a monomial p, returns the number of the last block */ |
---|
311 | /* where a nonzero exponent is sitting */ |
---|
312 | if (p_LmIsConstant(p,r)) |
---|
313 | { |
---|
314 | return(0); |
---|
315 | } |
---|
316 | int *e=(int *)omAlloc0((r->N+1)*sizeof(int)); |
---|
317 | p_GetExpV(p,e,r); |
---|
318 | int j,b; |
---|
319 | j = r->N; |
---|
320 | while ( (!e[j]) && (j>=1) ) j--; |
---|
321 | if (j==0) |
---|
322 | { |
---|
323 | #ifdef PDEBUG |
---|
324 | PrintS("pmLastVblock: unexpected zero exponent vector\n"); |
---|
325 | #endif |
---|
326 | return(j); |
---|
327 | } |
---|
328 | b = (int)((j+lV-1)/lV); /* the number of the block, >=1 */ |
---|
329 | freeT(e,r->N); |
---|
330 | return (b); |
---|
331 | } |
---|
332 | |
---|
333 | int pFirstVblock(poly p, int lV) |
---|
334 | { |
---|
335 | /* returns the number of maximal block */ |
---|
336 | /* appearing among the monomials of p */ |
---|
337 | /* the 0th block is the 1st one */ |
---|
338 | poly q = p; //p_Copy(p,currRing); /* need it ? */ |
---|
339 | int ans = 0; |
---|
340 | int ansnew = 0; |
---|
341 | while (q!=NULL) |
---|
342 | { |
---|
343 | ansnew = pmFirstVblock(q,lV); |
---|
344 | ans = si_min(ans,ansnew); |
---|
345 | pIter(q); |
---|
346 | } |
---|
347 | /* do not need to delete q */ |
---|
348 | return(ans); |
---|
349 | } |
---|
350 | |
---|
351 | int pmFirstVblock(poly p, int lV) |
---|
352 | { |
---|
353 | if (pIsConstantPoly(p)) |
---|
354 | { |
---|
355 | return(int(0)); |
---|
356 | } |
---|
357 | /* for a monomial p, returns the number of the first block */ |
---|
358 | /* where a nonzero exponent is sitting */ |
---|
359 | int *e=(int *)omAlloc0((currRing->N+1)*sizeof(int)); |
---|
360 | pGetExpV(p,e); |
---|
361 | int j,b; |
---|
362 | j = 1; |
---|
363 | while ( (!e[j]) && (j<=currRing->N-1) ) j++; |
---|
364 | if (j==currRing->N + 1) |
---|
365 | { |
---|
366 | #ifdef PDEBUG |
---|
367 | PrintS("pmFirstVblock: unexpected zero exponent vector\n"); |
---|
368 | #endif |
---|
369 | return(j); |
---|
370 | } |
---|
371 | b = (int)(j/lV)+1; /* the number of the block, 1<= N <= currRing->N */ |
---|
372 | return (b); |
---|
373 | } |
---|
374 | |
---|
375 | /* there should be two routines: */ |
---|
376 | /* 1. test place-squarefreeness: in homog this suffices: isInV */ |
---|
377 | /* 2. test the presence of a hole -> in the tail??? */ |
---|
378 | |
---|
379 | int isInV(poly p, int lV) |
---|
380 | { |
---|
381 | /* investigate only the leading monomial of p in currRing */ |
---|
382 | if ( pIsConstant(p) ) return(1); |
---|
383 | if (lV <= 0) return(0); |
---|
384 | /* returns 1 iff p is in V */ |
---|
385 | /* that is in each block up to a certain one there is only one nonzero exponent */ |
---|
386 | /* lV = the length of V = the number of orig vars */ |
---|
387 | int *e = (int *)omAlloc0((currRing->N+1)*sizeof(int)); |
---|
388 | int b = (int)((currRing->N +lV-1)/lV); /* the number of blocks */ |
---|
389 | //int b = (int)(currRing->N)/lV; |
---|
390 | int *B = (int *)omAlloc0((b+1)*sizeof(int)); /* the num of elements in a block */ |
---|
391 | pGetExpV(p,e); |
---|
392 | int i,j; |
---|
393 | for (j=1; j<=b; j++) |
---|
394 | { |
---|
395 | /* we go through all the vars */ |
---|
396 | /* by blocks in lV vars */ |
---|
397 | for (i=(j-1)*lV + 1; i<= j*lV; i++) |
---|
398 | { |
---|
399 | if (e[i]) B[j] = B[j]+1; |
---|
400 | } |
---|
401 | } |
---|
402 | // j = b; |
---|
403 | // while ( (!B[j]) && (j>=1)) j--; |
---|
404 | for (j=b; j>=1; j--) |
---|
405 | { |
---|
406 | if (B[j]!=0) break; |
---|
407 | } |
---|
408 | /* do not need e anymore */ |
---|
409 | freeT(e, currRing->N); |
---|
410 | |
---|
411 | if (j==0) goto ret_true; |
---|
412 | // { |
---|
413 | // /* it is a zero exp vector, which is in V */ |
---|
414 | // freeT(B, b); |
---|
415 | // return(1); |
---|
416 | // } |
---|
417 | /* now B[j] != 0 and we test place-squarefreeness */ |
---|
418 | for (; j>=1; j--) |
---|
419 | { |
---|
420 | if (B[j]!=1) |
---|
421 | { |
---|
422 | freeT(B, b); |
---|
423 | return(0); |
---|
424 | } |
---|
425 | } |
---|
426 | ret_true: |
---|
427 | freeT(B, b); |
---|
428 | return(1); |
---|
429 | } |
---|
430 | |
---|
431 | int poly_isInV(poly p, int lV) |
---|
432 | { |
---|
433 | /* tests whether the whole polynomial p in in V */ |
---|
434 | poly q = p; |
---|
435 | while (q!=NULL) |
---|
436 | { |
---|
437 | if ( !isInV(q,lV) ) |
---|
438 | { |
---|
439 | return(0); |
---|
440 | } |
---|
441 | q = pNext(q); |
---|
442 | } |
---|
443 | return(1); |
---|
444 | } |
---|
445 | |
---|
446 | int ideal_isInV(ideal I, int lV) |
---|
447 | { |
---|
448 | /* tests whether each polynomial of an ideal I lies in in V */ |
---|
449 | int i; |
---|
450 | int s = IDELEMS(I)-1; |
---|
451 | for(i = 0; i <= s; i++) |
---|
452 | { |
---|
453 | if ( !poly_isInV(I->m[i],lV) ) |
---|
454 | { |
---|
455 | return(0); |
---|
456 | } |
---|
457 | } |
---|
458 | return(1); |
---|
459 | } |
---|
460 | |
---|
461 | |
---|
462 | int itoInsert(poly p, int uptodeg, int lV, const ring r) |
---|
463 | { |
---|
464 | /* for poly in lmCR/tailTR presentation */ |
---|
465 | /* the below situation (commented out) might happen! */ |
---|
466 | // if (r == currRing) |
---|
467 | // { |
---|
468 | // "Current ring is not expected in toInsert"; |
---|
469 | // return(0); |
---|
470 | // } |
---|
471 | /* compute the number of insertions */ |
---|
472 | int i = p_mLastVblock(p, lV, currRing); |
---|
473 | if (pNext(p) != NULL) |
---|
474 | { |
---|
475 | i = si_max(i, p_LastVblock(pNext(p), lV, r) ); |
---|
476 | } |
---|
477 | // i = uptodeg - i +1; |
---|
478 | i = uptodeg - i; |
---|
479 | // p_wrp(p,currRing,r); Print("----i:%d",i); PrintLn(); |
---|
480 | return(i); |
---|
481 | } |
---|
482 | |
---|
483 | poly p_ShrinkT(poly p, int lV, kStrategy strat, const ring r) |
---|
484 | //poly p_Shrink(poly p, int uptodeg, int lV, kStrategy strat, const ring r) |
---|
485 | { |
---|
486 | /* p is like TObject: lm in currRing = r, tail in tailRing */ |
---|
487 | /* proc shrinks the poly p in ring r */ |
---|
488 | /* lV = the length of V = the number of orig vars */ |
---|
489 | /* check assumes/exceptions */ |
---|
490 | /* r->N is a multiple of lV */ |
---|
491 | |
---|
492 | if (p==NULL) return(p); |
---|
493 | |
---|
494 | assume(p_LmCheckIsFromRing(p,r)); |
---|
495 | assume(p_CheckIsFromRing(pNext(p),strat->tailRing)); |
---|
496 | |
---|
497 | poly q = NULL; |
---|
498 | poly s = p_mShrink(p, lV, r); // lm in currRing |
---|
499 | poly pp = pNext(p); |
---|
500 | |
---|
501 | while (pp != NULL) |
---|
502 | { |
---|
503 | // q = p_Add_q(q, p_mShrink(pp,uptodeg,lV,strat->tailRing),strat->tailRing); |
---|
504 | q = p_Add_q(q, p_mShrink(pp,lV,strat->tailRing),strat->tailRing); |
---|
505 | pIter(pp); |
---|
506 | } |
---|
507 | pNext(s) = q; |
---|
508 | return(s); |
---|
509 | } |
---|
510 | |
---|
511 | poly p_Shrink(poly p, int lV, const ring r) |
---|
512 | { |
---|
513 | /* proc shrinks the poly p in ring r */ |
---|
514 | /* lV = the length of V = the number of orig vars */ |
---|
515 | /* check assumes/exceptions */ |
---|
516 | /* r->N is a multiple of lV */ |
---|
517 | |
---|
518 | if (p==NULL) return(p); |
---|
519 | assume(p_CheckIsFromRing(p,r)); |
---|
520 | poly q = NULL; |
---|
521 | poly pp = p; |
---|
522 | |
---|
523 | while (pp != NULL) |
---|
524 | { |
---|
525 | q = p_Add_q(q, p_mShrink(pp,lV,r),r); |
---|
526 | pIter(pp); |
---|
527 | } |
---|
528 | return(q); |
---|
529 | } |
---|
530 | |
---|
531 | poly p_mShrink(poly p, int lV, const ring r) |
---|
532 | { |
---|
533 | /* shrinks the monomial p in ring r */ |
---|
534 | /* lV = the length of V = the number of orig vars */ |
---|
535 | |
---|
536 | /* check assumes/exceptions */ |
---|
537 | /* r->N is a multiple of lV */ |
---|
538 | |
---|
539 | int *e = (int *)omAlloc0((r->N+1)*sizeof(int)); |
---|
540 | int b = (int)((r->N +lV-1)/lV); /* the number of blocks */ |
---|
541 | // int *B = (int *)omAlloc0((b+1)*sizeof(int)); /* the num of elements in a block */ |
---|
542 | int *S = (int *)omAlloc0((r->N+1)*sizeof(int)); /* the shrinked exponent */ |
---|
543 | p_GetExpV(p,e,r); |
---|
544 | int i,j; int cnt = 1; //counter for blocks in S |
---|
545 | for (j=1; j<=b; j++) |
---|
546 | { |
---|
547 | /* we go through all the vars */ |
---|
548 | /* by blocks in lV vars */ |
---|
549 | for (i=(j-1)*lV + 1; i<= j*lV; i++) |
---|
550 | { |
---|
551 | if (e[i]==1) |
---|
552 | { |
---|
553 | // B[j] = B[j]+1; // for control in V? |
---|
554 | S[(cnt-1)*lV + (i - (j-1)*lV)] = e[i]; |
---|
555 | /* assuming we are in V, can interrupt here */ |
---|
556 | cnt++; |
---|
557 | // break; //results in incomplete shrink! |
---|
558 | i = j*lV; // manual break under assumption p is in V |
---|
559 | } |
---|
560 | } |
---|
561 | } |
---|
562 | #ifdef PDEBUG |
---|
563 | // Print("p_mShrink: cnt = [%d], b = %d\n",cnt,b); |
---|
564 | #endif |
---|
565 | // cnt -1 <= b must hold! |
---|
566 | // freeT(B, b); |
---|
567 | poly s = p_One(r); |
---|
568 | p_SetExpV(s,S,r); |
---|
569 | freeT(e, r->N); |
---|
570 | freeT(S, r->N); |
---|
571 | /* p_Setm(s,r); // done by p_SetExpV */ |
---|
572 | p_SetComp(s,p_GetComp(p,r),r); // component is preserved |
---|
573 | p_SetCoeff(s,p_GetCoeff(p,r),r); // coeff is preserved |
---|
574 | #ifdef PDEBUG |
---|
575 | // Print("p_mShrink: from "); p_wrp(p,r); Print(" to "); p_wrp(s,r); PrintLn(); |
---|
576 | #endif |
---|
577 | return(s); |
---|
578 | } |
---|
579 | |
---|
580 | /* shiftgb stuff */ |
---|
581 | |
---|
582 | |
---|
583 | /*2 |
---|
584 | *if the leading term of p |
---|
585 | *divides the leading term of some T[i] it will be canceled |
---|
586 | */ |
---|
587 | // static inline void clearSShift (poly p, unsigned long p_sev,int l, int* at, int* k, |
---|
588 | // kStrategy strat) |
---|
589 | // { |
---|
590 | // assume(p_sev == pGetShortExpVector(p)); |
---|
591 | // if (!pLmShortDivisibleBy(p,p_sev, strat->T[*at].p, ~ strat->sevT[*at])) return; |
---|
592 | // // if (l>=strat->lenS[*at]) return; |
---|
593 | // if (TEST_OPT_PROT) |
---|
594 | // PrintS("!"); |
---|
595 | // mflush(); |
---|
596 | // //pDelete(&strat->S[*at]); |
---|
597 | // deleteInS((*at),strat); |
---|
598 | // (*at)--; |
---|
599 | // (*k)--; |
---|
600 | // // assume(lenS_correct(strat)); |
---|
601 | // } |
---|
602 | |
---|
603 | /* remarks: cleanT : just deletion |
---|
604 | enlargeT: just reallocation */ |
---|
605 | |
---|
606 | #endif |
---|