1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* $Id$ */ |
---|
5 | /* |
---|
6 | * ABSTRACT: resolutions |
---|
7 | */ |
---|
8 | |
---|
9 | |
---|
10 | #include <kernel/mod2.h> |
---|
11 | #include <misc/options.h> |
---|
12 | #include <omalloc/omalloc.h> |
---|
13 | #include <polys/polys.h> |
---|
14 | #include <kernel/febase.h> |
---|
15 | #include <kernel/kstd1.h> |
---|
16 | #include <kernel/kutil.h> |
---|
17 | #include <kernel/stairc.h> |
---|
18 | //#include "cntrlc.h" |
---|
19 | #include <misc/intvec.h> |
---|
20 | #include <coeffs/numbers.h> |
---|
21 | #include <kernel/ideals.h> |
---|
22 | #include <misc/intvec.h> |
---|
23 | #include <polys/monomials/ring.h> |
---|
24 | #include <kernel/syz.h> |
---|
25 | #include <polys/kbuckets.h> |
---|
26 | #include <polys/prCopy.h> |
---|
27 | |
---|
28 | static kBucket_pt sy0buck; |
---|
29 | |
---|
30 | static void syInitSort(ideal arg,intvec **modcomp) |
---|
31 | { |
---|
32 | int i,j,k,kk,kkk,jj; |
---|
33 | idSkipZeroes(arg); |
---|
34 | polyset F,oldF=arg->m; |
---|
35 | int Fl=IDELEMS(arg); |
---|
36 | int rkF=id_RankFreeModule(arg,currRing); |
---|
37 | int syComponentOrder=currRing->ComponentOrder; |
---|
38 | |
---|
39 | while ((Fl!=0) && (oldF[Fl-1]==NULL)) Fl--; |
---|
40 | if (*modcomp!=NULL) delete modcomp; |
---|
41 | *modcomp = new intvec(rkF+2); |
---|
42 | F=(polyset)omAlloc0(IDELEMS(arg)*sizeof(poly)); |
---|
43 | j=0; |
---|
44 | for(i=0;i<=rkF;i++) |
---|
45 | { |
---|
46 | k=0; |
---|
47 | jj = j; |
---|
48 | (**modcomp)[i] = j; |
---|
49 | while (k<Fl) |
---|
50 | { |
---|
51 | while ((k<Fl) && (pGetComp(oldF[k]) != i)) k++; |
---|
52 | if (k<Fl) |
---|
53 | { |
---|
54 | kk=jj; |
---|
55 | while ((kk<Fl) && (F[kk]) && (pLmCmp(oldF[k],F[kk])!=syComponentOrder)) |
---|
56 | { |
---|
57 | kk++; |
---|
58 | } |
---|
59 | for (kkk=j;kkk>kk;kkk--) |
---|
60 | { |
---|
61 | F[kkk] = F[kkk-1]; |
---|
62 | } |
---|
63 | F[kk] = oldF[k]; |
---|
64 | //Print("Element %d: ",kk);pWrite(F[kk]); |
---|
65 | j++; |
---|
66 | k++; |
---|
67 | } |
---|
68 | } |
---|
69 | } |
---|
70 | (**modcomp)[rkF+1] = Fl; |
---|
71 | arg->m = F; |
---|
72 | omFreeSize((ADDRESS)oldF,IDELEMS(arg)*sizeof(poly)); |
---|
73 | } |
---|
74 | |
---|
75 | static void syCreatePairs(polyset F,int lini,int wend,int k,int j,int i, |
---|
76 | polyset pairs,int regularPairs=0,ideal mW=NULL) |
---|
77 | { |
---|
78 | int l,ii=0,jj; |
---|
79 | poly p,q; |
---|
80 | |
---|
81 | while (((k<wend) && (pGetComp(F[k]) == i)) || |
---|
82 | ((currQuotient!=NULL) && (k<regularPairs+IDELEMS(currQuotient)))) |
---|
83 | { |
---|
84 | p = pOne(); |
---|
85 | if ((k<wend) && (pGetComp(F[k]) == i) && (k!=j)) |
---|
86 | pLcm(F[j],F[k],p); |
---|
87 | else if (ii<IDELEMS(currQuotient)) |
---|
88 | { |
---|
89 | q = pHead(F[j]); |
---|
90 | if (mW!=NULL) |
---|
91 | { |
---|
92 | for(jj=1;jj<=(currRing->N);jj++) |
---|
93 | pSetExp(q,jj,pGetExp(q,jj) -pGetExp(mW->m[pGetComp(q)-1],jj)); |
---|
94 | pSetm(q); |
---|
95 | } |
---|
96 | pLcm(q,currQuotient->m[ii],p); |
---|
97 | if (mW!=NULL) |
---|
98 | { |
---|
99 | for(jj=1;jj<=(currRing->N);jj++) |
---|
100 | pSetExp(p,jj,pGetExp(p,jj) +pGetExp(mW->m[pGetComp(p)-1],jj)); |
---|
101 | pSetm(p); |
---|
102 | } |
---|
103 | pDelete(&q); |
---|
104 | k = regularPairs+ii; |
---|
105 | ii++; |
---|
106 | } |
---|
107 | l=lini; |
---|
108 | while ((l<k) && ((pairs[l]==NULL) || (!pDivisibleBy(pairs[l],p)))) |
---|
109 | { |
---|
110 | if ((pairs[l]!=NULL) && (pDivisibleBy(p,pairs[l]))) |
---|
111 | pDelete(&(pairs[l])); |
---|
112 | l++; |
---|
113 | } |
---|
114 | if (l==k) |
---|
115 | { |
---|
116 | pSetm(p); |
---|
117 | pairs[l] = p; |
---|
118 | } |
---|
119 | else |
---|
120 | pDelete(&p); |
---|
121 | k++; |
---|
122 | } |
---|
123 | } |
---|
124 | |
---|
125 | static poly syRedtail2(poly p, polyset redWith, intvec *modcomp) |
---|
126 | { |
---|
127 | poly h, hn; |
---|
128 | int hncomp,nxt; |
---|
129 | int j; |
---|
130 | |
---|
131 | h = p; |
---|
132 | hn = pNext(h); |
---|
133 | while(hn != NULL) |
---|
134 | { |
---|
135 | hncomp = pGetComp(hn); |
---|
136 | j = (*modcomp)[hncomp]; |
---|
137 | nxt = (*modcomp)[hncomp+1]; |
---|
138 | while (j < nxt) |
---|
139 | { |
---|
140 | if (pLmDivisibleByNoComp(redWith[j], hn)) |
---|
141 | { |
---|
142 | //if (TEST_OPT_PROT) PrintS("r"); |
---|
143 | hn = ksOldSpolyRed(redWith[j],hn); |
---|
144 | if (hn == NULL) |
---|
145 | { |
---|
146 | pNext(h) = NULL; |
---|
147 | return p; |
---|
148 | } |
---|
149 | hncomp = pGetComp(hn); |
---|
150 | j = (*modcomp)[hncomp]; |
---|
151 | nxt = (*modcomp)[hncomp+1]; |
---|
152 | } |
---|
153 | else |
---|
154 | { |
---|
155 | j++; |
---|
156 | } |
---|
157 | } |
---|
158 | h = pNext(h) = hn; |
---|
159 | hn = pNext(h); |
---|
160 | } |
---|
161 | return p; |
---|
162 | } |
---|
163 | |
---|
164 | /*2 |
---|
165 | * computes the Schreyer syzygies in the local case |
---|
166 | * input: arg (only allocated: Shdl, Smax) |
---|
167 | * output: Shdl, Smax |
---|
168 | */ |
---|
169 | static ideal sySchreyersSyzygiesFM(ideal arg,intvec ** modcomp) |
---|
170 | { |
---|
171 | int Fl=IDELEMS(arg); |
---|
172 | while ((Fl!=0) && (arg->m[Fl-1]==NULL)) Fl--; |
---|
173 | ideal result=idInit(16,arg->rank+Fl); |
---|
174 | polyset F=arg->m,*Shdl=&(result->m); |
---|
175 | if (Fl==0) return result; |
---|
176 | |
---|
177 | int i,j,l,k,totalToRed,ecartToRed,kk,kkk; |
---|
178 | int bestEcart,totalmax,rkF,Sl=0,smax,tmax,tl; |
---|
179 | int *ecartS, *ecartT, *totalS, |
---|
180 | *totalT=NULL, *temp=NULL; |
---|
181 | polyset pairs,S,T,ST,oldF; |
---|
182 | poly p,q,toRed; |
---|
183 | BOOLEAN notFound = FALSE; |
---|
184 | intvec * newmodcomp = new intvec(Fl+2); |
---|
185 | intvec * tempcomp; |
---|
186 | |
---|
187 | //Print("Naechster Modul\n"); |
---|
188 | //idPrint(arg); |
---|
189 | /*-------------initializing the sets--------------------*/ |
---|
190 | ST=(polyset)omAlloc0(Fl*sizeof(poly)); |
---|
191 | S=(polyset)omAlloc0(Fl*sizeof(poly)); |
---|
192 | ecartS=(int*)omAlloc(Fl*sizeof(int)); |
---|
193 | totalS=(int*)omAlloc(Fl*sizeof(int)); |
---|
194 | T=(polyset)omAlloc0(2*Fl*sizeof(poly)); |
---|
195 | ecartT=(int*)omAlloc(2*Fl*sizeof(int)); |
---|
196 | totalT=(int*)omAlloc(2*Fl*sizeof(int)); |
---|
197 | pairs=(polyset)omAlloc0(Fl*sizeof(poly)); |
---|
198 | |
---|
199 | smax = Fl; |
---|
200 | tmax = 2*Fl; |
---|
201 | for (j=1;j<IDELEMS(arg);j++) |
---|
202 | { |
---|
203 | if (arg->m[j] != NULL) |
---|
204 | { |
---|
205 | assume (arg->m[j-1] != NULL); |
---|
206 | assume (pGetComp(arg->m[j-1])-pGetComp(arg->m[j])<=0); |
---|
207 | } |
---|
208 | } |
---|
209 | rkF=id_RankFreeModule(arg,currRing); |
---|
210 | /*----------------construction of the new ordering----------*/ |
---|
211 | if (rkF>0) |
---|
212 | rSetSyzComp(rkF); |
---|
213 | else |
---|
214 | rSetSyzComp(1); |
---|
215 | /*----------------creating S--------------------------------*/ |
---|
216 | for(j=0;j<Fl;j++) |
---|
217 | { |
---|
218 | S[j] = pCopy(F[j]); |
---|
219 | totalS[j] = pLDeg(S[j],&k,currRing); |
---|
220 | ecartS[j] = totalS[j]-pFDeg(S[j],currRing); |
---|
221 | //Print("%d", pGetComp(S[j]));PrintS(" "); |
---|
222 | p = S[j]; |
---|
223 | if (rkF==0) pSetCompP(p,1); |
---|
224 | while (pNext(p)!=NULL) pIter(p); |
---|
225 | pNext(p) = pHead(F[j]); |
---|
226 | pIter(p); |
---|
227 | if (rkF==0) |
---|
228 | pSetComp(p,j+2); |
---|
229 | else |
---|
230 | pSetComp(p,rkF+j+1); |
---|
231 | pSetmComp(p); |
---|
232 | } |
---|
233 | //PrintLn(); |
---|
234 | if (rkF==0) rkF = 1; |
---|
235 | /*---------------creating the initial for T----------------*/ |
---|
236 | j=0; |
---|
237 | l=-1; |
---|
238 | totalmax=-1; |
---|
239 | for (k=0;k<smax;k++) |
---|
240 | if (totalS[k]>totalmax) totalmax=totalS[k]; |
---|
241 | for (kk=1;kk<=rkF;kk++) |
---|
242 | { |
---|
243 | for (k=0;k<=totalmax;k++) |
---|
244 | { |
---|
245 | for (l=0;l<smax;l++) |
---|
246 | { |
---|
247 | if ((pGetComp(S[l])==kk) && (totalS[l]==k)) |
---|
248 | { |
---|
249 | ST[j] = S[l]; |
---|
250 | totalT[j] = totalS[l]; |
---|
251 | ecartT[j] = ecartS[l]; |
---|
252 | //Print("%d", totalS[l]);PrintS(" "); |
---|
253 | j++; |
---|
254 | } |
---|
255 | } |
---|
256 | } |
---|
257 | } |
---|
258 | //PrintLn(); |
---|
259 | for (j=0;j<smax;j++) |
---|
260 | { |
---|
261 | totalS[j] = totalT[j]; |
---|
262 | ecartS[j] = ecartT[j]; |
---|
263 | } |
---|
264 | |
---|
265 | /*---------------computing---------------------------------*/ |
---|
266 | for(j=0;j<smax;j++) |
---|
267 | { |
---|
268 | (*newmodcomp)[j+1] = Sl; |
---|
269 | i = pGetComp(S[j]); |
---|
270 | int syComponentOrder= currRing->ComponentOrder; |
---|
271 | int lini,wend; |
---|
272 | if (syComponentOrder==1) |
---|
273 | { |
---|
274 | lini=k=j+1; |
---|
275 | wend=Fl; |
---|
276 | } |
---|
277 | else |
---|
278 | { |
---|
279 | lini=k=0; |
---|
280 | while ((k<j) && (pGetComp(S[k]) != i)) k++; |
---|
281 | wend=j; |
---|
282 | } |
---|
283 | if (TEST_OPT_PROT) |
---|
284 | { |
---|
285 | Print("(%d)",Fl-j); |
---|
286 | mflush(); |
---|
287 | } |
---|
288 | syCreatePairs(S,lini,wend,k,j,i,pairs); |
---|
289 | for (k=lini;k<wend;k++) |
---|
290 | { |
---|
291 | if (pairs[k]!=NULL) |
---|
292 | { |
---|
293 | /*--------------creating T----------------------------------*/ |
---|
294 | for (l=0;l<smax;l++) |
---|
295 | { |
---|
296 | ecartT[l] = ecartS[l]; |
---|
297 | totalT[l] = totalS[l]; |
---|
298 | T[l] = ST[l]; |
---|
299 | } |
---|
300 | tl = smax; |
---|
301 | tempcomp = ivCopy(*modcomp); |
---|
302 | /*--------------begin to reduce-----------------------------*/ |
---|
303 | toRed = ksOldCreateSpoly(S[j],S[k]); |
---|
304 | ecartToRed = 1; |
---|
305 | bestEcart = 1; |
---|
306 | if (TEST_OPT_DEBUG) |
---|
307 | { |
---|
308 | PrintS("pair: ");pWrite0(S[j]);PrintS(" ");pWrite(S[k]); |
---|
309 | } |
---|
310 | if (TEST_OPT_PROT) |
---|
311 | { |
---|
312 | PrintS("."); |
---|
313 | mflush(); |
---|
314 | } |
---|
315 | //Print("Reduziere Paar %d,%d (ecart %d): \n",j,k,ecartToRed); |
---|
316 | //Print("Poly %d: ",j);pWrite(S[j]); |
---|
317 | //Print("Poly %d: ",k);pWrite(S[k]); |
---|
318 | //Print("Spoly: ");pWrite(toRed); |
---|
319 | while (pGetComp(toRed)<=rkF) |
---|
320 | { |
---|
321 | if (TEST_OPT_DEBUG) |
---|
322 | { |
---|
323 | PrintS("toRed: ");pWrite(toRed); |
---|
324 | } |
---|
325 | /* |
---|
326 | * if ((bestEcart) || (ecartToRed!=0)) |
---|
327 | * { |
---|
328 | */ |
---|
329 | totalToRed = pLDeg(toRed,&kk,currRing); |
---|
330 | ecartToRed = totalToRed-pFDeg(toRed,currRing); |
---|
331 | /* |
---|
332 | * } |
---|
333 | */ |
---|
334 | //Print("toRed now (neuer ecart %d): ",ecartToRed);pWrite(toRed); |
---|
335 | notFound = TRUE; |
---|
336 | bestEcart = 32000; //a very large integer |
---|
337 | p = NULL; |
---|
338 | int l=0; |
---|
339 | #define OLD_SEARCH |
---|
340 | #ifdef OLD_SEARCH |
---|
341 | while ((l<tl) && (pGetComp(T[l])<pGetComp(toRed))) l++; |
---|
342 | //assume (l==(**modcomp)[pGetComp(toRed)]); |
---|
343 | while ((l<tl) && (notFound)) |
---|
344 | #else |
---|
345 | l = (**modcomp)[pGetComp(toRed)]; |
---|
346 | kkk = (**modcomp)[pGetComp(toRed)+1]; |
---|
347 | while ((l<kkk) && (notFound)) |
---|
348 | #endif |
---|
349 | { |
---|
350 | if ((ecartT[l]<bestEcart) && (pDivisibleBy(T[l],toRed))) |
---|
351 | { |
---|
352 | if (ecartT[l]<=ecartToRed) notFound = FALSE; |
---|
353 | p = T[l]; |
---|
354 | bestEcart = ecartT[l]; |
---|
355 | } |
---|
356 | l++; |
---|
357 | } |
---|
358 | if (p==NULL) |
---|
359 | { |
---|
360 | WerrorS("ideal not a standard basis");//no polynom for reduction |
---|
361 | pDelete(&toRed); |
---|
362 | for(k=j;k<Fl;k++) pDelete(&(pairs[k])); |
---|
363 | omFreeSize((ADDRESS)pairs,Fl*sizeof(poly)); |
---|
364 | omFreeSize((ADDRESS)ST,Fl*sizeof(poly)); |
---|
365 | omFreeSize((ADDRESS)S,Fl*sizeof(poly)); |
---|
366 | omFreeSize((ADDRESS)T,tmax*sizeof(poly)); |
---|
367 | omFreeSize((ADDRESS)ecartT,tmax*sizeof(int)); |
---|
368 | omFreeSize((ADDRESS)totalT,tmax*sizeof(int)); |
---|
369 | omFreeSize((ADDRESS)ecartS,Fl*sizeof(int)); |
---|
370 | omFreeSize((ADDRESS)totalS,Fl*sizeof(int)); |
---|
371 | for(k=0;k<IDELEMS(result);k++) pDelete(&((*Shdl)[k])); |
---|
372 | return result; |
---|
373 | } |
---|
374 | else |
---|
375 | { |
---|
376 | //Print("reduced with (ecart %d): ",bestEcart);wrp(p);PrintLn(); |
---|
377 | if (notFound) |
---|
378 | { |
---|
379 | if (tl>=tmax) |
---|
380 | { |
---|
381 | pEnlargeSet(&T,tmax,16); |
---|
382 | tmax += 16; |
---|
383 | temp = (int*)omAlloc((tmax+16)*sizeof(int)); |
---|
384 | for(l=0;l<tmax;l++) temp[l]=totalT[l]; |
---|
385 | totalT = temp; |
---|
386 | temp = (int*)omAlloc((tmax+16)*sizeof(int)); |
---|
387 | for(l=0;l<tmax;l++) temp[l]=ecartT[l]; |
---|
388 | ecartT = temp; |
---|
389 | } |
---|
390 | //PrintS("t"); |
---|
391 | int comptR=pGetComp(toRed); |
---|
392 | for (l=tempcomp->length()-1;l>comptR;l--) |
---|
393 | { |
---|
394 | if ((*tempcomp)[l]>0) |
---|
395 | (*tempcomp)[l]++; |
---|
396 | } |
---|
397 | l=0; |
---|
398 | while ((l<tl) && (comptR>pGetComp(T[l]))) l++; |
---|
399 | while ((l<tl) && (totalT[l]<=totalToRed)) l++; |
---|
400 | for (kk=tl;kk>l;kk--) |
---|
401 | { |
---|
402 | T[kk]=T[kk-1]; |
---|
403 | totalT[kk]=totalT[kk-1]; |
---|
404 | ecartT[kk]=ecartT[kk-1]; |
---|
405 | } |
---|
406 | q = pCopy(toRed); |
---|
407 | pNorm(q); |
---|
408 | T[l] = q; |
---|
409 | totalT[l] = totalToRed; |
---|
410 | ecartT[l] = ecartToRed; |
---|
411 | tl++; |
---|
412 | } |
---|
413 | toRed = ksOldSpolyRed(p,toRed); |
---|
414 | } |
---|
415 | } |
---|
416 | //Print("toRed finally (neuer ecart %d): ",ecartToRed);pWrite(toRed); |
---|
417 | //PrintS("s"); |
---|
418 | if (pGetComp(toRed)>rkF) |
---|
419 | { |
---|
420 | if (Sl>=IDELEMS(result)) |
---|
421 | { |
---|
422 | pEnlargeSet(Shdl,IDELEMS(result),16); |
---|
423 | IDELEMS(result) += 16; |
---|
424 | } |
---|
425 | //p_Shift(&toRed,-rkF,currRing); |
---|
426 | pNorm(toRed); |
---|
427 | (*Shdl)[Sl] = toRed; |
---|
428 | Sl++; |
---|
429 | } |
---|
430 | /*----------------deleting all polys not from ST--------------*/ |
---|
431 | for(l=0;l<tl;l++) |
---|
432 | { |
---|
433 | kk=0; |
---|
434 | while ((kk<smax) && (T[l] != S[kk])) kk++; |
---|
435 | if (kk>=smax) |
---|
436 | { |
---|
437 | pDelete(&T[l]); |
---|
438 | //Print ("#"); |
---|
439 | } |
---|
440 | } |
---|
441 | delete tempcomp; |
---|
442 | } |
---|
443 | } |
---|
444 | for(k=lini;k<wend;k++) pDelete(&(pairs[k])); |
---|
445 | } |
---|
446 | (*newmodcomp)[Fl+1] = Sl; |
---|
447 | omFreeSize((ADDRESS)pairs,Fl*sizeof(poly)); |
---|
448 | omFreeSize((ADDRESS)ST,Fl*sizeof(poly)); |
---|
449 | omFreeSize((ADDRESS)S,Fl*sizeof(poly)); |
---|
450 | omFreeSize((ADDRESS)T,tmax*sizeof(poly)); |
---|
451 | omFreeSize((ADDRESS)ecartT,tmax*sizeof(int)); |
---|
452 | omFreeSize((ADDRESS)totalT,tmax*sizeof(int)); |
---|
453 | omFreeSize((ADDRESS)ecartS,Fl*sizeof(int)); |
---|
454 | omFreeSize((ADDRESS)totalS,Fl*sizeof(int)); |
---|
455 | delete *modcomp; |
---|
456 | *modcomp = newmodcomp; |
---|
457 | return result; |
---|
458 | } |
---|
459 | |
---|
460 | /*3 |
---|
461 | *special Normalform for Schreyer in factor rings |
---|
462 | */ |
---|
463 | poly sySpecNormalize(poly toNorm,ideal mW=NULL) |
---|
464 | { |
---|
465 | int j,i=0; |
---|
466 | poly p; |
---|
467 | |
---|
468 | if (toNorm==NULL) return NULL; |
---|
469 | p = pHead(toNorm); |
---|
470 | if (mW!=NULL) |
---|
471 | { |
---|
472 | for(j=1;j<=(currRing->N);j++) |
---|
473 | pSetExp(p,j,pGetExp(p,j) -pGetExp(mW->m[pGetComp(p)-1],j)); |
---|
474 | } |
---|
475 | while ((p!=NULL) && (i<IDELEMS(currQuotient))) |
---|
476 | { |
---|
477 | if (pDivisibleBy(currQuotient->m[i],p)) |
---|
478 | { |
---|
479 | //pNorm(toNorm); |
---|
480 | toNorm = ksOldSpolyRed(currQuotient->m[i],toNorm); |
---|
481 | pDelete(&p); |
---|
482 | if (toNorm==NULL) return NULL; |
---|
483 | p = pHead(toNorm); |
---|
484 | if (mW!=NULL) |
---|
485 | { |
---|
486 | for(j=1;j<=(currRing->N);j++) |
---|
487 | pSetExp(p,j,pGetExp(p,j) -pGetExp(mW->m[pGetComp(p)-1],j)); |
---|
488 | } |
---|
489 | i = 0; |
---|
490 | } |
---|
491 | else |
---|
492 | { |
---|
493 | i++; |
---|
494 | } |
---|
495 | } |
---|
496 | pDelete(&p); |
---|
497 | return toNorm; |
---|
498 | } |
---|
499 | |
---|
500 | /*2 |
---|
501 | * computes the Schreyer syzygies in the global case |
---|
502 | * input: F |
---|
503 | * output: Shdl, Smax |
---|
504 | * modcomp, length stores the start position of the module comp. in arg |
---|
505 | */ |
---|
506 | static ideal sySchreyersSyzygiesFB(ideal arg,intvec ** modcomp,ideal mW,BOOLEAN redTail=TRUE) |
---|
507 | { |
---|
508 | int Fl=IDELEMS(arg); |
---|
509 | while ((Fl!=0) && (arg->m[Fl-1]==NULL)) Fl--; |
---|
510 | ideal result=idInit(16,Fl); |
---|
511 | int i,j,l,k,kkk,rkF,Sl=0,syComponentOrder=currRing->ComponentOrder; |
---|
512 | int fstart,wend,lini,ltR,gencQ=0; |
---|
513 | intvec *newmodcomp; |
---|
514 | int *Flength; |
---|
515 | polyset pairs,F=arg->m,*Shdl=&(result->m); |
---|
516 | poly p,q,toRed,syz,lastmonom,multWith; |
---|
517 | BOOLEAN isNotReduced=TRUE; |
---|
518 | |
---|
519 | //#define WRITE_BUCKETS |
---|
520 | #ifdef WRITE_BUCKETS |
---|
521 | PrintS("Input: \n"); |
---|
522 | ideal twr=idHead(arg); |
---|
523 | idPrint(arg); |
---|
524 | idDelete(&twr); |
---|
525 | if (modcomp!=NULL) (*modcomp)->show(0,0); |
---|
526 | #endif |
---|
527 | |
---|
528 | newmodcomp = new intvec(Fl+2); |
---|
529 | //for (j=0;j<Fl;j++) pWrite(F[j]); |
---|
530 | //PrintLn(); |
---|
531 | if (currQuotient==NULL) |
---|
532 | pairs=(polyset)omAlloc0(Fl*sizeof(poly)); |
---|
533 | else |
---|
534 | { |
---|
535 | gencQ = IDELEMS(currQuotient); |
---|
536 | pairs=(polyset)omAlloc0((Fl+gencQ)*sizeof(poly)); |
---|
537 | } |
---|
538 | rkF=id_RankFreeModule(arg,currRing); |
---|
539 | Flength = (int*)omAlloc0(Fl*sizeof(int)); |
---|
540 | for(j=0;j<Fl;j++) |
---|
541 | { |
---|
542 | Flength[j] = pLength(F[j]); |
---|
543 | } |
---|
544 | for(j=0;j<Fl;j++) |
---|
545 | { |
---|
546 | (*newmodcomp)[j+1] = Sl; |
---|
547 | if (TEST_OPT_PROT) |
---|
548 | { |
---|
549 | Print("(%d)",Fl-j); |
---|
550 | mflush(); |
---|
551 | } |
---|
552 | i = pGetComp(F[j]); |
---|
553 | if (syComponentOrder==1) |
---|
554 | { |
---|
555 | lini=k=j+1; |
---|
556 | wend=Fl; |
---|
557 | } |
---|
558 | else |
---|
559 | { |
---|
560 | lini=k=0; |
---|
561 | while ((k<j) && (pGetComp(F[k]) != i)) k++; |
---|
562 | wend=j; |
---|
563 | } |
---|
564 | syCreatePairs(F,lini,wend,k,j,i,pairs,Fl,mW); |
---|
565 | if (currQuotient!=NULL) wend = Fl+gencQ; |
---|
566 | for (k=lini;k<wend;k++) |
---|
567 | { |
---|
568 | if (pairs[k]!=NULL) |
---|
569 | { |
---|
570 | if (TEST_OPT_PROT) |
---|
571 | { |
---|
572 | PrintS("."); |
---|
573 | mflush(); |
---|
574 | } |
---|
575 | //begins to construct the syzygy |
---|
576 | if (k<Fl) |
---|
577 | { |
---|
578 | number an=nCopy(pGetCoeff(F[k])),bn=nCopy(pGetCoeff(F[j])); |
---|
579 | int ct = ksCheckCoeff(&an, &bn); |
---|
580 | syz = pCopy(pairs[k]); |
---|
581 | //syz->coef = nCopy(F[k]->coef); |
---|
582 | syz->coef = an; |
---|
583 | //syz->coef = nNeg(syz->coef); |
---|
584 | pNext(syz) = pairs[k]; |
---|
585 | lastmonom = pNext(syz); |
---|
586 | //lastmonom->coef = nCopy(F[j]->coef); |
---|
587 | lastmonom->coef = bn; |
---|
588 | lastmonom->coef = nNeg(lastmonom->coef); |
---|
589 | pSetComp(lastmonom,k+1); |
---|
590 | } |
---|
591 | else |
---|
592 | { |
---|
593 | syz = pairs[k]; |
---|
594 | syz->coef = nCopy(currQuotient->m[k-Fl]->coef); |
---|
595 | syz->coef = nNeg(syz->coef); |
---|
596 | lastmonom = syz; |
---|
597 | multWith = pDivide(syz,F[j]); |
---|
598 | multWith->coef = nCopy(currQuotient->m[k-Fl]->coef); |
---|
599 | } |
---|
600 | pSetComp(syz,j+1); |
---|
601 | pairs[k] = NULL; |
---|
602 | //the next term of the syzygy |
---|
603 | //constructs the spoly |
---|
604 | if (TEST_OPT_DEBUG) |
---|
605 | { |
---|
606 | if (k<Fl) |
---|
607 | { |
---|
608 | PrintS("pair: ");pWrite0(F[j]);PrintS(" ");pWrite(F[k]); |
---|
609 | } |
---|
610 | else |
---|
611 | { |
---|
612 | PrintS("pair: ");pWrite0(F[j]);PrintS(" ");pWrite(currQuotient->m[k-Fl]); |
---|
613 | } |
---|
614 | } |
---|
615 | if (k<Fl) |
---|
616 | toRed = ksOldCreateSpoly(F[j],F[k]); |
---|
617 | else |
---|
618 | { |
---|
619 | q = pMult_mm(pCopy(F[j]),multWith); |
---|
620 | toRed = sySpecNormalize(q,mW); |
---|
621 | pDelete(&multWith); |
---|
622 | } |
---|
623 | kBucketInit(sy0buck,toRed,-1); |
---|
624 | toRed = kBucketGetLm(sy0buck); |
---|
625 | isNotReduced = TRUE; |
---|
626 | while (toRed!=NULL) |
---|
627 | { |
---|
628 | if (TEST_OPT_DEBUG) |
---|
629 | { |
---|
630 | PrintS("toRed: ");pWrite(toRed); |
---|
631 | } |
---|
632 | // l=0; |
---|
633 | // while ((l<Fl) && (!pDivisibleBy(F[l],toRed))) l++; |
---|
634 | // if (l>=Fl) |
---|
635 | l = (**modcomp)[pGetComp(toRed)+1]-1; |
---|
636 | kkk = (**modcomp)[pGetComp(toRed)]; |
---|
637 | while ((l>=kkk) && (!pDivisibleBy(F[l],toRed))) l--; |
---|
638 | #ifdef WRITE_BUCKETS |
---|
639 | kBucketClear(sy0buck,&toRed,<R); |
---|
640 | printf("toRed in Pair[%d, %d]:", j, k); |
---|
641 | pWrite(toRed); |
---|
642 | kBucketInit(sy0buck,toRed,-1); |
---|
643 | #endif |
---|
644 | |
---|
645 | if (l<kkk) |
---|
646 | { |
---|
647 | if ((currQuotient!=NULL) && (isNotReduced)) |
---|
648 | { |
---|
649 | kBucketClear(sy0buck,&toRed,<R); |
---|
650 | toRed = sySpecNormalize(toRed,mW); |
---|
651 | #ifdef WRITE_BUCKETS |
---|
652 | printf("toRed in Pair[%d, %d]:", j, k); |
---|
653 | pWrite(toRed); |
---|
654 | #endif |
---|
655 | kBucketInit(sy0buck,toRed,-1); |
---|
656 | toRed = kBucketGetLm(sy0buck); |
---|
657 | isNotReduced = FALSE; |
---|
658 | } |
---|
659 | else |
---|
660 | { |
---|
661 | //no polynom for reduction |
---|
662 | WerrorS("ideal not a standard basis"); |
---|
663 | pDelete(&toRed); |
---|
664 | pDelete(&syz); |
---|
665 | for(k=j;k<Fl;k++) pDelete(&(pairs[k])); |
---|
666 | omFreeSize((ADDRESS)pairs,(Fl + gencQ)*sizeof(poly)); |
---|
667 | for(k=0;k<IDELEMS(result);k++) pDelete(&((*Shdl)[k])); |
---|
668 | return result; |
---|
669 | } |
---|
670 | } |
---|
671 | else |
---|
672 | { |
---|
673 | //the next monom of the syzygy |
---|
674 | isNotReduced = TRUE; |
---|
675 | if (TEST_OPT_DEBUG) |
---|
676 | { |
---|
677 | PrintS("reduced with: ");pWrite(F[l]); |
---|
678 | } |
---|
679 | pNext(lastmonom) = pHead(toRed); |
---|
680 | pIter(lastmonom); |
---|
681 | lastmonom->coef = nDiv(lastmonom->coef,F[l]->coef); |
---|
682 | //lastmonom->coef = nNeg(lastmonom->coef); |
---|
683 | pSetComp(lastmonom,l+1); |
---|
684 | //computes the new toRed |
---|
685 | number up = kBucketPolyRed(sy0buck,F[l],Flength[l],NULL); |
---|
686 | if (! nIsOne(up)) |
---|
687 | { |
---|
688 | // Thomas: Now do whatever you need to do |
---|
689 | #ifdef WRITE_BUCKETS |
---|
690 | PrintS("multiplied with: ");nWrite(up);PrintLn(); |
---|
691 | #endif |
---|
692 | pMult_nn(syz,up); |
---|
693 | } |
---|
694 | nDelete(&up); |
---|
695 | |
---|
696 | toRed = kBucketGetLm(sy0buck); |
---|
697 | //the module component of the new monom |
---|
698 | //pWrite(toRed); |
---|
699 | } |
---|
700 | } |
---|
701 | kBucketClear(sy0buck,&toRed,<R); //Zur Sichereheit |
---|
702 | //PrintLn(); |
---|
703 | if (syz!=NULL) |
---|
704 | { |
---|
705 | if (Sl>=IDELEMS(result)) |
---|
706 | { |
---|
707 | pEnlargeSet(Shdl,IDELEMS(result),16); |
---|
708 | IDELEMS(result) += 16; |
---|
709 | } |
---|
710 | pNorm(syz); |
---|
711 | if (BTEST1(OPT_REDTAIL) && redTail) |
---|
712 | { |
---|
713 | (*newmodcomp)[j+2] = Sl; |
---|
714 | (*Shdl)[Sl] = syRedtail2(syz,*Shdl,newmodcomp); |
---|
715 | (*newmodcomp)[j+2] = 0; |
---|
716 | } |
---|
717 | else |
---|
718 | (*Shdl)[Sl] = syz; |
---|
719 | Sl++; |
---|
720 | } |
---|
721 | } |
---|
722 | } |
---|
723 | // for(k=j;k<Fl;k++) pDelete(&(pairs[k])); |
---|
724 | } |
---|
725 | (*newmodcomp)[Fl+1] = Sl; |
---|
726 | if (currQuotient==NULL) |
---|
727 | omFreeSize((ADDRESS)pairs,Fl*sizeof(poly)); |
---|
728 | else |
---|
729 | omFreeSize((ADDRESS)pairs,(Fl+IDELEMS(currQuotient))*sizeof(poly)); |
---|
730 | omFreeSize((ADDRESS)Flength,Fl*sizeof(int)); |
---|
731 | delete *modcomp; |
---|
732 | *modcomp = newmodcomp; |
---|
733 | return result; |
---|
734 | } |
---|
735 | |
---|
736 | void syReOrderResolventFB(resolvente res,int length, int initial) |
---|
737 | { |
---|
738 | int syzIndex=length-1,i,j; |
---|
739 | poly p; |
---|
740 | |
---|
741 | while ((syzIndex!=0) && (res[syzIndex]==NULL)) syzIndex--; |
---|
742 | while (syzIndex>=initial) |
---|
743 | { |
---|
744 | for(i=0;i<IDELEMS(res[syzIndex]);i++) |
---|
745 | { |
---|
746 | p = res[syzIndex]->m[i]; |
---|
747 | |
---|
748 | while (p!=NULL) |
---|
749 | { |
---|
750 | if (res[syzIndex-1]->m[pGetComp(p)-1]!=NULL) |
---|
751 | { |
---|
752 | for(j=1;j<=(currRing->N);j++) |
---|
753 | { |
---|
754 | pSetExp(p,j,pGetExp(p,j) |
---|
755 | -pGetExp(res[syzIndex-1]->m[pGetComp(p)-1],j)); |
---|
756 | } |
---|
757 | } |
---|
758 | else |
---|
759 | PrintS("error in the resolvent\n"); |
---|
760 | pSetm(p); |
---|
761 | pIter(p); |
---|
762 | } |
---|
763 | } |
---|
764 | syzIndex--; |
---|
765 | } |
---|
766 | } |
---|
767 | |
---|
768 | static void syMergeSortResolventFB(resolvente res,int length, int initial=1) |
---|
769 | { |
---|
770 | int syzIndex=length-1,i,j; |
---|
771 | poly qq,pp,result=NULL; |
---|
772 | poly p; |
---|
773 | |
---|
774 | while ((syzIndex!=0) && (res[syzIndex]==NULL)) syzIndex--; |
---|
775 | while (syzIndex>=initial) |
---|
776 | { |
---|
777 | for(i=0;i<IDELEMS(res[syzIndex]);i++) |
---|
778 | { |
---|
779 | p = res[syzIndex]->m[i]; |
---|
780 | if (p != NULL) |
---|
781 | { |
---|
782 | for (;;) |
---|
783 | { |
---|
784 | qq = p; |
---|
785 | for(j=1;j<=(currRing->N);j++) |
---|
786 | { |
---|
787 | pSetExp(p,j,pGetExp(p,j) |
---|
788 | -pGetExp(res[syzIndex-1]->m[pGetComp(p)-1],j)); |
---|
789 | } |
---|
790 | pSetm(p); |
---|
791 | for (;;) |
---|
792 | { |
---|
793 | if (pNext(p) == NULL) |
---|
794 | { |
---|
795 | pAdd(result, qq); |
---|
796 | break; |
---|
797 | } |
---|
798 | pp = pNext(p); |
---|
799 | for(j=1;j<=(currRing->N);j++) |
---|
800 | { |
---|
801 | pSetExp(pp,j,pGetExp(pp,j) |
---|
802 | -pGetExp(res[syzIndex-1]->m[pGetComp(pp)-1],j)); |
---|
803 | } |
---|
804 | pSetm(pp); |
---|
805 | if (pCmp(p,pNext(p)) != 1) |
---|
806 | { |
---|
807 | pp = p; |
---|
808 | pIter(p); |
---|
809 | pNext(pp) = NULL; |
---|
810 | result = pAdd(result, qq); |
---|
811 | break; |
---|
812 | } |
---|
813 | pIter(p); |
---|
814 | } |
---|
815 | } |
---|
816 | } |
---|
817 | res[syzIndex]->m[i] = p; |
---|
818 | } |
---|
819 | syzIndex--; |
---|
820 | } |
---|
821 | } |
---|
822 | |
---|
823 | BOOLEAN syTestOrder(ideal M) |
---|
824 | { |
---|
825 | int i=id_RankFreeModule(M,currRing); |
---|
826 | if (i == 0) return FALSE; |
---|
827 | int j=0; |
---|
828 | |
---|
829 | while ((currRing->order[j]!=ringorder_c) && (currRing->order[j]!=ringorder_C)) |
---|
830 | j++; |
---|
831 | if (currRing->order[j+1]!=0) |
---|
832 | return TRUE; |
---|
833 | return FALSE; |
---|
834 | } |
---|
835 | |
---|
836 | static void idShift(ideal arg,int index) |
---|
837 | { |
---|
838 | int i,j=rGetMaxSyzComp(index); |
---|
839 | for (i=0;i<IDELEMS(arg);i++) |
---|
840 | { |
---|
841 | if (arg->m[i]!=NULL) |
---|
842 | p_Shift(&arg->m[i],-j,currRing); |
---|
843 | } |
---|
844 | } |
---|
845 | |
---|
846 | #if 0 /*debug only */ |
---|
847 | static void syPrintResolution(resolvente res,int start,int length) |
---|
848 | { |
---|
849 | while ((start < length) && (res[start])) |
---|
850 | { |
---|
851 | Print("Syz(%d): \n",start); |
---|
852 | idTest(res[start]); |
---|
853 | //idPrint(res[start]); |
---|
854 | start++; |
---|
855 | } |
---|
856 | } |
---|
857 | #endif |
---|
858 | |
---|
859 | resolvente sySchreyerResolvente(ideal arg, int maxlength, int * length, |
---|
860 | BOOLEAN isMonomial, BOOLEAN notReplace) |
---|
861 | { |
---|
862 | ideal mW=NULL; |
---|
863 | int i,syzIndex = 0,j=0; |
---|
864 | intvec * modcomp=NULL,*w=NULL; |
---|
865 | int ** wv=NULL; |
---|
866 | tHomog hom=(tHomog)idHomModule(arg,NULL,&w); |
---|
867 | ring origR = currRing; |
---|
868 | ring syRing = NULL; |
---|
869 | |
---|
870 | if ((!isMonomial) && syTestOrder(arg)) |
---|
871 | { |
---|
872 | WerrorS("sres only implemented for modules with ordering ..,c or ..,C"); |
---|
873 | return NULL; |
---|
874 | } |
---|
875 | *length = 4; |
---|
876 | resolvente res = (resolvente)omAlloc0(4*sizeof(ideal)),newres; |
---|
877 | res[0] = idCopy(arg); |
---|
878 | while ((!idIs0(res[syzIndex])) && ((maxlength==-1) || (syzIndex<maxlength))) |
---|
879 | { |
---|
880 | i = IDELEMS(res[syzIndex]); |
---|
881 | //while ((i!=0) && (!res[syzIndex]->m[i-1])) i--; |
---|
882 | sy0buck = kBucketCreate(); |
---|
883 | if (syzIndex+1==*length) |
---|
884 | { |
---|
885 | newres = (resolvente)omAlloc0((*length+4)*sizeof(ideal)); |
---|
886 | // for (j=0;j<*length+4;j++) newres[j] = NULL; |
---|
887 | for (j=0;j<*length;j++) newres[j] = res[j]; |
---|
888 | omFreeSize((ADDRESS)res,*length*sizeof(ideal)); |
---|
889 | *length += 4; |
---|
890 | res=newres; |
---|
891 | } |
---|
892 | |
---|
893 | if ((hom==isHomog)|| (rHasGlobalOrdering(origR))) |
---|
894 | { |
---|
895 | if (syzIndex==0) syInitSort(res[0],&modcomp); |
---|
896 | |
---|
897 | if ((syzIndex==0) && !rRing_has_CompLastBlock(currRing)) |
---|
898 | res[syzIndex+1] = sySchreyersSyzygiesFB(res[syzIndex],&modcomp,mW,FALSE); |
---|
899 | else |
---|
900 | res[syzIndex+1] = sySchreyersSyzygiesFB(res[syzIndex],&modcomp,mW); |
---|
901 | |
---|
902 | mW = res[syzIndex]; |
---|
903 | } |
---|
904 | //idPrint(res[syzIndex+1]); |
---|
905 | |
---|
906 | if ((syzIndex==0)) |
---|
907 | { |
---|
908 | if ((hom==isHomog)|| (rHasGlobalOrdering(origR))) |
---|
909 | { |
---|
910 | syRing = rCurrRingAssure_CompLastBlock(); |
---|
911 | if (syRing != origR) |
---|
912 | { |
---|
913 | for (i=0; i<IDELEMS(res[1]); i++) |
---|
914 | { |
---|
915 | res[1]->m[i] = prMoveR( res[1]->m[i], origR); |
---|
916 | } |
---|
917 | } |
---|
918 | idTest(res[1]); |
---|
919 | } |
---|
920 | else |
---|
921 | { |
---|
922 | syRing = rCurrRingAssure_SyzComp_CompLastBlock(); |
---|
923 | if (syRing != origR) |
---|
924 | { |
---|
925 | for (i=0; i<IDELEMS(res[0]); i++) |
---|
926 | { |
---|
927 | res[0]->m[i] = prMoveR( res[0]->m[i], origR); |
---|
928 | } |
---|
929 | } |
---|
930 | idTest(res[0]); |
---|
931 | } |
---|
932 | } |
---|
933 | if ((hom!=isHomog) && (rHasLocalOrMixedOrdering(origR))) |
---|
934 | { |
---|
935 | if (syzIndex==0) syInitSort(res[0],&modcomp); |
---|
936 | res[syzIndex+1] = sySchreyersSyzygiesFM(res[syzIndex],&modcomp); |
---|
937 | } |
---|
938 | syzIndex++; |
---|
939 | if (TEST_OPT_PROT) Print("[%d]\n",syzIndex); |
---|
940 | kBucketDestroy(&(sy0buck)); |
---|
941 | } |
---|
942 | //syPrintResolution(res,1,*length); |
---|
943 | if ((hom!=isHomog) && (rHasLocalOrMixedOrdering(origR))) |
---|
944 | { |
---|
945 | syzIndex = 1; |
---|
946 | while ((syzIndex < *length) && (!idIs0(res[syzIndex]))) |
---|
947 | { |
---|
948 | idShift(res[syzIndex],syzIndex); |
---|
949 | syzIndex++; |
---|
950 | } |
---|
951 | } |
---|
952 | if ((hom==isHomog) || (rHasGlobalOrdering(origR))) |
---|
953 | syzIndex = 1; |
---|
954 | else |
---|
955 | syzIndex = 0; |
---|
956 | syReOrderResolventFB(res,*length,syzIndex+1); |
---|
957 | if (/*ringOrderChanged:*/ origR!=syRing && syRing != NULL) |
---|
958 | { |
---|
959 | rChangeCurrRing(origR); |
---|
960 | // Thomas: Here I assume that all (!) polys of res live in tmpR |
---|
961 | while ((syzIndex < *length) && (res[syzIndex])) |
---|
962 | { |
---|
963 | for (i=0;i<IDELEMS(res[syzIndex]);i++) |
---|
964 | { |
---|
965 | if (res[syzIndex]->m[i]) |
---|
966 | { |
---|
967 | res[syzIndex]->m[i] = prMoveR( res[syzIndex]->m[i], syRing); |
---|
968 | } |
---|
969 | } |
---|
970 | syzIndex++; |
---|
971 | } |
---|
972 | // j = 0; while (currRing->order[j]!=0) j++; // What was this for???! |
---|
973 | rKill(syRing); |
---|
974 | } |
---|
975 | else |
---|
976 | { |
---|
977 | // Thomas -- are you sure that you have to "reorder" here? |
---|
978 | while ((syzIndex < *length) && (res[syzIndex])) |
---|
979 | { |
---|
980 | for (i=0;i<IDELEMS(res[syzIndex]);i++) |
---|
981 | { |
---|
982 | if (res[syzIndex]->m[i]) |
---|
983 | res[syzIndex]->m[i] = pSortCompCorrect(res[syzIndex]->m[i]); |
---|
984 | } |
---|
985 | syzIndex++; |
---|
986 | } |
---|
987 | } |
---|
988 | if ((hom==isHomog) || (rHasGlobalOrdering(origR))) |
---|
989 | { |
---|
990 | if (res[1]!=NULL) |
---|
991 | { |
---|
992 | syReOrderResolventFB(res,2,1); |
---|
993 | for (i=0;i<IDELEMS(res[1]);i++) |
---|
994 | { |
---|
995 | if (res[1]->m[i]) |
---|
996 | res[1]->m[i] = pSort(res[1]->m[i]); |
---|
997 | } |
---|
998 | } |
---|
999 | } |
---|
1000 | //syPrintResolution(res,0,*length); |
---|
1001 | |
---|
1002 | //syMergeSortResolventFB(res,*length); |
---|
1003 | if (modcomp!=NULL) delete modcomp; |
---|
1004 | if (w!=NULL) delete w; |
---|
1005 | return res; |
---|
1006 | } |
---|
1007 | |
---|
1008 | syStrategy sySchreyer(ideal arg, int maxlength) |
---|
1009 | { |
---|
1010 | int rl; |
---|
1011 | resolvente fr = sySchreyerResolvente(arg,maxlength,&(rl)); |
---|
1012 | if (fr==NULL) return NULL; |
---|
1013 | |
---|
1014 | int typ0; |
---|
1015 | syStrategy result=(syStrategy)omAlloc0(sizeof(ssyStrategy)); |
---|
1016 | result->length=rl; |
---|
1017 | result->fullres = (resolvente)omAlloc0((rl /*result->length*/+1)*sizeof(ideal)); |
---|
1018 | for (int i=rl /*result->length*/-1;i>=0;i--) |
---|
1019 | { |
---|
1020 | if (fr[i]!=NULL) |
---|
1021 | result->fullres[i] = fr[i]; |
---|
1022 | fr[i] = NULL; |
---|
1023 | } |
---|
1024 | if (currQuotient!=NULL) |
---|
1025 | { |
---|
1026 | for (int i=0; i<rl; i++) |
---|
1027 | { |
---|
1028 | if (result->fullres[i]!=NULL) |
---|
1029 | { |
---|
1030 | ideal t=kNF(currQuotient,NULL,result->fullres[i]); |
---|
1031 | idDelete(&result->fullres[i]); |
---|
1032 | result->fullres[i]=t; |
---|
1033 | if (i<rl-1) |
---|
1034 | { |
---|
1035 | for(int j=IDELEMS(t)-1;j>=0; j--) |
---|
1036 | { |
---|
1037 | if ((t->m[j]==NULL) && (result->fullres[i+1]!=NULL)) |
---|
1038 | { |
---|
1039 | for(int k=IDELEMS(result->fullres[i+1])-1;k>=0; k--) |
---|
1040 | { |
---|
1041 | if (result->fullres[i+1]->m[k]!=NULL) |
---|
1042 | { |
---|
1043 | pDeleteComp(&(result->fullres[i+1]->m[k]),j+1); |
---|
1044 | } |
---|
1045 | } |
---|
1046 | } |
---|
1047 | } |
---|
1048 | } |
---|
1049 | idSkipZeroes(result->fullres[i]); |
---|
1050 | } |
---|
1051 | } |
---|
1052 | if ((rl>maxlength) && (result->fullres[rl-1]!=NULL)) |
---|
1053 | { |
---|
1054 | idDelete(&result->fullres[rl-1]); |
---|
1055 | } |
---|
1056 | } |
---|
1057 | omFreeSize((ADDRESS)fr,(rl /*result->length*/)*sizeof(ideal)); |
---|
1058 | return result; |
---|
1059 | } |
---|
1060 | |
---|