1 | /* Copyright 1996 Michael Messollen. All rights reserved. */ |
---|
2 | /////////////////////////////////////////////////////////////////////////////// |
---|
3 | static char * rcsid = "$Id: Factor.cc,v 1.9 2001-08-08 11:59:12 Singular Exp $ "; |
---|
4 | static char * errmsg = "\nYou found a bug!\nPlease inform (Michael Messollen) michael@math.uni-sb.de \nPlease include above information and your input (the ideal/polynomial and characteristic) in your bug-report.\nThank you."; |
---|
5 | /////////////////////////////////////////////////////////////////////////////// |
---|
6 | // FACTORY - Includes |
---|
7 | #include <factory.h> |
---|
8 | #ifndef NOSTREAMIO |
---|
9 | #include <iostream.h> |
---|
10 | #endif |
---|
11 | // Factor - Includes |
---|
12 | #include "tmpl_inst.h" |
---|
13 | #include "SqrFree.h" |
---|
14 | #include "helpstuff.h" |
---|
15 | #include "MVMultiHensel.h" |
---|
16 | #include "Truefactor.h" |
---|
17 | #include "homogfactor.h" |
---|
18 | #include "interrupt.h" |
---|
19 | // some CC's need this: |
---|
20 | #include "Factor.h" |
---|
21 | |
---|
22 | #include "alg_factor.h" |
---|
23 | |
---|
24 | #ifdef SINGULAR |
---|
25 | # define HAVE_SINGULAR |
---|
26 | extern "C" { void WerrorS(char *); } |
---|
27 | extern void WarnS(const char *); |
---|
28 | #endif |
---|
29 | |
---|
30 | #ifdef FACTORDEBUG |
---|
31 | # define DEBUGOUTPUT |
---|
32 | #else |
---|
33 | # undef DEBUGOUTPUT |
---|
34 | #endif |
---|
35 | |
---|
36 | #include "debug.h" |
---|
37 | #include "timing.h" |
---|
38 | TIMING_DEFINE_PRINT(factorize_time); |
---|
39 | TIMING_DEFINE_PRINT(sqrfree_time); |
---|
40 | TIMING_DEFINE_PRINT(discr_time); |
---|
41 | TIMING_DEFINE_PRINT(evaluate_time); |
---|
42 | TIMING_DEFINE_PRINT(hensel_time); |
---|
43 | TIMING_DEFINE_PRINT(truefactor_time); |
---|
44 | |
---|
45 | |
---|
46 | /////////////////////////////////////////////////////////////// |
---|
47 | // Choose a main variable if the user didn`t wish a // |
---|
48 | // special one. Returns level of main variable. // |
---|
49 | /////////////////////////////////////////////////////////////// |
---|
50 | static int |
---|
51 | choose_main_variable( const CanonicalForm & f, int Mainvar=0){ |
---|
52 | CanonicalForm remlc, newlc; |
---|
53 | int n= level(f), mainvar= Mainvar; |
---|
54 | |
---|
55 | if (mainvar != 0) return mainvar ; // We force use of the wished mainvar |
---|
56 | remlc= LC(f,n); mainvar = n; |
---|
57 | if ( totaldegree(remlc)==0 ){ remlc=f.genOne() ; } |
---|
58 | DEBOUTLN(cout, "remlc= " , remlc); |
---|
59 | for ( int i=n-1; i>=1; i-- ){ |
---|
60 | newlc= LC(f,i); |
---|
61 | if ( totaldegree(newlc)==0 ){ newlc=f.genOne() ; } |
---|
62 | DEBOUTLN(cout, "newlc= " , newlc); |
---|
63 | if ( (remlc.isOne()) && (newlc.isOne()) ){ // take care of the degrees |
---|
64 | if ( degree(f,i) < degree(f,mainvar) ){ |
---|
65 | remlc= newlc; |
---|
66 | mainvar= i; |
---|
67 | } |
---|
68 | } |
---|
69 | else if ( (! remlc.isOne() ) && ( newlc.isOne() ) ){ |
---|
70 | remlc= newlc; |
---|
71 | mainvar= i; |
---|
72 | } |
---|
73 | } |
---|
74 | return mainvar; |
---|
75 | } |
---|
76 | |
---|
77 | /////////////////////////////////////////////////////////////// |
---|
78 | // Check if the derivative is nonzero for oldmainvar. // |
---|
79 | // Returns the level of the choosen main variable. // |
---|
80 | /////////////////////////////////////////////////////////////// |
---|
81 | static int |
---|
82 | necessary_condition( const CanonicalForm & F, int oldmainvar){ |
---|
83 | CanonicalForm g; |
---|
84 | int n=level(F); |
---|
85 | |
---|
86 | g= swapvar(F,oldmainvar,n); |
---|
87 | g= g.deriv(); |
---|
88 | if ( g.isZero() ) |
---|
89 | for ( int i=n; i>=1; i-- ){ |
---|
90 | g= swapvar(F,i,n); |
---|
91 | g= g.deriv(); |
---|
92 | if ( ! g.isZero() ) return i; |
---|
93 | } |
---|
94 | return oldmainvar; |
---|
95 | } |
---|
96 | |
---|
97 | /////////////////////////////////////////////////////////////// |
---|
98 | // Make F monic. Return monic polynomial. // |
---|
99 | /////////////////////////////////////////////////////////////// |
---|
100 | static CanonicalForm |
---|
101 | make_monic( const CanonicalForm & F, const CanonicalForm & lt){ |
---|
102 | CanonicalForm intermediatpoly,f; |
---|
103 | Variable x(level(F)); |
---|
104 | |
---|
105 | if ( degree(lt) == 0 ) f= 1/lt * F ; |
---|
106 | else { |
---|
107 | intermediatpoly= power(lt,degree(F)-1); |
---|
108 | for ( int i=0; i<=degree(F); i++ ) |
---|
109 | if ( ! F[i].isZero()) |
---|
110 | f+= (F[i] * intermediatpoly*power(x,i))/power(lt,i); |
---|
111 | } |
---|
112 | return f; |
---|
113 | } |
---|
114 | |
---|
115 | /////////////////////////////////////////////////////////////// |
---|
116 | // Decide whether num/denum (num,denum both from the // |
---|
117 | // FiniteFielddomain) lies in the RationalDomain. // |
---|
118 | // If false, return num/denum else return the zero poly from // |
---|
119 | // the FiniteFielddomain. // |
---|
120 | /////////////////////////////////////////////////////////////// |
---|
121 | static CanonicalForm |
---|
122 | is_rational( const CanonicalForm & num, const CanonicalForm & denum ){ |
---|
123 | CanonicalForm a, b; |
---|
124 | int retvalue; |
---|
125 | |
---|
126 | retvalue= mydivremt(num,denum,a,b); |
---|
127 | if ( retvalue && b == num.genZero() ) // num/denum from FFdomain |
---|
128 | return a; |
---|
129 | else // num/denum is rational |
---|
130 | return num.genZero(); |
---|
131 | } |
---|
132 | |
---|
133 | /////////////////////////////////////////////////////////////// |
---|
134 | // lt_is_product returns 1 iff lt is a product, 0 iff lt is // |
---|
135 | // a sum. // |
---|
136 | /////////////////////////////////////////////////////////////// |
---|
137 | static int |
---|
138 | lt_is_product( const CanonicalForm & lt ){ |
---|
139 | CFList result; |
---|
140 | |
---|
141 | result= get_Terms(lt); |
---|
142 | if ( result.length() > 1 ) return 0; |
---|
143 | else return 1; |
---|
144 | } |
---|
145 | |
---|
146 | /////////////////////////////////////////////////////////////// |
---|
147 | // Reverse the make_monic transformation. // |
---|
148 | // Return the list of factors. // |
---|
149 | /////////////////////////////////////////////////////////////// |
---|
150 | static CFFList |
---|
151 | not_monic( const CFFList & TheList, const CanonicalForm & ltt, const CanonicalForm & F, int levelF){ |
---|
152 | CFFList Returnlist,IntermediateList; |
---|
153 | CFFListIterator i; |
---|
154 | CanonicalForm intermediate,lt= ltt,savelc; |
---|
155 | CanonicalForm numerator,denumerator,test,a,b; |
---|
156 | Variable x(level(F)); |
---|
157 | int test1; |
---|
158 | |
---|
159 | if ( lt == lt.genOne() ) return TheList; // the poly was already monic |
---|
160 | if ( TheList.length() <= 1 ){ // only one factor to substitute back |
---|
161 | if ( totaldegree(lt) == 0 ) // lt is type numeric |
---|
162 | Returnlist.append( CFFactor(lt*TheList.getFirst().factor(), |
---|
163 | TheList.getFirst().exp()) ); |
---|
164 | else { |
---|
165 | intermediate = F(x*lt, levelF)/power(lt,degree(F,levelF)-1); |
---|
166 | Returnlist.append(CFFactor(intermediate,TheList.getFirst().exp())); |
---|
167 | } |
---|
168 | } |
---|
169 | else { // more then one factor |
---|
170 | IntermediateList= TheList; |
---|
171 | if ( totaldegree(lt) == 0 ){ // lt is type numeric;(SqrFree-use, see above) |
---|
172 | Returnlist.append( CFFactor(lt*IntermediateList.getFirst().factor() |
---|
173 | , IntermediateList.getFirst().exp()) ); |
---|
174 | IntermediateList.removeFirst(); |
---|
175 | Returnlist= Union(Returnlist,IntermediateList); |
---|
176 | } |
---|
177 | else{ // lt is a) a product or b) a sum of terms |
---|
178 | if ( lt_is_product(lt) ){ // case a) |
---|
179 | DEBOUTLN(cout, "lt_is_product: ", lt); |
---|
180 | savelc= content(lt) ; // can we simplify to savelc= lc(lt); ? |
---|
181 | while ( getNumVars(savelc) != 0 ) |
---|
182 | savelc= content(savelc); |
---|
183 | for ( i=TheList; i.hasItem();i++ ){ |
---|
184 | numerator= i.getItem().factor(); |
---|
185 | numerator= numerator(x*lt,levelF); // x <- x*lt |
---|
186 | denumerator= power(lt,degree(F,levelF)-1); // == lt^(1-degree(F,x) |
---|
187 | while (numerator.genZero() == is_rational(numerator, denumerator)) |
---|
188 | numerator*= lt; |
---|
189 | intermediate= is_rational(numerator,denumerator); |
---|
190 | |
---|
191 | Returnlist.append( CFFactor(lc(content(intermediate))*intermediate/content(intermediate), i.getItem().exp() ) ); |
---|
192 | } |
---|
193 | // Now we add a test. If product(factors)/F is a multiple of |
---|
194 | // savelc, we have to add 1/multiplicity to the factors |
---|
195 | IntermediateList= Returnlist; |
---|
196 | intermediate= 1; |
---|
197 | for ( CFFListIterator j=IntermediateList; j.hasItem(); j++) |
---|
198 | intermediate*= j.getItem().factor(); |
---|
199 | test1= mydivremt( intermediate,F,a,b); |
---|
200 | if ( test1 && b == intermediate.genZero() ) { // Yupp! |
---|
201 | IntermediateList.append(CFFactor(1/a,1)); |
---|
202 | Returnlist= IntermediateList; |
---|
203 | } |
---|
204 | else { Returnlist= IntermediateList; } |
---|
205 | } |
---|
206 | else{ // case b) |
---|
207 | DEBOUTLN(cout, "lt_is_sum: ", lt); |
---|
208 | CanonicalForm save_denumerator= 1; |
---|
209 | for ( i=TheList; i.hasItem(); i++ ){ |
---|
210 | numerator= i.getItem().factor(); |
---|
211 | numerator= numerator(x*lt,levelF); // x <- x*lt |
---|
212 | denumerator= power(lt,degree(numerator,levelF)); // == lt^(-degree(numerator,x) |
---|
213 | test= content(numerator,x); |
---|
214 | test1= mydivremt(denumerator,test,a,b); |
---|
215 | if ( test1 && b == numerator.genZero() ){ // Yupp! |
---|
216 | save_denumerator*= a; |
---|
217 | Returnlist.append(CFFactor(numerator/test ,1)); |
---|
218 | } |
---|
219 | else { |
---|
220 | #ifdef HAVE_SINGULAR |
---|
221 | WerrorS("libfac: ERROR: not_monic1: case lt is a sum."); |
---|
222 | #else |
---|
223 | cerr << "libfac: ERROR: not_monic1: case lt is a sum.\n" |
---|
224 | << rcsid << errmsg << endl; |
---|
225 | #endif |
---|
226 | } |
---|
227 | } |
---|
228 | // Now we add a test if we did the right thing: |
---|
229 | // save_denumerator should be a multiple of the leading coeff |
---|
230 | test1= mydivremt(save_denumerator,lt,a,b); |
---|
231 | if ( test1 && b == save_denumerator.genZero() ) // Yupp! |
---|
232 | // We have to multiply one of the factors with |
---|
233 | // the multiplicity of the save_denumerator <-> lc |
---|
234 | // the following will do what we want |
---|
235 | Returnlist= myUnion( CFFList(CFFactor(1/a,1)),Returnlist) ; |
---|
236 | else { |
---|
237 | #ifdef HAVE_SINGULAR |
---|
238 | WerrorS("libfac: ERROR: not_monic2: case lt is a sum."); |
---|
239 | #else |
---|
240 | cerr << "libfac: ERROR: not_monic2: case lt is a sum.\n" |
---|
241 | << rcsid << errmsg << endl; |
---|
242 | #endif |
---|
243 | } |
---|
244 | } |
---|
245 | } |
---|
246 | } |
---|
247 | DEBOUTLN(cout,"Returnlist: ", Returnlist); |
---|
248 | return Returnlist; |
---|
249 | } |
---|
250 | |
---|
251 | /////////////////////////////////////////////////////////////// |
---|
252 | // Substitute the (Variable,Value)-Pair(s) from Substitution-// |
---|
253 | // list into the polynomial F. Returns the resulting poly. // |
---|
254 | /////////////////////////////////////////////////////////////// |
---|
255 | static CanonicalForm |
---|
256 | substitutePoly( const CanonicalForm & F, const SFormList & Substitutionlist){ |
---|
257 | CanonicalForm f= F; |
---|
258 | |
---|
259 | for ( SFormListIterator i=Substitutionlist; i.hasItem(); i++ ) |
---|
260 | f= f(i.getItem().exp(),level(i.getItem().factor())); |
---|
261 | return f; |
---|
262 | } |
---|
263 | |
---|
264 | /////////////////////////////////////////////////////////////// |
---|
265 | // Find specialization values for the poly F. Returns 0 if // |
---|
266 | // procedure failed, 1 otherwise. On success Substitutionlist// |
---|
267 | // holds (Variable,Value)-pairs. On failure we only have a // |
---|
268 | // partitial list. // |
---|
269 | /////////////////////////////////////////////////////////////// |
---|
270 | // *** This is the version with extensions *** // |
---|
271 | /////////////////////////////////////////////////////////////// |
---|
272 | |
---|
273 | /////////////////////////////////////////////////////////////// |
---|
274 | // is CF g ok? // |
---|
275 | /////////////////////////////////////////////////////////////// |
---|
276 | static int |
---|
277 | various_tests( const CanonicalForm & g, int deg, int vars_left){ |
---|
278 | CFMap m; |
---|
279 | |
---|
280 | if ( degree(g) == deg ) // degrees match |
---|
281 | if ( level(compress(g,m)) == (vars_left) ) // exactly one variable less |
---|
282 | if ( SqrFreeTest(g,1) ) // poly is sqrfree |
---|
283 | if ( mygcd(g,g.deriv()) == 1 ) // Discriminante != 0 |
---|
284 | return 1; |
---|
285 | return 0; |
---|
286 | } |
---|
287 | |
---|
288 | /////////////////////////////////////////////////////////////// |
---|
289 | // specialize one variable over the given field. // |
---|
290 | /////////////////////////////////////////////////////////////// |
---|
291 | // substitutes in poly f of degree deg with former |
---|
292 | // former_nr_of_variables variables the variable nr_of_variable ; |
---|
293 | // this is done in the field of Char getCharacteristic() and |
---|
294 | // Extension given by Extgenerator. |
---|
295 | /////////////////////////////////////////////////////////////// |
---|
296 | static int |
---|
297 | specialize_variable( CanonicalForm & f, int deg, SFormList & Substitutionlist, int nr_of_variable, int former_nr_of_variables, CFGenerator & Extgenerator ){ |
---|
298 | CanonicalForm g; |
---|
299 | Variable x(nr_of_variable); |
---|
300 | |
---|
301 | DEBOUTLN(cout, "specialize_variable: called with: ", f); |
---|
302 | for ( Extgenerator.reset(); Extgenerator.hasItems(); Extgenerator.next() ){ |
---|
303 | DEBOUTLN(cout, " specialize_variable: trying: ", Extgenerator.item()); |
---|
304 | g= f( Extgenerator.item(), x ); |
---|
305 | DEBOUTLN(cout, " specialize_variable: resulting g= ", g); |
---|
306 | if ( various_tests(g,deg,former_nr_of_variables - nr_of_variable ) ){ |
---|
307 | Substitutionlist.insert(SForm(x,Extgenerator.item())); // append (Var,value) pair |
---|
308 | f= g; |
---|
309 | return 1; |
---|
310 | } |
---|
311 | } |
---|
312 | return 0; |
---|
313 | } |
---|
314 | |
---|
315 | /////////////////////////////////////////////////////////////// |
---|
316 | // generate a minpoly of degree degree_of_Extension in the // |
---|
317 | // field getCharacteristik()^Extension. // |
---|
318 | /////////////////////////////////////////////////////////////// |
---|
319 | CanonicalForm |
---|
320 | generate_mipo( int degree_of_Extension , const Variable & Extension ){ |
---|
321 | FFRandom gen; |
---|
322 | if ( degree(Extension) > 0 ) GFRandom gen; |
---|
323 | else { |
---|
324 | if ( degree(Extension) == 0 ) FFRandom gen; |
---|
325 | else { |
---|
326 | #ifdef HAVE_SINGULAR |
---|
327 | WerrorS("libfac: evaluate: Extension not inFF() or inGF() !"); |
---|
328 | #else |
---|
329 | #ifndef NOSTREAMIO |
---|
330 | cerr << "libfac: evaluate: " << Extension << " not inFF() or inGF() !" |
---|
331 | << endl; |
---|
332 | #endif |
---|
333 | #endif |
---|
334 | FFRandom gen; |
---|
335 | } |
---|
336 | } |
---|
337 | return find_irreducible( degree_of_Extension, gen, Variable(1) ); |
---|
338 | } |
---|
339 | |
---|
340 | /////////////////////////////////////////////////////////////// |
---|
341 | // Try to find a specialization for f over the field of char // |
---|
342 | // f.getCharacteristic() and (possible) extension defined by // |
---|
343 | // the variable Extension . // |
---|
344 | // Returns 1 iff specialisation was found, 0 otherwise. // |
---|
345 | // If 0 is returned there are variables left to substitute. // |
---|
346 | // We check if Substitutionlist.length() > 0, i.e. we // |
---|
347 | // previously tried to find specialization values for some // |
---|
348 | // values. We take them and work with the resulting poly. // |
---|
349 | /////////////////////////////////////////////////////////////// |
---|
350 | static int |
---|
351 | try_specializePoly(const CanonicalForm & f, const Variable & Extension, int deg, SFormList & Substitutionlist, int ii,int j){ |
---|
352 | int ok,i= ii; |
---|
353 | CanonicalForm ff= f; |
---|
354 | |
---|
355 | if ( Substitutionlist.length() > 0 ){ // we formerly tried to specialize |
---|
356 | ff= substitutePoly(f,Substitutionlist); // substitute found values |
---|
357 | i= Substitutionlist.length() + 1; |
---|
358 | } |
---|
359 | |
---|
360 | if ( degree(Extension) > 0 ){ // working over Extensions |
---|
361 | DEBOUTLN(cout, "try_specializePoly: working over Extensions: ", Extension); |
---|
362 | AlgExtGenerator g(Extension); |
---|
363 | for ( int k=i ; k<j ; k++ ){ // try to find specialization for all |
---|
364 | // variables (# = k ) beginning with the |
---|
365 | // starting value i |
---|
366 | ok= specialize_variable( ff, deg, Substitutionlist, k, j, g ); |
---|
367 | if ( ! ok ) return 0; // we failed |
---|
368 | } |
---|
369 | } |
---|
370 | else{ // working over the ground-field |
---|
371 | FFGenerator g; |
---|
372 | DEBOUTMSG(cout, "try_specializePoly: working over the ground-field."); |
---|
373 | for ( int k=i ; k<j ; k++ ){ |
---|
374 | ok= specialize_variable( ff, deg, Substitutionlist, k, j, g ); |
---|
375 | if ( ! ok ) return 0; // we failed |
---|
376 | } |
---|
377 | } |
---|
378 | return 1; |
---|
379 | } |
---|
380 | |
---|
381 | static int |
---|
382 | specializePoly(const CanonicalForm & f, Variable & Extension, int deg, SFormList & Substitutionlist, int i,int j){ |
---|
383 | Variable minpoly= Extension; |
---|
384 | int ok,extended= degree(Extension), working_over_extension; |
---|
385 | |
---|
386 | // Remember if we are working over an extension-field |
---|
387 | if ( extended >= 2 ) { working_over_extension = 1; } |
---|
388 | else { working_over_extension = 0; extended = 1; } |
---|
389 | // First try: |
---|
390 | ok = try_specializePoly(f,minpoly,deg,Substitutionlist,i,j); |
---|
391 | while ( ! ok ){ // we have to extend! |
---|
392 | extended+= 1; |
---|
393 | if ( ! working_over_extension ){ |
---|
394 | minpoly= rootOf(generate_mipo( extended,Extension )); |
---|
395 | Extension= minpoly; |
---|
396 | ok= try_specializePoly(f,minpoly,deg,Substitutionlist,i,j); |
---|
397 | } |
---|
398 | else { |
---|
399 | #ifdef HAVE_SINGULAR |
---|
400 | WerrorS("libfac: spezializePoly ERROR: Working over given extension-field not yet implemented!"); |
---|
401 | #else |
---|
402 | cerr << "libfac: spezializePoly ERROR: Working over given extension-field not yet implemented!\n" |
---|
403 | << rcsid << errmsg << endl; |
---|
404 | #endif |
---|
405 | return 0; |
---|
406 | } |
---|
407 | } |
---|
408 | return 1; |
---|
409 | } |
---|
410 | |
---|
411 | |
---|
412 | // This is a procedure to play with: lot's of parameters! |
---|
413 | // returns: 0 iff no success (possibly because Extension isn't great enough |
---|
414 | // >0 iff g (univariate) splits into n factors; |
---|
415 | // if n>0 BestEvaluationpoint contains the choice of values for the variables |
---|
416 | // |
---|
417 | // tries to find at least maxtries evaluation points |
---|
418 | // if g factored sametries into the same number of poly's the procedure stops |
---|
419 | // if we tried failtries evaluations not found valid, we stop. Perhaps |
---|
420 | // Extension isn't big enough! |
---|
421 | static int |
---|
422 | evaluate( int maxtries, int sametries, int failtries, const CanonicalForm &f , const Variable & Extension, SFormList & BestEvaluationpoint, CFFList & BestFactorisation ){ |
---|
423 | int minfactors=degree(f),degf=degree(f),n=level(f.mvar())-1; |
---|
424 | SFormList minEvaluation; |
---|
425 | CFFList minFactorisation; |
---|
426 | int samefactors=0, failedfactor=0, tried=0; |
---|
427 | FFRandom gen; |
---|
428 | CFFList unilist; |
---|
429 | |
---|
430 | if ( degree(Extension) >0 ) GFRandom gen; |
---|
431 | else { if ( degree(Extension) == 0 ) FFRandom gen; |
---|
432 | else { |
---|
433 | #ifdef HAVE_SINGULAR |
---|
434 | WerrorS("libfac: evaluate: Extension not inFF() or inGF() !"); |
---|
435 | #else |
---|
436 | cerr << "libfac: evaluate: " << Extension << " not inFF() or inGF() !" |
---|
437 | << endl; |
---|
438 | #endif |
---|
439 | FFRandom gen; }} |
---|
440 | REvaluation k(1,n,gen); |
---|
441 | k.nextpoint(); |
---|
442 | for ( int i=1; i<=maxtries ; i++){ |
---|
443 | // k.nextpoint(); |
---|
444 | SFormList Substitutionlist; |
---|
445 | for ( int j=1; j<=n; j++ ) |
---|
446 | Substitutionlist.insert(SForm(Variable(j),k[j])); |
---|
447 | k.nextpoint(); |
---|
448 | CanonicalForm g=substitutePoly(f,Substitutionlist); |
---|
449 | if ( various_tests(g, degf,1) ){ // found a valid point |
---|
450 | failedfactor = 0; tried += 1; |
---|
451 | if ( degree(Extension) == 0 ) |
---|
452 | unilist = factorize(g,1); // poly is sqr-free! |
---|
453 | else |
---|
454 | unilist = factorize(g,Extension); |
---|
455 | if (unilist.length() <= minfactors ) { |
---|
456 | minfactors=unilist.length(); |
---|
457 | minEvaluation=Substitutionlist; |
---|
458 | minFactorisation=unilist; |
---|
459 | } |
---|
460 | else samefactors +=1; |
---|
461 | |
---|
462 | if (unilist.length() == 1 ){ // wow! we found f is irreducible! |
---|
463 | BestEvaluationpoint=minEvaluation; |
---|
464 | BestFactorisation=minFactorisation; |
---|
465 | return 1; |
---|
466 | } |
---|
467 | |
---|
468 | if ( samefactors >= sametries ){ // now we stop ( maybe polynomial *has* |
---|
469 | // minfactors factors? ) |
---|
470 | BestEvaluationpoint=minEvaluation; |
---|
471 | BestFactorisation=minFactorisation; |
---|
472 | return minfactors; |
---|
473 | } |
---|
474 | |
---|
475 | } |
---|
476 | else failedfactor += 1; |
---|
477 | |
---|
478 | if ( failedfactor >= failtries ){ // now we stop ( perhaps Extension isn't |
---|
479 | // big enough ) |
---|
480 | if ( tried == 0 ) |
---|
481 | return 0; |
---|
482 | else{ |
---|
483 | BestEvaluationpoint=minEvaluation; |
---|
484 | BestFactorisation=minFactorisation; |
---|
485 | return minfactors; |
---|
486 | } |
---|
487 | } |
---|
488 | |
---|
489 | } |
---|
490 | BestEvaluationpoint=minEvaluation; |
---|
491 | BestFactorisation=minFactorisation; |
---|
492 | return minfactors; |
---|
493 | } |
---|
494 | |
---|
495 | #ifdef EXPERIMENTAL |
---|
496 | static int |
---|
497 | find_evaluation(int maxtries, int sametries, int failtries, const CanonicalForm &f , const Variable & Extension, SFormList & BestEvaluationpoint, CFFList & BestFactorisation ){ |
---|
498 | int success; |
---|
499 | |
---|
500 | success=evaluate( maxtries, sametries, failtries, f , Extension, BestEvaluationpoint, BestFactorisation ); |
---|
501 | return success; |
---|
502 | } |
---|
503 | #endif |
---|
504 | |
---|
505 | /////////////////////////////////////////////////////////////// |
---|
506 | // A factorization routine for a sqrfree polynomial. // |
---|
507 | // Returns the list of factors. // |
---|
508 | /////////////////////////////////////////////////////////////// |
---|
509 | CFFList |
---|
510 | Factorized( const CanonicalForm & F, const Variable & alpha, int Mainvar){ |
---|
511 | CanonicalForm f,lt,ff,ffuni; |
---|
512 | Variable Extension=alpha; |
---|
513 | CFFList Outputlist,UnivariateFactorlist,Outputlist2; |
---|
514 | SFormList Substitutionlist, Evaluationpoint; |
---|
515 | CFFactor copy; |
---|
516 | int mainvar=Mainvar,success,oldmainvar; |
---|
517 | CFMap m; |
---|
518 | |
---|
519 | // INTERRUPTHANDLER |
---|
520 | if ( interrupt_handle() ) return CFFList() ; |
---|
521 | // INTERRUPTHANDLER |
---|
522 | |
---|
523 | if ( F.isUnivariate() ){ // could have lost one Variable elsewhere |
---|
524 | if ( degree(Extension) == 0 ){ |
---|
525 | TIMING_START(evaluate_time); |
---|
526 | Outputlist = factorize(F,1); // poly is sqr-free |
---|
527 | TIMING_END(evaluate_time); |
---|
528 | return Outputlist; |
---|
529 | } |
---|
530 | else{ |
---|
531 | DEBOUTLN(cout, "Univ. Factorization over extension of degree ", |
---|
532 | degree(getMipo(Extension,'x')) ); |
---|
533 | TIMING_START(evaluate_time); |
---|
534 | #if 1 |
---|
535 | Outputlist = factorize(F,Extension); |
---|
536 | #else |
---|
537 | Variable X; |
---|
538 | CanonicalForm mipo=getMipo(Extension,X); |
---|
539 | CFList as(mipo); |
---|
540 | Outputlist = newfactoras( F, as, 1); |
---|
541 | #endif |
---|
542 | TIMING_END(evaluate_time); |
---|
543 | return Outputlist; |
---|
544 | } |
---|
545 | } |
---|
546 | |
---|
547 | if ( Mainvar ) oldmainvar=Mainvar; else oldmainvar=level(F); |
---|
548 | // First choose a main variable; this may be revisted in the next step |
---|
549 | mainvar = choose_main_variable(F); |
---|
550 | // Let`s look if @f/@mainvar is nonzero |
---|
551 | mainvar = necessary_condition(F,mainvar); |
---|
552 | // Now we have definetly choosen a main variable |
---|
553 | // swap poly such that the mainvar has highest level |
---|
554 | f=swapvar(F,mainvar,level(F)); |
---|
555 | |
---|
556 | // INTERRUPTHANDLER |
---|
557 | if ( interrupt_handle() ) return CFFList() ; |
---|
558 | // INTERRUPTHANDLER |
---|
559 | |
---|
560 | if ( oldmainvar != mainvar ){ |
---|
561 | DEBOUTSL(cout); DEBOUT(cout,"Swapped poly ", F); |
---|
562 | DEBOUT(cout, " in ", f); DEBOUTNL(cout); |
---|
563 | DEBOUTSL(cout); DEBOUT(cout,"Swapped ", oldmainvar ); |
---|
564 | DEBOUT(cout, " <-- ", mainvar ); DEBOUT(cout, " Mainvar= ", f.mvar()); |
---|
565 | DEBOUTNL(cout); |
---|
566 | ff = f.deriv(); |
---|
567 | TIMING_START(discr_time); |
---|
568 | ffuni = mygcd(f,ff); |
---|
569 | TIMING_END(discr_time); |
---|
570 | if ( ffuni != 1 ){ //discriminante nonzero: split poly |
---|
571 | DEBOUTLN(cout,"Nontrivial GCD of f= ", f); |
---|
572 | DEBOUTLN(cout," and @f= ", ff); |
---|
573 | DEBOUTLN(cout," GCD(f,@f)= ", ffuni); |
---|
574 | ff=f/ffuni; |
---|
575 | CFFList Outputlist_a, Outputlist_b; |
---|
576 | Outputlist_a = Factorized(ff,alpha); |
---|
577 | DEBOUTLN(cout, "Outputlist_a = ", Outputlist_a); |
---|
578 | Outputlist_b = Factorized(ffuni,alpha); |
---|
579 | DEBOUTLN(cout, "Outputlist_b = ", Outputlist_b); |
---|
580 | Outputlist = myUnion(Outputlist_a, Outputlist_b); |
---|
581 | // have to back-swapvar the factors.... |
---|
582 | for ( CFFListIterator i=Outputlist; i.hasItem(); i++ ){ |
---|
583 | copy=i.getItem(); |
---|
584 | Outputlist2.append(CFFactor(swapvar(copy.factor(),oldmainvar,mainvar),copy.exp())); |
---|
585 | } |
---|
586 | DEBOUTLN(cout, "Outputlist2 (a+b swapped) (to return) = ", Outputlist2); |
---|
587 | return Outputlist2; |
---|
588 | } |
---|
589 | } |
---|
590 | |
---|
591 | // Check special cases |
---|
592 | for ( int i=1; i<=level(F); i++) |
---|
593 | if ( degree(f,Variable(i) ) == 1 ) { //test trivial case; only true iff F is primitiv w.r.t every variable; else check (if F=ax+b) gcd(a,b)=1 ? |
---|
594 | DEBOUTLN(cout, "Trivial case: ", F); |
---|
595 | Outputlist.append(CFFactor(F,1)); |
---|
596 | return Outputlist; |
---|
597 | } |
---|
598 | |
---|
599 | // Look at the leading term: |
---|
600 | lt = LC(f); |
---|
601 | DEBOUTLN(cout, "Leading term: ", lt); |
---|
602 | if ( lt != f.genOne() ){ |
---|
603 | // make the polynomial monic in the main variable |
---|
604 | ff = make_monic(f,lt); ffuni = ff; |
---|
605 | DEBOUTLN(cout, "make_monic returned: ", ff); |
---|
606 | } |
---|
607 | else{ ff= f; ffuni= ff; } |
---|
608 | |
---|
609 | TIMING_START(evaluate_time); |
---|
610 | success=evaluate(min(10,max(degree(ff), 5)), min(degree(ff),3), min(degree(ff),3), ff, Extension, Substitutionlist,UnivariateFactorlist); |
---|
611 | DEBOUTLN(cout, "Returned from evaluate: success: ", success); |
---|
612 | for ( SFormListIterator ii=Substitutionlist; ii.hasItem(); ii++ ){ |
---|
613 | DEBOUTLN(cout, "Substituting ", ii.getItem().factor()); |
---|
614 | DEBOUTLN(cout, " with value: ", ii.getItem().exp()); |
---|
615 | } |
---|
616 | |
---|
617 | if ( success==0 ){ // evalute wasn't successfull |
---|
618 | success= specializePoly(ffuni,Extension,degree(ff),Substitutionlist,1,getNumVars(compress(ff,m))); |
---|
619 | DEBOUTLN(cout, "Returned from specializePoly: success: ", success); |
---|
620 | if (success == 0 ){ // No spezialisation could be found |
---|
621 | #ifdef SINGULAR |
---|
622 | WarnS("libfac: Factorize: ERROR: Not able to find a valid specialization!"); |
---|
623 | #else |
---|
624 | cerr << "libfac: Factorize: ERROR: Not able to find a valid specialization!\n" |
---|
625 | << rcsid << errmsg << endl; |
---|
626 | #endif |
---|
627 | Outputlist.append(CFFactor(F,1)); |
---|
628 | return Outputlist; |
---|
629 | } |
---|
630 | |
---|
631 | // INTERRUPTHANDLER |
---|
632 | if ( interrupt_handle() ) return CFFList() ; |
---|
633 | // INTERRUPTHANDLER |
---|
634 | |
---|
635 | ffuni = substitutePoly(ff,Substitutionlist); |
---|
636 | // We now have an univariat poly; factorize that |
---|
637 | if ( degree(Extension) == 0 ){ |
---|
638 | DEBOUTMSG(cout, "Univ. Factorization over the ground field"); |
---|
639 | UnivariateFactorlist = factorize(ffuni,1); // univ. poly is sqr-free! |
---|
640 | } |
---|
641 | else{ |
---|
642 | DEBOUTLN(cout, "Univ. Factorization over extension of degree ", |
---|
643 | degree(getMipo(Extension,'x')) ); |
---|
644 | #if 1 |
---|
645 | UnivariateFactorlist = factorize(ffuni,Extension); |
---|
646 | #else |
---|
647 | Variable X; |
---|
648 | CanonicalForm mipo=getMipo(Extension,X); |
---|
649 | CFList as(mipo); |
---|
650 | UnivariateFactorlist = newfactoras( ffuni, as, 1); |
---|
651 | #endif |
---|
652 | } |
---|
653 | } |
---|
654 | else{ |
---|
655 | ffuni = substitutePoly(ff,Substitutionlist); |
---|
656 | } |
---|
657 | TIMING_END(evaluate_time); |
---|
658 | if (UnivariateFactorlist.length() == 1){ // poly is irreduzibel |
---|
659 | DEBOUTLN(cout, "Univ. poly is irreduzible: ", UnivariateFactorlist); |
---|
660 | Outputlist.append(CFFactor(F,1)); |
---|
661 | return Outputlist; |
---|
662 | } |
---|
663 | else{ // we have factors |
---|
664 | DEBOUTSL(cout); |
---|
665 | DEBOUT(cout, "Univariate poly has " , UnivariateFactorlist.length()); |
---|
666 | DEBOUT(cout, " factors: ", ffuni); |
---|
667 | DEBOUT(cout, " = ", UnivariateFactorlist); DEBOUTNL(cout); |
---|
668 | |
---|
669 | // INTERRUPTHANDLER |
---|
670 | if ( interrupt_handle() ) return CFFList() ; |
---|
671 | // INTERRUPTHANDLER |
---|
672 | |
---|
673 | TIMING_START(hensel_time); |
---|
674 | Outputlist = MultiHensel(ff,UnivariateFactorlist,Substitutionlist); |
---|
675 | DEBOUTLN(cout, "Outputlist after MultiHensel: ", Outputlist); |
---|
676 | TIMING_END(hensel_time); |
---|
677 | |
---|
678 | // INTERRUPTHANDLER |
---|
679 | if ( interrupt_handle() ) return CFFList() ; |
---|
680 | // INTERRUPTHANDLER |
---|
681 | |
---|
682 | TIMING_START(truefactor_time); |
---|
683 | Outputlist = Truefactors(ff, level(ff), Substitutionlist, Outputlist); |
---|
684 | DEBOUTLN(cout, "Outputlist after Truefactors: ", Outputlist); |
---|
685 | TIMING_END(truefactor_time); |
---|
686 | |
---|
687 | // INTERRUPTHANDLER |
---|
688 | if ( interrupt_handle() ) return CFFList() ; |
---|
689 | // INTERRUPTHANDLER |
---|
690 | |
---|
691 | if ( lt != f.genOne() ){ |
---|
692 | Outputlist = not_monic(Outputlist,lt,ff,level(ff)); |
---|
693 | DEBOUTLN(cout, "not_monic returned: ", Outputlist); |
---|
694 | } |
---|
695 | |
---|
696 | // have to back-swapvar the factors.... |
---|
697 | for ( CFFListIterator i=Outputlist; i.hasItem(); i++ ){ |
---|
698 | copy=i.getItem(); |
---|
699 | Outputlist2.append(CFFactor(swapvar(copy.factor(),oldmainvar,mainvar),copy.exp())); |
---|
700 | } |
---|
701 | |
---|
702 | return Outputlist2; |
---|
703 | } |
---|
704 | } |
---|
705 | |
---|
706 | /////////////////////////////////////////////////////////////// |
---|
707 | // The user front-end for a uni/multivariate factorization // |
---|
708 | // routine. F needs not to be SqrFree. // |
---|
709 | // Option of * choosing a main variable (n.y.i.) // |
---|
710 | // * choosing an algebraic extension (n.y.u.) // |
---|
711 | // * ensuring poly is sqrfree (n.y.i.) // |
---|
712 | /////////////////////////////////////////////////////////////// |
---|
713 | CFFList |
---|
714 | Factorize( const CanonicalForm & F, int is_SqrFree ){ |
---|
715 | CFFList Outputlist,SqrFreeList,Intermediatelist,Outputlist2; |
---|
716 | ListIterator<CFFactor> i,j; |
---|
717 | CanonicalForm g=1,unit=1,r=1; |
---|
718 | Variable minpoly; // reserved (-> Factorisation over algebraic Extensions) |
---|
719 | int exp; |
---|
720 | CFMap m; |
---|
721 | |
---|
722 | // INTERRUPTHANDLER |
---|
723 | if ( interrupt_handle() ) return CFFList() ; |
---|
724 | // INTERRUPTHANDLER |
---|
725 | |
---|
726 | DEBINCLEVEL(cout, "Factorize"); |
---|
727 | DEBOUTMSG(cout, rcsid); |
---|
728 | DEBOUTLN(cout, "Called with F= ", F); |
---|
729 | if ( getCharacteristic() == 0 ) { // char == 0 |
---|
730 | TIMING_START(factorize_time); |
---|
731 | //cout << "Factoring in char=0 of " << F << " = " << Outputlist << endl; |
---|
732 | Outputlist= factorize(F); |
---|
733 | // Factorization in char=0 doesn't sometimes return at least two elements!!! |
---|
734 | if ( getNumVars(Outputlist.getFirst().factor()) != 0 ) |
---|
735 | Outputlist.insert(CFFactor(1,1)); |
---|
736 | //cout << " Factorize in char=0: returning with: " << Outputlist << endl; |
---|
737 | TIMING_END(factorize_time); |
---|
738 | DEBDECLEVEL(cout, "Factorize"); |
---|
739 | TIMING_PRINT(factorize_time, "\ntime used for factorization : "); |
---|
740 | return Outputlist; |
---|
741 | } |
---|
742 | TIMING_START(factorize_time); |
---|
743 | /////// |
---|
744 | // Maybe it`s better to add a sqrfree-test before? |
---|
745 | // (If gcd is fast...) |
---|
746 | /////// |
---|
747 | // if ( ! SqrFreeTest(F) ){ |
---|
748 | if ( ! is_SqrFree ){ |
---|
749 | TIMING_START(sqrfree_time); |
---|
750 | SqrFreeList = InternalSqrFree(F) ; // first sqrfree the polynomial |
---|
751 | // don't use sqrFree(F), factory's internal sqrFree for multiv. |
---|
752 | // Polynomials; it's wrong!! Ex.: char=p f= x^p*(y+1); |
---|
753 | // InternalSqrFree(f)= ( y+1, (x)^p ), sqrFree(f)= ( y+1 ) . |
---|
754 | TIMING_END(sqrfree_time); |
---|
755 | |
---|
756 | // INTERRUPTHANDLER |
---|
757 | if ( interrupt_handle() ) return CFFList() ; |
---|
758 | // INTERRUPTHANDLER |
---|
759 | |
---|
760 | } |
---|
761 | else |
---|
762 | SqrFreeList.append(CFFactor(F,1)); |
---|
763 | DEBOUTLN(cout, "InternalSqrFreeList= ", SqrFreeList); |
---|
764 | for ( i=SqrFreeList; i.hasItem(); i++ ){ |
---|
765 | DEBOUTLN(cout, "Factor under consideration: ", i.getItem().factor()); |
---|
766 | // We need a compress on each list item ! Maybe we have less variables! |
---|
767 | g =compress(i.getItem().factor(),m); |
---|
768 | exp = i.getItem().exp(); |
---|
769 | if ( getNumVars(g) ==0 ) // a constant; Exp==1 |
---|
770 | Outputlist.append( CFFactor(g,1) ) ; |
---|
771 | else// a real polynomial |
---|
772 | if ( g.isUnivariate() ){ |
---|
773 | Intermediatelist=factorize(g,1); // poly is sqr-free! |
---|
774 | for ( j=Intermediatelist; j.hasItem(); j++ ) |
---|
775 | //Normally j.getItem().exp() should be 1 |
---|
776 | Outputlist.append( CFFactor( m(j.getItem().factor()),exp*j.getItem().exp())); |
---|
777 | } |
---|
778 | else{ // multivariate polynomial |
---|
779 | if ( is_homogeneous(g) ){ |
---|
780 | DEBOUTLN(cout, "Poly is homogeneous! : ", g); |
---|
781 | // Now we can substitute one variable to 1, factorize and then |
---|
782 | // look on the resulting factors and their monomials for |
---|
783 | // backsubstitution of the substituted variable. |
---|
784 | Intermediatelist = HomogFactor(g, minpoly, 0); |
---|
785 | } |
---|
786 | else // not homogeneous |
---|
787 | Intermediatelist = Factorized(g, minpoly, 0); |
---|
788 | |
---|
789 | // INTERRUPTHANDLER |
---|
790 | if ( interrupt_handle() ) return CFFList() ; |
---|
791 | // INTERRUPTHANDLER |
---|
792 | |
---|
793 | for ( j=Intermediatelist; j.hasItem(); j++ ) |
---|
794 | //Normally j.getItem().exp() should be 1 |
---|
795 | Outputlist= myappend( Outputlist, CFFactor(m(j.getItem().factor()),exp*j.getItem().exp())); |
---|
796 | } |
---|
797 | } |
---|
798 | g=1; unit=1; |
---|
799 | DEBOUTLN(cout, "Outputlist is ", Outputlist); |
---|
800 | for ( i=Outputlist; i.hasItem(); i++ ) |
---|
801 | if ( level(i.getItem().factor()) > 0 ){ |
---|
802 | unit = lc(i.getItem().factor()); |
---|
803 | if ( getNumVars(unit) == 0 ){ // a constant; possibly 1 |
---|
804 | Outputlist2.append(CFFactor(i.getItem().factor()/unit , i.getItem().exp())); |
---|
805 | g *=power(i.getItem().factor()/unit,i.getItem().exp()); |
---|
806 | } |
---|
807 | else{ |
---|
808 | Outputlist2.append(i.getItem()); |
---|
809 | g *=power(i.getItem().factor(),i.getItem().exp()); |
---|
810 | } |
---|
811 | } |
---|
812 | |
---|
813 | r=F/g; |
---|
814 | Outputlist2.insert(CFFactor(r,1)); |
---|
815 | |
---|
816 | DEBDECLEVEL(cout, "Factorize"); |
---|
817 | TIMING_END(factorize_time); |
---|
818 | |
---|
819 | TIMING_PRINT(sqrfree_time, "\ntime used for sqrfree : "); |
---|
820 | TIMING_PRINT(discr_time, "time used for discriminante : "); |
---|
821 | TIMING_PRINT(evaluate_time, "time used for evaluation and univ. factorization : "); |
---|
822 | TIMING_PRINT(hensel_time, "time used for hensel-lift : "); |
---|
823 | TIMING_PRINT(truefactor_time, "time used for truefactors : "); |
---|
824 | TIMING_PRINT(factorize_time, "\ntime used for factorization : "); |
---|
825 | return Outputlist2; |
---|
826 | } |
---|
827 | |
---|
828 | /* |
---|
829 | $Log: not supported by cvs2svn $ |
---|
830 | Revision 1.8 2001/08/06 08:32:54 Singular |
---|
831 | * hannes: code cleanup |
---|
832 | |
---|
833 | Revision 1.7 2001/06/21 14:57:05 Singular |
---|
834 | *hannes/GP: Factorize, newfactoras, ... |
---|
835 | |
---|
836 | Revision 1.6 2001/06/18 08:44:41 pfister |
---|
837 | * hannes/GP/michael: factory debug, Factorize |
---|
838 | |
---|
839 | Revision 1.5 1999/06/15 12:54:55 Singular |
---|
840 | * hannes: debug fixes for Singular-interface |
---|
841 | |
---|
842 | Revision 1.4 1997/11/18 16:39:04 Singular |
---|
843 | * hannes: moved WerrorS from C++ to C |
---|
844 | (Factor.cc MVMultiHensel.cc SqrFree.cc Truefactor.cc) |
---|
845 | |
---|
846 | Revision 1.3 1997/09/12 07:19:46 Singular |
---|
847 | * hannes/michael: libfac-0.3.0 |
---|
848 | |
---|
849 | Revision 1.6 1997/04/25 22:18:40 michael |
---|
850 | changed lc == 1 to lc == unit in choose_mainvar |
---|
851 | changed cerr and cout messages for use with Singular |
---|
852 | Version for libfac-0.2.1 |
---|
853 | |
---|
854 | Revision 1.5 1997/01/17 05:04:03 michael |
---|
855 | * added support for homogenous polynomials |
---|
856 | * exported functions to homogfactor.cc |
---|
857 | |
---|
858 | */ |
---|