1 | /* Copyright 1996 Michael Messollen. All rights reserved. */ |
---|
2 | /////////////////////////////////////////////////////////////////////////////// |
---|
3 | // emacs edit mode for this file is -*- C++ -*- |
---|
4 | // static char * rcsid = "$Id: MVMultiHensel.cc,v 1.5 2001-08-08 11:59:12 Singular Exp $"; |
---|
5 | /////////////////////////////////////////////////////////////////////////////// |
---|
6 | // FACTORY - Includes |
---|
7 | #include <factory.h> |
---|
8 | #ifndef NOSTREAMIO |
---|
9 | #include <iostream.h> |
---|
10 | #endif |
---|
11 | // Factor - Includes |
---|
12 | #include "tmpl_inst.h" |
---|
13 | #include "helpstuff.h" |
---|
14 | // some CC's need this: |
---|
15 | #include "MVMultiHensel.h" |
---|
16 | |
---|
17 | #ifdef SINGULAR |
---|
18 | # define HAVE_SINGULAR |
---|
19 | extern "C" { void WerrorS(char *); } |
---|
20 | #endif |
---|
21 | |
---|
22 | #ifdef HENSELDEBUG |
---|
23 | # define DEBUGOUTPUT |
---|
24 | #else |
---|
25 | # undef DEBUGOUTPUT |
---|
26 | #endif |
---|
27 | |
---|
28 | #include "debug.h" |
---|
29 | #include "timing.h" |
---|
30 | |
---|
31 | /////////////////////////////////////////////////////////////// |
---|
32 | // some class definition needed in MVMultiHensel |
---|
33 | /////////////////////////////////////////////////////////////// |
---|
34 | typedef bool Boolean; |
---|
35 | |
---|
36 | class DiophantForm { |
---|
37 | public: |
---|
38 | CanonicalForm One; |
---|
39 | CanonicalForm Two; |
---|
40 | inline DiophantForm& operator=( const DiophantForm& value ){ |
---|
41 | if ( this != &value ){ |
---|
42 | One = value.One; |
---|
43 | Two = value.Two; |
---|
44 | } |
---|
45 | return *this; |
---|
46 | } |
---|
47 | }; |
---|
48 | |
---|
49 | // We remember an already calculated value; simple class for RememberArray |
---|
50 | class RememberForm { |
---|
51 | public: |
---|
52 | inline RememberForm operator=( CanonicalForm & value ){ |
---|
53 | this->calculated = true; |
---|
54 | this->poly = value; |
---|
55 | return *this; |
---|
56 | } |
---|
57 | Boolean calculated; |
---|
58 | CanonicalForm poly; |
---|
59 | }; |
---|
60 | |
---|
61 | // Array to remember already calculated values; used for the diophantine |
---|
62 | // equation s*f + t*g = x^i |
---|
63 | class RememberArray { |
---|
64 | public: |
---|
65 | // operations performed on arrays |
---|
66 | RememberArray( int sz ){ |
---|
67 | size = sz; |
---|
68 | ia = new RememberForm[size]; |
---|
69 | // assert( ia != 0 ); // test if we got the memory |
---|
70 | init( sz ); |
---|
71 | } |
---|
72 | ~RememberArray(){ delete [] ia; } |
---|
73 | inline RememberForm& operator[]( int index ){ |
---|
74 | return ia[index]; |
---|
75 | } |
---|
76 | protected: |
---|
77 | void init( int ){ |
---|
78 | for ( int ix=0; ix < size; ++ix) |
---|
79 | ia[ix].calculated=false; |
---|
80 | } |
---|
81 | // internal data representation |
---|
82 | int size; |
---|
83 | RememberForm *ia; |
---|
84 | }; |
---|
85 | |
---|
86 | |
---|
87 | /////////////////////////////////////////////////////////////// |
---|
88 | // Solve the Diophantine equation: ( levelU == mainvar ) // |
---|
89 | // s*F1 + t*F2 = (mainvar)^i // |
---|
90 | // Returns s and t. // |
---|
91 | /////////////////////////////////////////////////////////////// |
---|
92 | static DiophantForm |
---|
93 | diophant( int levelU , const CanonicalForm & F1 , const CanonicalForm & F2 , int i , RememberArray & A, RememberArray & B ) { |
---|
94 | DiophantForm Retvalue; |
---|
95 | CanonicalForm s,t,q,r; |
---|
96 | Variable x(levelU); |
---|
97 | |
---|
98 | DEBOUT(cout, "diophant: called with: ", F1); |
---|
99 | DEBOUT(cout, " ", F2); DEBOUTLN(cout, " ", i); |
---|
100 | |
---|
101 | // Did we solve the diophantine equation yet? |
---|
102 | // If so, return the calculated values |
---|
103 | if ( A[i].calculated && B[i].calculated ){ |
---|
104 | Retvalue.One=A[i].poly; |
---|
105 | Retvalue.Two=B[i].poly; |
---|
106 | return Retvalue; |
---|
107 | } |
---|
108 | |
---|
109 | // Degrees ok? degree(F1,mainvar) + degree(F2,mainvar) <= i ? |
---|
110 | if ( (degree(F1,levelU) + degree(F2,levelU) ) <= i ) { |
---|
111 | #ifdef HAVE_SINGULAR |
---|
112 | WerrorS("libfac: diophant ERROR: degree too large! "); |
---|
113 | #else |
---|
114 | cerr << "libfac: diophant ERROR: degree too large! " |
---|
115 | << (degree(F1,levelU) + degree(F2,levelU) ) <<endl; |
---|
116 | #endif |
---|
117 | Retvalue.One=F1;Retvalue.Two=F2; |
---|
118 | return Retvalue; |
---|
119 | } |
---|
120 | |
---|
121 | if ( i == 0 ) { // call the extended gcd |
---|
122 | r=extgcd(F1,F2,s,t); |
---|
123 | // check if gcd(F1,F2) <> 1 , i.e. F1 and F2 are not relatively prime |
---|
124 | if ( ! r.isOne() ){ |
---|
125 | #ifdef HAVE_SINGULAR |
---|
126 | WerrorS("libfac: diophant ERROR: F1 and F2 are not relatively prime! "); |
---|
127 | #else |
---|
128 | #ifndef NOSTREAMIO |
---|
129 | cerr << "libfac: diophant ERROR: " << F1 << " and " << F2 |
---|
130 | << " are not relatively prime!" << endl; |
---|
131 | #else |
---|
132 | cerr << "libfac: diophant ERROR: F1 and F2 are not relatively prime!" |
---|
133 | << endl; |
---|
134 | #endif |
---|
135 | #endif |
---|
136 | Retvalue.One=F1;Retvalue.Two=F2; |
---|
137 | return Retvalue; |
---|
138 | } |
---|
139 | Retvalue.One = s; Retvalue.Two = t; |
---|
140 | } |
---|
141 | else { // recursively call diophant |
---|
142 | Retvalue=diophant(levelU,F1,F2,i-1,A,B); |
---|
143 | Retvalue.One *= x; // createVar(levelU,1); |
---|
144 | Retvalue.Two *= x; // createVar(levelU,1); |
---|
145 | // Check degrees. |
---|
146 | |
---|
147 | if ( degree(Retvalue.One,levelU) > degree(F2,levelU) ){ |
---|
148 | // Make degree(Retvalue.one,mainvar) < degree(F2,mainvar) |
---|
149 | divrem(Retvalue.One,F2,q,r); |
---|
150 | Retvalue.One = r; Retvalue.Two += F1*q; |
---|
151 | } |
---|
152 | else { |
---|
153 | if ( degree(Retvalue.Two,levelU) >= degree(F1,levelU) ){ |
---|
154 | // Make degree(Retvalue.Two,mainvar) <= degree(F1,mainvar) |
---|
155 | divrem(Retvalue.Two,F1,q,r); |
---|
156 | Retvalue.One += F2*q; Retvalue.Two = r; |
---|
157 | } |
---|
158 | } |
---|
159 | |
---|
160 | } |
---|
161 | A[i].poly = Retvalue.One ; |
---|
162 | B[i].poly = Retvalue.Two ; |
---|
163 | A[i].calculated = true ; B[i].calculated = true ; |
---|
164 | |
---|
165 | DEBOUT(cout, "diophant: Returnvalue is: ", Retvalue.One); |
---|
166 | DEBOUTLN(cout, " ", Retvalue.Two); |
---|
167 | |
---|
168 | return Retvalue; |
---|
169 | } |
---|
170 | |
---|
171 | /////////////////////////////////////////////////////////////// |
---|
172 | // A more efficient way to solve s*F1 + t*F2 = W // |
---|
173 | // as in Wang and Rothschild [Wang&Roth75]. // |
---|
174 | /////////////////////////////////////////////////////////////// |
---|
175 | static CanonicalForm |
---|
176 | make_delta( int levelU, const CanonicalForm & W, |
---|
177 | const CanonicalForm & F1, const CanonicalForm & F2, |
---|
178 | RememberArray & A, RememberArray & B){ |
---|
179 | CanonicalForm Retvalue; |
---|
180 | DiophantForm intermediate; |
---|
181 | |
---|
182 | DEBOUT(cout, "make_delta: W= ", W); |
---|
183 | DEBOUTLN(cout, " degree(W,levelU)= ", degree(W,levelU) ); |
---|
184 | |
---|
185 | if ( levelU == level(W) ){ // same level, good |
---|
186 | for ( CFIterator i=W; i.hasTerms(); i++){ |
---|
187 | intermediate=diophant(levelU,F1,F2,i.exp(),A,B); |
---|
188 | Retvalue += i.coeff() * intermediate.One; |
---|
189 | } |
---|
190 | } |
---|
191 | else{ // level(W) < levelU ; i.e. degree(w,levelU) == 0 |
---|
192 | intermediate=diophant(levelU,F1,F2,0,A,B); |
---|
193 | Retvalue = W * intermediate.One; |
---|
194 | } |
---|
195 | DEBOUTLN(cout, "make_delta: Returnvalue= ", Retvalue); |
---|
196 | return Retvalue; |
---|
197 | } |
---|
198 | |
---|
199 | static CanonicalForm |
---|
200 | make_square( int levelU, const CanonicalForm & W, |
---|
201 | const CanonicalForm & F1, const CanonicalForm & F2, |
---|
202 | RememberArray & A, RememberArray & B){ |
---|
203 | CanonicalForm Retvalue; |
---|
204 | DiophantForm intermediate; |
---|
205 | |
---|
206 | DEBOUT(cout, "make_square: W= ", W ); |
---|
207 | DEBOUTLN(cout, " degree(W,levelU)= ", degree(W,levelU)); |
---|
208 | |
---|
209 | if ( levelU == level(W) ){ // same level, good |
---|
210 | for ( CFIterator i=W; i.hasTerms(); i++){ |
---|
211 | intermediate=diophant(levelU,F1,F2,i.exp(),A,B); |
---|
212 | Retvalue += i.coeff() * intermediate.Two; |
---|
213 | } |
---|
214 | } |
---|
215 | else{ // level(W) < levelU ; i.e. degree(w,levelU) == 0 |
---|
216 | intermediate=diophant(levelU,F1,F2,0,A,B); |
---|
217 | Retvalue = W * intermediate.Two; |
---|
218 | } |
---|
219 | DEBOUTLN(cout, "make_square: Returnvalue= ", Retvalue); |
---|
220 | |
---|
221 | return Retvalue; |
---|
222 | } |
---|
223 | |
---|
224 | |
---|
225 | /////////////////////////////////////////////////////////////// |
---|
226 | // Multivariat Hensel routine for two factors F and G . // |
---|
227 | // U is the monic univariat polynomial; we manage two arrays // |
---|
228 | // to remember already calculated values for the diophantine // |
---|
229 | // equation. This is suggested by Joel Moses [Moses71] . // |
---|
230 | // Return the fully lifted factors. // |
---|
231 | /////////////////////////////////////////////////////////////// |
---|
232 | static DiophantForm |
---|
233 | mvhensel( const CanonicalForm & U , const CanonicalForm & F , |
---|
234 | const CanonicalForm & G , const SFormList & Substitutionlist){ |
---|
235 | CanonicalForm V,Fk=F,Gk=G,Rk,W,D,S; |
---|
236 | int levelU=level(U), degU=subvardegree(U,levelU); // degree(U,{x_1,..,x_(level(U)-1)}) |
---|
237 | DiophantForm Retvalue; |
---|
238 | RememberArray A(degree(F)+degree(G)+1); |
---|
239 | RememberArray B(degree(F)+degree(G)+1); |
---|
240 | |
---|
241 | DEBOUTLN(cout, "mvhensel called with: U= ", U); |
---|
242 | DEBOUTLN(cout, " F= ", F); |
---|
243 | DEBOUTLN(cout, " G= ", G); |
---|
244 | DEBOUTLN(cout, " degU= ", degU); |
---|
245 | |
---|
246 | V=change_poly(U,Substitutionlist,0); // change x_i <- x_i + a_i for all i |
---|
247 | Rk = F*G-V; |
---|
248 | #ifdef HENSELDEBUG2 |
---|
249 | cout << "mvhensel: V = " << V << endl |
---|
250 | << " Fk= " << F << endl |
---|
251 | << " Gk= " << G << endl |
---|
252 | << " Rk= " << Rk << endl; |
---|
253 | #endif |
---|
254 | for ( int k=2; k<=degU+1; k++){//2; k++){//degU+1; k++){ |
---|
255 | W = mod_power(Rk,k,levelU); |
---|
256 | #ifdef HENSELDEBUG2 |
---|
257 | cout << "mvhensel: Iteration: " << k << endl; |
---|
258 | cout << "mvhensel: W= " << W << endl; |
---|
259 | #endif |
---|
260 | D = make_delta(levelU,W,F,G,A,B); |
---|
261 | #ifdef HENSELDEBUG2 |
---|
262 | cout << "mvhensel: D= " << D << endl; |
---|
263 | #endif |
---|
264 | S = make_square(levelU,W,F,G,A,B); |
---|
265 | #ifdef HENSELDEBUG2 |
---|
266 | cout << "mvhensel: S= " << S << endl; |
---|
267 | #endif |
---|
268 | Rk += S*D - D*Fk - S*Gk; |
---|
269 | #ifdef HENSELDEBUG2 |
---|
270 | cout << "mvhensel: Rk= " << Rk << endl; |
---|
271 | #endif |
---|
272 | Fk -= S; |
---|
273 | #ifdef HENSELDEBUG2 |
---|
274 | cout << "mvhensel: Fk= " << Fk << endl; |
---|
275 | #endif |
---|
276 | Gk -= D; |
---|
277 | #ifdef HENSELDEBUG2 |
---|
278 | cout << "mvhensel: Gk= " << Gk << endl; |
---|
279 | #endif |
---|
280 | if ( Rk.isZero() ) break; |
---|
281 | } |
---|
282 | Retvalue.One = change_poly(Fk,Substitutionlist,1); |
---|
283 | Retvalue.Two = change_poly(Gk,Substitutionlist,1); |
---|
284 | |
---|
285 | DEBOUTLN(cout, "mvhensel: Retvalue: ", Retvalue.One); |
---|
286 | DEBOUTLN(cout, " ", Retvalue.Two); |
---|
287 | |
---|
288 | return Retvalue ; |
---|
289 | } |
---|
290 | |
---|
291 | /////////////////////////////////////////////////////////////// |
---|
292 | // Recursive Version of MultiHensel. // |
---|
293 | /////////////////////////////////////////////////////////////// |
---|
294 | CFFList |
---|
295 | multihensel( const CanonicalForm & mF, const CFFList & Factorlist, |
---|
296 | const SFormList & Substitutionlist){ |
---|
297 | CFFList Returnlist,factorlist=Factorlist; |
---|
298 | DiophantForm intermediat; |
---|
299 | CanonicalForm Pl,Pr; |
---|
300 | int n = factorlist.length(); |
---|
301 | |
---|
302 | DEBOUT(cout, "multihensel: called with ", mF); |
---|
303 | DEBOUTLN(cout, " ", factorlist); |
---|
304 | |
---|
305 | if ( n == 1 ) { |
---|
306 | Returnlist.append(CFFactor(mF,1)); |
---|
307 | } |
---|
308 | else { |
---|
309 | if ( n == 2 ){ |
---|
310 | intermediat= mvhensel(mF, factorlist.getFirst().factor(), |
---|
311 | Factorlist.getLast().factor(), |
---|
312 | Substitutionlist); |
---|
313 | Returnlist.append(CFFactor(intermediat.One,1)); |
---|
314 | Returnlist.append(CFFactor(intermediat.Two,1)); |
---|
315 | } |
---|
316 | else { // more then two factors |
---|
317 | #ifdef HENSELDEBUG2 |
---|
318 | cout << "multihensel: more than two factors!" << endl; |
---|
319 | #endif |
---|
320 | Pl=factorlist.getFirst().factor(); factorlist.removeFirst(); |
---|
321 | Pr=Pl.genOne(); |
---|
322 | for ( ListIterator<CFFactor> i=factorlist; i.hasItem(); i++ ) |
---|
323 | Pr *= i.getItem().factor() ; |
---|
324 | #ifdef HENSELDEBUG2 |
---|
325 | cout << "multihensel: Pl,Pr, factorlist: " << Pl << " " << Pr |
---|
326 | << " " << factorlist << endl; |
---|
327 | #endif |
---|
328 | intermediat= mvhensel(mF,Pl,Pr,Substitutionlist); |
---|
329 | Returnlist.append(CFFactor(intermediat.One,1)); |
---|
330 | Returnlist=Union( multihensel(intermediat.Two,factorlist,Substitutionlist), Returnlist); |
---|
331 | } |
---|
332 | } |
---|
333 | |
---|
334 | return Returnlist; |
---|
335 | } |
---|
336 | |
---|
337 | /////////////////////////////////////////////////////////////// |
---|
338 | // Generalized Hensel routine. // |
---|
339 | // mF is the monic multivariat polynomial, Factorlist is the // |
---|
340 | // list of factors, Substitutionlist represents the ideal // |
---|
341 | // <x_1+a_1, .. , x_r+a_r>, where r=level(mF)-1 . // |
---|
342 | // Returns the list of fully lifted factors. // |
---|
343 | /////////////////////////////////////////////////////////////// |
---|
344 | CFFList |
---|
345 | MultiHensel( const CanonicalForm & mF, const CFFList & Factorlist, |
---|
346 | const SFormList & Substitutionlist){ |
---|
347 | CFFList Returnlist,Retlistinter,factorlist=Factorlist,Ll; |
---|
348 | CFFListIterator i; |
---|
349 | DiophantForm intermediat; |
---|
350 | CanonicalForm Pl,Pr; |
---|
351 | int n = factorlist.length(),h=n/2, k; |
---|
352 | |
---|
353 | DEBOUT(cout, "MultiHensel: called with ", mF); |
---|
354 | DEBOUTLN(cout, " ", factorlist); |
---|
355 | DEBOUT(cout," : n,h = ", n); |
---|
356 | DEBOUTLN(cout," ", h); |
---|
357 | |
---|
358 | if ( n == 1 ) { |
---|
359 | Returnlist.append(CFFactor(mF,1)); |
---|
360 | } |
---|
361 | else { |
---|
362 | if ( n == 2 ){ |
---|
363 | intermediat= mvhensel(mF, factorlist.getFirst().factor(), |
---|
364 | Factorlist.getLast().factor(), |
---|
365 | Substitutionlist); |
---|
366 | Returnlist.append(CFFactor(intermediat.One,1)); |
---|
367 | Returnlist.append(CFFactor(intermediat.Two,1)); |
---|
368 | } |
---|
369 | else { // more then two factors |
---|
370 | for ( k=1 ; k<=h; k++){ |
---|
371 | Ll.append(factorlist.getFirst()); |
---|
372 | factorlist.removeFirst(); |
---|
373 | } |
---|
374 | |
---|
375 | DEBOUTLN(cout, "MultiHensel: Ll= ", Ll); |
---|
376 | DEBOUTLN(cout, " factorlist= ", factorlist); |
---|
377 | |
---|
378 | Pl = 1; Pr = 1; |
---|
379 | for ( i = Ll; i.hasItem(); i++) |
---|
380 | Pl *= i.getItem().factor(); |
---|
381 | DEBOUTLN(cout, "MultiHensel: Pl= ", Pl); |
---|
382 | for ( i = factorlist; i.hasItem(); i++) |
---|
383 | Pr *= i.getItem().factor(); |
---|
384 | DEBOUTLN(cout, "MultiHensel: Pr= ", Pr); |
---|
385 | intermediat = mvhensel(mF,Pl,Pr,Substitutionlist); |
---|
386 | // divison test for intermediat.One and intermediat.Two ? |
---|
387 | CanonicalForm a,b; |
---|
388 | // we add a division test now for intermediat.One and intermediat.Two |
---|
389 | if ( mydivremt (mF,intermediat.One,a,b) && b == mF.genZero() ) |
---|
390 | Retlistinter.append(CFFactor(intermediat.One,1) ); |
---|
391 | if ( mydivremt (mF,intermediat.Two,a,b) && b == mF.genZero() ) |
---|
392 | Retlistinter.append(CFFactor(intermediat.Two,1) ); |
---|
393 | |
---|
394 | Ll = MultiHensel(intermediat.One, Ll, Substitutionlist); |
---|
395 | Returnlist = MultiHensel(intermediat.Two, factorlist, Substitutionlist); |
---|
396 | Returnlist = Union(Returnlist,Ll); |
---|
397 | |
---|
398 | Returnlist = Union(Retlistinter,Returnlist); |
---|
399 | |
---|
400 | } |
---|
401 | } |
---|
402 | return Returnlist; |
---|
403 | } |
---|
404 | |
---|
405 | /* |
---|
406 | $Log: not supported by cvs2svn $ |
---|
407 | Revision 1.4 1997/11/18 16:39:05 Singular |
---|
408 | * hannes: moved WerrorS from C++ to C |
---|
409 | (Factor.cc MVMultiHensel.cc SqrFree.cc Truefactor.cc) |
---|
410 | |
---|
411 | Revision 1.3 1997/09/12 07:19:48 Singular |
---|
412 | * hannes/michael: libfac-0.3.0 |
---|
413 | |
---|
414 | Revision 1.4 1997/04/25 22:40:02 michael |
---|
415 | changed cerr and cout messages for use with Singular |
---|
416 | Version for libfac-0.2.1 |
---|
417 | |
---|
418 | */ |
---|