1 | /* Copyright 1996 Michael Messollen. All rights reserved. */ |
---|
2 | /////////////////////////////////////////////////////////////////////////////// |
---|
3 | // emacs edit mode for this file is -*- C++ -*- |
---|
4 | /* $Id: SqrFree.cc,v 1.19 2008-05-05 14:54:29 Singular Exp $ */ |
---|
5 | static const char * errmsg = "\nYou found a bug!\nPlease inform singular@mathematik.uni-kl.de\n Please include above information and your input (the ideal/polynomial and characteristic) in your bug-report.\nThank you."; |
---|
6 | /////////////////////////////////////////////////////////////////////////////// |
---|
7 | // FACTORY - Includes |
---|
8 | #include<factory.h> |
---|
9 | #ifndef NOSTREAMIO |
---|
10 | #ifdef HAVE_IOSTREAM |
---|
11 | #include <iostream> |
---|
12 | #define OSTREAM std::ostream |
---|
13 | #define ISTREAM std::istream |
---|
14 | #define CERR std::cerr |
---|
15 | #define CIN std::cin |
---|
16 | #elif defined(HAVE_IOSTREAM_H) |
---|
17 | #include <iostream.h> |
---|
18 | #define OSTREAM ostream |
---|
19 | #define ISTREAM istream |
---|
20 | #define CERR cerr |
---|
21 | #define CIN cin |
---|
22 | #endif |
---|
23 | #endif |
---|
24 | // Factor - Includes |
---|
25 | #include "tmpl_inst.h" |
---|
26 | #include "helpstuff.h" |
---|
27 | // some CC's need this: |
---|
28 | #include "SqrFree.h" |
---|
29 | |
---|
30 | #ifdef SINGULAR |
---|
31 | #define HAVE_SINGULAR_ERROR |
---|
32 | #endif |
---|
33 | |
---|
34 | #ifdef HAVE_SINGULAR_ERROR |
---|
35 | extern "C" { void WerrorS(const char *); } |
---|
36 | #endif |
---|
37 | |
---|
38 | #ifdef SQRFREEDEBUG |
---|
39 | # define DEBUGOUTPUT |
---|
40 | #else |
---|
41 | # undef DEBUGOUTPUT |
---|
42 | #endif |
---|
43 | |
---|
44 | #include "debug.h" |
---|
45 | #include "timing.h" |
---|
46 | TIMING_DEFINE_PRINT(squarefree_time); |
---|
47 | TIMING_DEFINE_PRINT(gcd_time); |
---|
48 | |
---|
49 | static inline CFFactor |
---|
50 | Powerup( const CFFactor & F , int exp=1) |
---|
51 | { |
---|
52 | return CFFactor(F.factor(), exp*F.exp()) ; |
---|
53 | } |
---|
54 | |
---|
55 | static CFFList |
---|
56 | Powerup( const CFFList & Inputlist , int exp=1 ) |
---|
57 | { |
---|
58 | CFFList Outputlist; |
---|
59 | |
---|
60 | for ( CFFListIterator i=Inputlist; i.hasItem(); i++ ) |
---|
61 | Outputlist.append(Powerup(i.getItem(), exp)); |
---|
62 | return Outputlist ; |
---|
63 | } |
---|
64 | |
---|
65 | /////////////////////////////////////////////////////////////// |
---|
66 | // Compute the Pth root of a polynomial in characteristic p // |
---|
67 | // f must be a polynomial which we can take the Pth root of. // |
---|
68 | // Domain is q=p^m , f a uni/multivariate polynomial // |
---|
69 | /////////////////////////////////////////////////////////////// |
---|
70 | static CanonicalForm |
---|
71 | PthRoot( const CanonicalForm & f ) |
---|
72 | { |
---|
73 | CanonicalForm RES, R = f; |
---|
74 | int n= max(level(R),getNumVars(R)), p= getCharacteristic(); |
---|
75 | |
---|
76 | if (n==0) |
---|
77 | { // constant |
---|
78 | if (R.inExtension()) // not in prime field; f over |F(q=p^k) |
---|
79 | { |
---|
80 | R = power(R,Powerup(p,getGFDegree() - 1)) ; |
---|
81 | } |
---|
82 | // if f in prime field, do nothing |
---|
83 | return R; |
---|
84 | } |
---|
85 | // we assume R is a Pth power here |
---|
86 | RES = R.genZero(); |
---|
87 | Variable x(n); |
---|
88 | for (int i=0; i<= (int) (degree(R,level(R))/p) ; i++) |
---|
89 | RES += PthRoot( R[i*p] ) * power(x,i); |
---|
90 | return RES; |
---|
91 | } |
---|
92 | |
---|
93 | /////////////////////////////////////////////////////////////// |
---|
94 | // Compute the Pth root of a polynomial in characteristic p // |
---|
95 | // f must be a polynomial which we can take the Pth root of. // |
---|
96 | // Domain is q=p^m , f a uni/multivariate polynomial // |
---|
97 | /////////////////////////////////////////////////////////////// |
---|
98 | static CanonicalForm |
---|
99 | PthRoot( const CanonicalForm & f ,const CanonicalForm & mipo) |
---|
100 | { |
---|
101 | CanonicalForm RES, R = f; |
---|
102 | int n= max(level(R),getNumVars(R)), p= getCharacteristic(); |
---|
103 | int mipodeg=-1; |
---|
104 | if (f.level()==mipo.level()) mipodeg=mipo.degree(); |
---|
105 | else if ((f.level()==1) &&(!mipo.isZero())) |
---|
106 | { |
---|
107 | Variable t; |
---|
108 | CanonicalForm tt=getMipo(mipo.mvar(),t); |
---|
109 | mipodeg=degree(tt,t); |
---|
110 | } |
---|
111 | |
---|
112 | if ((n==0) |
---|
113 | ||(mipodeg!=-1)) |
---|
114 | { // constant |
---|
115 | if (R.inExtension()) // not in prime field; f over |F(q=p^k) |
---|
116 | { |
---|
117 | R = power(R,Powerup(p,getGFDegree() - 1)) ; |
---|
118 | } |
---|
119 | else if ((f.level()==mipo.level()) |
---|
120 | ||((f.level()==1) &&(!mipo.isZero()))) |
---|
121 | { |
---|
122 | R = power(R,Powerup(p,mipodeg - 1)) ; |
---|
123 | R=mod(R, mipo); |
---|
124 | } |
---|
125 | // if f in prime field, do nothing |
---|
126 | return R; |
---|
127 | } |
---|
128 | // we assume R is a Pth power here |
---|
129 | RES = R.genZero(); |
---|
130 | Variable x(n); |
---|
131 | for (int i=0; i<= (int) (degree(R,level(R))/p) ; i++) |
---|
132 | RES += PthRoot( R[i*p], mipo ) * power(x,i); |
---|
133 | return RES; |
---|
134 | } |
---|
135 | |
---|
136 | /////////////////////////////////////////////////////////////// |
---|
137 | // A uni/multivariate SqrFreeTest routine. // |
---|
138 | // Cheaper to run if all you want is a test. // |
---|
139 | // Works for charcteristic 0 and q=p^m // |
---|
140 | // Returns 1 if poly r is SqrFree, 0 if SqrFree will do some // |
---|
141 | // kind of factorization. // |
---|
142 | // Would be much more effcient iff we had *good* // |
---|
143 | // uni/multivariate gcd's and/or gcdtest's // |
---|
144 | /////////////////////////////////////////////////////////////// |
---|
145 | int |
---|
146 | SqrFreeTest( const CanonicalForm & r, int opt) |
---|
147 | { |
---|
148 | CanonicalForm f=r, g; |
---|
149 | int n=level(f); |
---|
150 | |
---|
151 | if (getNumVars(f)==0) return 1 ; // a constant is SqrFree |
---|
152 | if ( f.isUnivariate() ) { |
---|
153 | g= f.deriv(); |
---|
154 | if ( getCharacteristic() > 0 && g.isZero() ) return 0 ; |
---|
155 | // Next: it would be best to have a *univariate* gcd-test which returns |
---|
156 | // 0 iff gcdtest(f,g) == 1 or a constant ( for real Polynomials ) |
---|
157 | g = gcd(f,g); |
---|
158 | if ( g.isOne() || (-g).isOne() ) return 1; |
---|
159 | else |
---|
160 | if ( getNumVars(g) == 0 ) return 1;// <- totaldegree!!! |
---|
161 | else return 0 ; |
---|
162 | } |
---|
163 | else |
---|
164 | { // multivariate case |
---|
165 | for ( int k=1; k<=n; k++ ) |
---|
166 | { |
---|
167 | g = swapvar(f,k,n); g = content(g); |
---|
168 | // g = 1 || -1 : sqr-free, g poly : not sqr-free, g number : opt helps |
---|
169 | if ( ! (g.isOne() || (-g).isOne() || getNumVars(g)==0 ) ) { |
---|
170 | if ( opt==0 ) return 0; |
---|
171 | else { |
---|
172 | if ( SqrFreeTest(g,1) == 0 ) return 0; |
---|
173 | g = swapvar(g,k,n); |
---|
174 | f /=g ; |
---|
175 | } |
---|
176 | } |
---|
177 | } |
---|
178 | // Now f is primitive |
---|
179 | n = level(f); // maybe less indeterminants |
---|
180 | // if ( totaldegree(f) <= 1 ) return 1; |
---|
181 | |
---|
182 | // Let`s look if it is a Pth root |
---|
183 | if ( getCharacteristic() > 0 ) |
---|
184 | for (int k=1; k<=n; k++ ) |
---|
185 | { |
---|
186 | g=swapvar(f,k,n); g=g.deriv(); |
---|
187 | if ( ! g.isZero() ) break ; |
---|
188 | else if ( k==n) return 0 ; // really is Pth root |
---|
189 | } |
---|
190 | g = f.deriv() ; |
---|
191 | // Next: it would be best to have a *multivariate* gcd-test which returns |
---|
192 | // 0 iff gcdtest(f,g) == 1 or a constant ( for real Polynomials ) |
---|
193 | g= gcd(f,g); |
---|
194 | if ( g.isOne() || (-g).isOne() || (g==f) || (getNumVars(g)==0) ) return 1 ; |
---|
195 | else return 0 ; |
---|
196 | } |
---|
197 | #ifdef HAVE_SINGULAR_ERROR |
---|
198 | WerrorS("libfac: ERROR: SqrFreeTest: we should never fall trough here!"); |
---|
199 | #else |
---|
200 | #ifndef NOSTREAMIO |
---|
201 | CERR << "\nlibfac: ERROR: SqrFreeTest: we should never fall trough here!\n" |
---|
202 | << errmsg << "\n"; |
---|
203 | #endif |
---|
204 | #endif |
---|
205 | return 0; |
---|
206 | } |
---|
207 | |
---|
208 | /////////////////////////////////////////////////////////////// |
---|
209 | // A uni/multivariate SqrFree routine.Works for polynomials // |
---|
210 | // which don\'t have a constant as the content. // |
---|
211 | // Works for charcteristic 0 and q=p^m // |
---|
212 | // returns a list of polys each of sqrfree, but gcd(f_i,f_j) // |
---|
213 | // needs not to be 1 !!!!! // |
---|
214 | /////////////////////////////////////////////////////////////// |
---|
215 | static CFFList |
---|
216 | SqrFreed( const CanonicalForm & r , const CanonicalForm &mipo=0) |
---|
217 | { |
---|
218 | CanonicalForm h, g, f = r; |
---|
219 | CFFList Outputlist; |
---|
220 | int n = level(f); |
---|
221 | |
---|
222 | DEBINCLEVEL(CERR, "SqrFreed"); |
---|
223 | DEBOUTLN(CERR, "Called with r= ", r); |
---|
224 | if (getNumVars(f)==0 ) |
---|
225 | { // just a constant; return it |
---|
226 | Outputlist= myappend(Outputlist,CFFactor(f,1)); |
---|
227 | return Outputlist ; |
---|
228 | } |
---|
229 | |
---|
230 | // We look if we do have a content; if so, SqrFreed the content |
---|
231 | // and continue computations with pp(f) |
---|
232 | for (int k=1; k<=n; k++) |
---|
233 | { |
---|
234 | if ((mipo.isZero())/*||(k!=1)*/) |
---|
235 | { |
---|
236 | g = swapvar(f,k,n); g = content(g); |
---|
237 | if ( ! (g.isOne() || (-g).isOne() || degree(g)==0 )) |
---|
238 | { |
---|
239 | g = swapvar(g,k,n); |
---|
240 | DEBOUTLN(CERR, "We have a content: ", g); |
---|
241 | Outputlist = myUnion(SqrFreeMV(g,mipo),Outputlist); // should we add a |
---|
242 | // SqrFreeTest(g) first ? |
---|
243 | DEBOUTLN(CERR, "Outputlist is now: ", Outputlist); |
---|
244 | f /=g; |
---|
245 | DEBOUTLN(CERR, "f is now: ", f); |
---|
246 | } |
---|
247 | } |
---|
248 | } |
---|
249 | |
---|
250 | // Now f is primitive; Let`s look if f is univariate |
---|
251 | if ( f.isUnivariate() ) |
---|
252 | { |
---|
253 | DEBOUTLN(CERR, "f is univariate: ", f); |
---|
254 | g = content(f); |
---|
255 | if ( ! (g.isOne() || (-g).isOne() ) ) |
---|
256 | { |
---|
257 | Outputlist= myappend(Outputlist,CFFactor(g,1)) ; |
---|
258 | f /= g; |
---|
259 | } |
---|
260 | Outputlist = Union(sqrFree(f),Outputlist) ; |
---|
261 | DEBOUTLN(CERR, "Outputlist after univ. sqrFree(f) = ", Outputlist); |
---|
262 | DEBDECLEVEL(CERR, "SqrFreed"); |
---|
263 | return Outputlist ; |
---|
264 | } |
---|
265 | |
---|
266 | // Linear? |
---|
267 | if ( totaldegree(f) <= 1 ) |
---|
268 | { |
---|
269 | Outputlist= myappend(Outputlist,CFFactor(f,1)) ; |
---|
270 | DEBDECLEVEL(CERR, "SqrFreed"); |
---|
271 | return Outputlist ; |
---|
272 | } |
---|
273 | |
---|
274 | // is it Pth root? |
---|
275 | n=level(f); // maybe less indeterminants |
---|
276 | g= f.deriv(); |
---|
277 | if ( getCharacteristic() > 0 && g.isZero() ) |
---|
278 | { // Pth roots only apply to char > 0 |
---|
279 | for (int k=1; k<=n; k++) |
---|
280 | { |
---|
281 | if ((mipo.isZero())/*||(k!=1)*/) |
---|
282 | { |
---|
283 | g=swapvar(f,k,n) ; |
---|
284 | g = g.deriv(); |
---|
285 | |
---|
286 | if ( ! g.isZero() ) |
---|
287 | { // can`t be Pth root |
---|
288 | CFFList Outputlist2= SqrFreed(swapvar(f,k,n)); |
---|
289 | for (CFFListIterator inter=Outputlist2; inter.hasItem(); inter++) |
---|
290 | { |
---|
291 | Outputlist= myappend(Outputlist, CFFactor(swapvar(inter.getItem().factor(),k,n), inter.getItem().exp())); |
---|
292 | } |
---|
293 | return Outputlist; |
---|
294 | } |
---|
295 | } |
---|
296 | } |
---|
297 | // really is Pth power |
---|
298 | DEBOUTLN(CERR, "f is a p'th root: ", f); |
---|
299 | CFMap m; |
---|
300 | g = compress(f,m); |
---|
301 | if (mipo.isZero()) |
---|
302 | f = m(PthRoot(g)); |
---|
303 | else |
---|
304 | f = m(PthRoot(g,mipo)); |
---|
305 | DEBOUTLN(CERR, " that is : ", f); |
---|
306 | // now : Outputlist union ( SqrFreed(f) )^getCharacteristic() |
---|
307 | Outputlist=myUnion(Powerup(SqrFreeMV(f),getCharacteristic()),Outputlist); |
---|
308 | DEBDECLEVEL(CERR, "SqrFreed"); |
---|
309 | return Outputlist ; |
---|
310 | } |
---|
311 | g = f.deriv(); |
---|
312 | DEBOUTLN(CERR, "calculating gcd of ", f); |
---|
313 | DEBOUTLN(CERR, " and ", g); |
---|
314 | h = gcd(f,pp(g)); h /= lc(h); |
---|
315 | DEBOUTLN(CERR,"gcd(f,g)= ",h); |
---|
316 | if ( (h.isOne()) || ( h==f) || ((-h).isOne()) || getNumVars(h)==0 ) |
---|
317 | { // no common factor |
---|
318 | Outputlist= myappend(Outputlist,CFFactor(f,1)) ; |
---|
319 | DEBOUTLN(CERR, "Outputlist= ", Outputlist); |
---|
320 | DEBDECLEVEL(CERR, "SqrFreed"); |
---|
321 | return Outputlist ; |
---|
322 | } |
---|
323 | else |
---|
324 | { // we can split into two nontrivial pieces |
---|
325 | f /= h; // Now we have split the poly into f and h |
---|
326 | g = lc(f); |
---|
327 | if ( g != f.genOne() && getNumVars(g) == 0 ) |
---|
328 | { |
---|
329 | Outputlist= myappend(Outputlist,CFFactor(g,1)) ; |
---|
330 | f /= g; |
---|
331 | } |
---|
332 | DEBOUTLN(CERR, "Split into f= ", f); |
---|
333 | DEBOUTLN(CERR, " and h= ", h); |
---|
334 | // For char > 0 the polys f and h can have Pth roots; so we need a test |
---|
335 | // Test is disabled because timing is the same |
---|
336 | |
---|
337 | // if ( SqrFreeTest(f,0) ) |
---|
338 | // Outputlist= myappend(Outputlist,CFFactor(f,1)) ; |
---|
339 | // else |
---|
340 | Outputlist=myUnion(Outputlist, SqrFreeMV(f)); |
---|
341 | // if ( SqrFreeTest(h,0) ) |
---|
342 | // Outputlist= myappend(Outputlist,CFFactor(h,1)) ; |
---|
343 | // else |
---|
344 | Outputlist=myUnion(Outputlist,SqrFreeMV(h)); |
---|
345 | DEBOUTLN(CERR, "Returning list ", Outputlist); |
---|
346 | DEBDECLEVEL(CERR, "SqrFreed"); |
---|
347 | return Outputlist ; |
---|
348 | } |
---|
349 | #ifdef HAVE_SINGULAR_ERROR |
---|
350 | WerrorS("libfac: ERROR: SqrFreed: we should never fall trough here!"); |
---|
351 | #else |
---|
352 | #ifndef NOSTREAMIO |
---|
353 | CERR << "\nlibfac: ERROR: SqrFreed: we should never fall trough here!\n" |
---|
354 | << errmsg << "\n"; |
---|
355 | #endif |
---|
356 | #endif |
---|
357 | DEBDECLEVEL(CERR, "SqrFreed"); |
---|
358 | return Outputlist; // for safety purpose |
---|
359 | } |
---|
360 | |
---|
361 | /////////////////////////////////////////////////////////////// |
---|
362 | // The user front-end for the SqrFreed routine. // |
---|
363 | // Input can have a constant as content // |
---|
364 | /////////////////////////////////////////////////////////////// |
---|
365 | CFFList |
---|
366 | SqrFreeMV( const CanonicalForm & r , const CanonicalForm & mipo ) |
---|
367 | { |
---|
368 | CanonicalForm g=icontent(r), f = r; |
---|
369 | CFFList Outputlist, Outputlist2,tmpOutputlist; |
---|
370 | |
---|
371 | DEBINCLEVEL(CERR, "SqrFreeMV"); |
---|
372 | DEBOUTLN(CERR,"Called with f= ", f); |
---|
373 | |
---|
374 | // Take care of stupid users giving us constants |
---|
375 | if ( getNumVars(f) == 0 ) |
---|
376 | { // a constant ; Exp==1 even if f==0 |
---|
377 | Outputlist= myappend(Outputlist,CFFactor(f,1)); |
---|
378 | } |
---|
379 | else |
---|
380 | { |
---|
381 | // Now we are sure: we have a nonconstant polynomial |
---|
382 | g = lc(f); |
---|
383 | while ( getNumVars(g) != 0 ) g=content(g); |
---|
384 | if ( ! g.isOne() ) Outputlist= myappend(Outputlist,CFFactor(g,1)) ; |
---|
385 | f /= g; |
---|
386 | if ( getNumVars(f) != 0 ) // a real polynomial |
---|
387 | { |
---|
388 | if (!mipo.isZero()) |
---|
389 | { |
---|
390 | #if 1 |
---|
391 | Variable alpha=rootOf(mipo); |
---|
392 | CanonicalForm ff=swapvar(f,mipo.mvar(),alpha); |
---|
393 | tmpOutputlist=SqrFreeMV(ff,0); |
---|
394 | ff=swapvar(f,alpha,mipo.mvar()); |
---|
395 | for ( CFFListIterator i=tmpOutputlist; i.hasItem(); i++ ) |
---|
396 | { |
---|
397 | ff=i.getItem().factor(); |
---|
398 | ff /= ff.Lc(); |
---|
399 | ff=swapvar(ff,alpha,mipo.mvar()); |
---|
400 | Outputlist=myappend(Outputlist,CFFactor(ff,1)); |
---|
401 | } |
---|
402 | #else |
---|
403 | Outputlist=myUnion(SqrFreed(f,mipo),Outputlist) ; |
---|
404 | #endif |
---|
405 | } |
---|
406 | else |
---|
407 | Outputlist=myUnion(SqrFreed(f),Outputlist) ; |
---|
408 | } |
---|
409 | } |
---|
410 | DEBOUTLN(CERR,"Outputlist = ", Outputlist); |
---|
411 | for ( CFFListIterator i=Outputlist; i.hasItem(); i++ ) |
---|
412 | if ( getNumVars(i.getItem().factor()) > 0 ) |
---|
413 | Outputlist2.append(i.getItem()); |
---|
414 | |
---|
415 | DEBOUTLN(CERR,"Outputlist2 = ", Outputlist2); |
---|
416 | DEBDECLEVEL(CERR, "SqrFreeMV"); |
---|
417 | return Outputlist2 ; |
---|
418 | } |
---|
419 | |
---|
420 | CFFList SqrFree(const CanonicalForm & r ) |
---|
421 | { |
---|
422 | CFFList outputlist, sqrfreelist = SqrFreeMV(r); |
---|
423 | CFFListIterator i; |
---|
424 | CanonicalForm elem; |
---|
425 | int n=totaldegree(r); |
---|
426 | |
---|
427 | DEBINCLEVEL(CERR, "SqrFree"); |
---|
428 | |
---|
429 | if ( sqrfreelist.length() < 2 ) |
---|
430 | { |
---|
431 | DEBDECLEVEL(CERR, "SqrFree"); |
---|
432 | return sqrfreelist; |
---|
433 | } |
---|
434 | for ( int j=1; j<=n; j++ ) |
---|
435 | { |
---|
436 | elem =1; |
---|
437 | for ( i = sqrfreelist; i.hasItem() ; i++ ) |
---|
438 | { |
---|
439 | if ( i.getItem().exp() == j ) elem *= i.getItem().factor(); |
---|
440 | } |
---|
441 | if ( !(elem.isOne()) ) outputlist.append(CFFactor(elem,j)); |
---|
442 | } |
---|
443 | elem=1; |
---|
444 | for ( i=outputlist; i.hasItem(); i++ ) |
---|
445 | if ( getNumVars(i.getItem().factor()) > 0 ) |
---|
446 | elem*= power(i.getItem().factor(),i.getItem().exp()); |
---|
447 | elem= r/elem; |
---|
448 | outputlist.insert(CFFactor(elem,1)); |
---|
449 | |
---|
450 | DEBOUTLN(CERR, "SqrFree returns list:", outputlist); |
---|
451 | DEBDECLEVEL(CERR, "SqrFree"); |
---|
452 | return outputlist; |
---|
453 | } |
---|
454 | |
---|
455 | /* |
---|
456 | $Log: not supported by cvs2svn $ |
---|
457 | Revision 1.18 2008/04/08 16:19:10 Singular |
---|
458 | *hannes: removed rcsid |
---|
459 | |
---|
460 | Revision 1.17 2008/03/18 17:46:15 Singular |
---|
461 | *hannes: gcc 4.2 |
---|
462 | |
---|
463 | Revision 1.16 2008/03/18 10:12:59 Singular |
---|
464 | *hannes: typo |
---|
465 | |
---|
466 | Revision 1.15 2008/03/17 17:44:16 Singular |
---|
467 | *hannes: fact.tst |
---|
468 | |
---|
469 | Revision 1.10 2006/05/16 14:46:50 Singular |
---|
470 | *hannes: gcc 4.1 fixes |
---|
471 | |
---|
472 | Revision 1.9 2006/04/28 13:46:29 Singular |
---|
473 | *hannes: better tests for 0, 1 |
---|
474 | |
---|
475 | Revision 1.8 2002/08/19 11:11:33 Singular |
---|
476 | * hannes/pfister: alg_gcd etc. |
---|
477 | |
---|
478 | Revision 1.7 2001/08/08 14:27:38 Singular |
---|
479 | *hannes: Dan's HAVE_SINGULAR_ERROR |
---|
480 | |
---|
481 | Revision 1.6 2001/08/08 14:26:56 Singular |
---|
482 | *hannes: Dan's HAVE_SINGULAR_ERROR |
---|
483 | |
---|
484 | Revision 1.5 2001/08/08 11:59:13 Singular |
---|
485 | *hannes: Dan's NOSTREAMIO changes |
---|
486 | |
---|
487 | Revision 1.4 1997/11/18 16:39:06 Singular |
---|
488 | * hannes: moved WerrorS from C++ to C |
---|
489 | (Factor.cc MVMultiHensel.cc SqrFree.cc Truefactor.cc) |
---|
490 | |
---|
491 | Revision 1.3 1997/09/12 07:19:50 Singular |
---|
492 | * hannes/michael: libfac-0.3.0 |
---|
493 | |
---|
494 | Revision 1.4 1997/04/25 22:19:46 michael |
---|
495 | changed cerr and cout messages for use with Singular |
---|
496 | Version for libfac-0.2.1 |
---|
497 | |
---|
498 | */ |
---|