1 | /* Copyright 1996 Michael Messollen. All rights reserved. */ |
---|
2 | /////////////////////////////////////////////////////////////////////////////// |
---|
3 | // emacs edit mode for this file is -*- C++ -*- |
---|
4 | //static char * rcsid = "@(#) $Id: Truefactor.cc,v 1.2 1997-06-09 15:56:04 Singular Exp $"; |
---|
5 | /////////////////////////////////////////////////////////////////////////////// |
---|
6 | // Factory - Includes |
---|
7 | #include <factory.h> |
---|
8 | // Factor - Includes |
---|
9 | #include "tmpl_inst.h" |
---|
10 | #include "helpstuff.h" |
---|
11 | |
---|
12 | #ifdef TRUEFACTORDEBUG |
---|
13 | # define DEBUGOUTPUT |
---|
14 | #else |
---|
15 | # undef DEBUGOUTPUT |
---|
16 | #endif |
---|
17 | |
---|
18 | #include "debug.h" |
---|
19 | #include "timing.h" |
---|
20 | |
---|
21 | #ifdef HAVE_SINGULAR |
---|
22 | extern void WerrorS(char *); |
---|
23 | #endif |
---|
24 | /////////////////////////////////////////////////////////////// |
---|
25 | // generate all different k-subsets of the set with n // |
---|
26 | // elements and return them in returnlist. // |
---|
27 | /////////////////////////////////////////////////////////////// |
---|
28 | static void |
---|
29 | combinat( int k, int n, List<IntList> & returnlist ){ |
---|
30 | ListIntList ListofLists; |
---|
31 | IntList intermediate,intermediate2; |
---|
32 | int value,j; |
---|
33 | |
---|
34 | if ( k == 1 ){ // k=1 |
---|
35 | for ( j=1; j<=n; j++) |
---|
36 | returnlist.append( IntList(j) ); |
---|
37 | } |
---|
38 | else{ // k-1 --> k |
---|
39 | combinat(k-1,n,returnlist); // generate (k-1,n) |
---|
40 | for ( ListIntListIterator l=returnlist; l.hasItem(); l++ ){ |
---|
41 | intermediate = l.getItem(); |
---|
42 | value = intermediate.getLast(); |
---|
43 | if ( value != n ) |
---|
44 | for ( j=value+1; j<=n; j++ ){ |
---|
45 | intermediate2 = intermediate; intermediate2.append(j); |
---|
46 | ListofLists.append( intermediate2 ); |
---|
47 | } |
---|
48 | } |
---|
49 | returnlist = ListofLists; |
---|
50 | } |
---|
51 | } |
---|
52 | |
---|
53 | /////////////////////////////////////////////////////////////// |
---|
54 | // Return the CanonicalForm number nr in Factorlist. // |
---|
55 | /////////////////////////////////////////////////////////////// |
---|
56 | static CanonicalForm |
---|
57 | getItemNr(int nr, const CFFList & Factorlist ){ |
---|
58 | ListIterator<CFFactor> i=Factorlist; |
---|
59 | int Nr=nr; |
---|
60 | |
---|
61 | for ( Nr=1; Nr<nr; Nr++ ) i++; |
---|
62 | return i.getItem().factor(); |
---|
63 | } |
---|
64 | |
---|
65 | /////////////////////////////////////////////////////////////// |
---|
66 | // Generate all sets of m factors out of LiftedFactors list. // |
---|
67 | /////////////////////////////////////////////////////////////// |
---|
68 | static CFFList |
---|
69 | combine( int m, const CFFList & LiftedFactors ){ |
---|
70 | CFFList result; |
---|
71 | ListIntList CombinatList; |
---|
72 | CanonicalForm intermediate; |
---|
73 | |
---|
74 | combinat(m, LiftedFactors.length(), CombinatList); |
---|
75 | for ( ListIntListIterator j=CombinatList ; j.hasItem(); j++ ){ |
---|
76 | intermediate=1; |
---|
77 | for ( IntListIterator k=j.getItem(); k.hasItem(); k++ ) |
---|
78 | intermediate *= getItemNr(k.getItem(), LiftedFactors); |
---|
79 | result.append(CFFactor(intermediate,1)); |
---|
80 | } |
---|
81 | return result; |
---|
82 | } |
---|
83 | |
---|
84 | /////////////////////////////////////////////////////////////// |
---|
85 | // Remove element elem from the list L. // |
---|
86 | /////////////////////////////////////////////////////////////// |
---|
87 | static CFFList |
---|
88 | Remove_from_List( const CFFList & L, const CanonicalForm & elem ){ |
---|
89 | CFFList Returnlist; |
---|
90 | |
---|
91 | DEBOUTLN(cout, "Remove_from_List called with L= ",L); |
---|
92 | DEBOUTLN(cout, " and elem= ",elem); |
---|
93 | for ( ListIterator<CFFactor> i = L ; i.hasItem(); i++) |
---|
94 | if ( i.getItem().factor() != elem ) |
---|
95 | Returnlist.append( i.getItem() ); |
---|
96 | |
---|
97 | return Returnlist; |
---|
98 | } |
---|
99 | |
---|
100 | /////////////////////////////////////////////////////////////// |
---|
101 | // Here we solve: G= F mod ( P, S^h ) // |
---|
102 | /////////////////////////////////////////////////////////////// |
---|
103 | static CanonicalForm |
---|
104 | Multmod_power( const CanonicalForm & F, const SFormList & Substituionlist, int h, int levelF){ |
---|
105 | CanonicalForm G; |
---|
106 | |
---|
107 | G= change_poly(F, Substituionlist, 0); |
---|
108 | G= mod_power(G, h, levelF); |
---|
109 | G= change_poly(G, Substituionlist, 1); |
---|
110 | |
---|
111 | return G; |
---|
112 | } |
---|
113 | |
---|
114 | /////////////////////////////////////////////////////////////// |
---|
115 | // Determine the right degree for the list of combinations // |
---|
116 | // of factors, i.e. delete any element from list CombL which // |
---|
117 | // degree in the main variable levelU exceeeds degU. // |
---|
118 | /////////////////////////////////////////////////////////////// |
---|
119 | static CFFList |
---|
120 | Rightdegree( const CFFList & CombL, int degU, int levelU ){ |
---|
121 | CFFList Returnlist; |
---|
122 | CFFactor factor; |
---|
123 | |
---|
124 | for ( ListIterator<CFFactor> i= CombL; i.hasItem(); i++ ){ |
---|
125 | factor= i.getItem(); |
---|
126 | if ( degree(factor.factor(), levelU) <= degU ) |
---|
127 | Returnlist.append(factor); |
---|
128 | } |
---|
129 | |
---|
130 | return Returnlist; |
---|
131 | } |
---|
132 | |
---|
133 | /////////////////////////////////////////////////////////////// |
---|
134 | // We have properly lifted all the specialized factors. See // |
---|
135 | // which one works. // |
---|
136 | // We use the (modified) algorithm TRUEFACTORS given by // |
---|
137 | // Paul S. Wang and Linda Preiss Rothschild: // |
---|
138 | // Factoring Multivariate Polynomials Over the Integers // |
---|
139 | // Math. Comp. V29 Nr131 (July 1975) p. 935-950 // |
---|
140 | /////////////////////////////////////////////////////////////// |
---|
141 | CFFList |
---|
142 | Truefactors( const CanonicalForm Ua, int levelU, const SFormList & SubstitutionList, const CFFList & PiList){ |
---|
143 | CanonicalForm U=Ua,a,b,Y; |
---|
144 | CFFactor factor; |
---|
145 | CFFList L,FAC,E_all; |
---|
146 | int c,r = PiList.length(),degU, onemore,M, h = subvardegree(Ua,levelU) + 1; |
---|
147 | ListIterator<CFFactor> i; |
---|
148 | |
---|
149 | // step 1: simply test the generated factors alone |
---|
150 | for ( i= PiList; i.hasItem();i++){ |
---|
151 | factor = i.getItem(); |
---|
152 | c= mydivremt(U,factor.factor(),a,b); |
---|
153 | if ( c && b == U.genZero()) { // factor.getFactor() divides U |
---|
154 | U= a; |
---|
155 | FAC.append(factor); |
---|
156 | } |
---|
157 | else{ |
---|
158 | L.append(factor); |
---|
159 | } |
---|
160 | } |
---|
161 | DEBOUTLN(cout,"Truefactors: (step1) L = ", L); |
---|
162 | DEBOUTLN(cout," FAC= ", FAC); |
---|
163 | |
---|
164 | // step 2: Do we have to check combinations? |
---|
165 | degU = L.length(); |
---|
166 | if ( degU == 0 ) // No elements: Return |
---|
167 | return FAC; |
---|
168 | else |
---|
169 | if ( degU < 4 ){ // Less then four elements: no combinations possible |
---|
170 | FAC.append( CFFactor(U,1) ); |
---|
171 | return FAC; |
---|
172 | } |
---|
173 | else { |
---|
174 | M = 1; r = r - FAC.length(); degU = degree(U, levelU)/2; |
---|
175 | } |
---|
176 | |
---|
177 | DEBOUTLN(cout,"Truefactors: (step2) M = ", M); |
---|
178 | DEBOUTLN(cout," r = ", r); |
---|
179 | DEBOUTLN(cout," degU= ", degU); |
---|
180 | |
---|
181 | // Now do the real work! |
---|
182 | // Test all the combinations of possible factors. |
---|
183 | |
---|
184 | onemore=1; |
---|
185 | // steps 3 to 6 |
---|
186 | while (1){ |
---|
187 | // step 3 iff onemore == 1 |
---|
188 | if ( onemore ) M+= 1; else onemore = 1; |
---|
189 | // step 4 |
---|
190 | if ( U == U.genOne() ) break; // Return FAC |
---|
191 | if ( ( r == 1 ) || ( M >= ( r-1 ) ) || ( M > degU ) ) { |
---|
192 | FAC.append( CFFactor(U,1) ); |
---|
193 | break; // Return FAC union {U} |
---|
194 | } |
---|
195 | // step 5 |
---|
196 | E_all = combine(M, L); // generate all combinations of M elements from L |
---|
197 | DEBOUTLN(cout,"Truefactors: (step5) E_all= ", E_all); |
---|
198 | // select combinations with the degree not to exceed degU: |
---|
199 | E_all = Rightdegree( E_all, degU, levelU ); |
---|
200 | DEBOUTLN(cout,"Truefactors: (step5) E_all(Rightdegree)= ", E_all); |
---|
201 | if ( E_all.length() == 0 ){ |
---|
202 | FAC.append( CFFactor(U,1) ); |
---|
203 | break; // Return FAC union {U} |
---|
204 | } |
---|
205 | for ( i=E_all; i.hasItem(); i++){ |
---|
206 | factor = i.getItem(); |
---|
207 | Y = Multmod_power( factor.factor(), SubstitutionList, h, levelU); |
---|
208 | DEBOUTLN(cout, "Truefactors: (step6) Testing Y = ", Y); |
---|
209 | c = mydivremt(U,Y,a,b); |
---|
210 | // if ( c && b == U.genZero()) { // Y divides U |
---|
211 | if ( c && b.isZero() ){ |
---|
212 | DEBOUT(cout,"Truefactors: (step6): ",Y ); |
---|
213 | DEBOUTLN(cout, " divides ",U); |
---|
214 | U = a; |
---|
215 | FAC.append(Y); // Y is a real factor |
---|
216 | onemore = 0; |
---|
217 | degU = degree(U, levelU)/2; // new degU |
---|
218 | // L = L \ {factor} |
---|
219 | // Hier ist noch etwas faul; wir muessen (f=prod(f_i)) die f_i |
---|
220 | // entfernen und nicht f! |
---|
221 | L = Remove_from_List( L, factor.factor() ); |
---|
222 | r -= 1; |
---|
223 | // delete from L any element with degree greater than degU |
---|
224 | L = Rightdegree( L, degU, levelU ); |
---|
225 | } |
---|
226 | } |
---|
227 | } |
---|
228 | |
---|
229 | return FAC; |
---|
230 | } |
---|
231 | |
---|
232 | /////////////////////////////////////////////////////////////// |
---|
233 | // Check if poly f is in Fp (returns true) or in Fp(a) // |
---|
234 | /////////////////////////////////////////////////////////////// |
---|
235 | bool |
---|
236 | is_in_Fp( const CanonicalForm & f ){ |
---|
237 | if ( f.inCoeffDomain() ) |
---|
238 | return f.inBaseDomain() ; |
---|
239 | else { |
---|
240 | CFIterator i=f; |
---|
241 | bool ok=true; |
---|
242 | while ( ok && i.hasTerms() ){ |
---|
243 | ok = is_in_Fp( i.coeff() ); |
---|
244 | i++ ; |
---|
245 | } |
---|
246 | return ok; |
---|
247 | } |
---|
248 | } |
---|
249 | |
---|
250 | /////////////////////////////////////////////////////////////// |
---|
251 | // We have factors which possibly lie in an extension of the // |
---|
252 | // base field. If one of these is not over the base field, // |
---|
253 | // find its norm by (the theoretically handicapped method // |
---|
254 | // of) multiplying by other elements. // |
---|
255 | /////////////////////////////////////////////////////////////// |
---|
256 | CFFList |
---|
257 | TakeNorms(const CFFList & PiList){ |
---|
258 | CFFList CopyPossibleFactors, PossibleFactors, TrueFactors; |
---|
259 | CFFListIterator i; |
---|
260 | CFFactor Factor; |
---|
261 | CanonicalForm intermediate; |
---|
262 | ListIntList CombinatList; |
---|
263 | ListIntListIterator j; |
---|
264 | IntListIterator k; |
---|
265 | |
---|
266 | // First check if the factors in PiList already lie in Fp-Domain |
---|
267 | for ( i=PiList; i.hasItem(); i++ ){ |
---|
268 | Factor = i.getItem(); |
---|
269 | if ( is_in_Fp( Factor.factor() ) ) |
---|
270 | TrueFactors.append(Factor); |
---|
271 | else |
---|
272 | PossibleFactors.append(Factor); |
---|
273 | } |
---|
274 | // Now we have to check if combinations of the remaining factors |
---|
275 | // (now in PossibleFactors) do lie in Fp-Domain |
---|
276 | if ( PossibleFactors.length() > 0 ){ // there are (at least two) items |
---|
277 | int n=2; |
---|
278 | if ( PossibleFactors.length() < n ) { // a little check |
---|
279 | #ifdef HAVE_SINGULAR |
---|
280 | WerrorS("libfac: ERROR: TakeNorms less then two items remaining!"); |
---|
281 | #else |
---|
282 | cerr << "libfac: ERROR: TakeNorms less then two items remaining! " |
---|
283 | << endl; |
---|
284 | #endif |
---|
285 | } |
---|
286 | while ( n < PossibleFactors.length() ){ |
---|
287 | // generate all combinations of n elements |
---|
288 | combinat(n, PossibleFactors.length(), CombinatList); |
---|
289 | for ( j=CombinatList ; j.hasItem(); j++ ){ |
---|
290 | intermediate=1; |
---|
291 | for ( k=j.getItem(); k.hasItem(); k++ ) |
---|
292 | intermediate *= getItemNr( k.getItem(), PossibleFactors ); |
---|
293 | if ( is_in_Fp( intermediate ) ){ |
---|
294 | TrueFactors.append(intermediate); // found a true factor |
---|
295 | CopyPossibleFactors=PossibleFactors; // save list |
---|
296 | for ( k=j.getItem(); k.hasItem(); k++ ) |
---|
297 | //remove combined factors from PossibleFactors |
---|
298 | PossibleFactors=Remove_from_List(PossibleFactors, |
---|
299 | getItemNr( k.getItem(), CopyPossibleFactors )); |
---|
300 | n-=1; // look for the same number of combined factors: |
---|
301 | break; |
---|
302 | } |
---|
303 | else { |
---|
304 | //cout << "Schade!" << endl; |
---|
305 | } |
---|
306 | DEBOUT(cout, "Truefactor: Combined ", n); |
---|
307 | DEBOUTLN(cout, " factors to: ", intermediate); |
---|
308 | } |
---|
309 | n += 1; |
---|
310 | } |
---|
311 | // All remaining factors in PossibleFactors multiplied |
---|
312 | // should lie in Fp domain |
---|
313 | if ( PossibleFactors.length() >=1 ){ |
---|
314 | for ( i=PossibleFactors; i.hasItem(); i++ ) |
---|
315 | intermediate *= i.getItem().factor(); |
---|
316 | // a last check: |
---|
317 | if ( is_in_Fp(intermediate) ){ |
---|
318 | TrueFactors.append(CFFactor(intermediate,1)); |
---|
319 | } |
---|
320 | else{ |
---|
321 | #ifdef HAVE_SINGULAR |
---|
322 | WerrorS("libfac: TakeNorms: somethings wrong with remaining factors!"); |
---|
323 | #else |
---|
324 | cerr << "libfac: TakeNorms: somethings wrong with remaining factors!" |
---|
325 | << endl; |
---|
326 | #endif |
---|
327 | } |
---|
328 | } |
---|
329 | } |
---|
330 | return TrueFactors; |
---|
331 | } |
---|
332 | |
---|
333 | //////////////////////////////////////////////////////////// |
---|
334 | /* |
---|
335 | $Log: not supported by cvs2svn $ |
---|
336 | Revision 1.3 1997/04/25 22:39:11 michael |
---|
337 | changed cerr and cout messages for use with Singular |
---|
338 | Version for libfac-0.2.1 |
---|
339 | |
---|
340 | */ |
---|