1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* |
---|
5 | * ABSTRACT: class bigintmat: matrices of number |
---|
6 | * |
---|
7 | * Matrices are stored as 1-dim c-arrays but interpreted 2-dim as matrices. |
---|
8 | * Both modes of addressing are supported, note however, that the 1-dim |
---|
9 | * adressing starts at 0, the 2-dim at 1. |
---|
10 | * |
---|
11 | * Matrices are meant to represent column modules, thus the default |
---|
12 | * operations are always by column. |
---|
13 | * |
---|
14 | * While basic operations are supported over any ring (coeff), some more |
---|
15 | * advanced ones require more special rings: eg. echelon forms, solving |
---|
16 | * of linear equations is only effective over principal ideal or even |
---|
17 | * Euclidean rings. |
---|
18 | * |
---|
19 | * Be careful with the get/set/view/rawset functions to understand which |
---|
20 | * arguments are copied/ deleted or only assigned. |
---|
21 | */ |
---|
22 | |
---|
23 | #ifndef BIGINTMAT_H |
---|
24 | #define BIGINTMAT_H |
---|
25 | |
---|
26 | #include "coeffs/coeffs.h" |
---|
27 | |
---|
28 | /** |
---|
29 | * @class bigintmat bigintmat.h <coeffs/bigintmat.h> |
---|
30 | * |
---|
31 | * Matrices of numbers |
---|
32 | * |
---|
33 | * Matrices are stored as 1-dim c-arrays but interpreted 2-dim as matrices. |
---|
34 | * Both modes of addressing are supported, note however, that the 1-dim |
---|
35 | * adressing starts at 0, the 2-dim at 1. |
---|
36 | * |
---|
37 | * Matrices are meant to represent column modules, thus the default |
---|
38 | * operations are always by column. |
---|
39 | * |
---|
40 | * While basic operations are supported over any ring (coeff), some more |
---|
41 | * advanced ones require more special rings: eg. echelon forms, solving |
---|
42 | * of linear equations is only effective over principal ideal or even |
---|
43 | * Euclidean rings. |
---|
44 | * |
---|
45 | * Be careful with the get/set/view/rawset functions to understand which |
---|
46 | * arguments are copied/ deleted or only assigned. |
---|
47 | * |
---|
48 | * @Note: no reference counting here! |
---|
49 | */ |
---|
50 | class bigintmat |
---|
51 | { |
---|
52 | private: |
---|
53 | coeffs m_coeffs; |
---|
54 | number *v; |
---|
55 | int row; |
---|
56 | int col; |
---|
57 | public: |
---|
58 | |
---|
59 | bigintmat(): m_coeffs(NULL), v(NULL), row(1), col(0){} |
---|
60 | |
---|
61 | bigintmat * transpose(); |
---|
62 | |
---|
63 | /// transpose in place |
---|
64 | void inpTranspose(); |
---|
65 | |
---|
66 | |
---|
67 | /// constructor: the r times c zero-matrix. Beware that the creation |
---|
68 | /// of a large zero matrix is expensive in terms of time and memory. |
---|
69 | bigintmat(int r, int c, const coeffs n): m_coeffs(n), v(NULL), row(r), col(c) |
---|
70 | { |
---|
71 | assume (rows() >= 0); |
---|
72 | assume (cols() >= 0); |
---|
73 | |
---|
74 | const int l = r*c; |
---|
75 | |
---|
76 | if (l>0) /*(r>0) && (c>0) */ |
---|
77 | { |
---|
78 | v = (number *)omAlloc(sizeof(number)*l); |
---|
79 | |
---|
80 | assume (basecoeffs() != NULL); |
---|
81 | for (int i = l - 1; i>=0; i--) |
---|
82 | { |
---|
83 | v[i] = n_Init(0, basecoeffs()); |
---|
84 | } |
---|
85 | } |
---|
86 | } |
---|
87 | |
---|
88 | /// copy constructor |
---|
89 | bigintmat(const bigintmat *m): m_coeffs(m->basecoeffs()), v(NULL), row(m->rows()), col(m->cols()) |
---|
90 | { |
---|
91 | const int l = row*col; |
---|
92 | |
---|
93 | if (l > 0) |
---|
94 | { |
---|
95 | assume (rows() > 0); |
---|
96 | assume (cols() > 0); |
---|
97 | |
---|
98 | assume (m->v != NULL); |
---|
99 | |
---|
100 | v = (number *)omAlloc(sizeof(number)*row*col); |
---|
101 | |
---|
102 | assume (basecoeffs() != NULL); |
---|
103 | |
---|
104 | for (int i = l-1; i>=0; i--) |
---|
105 | { |
---|
106 | v[i] = n_Copy((*m)[i], basecoeffs()); |
---|
107 | } |
---|
108 | } |
---|
109 | } |
---|
110 | /// dubious: 1-dim access to 2-dim array. Entries are read row by row. |
---|
111 | inline number& operator[](int i) |
---|
112 | { |
---|
113 | #ifndef SING_NDEBUG |
---|
114 | if((i<0)||(i>=row*col)) |
---|
115 | { |
---|
116 | Werror("wrong bigintmat index:%d\n",i); |
---|
117 | } |
---|
118 | assume ( !((i<0)||(i>=row*col)) ); |
---|
119 | #endif |
---|
120 | return v[i]; // Hier sollte imho kein nlCopy rein... |
---|
121 | } |
---|
122 | inline const number& operator[](int i) const |
---|
123 | { |
---|
124 | #ifndef SING_NDEBUG |
---|
125 | if((i<0)||(i>=row*col)) |
---|
126 | { |
---|
127 | Werror("wrong bigintmat index:%d\n",i); |
---|
128 | } |
---|
129 | assume ( !((i<0)||(i>=row*col)) ); |
---|
130 | #endif |
---|
131 | return v[i]; |
---|
132 | } |
---|
133 | #define BIMATELEM(M,I,J) (M)[(I-1)*(M).cols()+J-1] |
---|
134 | |
---|
135 | /// UEberladener *=-Operator (fuer int und bigint) |
---|
136 | /// Frage hier: *= verwenden oder lieber = und * einzeln? |
---|
137 | /// problem: what about non-commuting rings. Is this from left or right? |
---|
138 | void operator*=(int intop); |
---|
139 | |
---|
140 | /// inplace version of skalar mult. CHANGES input. |
---|
141 | void inpMult(number bintop, const coeffs C = NULL); |
---|
142 | |
---|
143 | inline int length() { return col*row; } |
---|
144 | inline int cols() const { return col; } |
---|
145 | inline int rows() const { return row; } |
---|
146 | inline coeffs basecoeffs() const { return m_coeffs; } |
---|
147 | |
---|
148 | /// canonical destructor. |
---|
149 | ~bigintmat() |
---|
150 | { |
---|
151 | if (v!=NULL) |
---|
152 | { |
---|
153 | for (int i=row*col-1;i>=0; i--) { n_Delete(&(v[i]), basecoeffs()); } |
---|
154 | omFreeSize((ADDRESS)v, sizeof(number)*row*col); |
---|
155 | v=NULL; |
---|
156 | } |
---|
157 | } |
---|
158 | |
---|
159 | /// helper function to map from 2-dim coordinates, starting by 1 to |
---|
160 | /// 1-dim coordinate, starting by 0 |
---|
161 | int index(int r, int c) const |
---|
162 | { |
---|
163 | assume (rows() >= 0 && cols() >= 0); |
---|
164 | |
---|
165 | assume (r > 0 && c > 0); |
---|
166 | assume (r <= rows() && c <= cols()); |
---|
167 | |
---|
168 | const int index = ((r-1)*cols() + (c-1)); |
---|
169 | |
---|
170 | assume (index >= 0 && index < rows() * cols()); |
---|
171 | return index; |
---|
172 | } |
---|
173 | |
---|
174 | /// get a copy of an entry. NOTE: starts at [1,1] |
---|
175 | number get(int i, int j) const; |
---|
176 | /// view an entry an entry. NOTE: starts at [1,1] |
---|
177 | //do NOT delete. |
---|
178 | number view(int i, int j) const; |
---|
179 | |
---|
180 | /// get a copy of an entry. NOTE: starts at [0] |
---|
181 | number get(int i) const; |
---|
182 | /// view an entry. NOTE: starts at [0] |
---|
183 | number view(int i) const; |
---|
184 | |
---|
185 | /// replace an entry with a copy (delete old + copy new!). |
---|
186 | /// NOTE: starts at [1,1] |
---|
187 | void set(int i, int j, number n, const coeffs C = NULL); |
---|
188 | |
---|
189 | /// replace an entry with a copy (delete old + copy new!). |
---|
190 | /// NOTE: starts at [0] |
---|
191 | void set(int i, number n, const coeffs C = NULL); |
---|
192 | |
---|
193 | |
---|
194 | /// replace an entry with the given number n (only delete old). |
---|
195 | /// NOTE: starts at [0]. Should be named set_transfer |
---|
196 | inline void rawset(int i, number n, const coeffs C = NULL) |
---|
197 | { |
---|
198 | assume (C == NULL || C == basecoeffs()); |
---|
199 | assume (i >= 0); |
---|
200 | const int l = rows() * cols(); |
---|
201 | assume (i<l); |
---|
202 | |
---|
203 | if (i < l) |
---|
204 | { |
---|
205 | n_Delete(&(v[i]), basecoeffs()); v[i] = n; |
---|
206 | } |
---|
207 | #ifndef SING_NDEBUG |
---|
208 | else |
---|
209 | { |
---|
210 | Werror("wrong bigintmat index:%d\n",i); |
---|
211 | } |
---|
212 | #endif |
---|
213 | } |
---|
214 | |
---|
215 | /// as above, but the 2-dim version |
---|
216 | inline void rawset(int i, int j, number n, const coeffs C = NULL) |
---|
217 | { |
---|
218 | rawset( index(i,j), n, C); |
---|
219 | } |
---|
220 | |
---|
221 | ///IO: String returns a singular string containing the matrix, needs |
---|
222 | /// freeing afterwards |
---|
223 | char * String(); |
---|
224 | ///IO: writes the matrix into the current internal string buffer which |
---|
225 | /// must be started/ allocated before (e.g. @ref StringSetS) |
---|
226 | void Write(); |
---|
227 | ///IO: simply prints the matrix to the current output (screen?) |
---|
228 | void Print(); |
---|
229 | |
---|
230 | /** |
---|
231 | * Returns a string as it would have been printed in the interpreter. |
---|
232 | * Used e.g. in print functions of various blackbox types. |
---|
233 | */ |
---|
234 | char * StringAsPrinted(); |
---|
235 | void pprint(int maxwid); |
---|
236 | int compare(const bigintmat* op) const; |
---|
237 | int * getwid(int maxwid); |
---|
238 | |
---|
239 | |
---|
240 | // Funktionen von Kira, Jan, Marco |
---|
241 | // !WICHTIG: Ãberall, wo eine number ÃŒbergeben wird, und damit gearbeitet wird, die coeffs mitÃŒbergeben und erst |
---|
242 | // ÃŒberprÃŒfen, ob diese mit basecoeffs ÃŒbereinstimmen. Falls nein: Breche ab! |
---|
243 | |
---|
244 | /// swap columns i and j |
---|
245 | void swap(int i, int j); |
---|
246 | |
---|
247 | /// swap rows i and j |
---|
248 | void swaprow(int i, int j); |
---|
249 | |
---|
250 | ///find index of 1st non-zero entry in row i |
---|
251 | int findnonzero(int i); |
---|
252 | |
---|
253 | ///find index of 1st non-zero entry in column j |
---|
254 | int findcolnonzero(int j); |
---|
255 | |
---|
256 | ///copies the j-th column into the matrix a - which needs to be pre-allocated with the correct size. |
---|
257 | void getcol(int j, bigintmat *a); |
---|
258 | |
---|
259 | ///copies the no-columns staring by j (so j...j+no-1) into the pre-allocated a |
---|
260 | void getColRange(int j, int no, bigintmat *a); |
---|
261 | |
---|
262 | void getrow(int i, bigintmat *a); ///< Schreibt i-te Zeile in Vektor (Matrix) a |
---|
263 | void setcol(int j, bigintmat *m); ///< Setzt j-te Spalte gleich ÃŒbergebenem Vektor (Matrix) m |
---|
264 | void setrow(int i, bigintmat *m); ///< Setzt i-te Zeile gleich ÃŒbergebenem Vektor (Matrix) m |
---|
265 | |
---|
266 | ///horizontally join the matrices, m <- m|a |
---|
267 | void appendCol (bigintmat *a); |
---|
268 | |
---|
269 | ///append i zero-columns to the matrix |
---|
270 | void extendCols (int i); |
---|
271 | |
---|
272 | bool add(bigintmat *b); ///< Addiert zur Matrix die Matrix b dazu. Return false => an error occurred |
---|
273 | bool sub(bigintmat *b); ///< Subtrahiert ... |
---|
274 | bool skalmult(number b, coeffs c); ///< Multipliziert zur Matrix den Skalar b hinzu |
---|
275 | bool addcol(int i, int j, number a, coeffs c); ///< addiert a-faches der j-ten Spalte zur i-ten dazu |
---|
276 | bool addrow(int i, int j, number a, coeffs c); ///< ... Zeile ... |
---|
277 | void colskalmult(int i, number a, coeffs c); ///< Multipliziert zur i-ten Spalte den Skalar a hinzu |
---|
278 | void rowskalmult(int i, number a, coeffs c); ///< ... Zeile ... |
---|
279 | void coltransform(int i, int j, number a, number b, number c, number d); ///< transforms cols (i,j) using the 2x2 matrix ((a,b)(c,d)) (hopefully) |
---|
280 | void concatrow(bigintmat *a, bigintmat *b); ///< FÃŒgt zwei Matrixen untereinander/nebeneinander in gegebene Matrix ein, bzw spaltet gegebenen Matrix auf |
---|
281 | void concatcol(bigintmat *a, bigintmat *b); |
---|
282 | void splitrow(bigintmat *a, bigintmat *b); ///< Speichert in Matrix a den oberen, in b den unteren Teil der Matrix, vorausgesetzt die Dimensionen stimmen ÃŒberein |
---|
283 | void splitcol(bigintmat *a, bigintmat *b); ///< ... linken ... rechten ... |
---|
284 | void splitcol(bigintmat *a, int i); ///< Speichert die ersten i Spalten als Teilmatrix in a |
---|
285 | void splitrow(bigintmat *a, int i); ///< ... Zeilen ... |
---|
286 | bool copy(bigintmat *b); ///< Kopiert EintrÀge von b auf Bigintmat |
---|
287 | void copySubmatInto(bigintmat *, int sr, int sc, int nr, int nc, int tr, int tc); |
---|
288 | void one(); ///< Macht Matrix (Falls quadratisch) zu Einheitsmatrix |
---|
289 | int isOne(); ///< is matrix is identity |
---|
290 | void zero(); ///< Setzt alle EintrÀge auf 0 |
---|
291 | int isZero(); |
---|
292 | int colIsZero(int i); |
---|
293 | bigintmat *elim(int i, int j); ///< Liefert Streichungsmatrix (i-te Zeile und j-te Spalte gestrichen) zurÃŒck |
---|
294 | number pseudoinv(bigintmat *a); ///< Speichert in Matrix a die Pseudoinverse, liefert den Nenner zurÃŒck |
---|
295 | number trace(); ///< the trace .... |
---|
296 | number det(); ///< det (via LaPlace in general, hnf for euc. rings) |
---|
297 | number hnfdet(); ///< det via HNF |
---|
298 | /// Primzahlen als long long int, mÃŒssen noch in number umgewandelt werden? |
---|
299 | void hnf(); ///< transforms INPLACE to HNF |
---|
300 | void howell(); ///<dito, but Howell form (only different for zero-divsors) |
---|
301 | void swapMatrix(bigintmat * a); |
---|
302 | #ifdef HAVE_RINGS |
---|
303 | bigintmat * modhnf(number p, coeffs c); ///< computes HNF(this | p*I) |
---|
304 | #endif |
---|
305 | bigintmat * modgauss(number p, coeffs c); |
---|
306 | void skaldiv(number b); ///< Macht Ganzzahldivision aller MatrixeintrÀge mit b |
---|
307 | void colskaldiv(int j, number b); ///< Macht Ganzzahldivision aller j-ten SpalteneintrÀge mit b |
---|
308 | void mod(number p); ///< Reduziert komplette Matrix modulo p |
---|
309 | bigintmat* inpmod(number p, coeffs c); ///< Liefert Kopie der Matrix zurÃŒck, allerdings im Ring Z modulo p |
---|
310 | number content(); ///<the content, the gcd of all entries. Only makes sense for Euclidean rings (or possibly constructive PIR) |
---|
311 | void simplifyContentDen(number *den); ///< ensures that Gcd(den, content)=1 |
---|
312 | ///< enden hier wieder |
---|
313 | }; |
---|
314 | |
---|
315 | bool operator==(const bigintmat & lhr, const bigintmat & rhr); |
---|
316 | bool operator!=(const bigintmat & lhr, const bigintmat & rhr); |
---|
317 | |
---|
318 | /// Matrix-Add/-Sub/-Mult so oder mit operator+/-/* ? |
---|
319 | /// @Note: NULL as a result means an error (non-compatible matrices?) |
---|
320 | bigintmat * bimAdd(bigintmat * a, bigintmat * b); |
---|
321 | bigintmat * bimAdd(bigintmat * a, long b); |
---|
322 | bigintmat * bimSub(bigintmat * a, bigintmat * b); |
---|
323 | bigintmat * bimSub(bigintmat * a, long b); |
---|
324 | bigintmat * bimMult(bigintmat * a, bigintmat * b); |
---|
325 | bigintmat * bimMult(bigintmat * a, long b); |
---|
326 | bigintmat * bimMult(bigintmat * a, number b, const coeffs cf); |
---|
327 | |
---|
328 | ///same as copy constructor - apart from it being able to accept NULL as input |
---|
329 | bigintmat * bimCopy(const bigintmat * b); |
---|
330 | |
---|
331 | class intvec; |
---|
332 | intvec * bim2iv(bigintmat * b); |
---|
333 | bigintmat * iv2bim(intvec * b, const coeffs C); |
---|
334 | |
---|
335 | // Wieder von Kira, Jan, Marco |
---|
336 | bigintmat * bimChangeCoeff(bigintmat *a, coeffs cnew); ///< Liefert Kopier von Matrix a zurÃŒck, mit coeffs cnew statt den ursprÃŒnglichen |
---|
337 | void bimMult(bigintmat *a, bigintmat *b, bigintmat *c); ///< Multipliziert Matrix a und b und speichert Ergebnis in c |
---|
338 | |
---|
339 | ///solve Ax=b*d. x needs to be pre-allocated to the same number of columns as b. |
---|
340 | /// the minimal denominator d is returned. Currently available for Z, Q and Z/nZ (and possibly for all fields: d=1 there) |
---|
341 | ///Beware that the internal functions can find the kernel as well - but the interface is lacking. |
---|
342 | number solveAx(bigintmat *A, bigintmat *b, bigintmat *x); // solves Ax=b*d for a minimal denominator d. if x needs to have as many cols as b |
---|
343 | |
---|
344 | ///a basis for the nullspace of a mod p: only used internally in Round2. |
---|
345 | /// Don't use it. |
---|
346 | int kernbase (bigintmat *a, bigintmat *c, number p, coeffs q); |
---|
347 | bool nCoeffs_are_equal(coeffs r, coeffs s); |
---|
348 | // enden wieder |
---|
349 | void diagonalForm(bigintmat *a, bigintmat **b, bigintmat **c); |
---|
350 | |
---|
351 | #endif /* #ifndef BIGINTMAT_H */ |
---|