source: git/libpolys/coeffs/coeffs.h @ 529fa4

fieker-DuValspielwiese
Last change on this file since 529fa4 was 529fa4, checked in by Hans Schoenemann <hannes@…>, 13 years ago
add: nChineseRemainder/idChineseRemainder
  • Property mode set to 100644
File size: 17.5 KB
RevLine 
[7d90aa]1#ifndef COEFFS_H
2#define COEFFS_H
3/****************************************
4*  Computer Algebra System SINGULAR     *
5****************************************/
6/* $Id$ */
7/*
8* ABSTRACT
9*/
10
[18cb65]11#include <misc/auxiliary.h>
[227efd]12/* for assume: */
[18cb65]13#include <reporter/reporter.h>
[2d805a]14#include <coeffs/si_gmp.h>
[7d90aa]15
[eca225]16#ifdef HAVE_FACTORY
17#include <factory/factory.h>
18#endif
19
[7d90aa]20enum n_coeffType
21{
22  n_unknown=0,
23  n_Zp,
24  n_Q,
25  n_R,
26  n_GF,
27  n_long_R,
[26c66ae]28  n_Ext,  // used for all extensions (of Zp, of Q AND OF EXTENSIONS THEREOF)
[8e0242]29  n_long_C,
[eca225]30  // only used if HAVE_RINGS is defined:
[8e0242]31  n_Z,
[21dc6a]32  n_Zn,
33  n_Zpn, // does no longer exist?
[e9d796]34  n_Z2m,
35  n_CF
[7d90aa]36};
37
[91a305]38struct snumber;
39typedef struct snumber *   number;
40
[4c6e420]41struct snumber;
42typedef struct snumber *   number;
43
[2bd9ca]44/* standard types */
45#ifdef HAVE_RINGS
46typedef unsigned long NATNUMBER;
47typedef mpz_ptr int_number;
48#endif
49
[4c6e420]50struct ip_sring;
51typedef struct ip_sring *         ring;
52
[7d90aa]53struct n_Procs_s;
54typedef struct  n_Procs_s  n_Procs_s;
55typedef struct  n_Procs_s  *coeffs;
56
[94b759]57typedef number (*numberfunc)(number a, number b, const coeffs r);
[7d90aa]58
[dc093ce]59/// maps "a", which lives in src, into dst
60typedef number (*nMapFunc)(number a, const coeffs src, const coeffs dst);
[94b759]61
[7d90aa]62struct n_Procs_s
63{
64   coeffs next;
[fba6f18]65   unsigned int ringtype;  /* =0 => coefficient field,
66                             !=0 => coeffs from one of the rings */
[8e0242]67
[8f8b75]68   // general properties:
[193c6b]69   /// TRUE, if nNew/nDelete/nCopy are dummies
70   BOOLEAN has_simple_Alloc;
71   /// TRUE, if std should make polynomials monic (if nInvers is cheap)
[3dbe0bf]72   /// if false, then a gcd routine is used for a content computation
[193c6b]73   BOOLEAN has_simple_Inverse;
[8f8b75]74
75   // tests for numbers.cc:
[aff5ae]76   BOOLEAN (*nCoeffIsEqual)(const coeffs r, n_coeffType n, void * parameter);
[8f8b75]77
[c7e3d7]78   /// output of coeff description via Print
79   void (*cfCoeffWrite)(const coeffs r);
80
[7d90aa]81   // the union stuff
82
83   // Zp:
84   int npPrimeM;
85   int npPminus1M;
86   #ifdef HAVE_DIV_MOD
87   unsigned short *npInvTable;
88   #endif
89   #if !defined(HAVE_DIV_MOD) || !defined(HAVE_MULT_MOD)
90   unsigned short *npExpTable;
91   unsigned short *npLogTable;
92   #endif
[4c6e420]93
[94b759]94   // ?
[3de81d0]95   // initialisation:
[4d92d7]96   //void (*cfInitChar)(coeffs r, int parameter); // do one-time initialisations
[3de81d0]97   void (*cfKillChar)(coeffs r); //  undo all initialisations
98                                // or NULL
[2336d0]99   void (*cfSetChar)(const coeffs r); // initialisations after each ring change
[3de81d0]100                                // or NULL
[7d90aa]101   // general stuff
[7bbbef]102   numberfunc cfMult, cfSub ,cfAdd ,cfDiv, cfIntDiv, cfIntMod, cfExactDiv;
[8e0242]103   /// init with an integer
[7d90aa]104   number  (*cfInit)(int i,const coeffs r);
[7bbbef]105   number  (*cfPar)(int i, const coeffs r);
106   int     (*cfParDeg)(number n, const coeffs r);
[77e585]107   /// how complicated, (0) => 0, or positive
[7bbbef]108   int     (*cfSize)(number n, const coeffs r);
[77e585]109   /// convertion, 0 if impossible
[7bbbef]110   int     (*cfInt)(number &n, const coeffs r);
[b12b7c]111
[7d90aa]112#ifdef HAVE_RINGS
[7bbbef]113   int     (*cfDivComp)(number a,number b,const coeffs r);
114   BOOLEAN (*cfIsUnit)(number a,const coeffs r);
115   number  (*cfGetUnit)(number a,const coeffs r);
116   number  (*cfExtGcd)(number a, number b, number *s, number *t,const coeffs r);
[7d90aa]117#endif
[b12b7c]118
[db3180c]119   /// changes argument  inline: a:= -a
[7bbbef]120   number  (*cfNeg)(number a, const coeffs r);
[db3180c]121   /// return 1/a
[7bbbef]122   number  (*cfInvers)(number a, const coeffs r);
[db3180c]123   /// return a copy of a
[7d90aa]124   number  (*cfCopy)(number a, const coeffs r);
[7bbbef]125   number  (*cfRePart)(number a, const coeffs r);
126   number  (*cfImPart)(number a, const coeffs r);
[7d90aa]127   void    (*cfWrite)(number &a, const coeffs r);
[7bbbef]128   const char *  (*cfRead)(const char * s, number * a, const coeffs r);
129   void    (*cfNormalize)(number &a, const coeffs r);
130   BOOLEAN (*cfGreater)(number a,number b, const coeffs r),
[7d90aa]131#ifdef HAVE_RINGS
[7bbbef]132           (*cfDivBy)(number a, number b, const coeffs r),
[7d90aa]133#endif
[77e585]134            /// tests
[7bbbef]135           (*cfEqual)(number a,number b, const coeffs r),
136           (*cfIsZero)(number a, const coeffs r),
137           (*cfIsOne)(number a, const coeffs r),
138           (*cfIsMOne)(number a, const coeffs r),
139           (*cfGreaterZero)(number a, const coeffs r);
[8a8c9e]140
[7bbbef]141   void    (*cfPower)(number a, int i, number * result, const coeffs r);
[7d90aa]142   number  (*cfGetDenom)(number &n, const coeffs r);
143   number  (*cfGetNumerator)(number &n, const coeffs r);
[7bbbef]144   number  (*cfGcd)(number a, number b, const coeffs r);
145   number  (*cfLcm)(number a, number b, const coeffs r);
[7d90aa]146   void    (*cfDelete)(number * a, const coeffs r);
147   nMapFunc (*cfSetMap)(const coeffs src, const coeffs dst);
[77e585]148
149   /// For extensions (writes into global string buffer)
[7bbbef]150   char *  (*cfName)(number n, const coeffs r);
[77e585]151
[eca225]152   /// Inplace: a *= b
[7bbbef]153   void    (*cfInpMult)(number &a, number b, const coeffs r);
[719c71]154   /// maps the bigint i (from dummy) into the coeffs dst
[7bbbef]155   number  (*cfInit_bigint)(number i, const coeffs dummy, const coeffs dst);
[77e585]156
[eca225]157#ifdef HAVE_FACTORY
158   number (*convFactoryNSingN)( const CanonicalForm n, const coeffs r);
[abb4787]159   CanonicalForm (*convSingNFactoryN)( number n, BOOLEAN setChar, const coeffs r );
[eca225]160#endif
161
162
[7d90aa]163#ifdef LDEBUG
[bd6142]164   /// Test: is "a" a correct number?
[b12b7c]165   BOOLEAN (*cfDBTest)(number a, const char *f, const int l, const coeffs r);
[7d90aa]166#endif
167
168   number nNULL; /* the 0 as constant */
169   int     char_flag;
170   int     ref;
171   n_coeffType type;
[01c1d0]172//-------------------------------------------
[4c6e420]173
174  /// For Zp_a, Q_a we need polynomials (due to polys)
175  ring          algring; //< implementation of extensions needs polynomials...
176  /// for Q_a/Zp_a, rInit
[aec5c9]177  ///number     minpoly;  //< no longer needed: replaced by
178                          //  algring->minideal->[0]
[4c6e420]179
180
181//-------------------------------------------
[aec5c9]182  char* complex_parameter; //< the name of sqrt(-1), i.e. 'i' or 'j' etc...?
[7d90aa]183
184#ifdef HAVE_RINGS
[e90dfd6]185  /* The following members are for representing the ring Z/n,
[aec5c9]186     where n is not a prime. We distinguish four cases:
[e90dfd6]187     1.) n has at least two distinct prime factors. Then
188         modBase stores n, modExponent stores 1, modNumber
189         stores n, and mod2mMask is not used;
190     2.) n = p^k for some odd prime p and k > 1. Then
191         modBase stores p, modExponent stores k, modNumber
192         stores n, and mod2mMask is not used;
193     3.) n = 2^k for some k > 1; moreover, 2^k - 1 fits in
194         an unsigned long. Then modBase stores 2, modExponent
195         stores k, modNumber is not used, and mod2mMask stores
196         2^k - 1, i.e., the bit mask '111..1' of length k.
197     4.) n = 2^k for some k > 1; but 2^k - 1 does not fit in
198         an unsigned long. Then modBase stores 2, modExponent
199         stores k, modNumber stores n, and mod2mMask is not
200         used;
201     Cases 1.), 2.), and 4.) are covered by the implementation
202     in the files rmodulon.h and rmodulon.cc, whereas case 3.)
203     is implemented in the files rmodulo2m.h and rmodulo2m.cc. */
204  int_number    modBase;
205  unsigned long modExponent;
206  int_number    modNumber;
207  unsigned long mod2mMask;
[7d90aa]208#endif
209  int        ch;  /* characteristic, rInit */
210
211  short      float_len; /* additional char-flags, rInit */
212  short      float_len2; /* additional char-flags, rInit */
[d0a51ee]213
[8a8c9e]214  BOOLEAN   ShortOut; /// ffields need this.
[d0a51ee]215
[5e3046]216// ---------------------------------------------------
217  // for n_GF
218
219  int m_nfCharQ;  ///< the number of elemts: q
220  int m_nfM1;       ///< representation of -1
221  int m_nfCharP;  ///< the characteristic: p
222  int m_nfCharQ1; ///< q-1
223  unsigned short *m_nfPlus1Table;
224  int *m_nfMinPoly;
[dc06550]225  char * m_nfParameter;
[7d90aa]226};
[7bbbef]227//
228// test properties and type
229/// Returns the type of coeffs domain
230static inline n_coeffType getCoeffType(const coeffs r)
231{
[17e473]232  assume(r != NULL);
[7bbbef]233  return r->type;
234}
235
236static inline int nInternalChar(const coeffs r)
237{
[17e473]238  assume(r != NULL);
[7bbbef]239  return r->ch;
240}
241
242/// one-time initialisations for new coeffs
[1cce47]243/// in case of an error return NULL
[7bbbef]244coeffs nInitChar(n_coeffType t, void * parameter);
[16f8f1]245
[7bbbef]246/// undo all initialisations
247void nKillChar(coeffs r);
[16f8f1]248
[7bbbef]249/// initialisations after each ring change
[ef3790]250static inline void nSetChar(const coeffs r)
[7bbbef]251{
[227efd]252  assume(r!=NULL); // r==NULL is an error
253  if (r->cfSetChar!=NULL) r->cfSetChar(r);
[7bbbef]254}
255
256void           nNew(number * a);
[91a305]257#define n_New(n, r)           nNew(n)
[7d90aa]258
[b12b7c]259
[227efd]260// the access methods (part 2):
[b12b7c]261
262/// return a copy of a
[8a8c9e]263static inline number n_Copy(number n,    const coeffs r)
[6c084af]264{   assume(r != NULL); assume(r->cfCopy!=NULL); return r->cfCopy(n, r); }
[16f8f1]265
[8a8c9e]266static inline void   n_Delete(number* p, const coeffs r)
[6c084af]267{   assume(r != NULL); assume(r->cfDelete!= NULL); r->cfDelete(p, r); }
[8a8c9e]268
269static inline BOOLEAN n_Equal(number a, number b, const coeffs r)
[6c084af]270{ assume(r != NULL); assume(r->cfEqual!=NULL); return r->cfEqual(a, b, r); }
[16f8f1]271
[8a8c9e]272static inline BOOLEAN n_IsZero(number n, const coeffs r)
[6c084af]273{ assume(r != NULL); assume(r->cfIsZero!=NULL); return r->cfIsZero(n,r); }
[16f8f1]274
[8a8c9e]275static inline BOOLEAN n_IsOne(number n,  const coeffs r)
[6c084af]276{ assume(r != NULL); assume(r->cfIsOne!=NULL); return r->cfIsOne(n,r); }
[16f8f1]277
[8a8c9e]278static inline BOOLEAN n_IsMOne(number n, const coeffs r)
[6c084af]279{ assume(r != NULL); assume(r->cfIsMOne!=NULL); return r->cfIsMOne(n,r); }
[16f8f1]280
[8a8c9e]281static inline BOOLEAN n_GreaterZero(number n, const coeffs r)
[6c084af]282{ assume(r != NULL); assume(r->cfGreaterZero!=NULL); return r->cfGreaterZero(n,r); }
[529fa4]283static inline BOOLEAN n_Greater(number a, number b, const coeffs r)
284{ assume(r != NULL); assume(r->cfGreater!=NULL); return r->cfGreater(a,b,r); }
[16f8f1]285
[1b816a3]286#ifdef HAVE_RINGS
[8a8c9e]287static inline BOOLEAN n_IsUnit(number n, const coeffs r)
[6c084af]288{ assume(r != NULL); assume(r->cfIsUnit!=NULL); return r->cfIsUnit(n,r); }
[16f8f1]289
[5679049]290static inline number n_GetUnit(number n, const coeffs r)
[6c084af]291{ assume(r != NULL); assume(r->cfGetUnit!=NULL); return r->cfGetUnit(n,r); }
[16f8f1]292
[8a8c9e]293static inline BOOLEAN n_DivBy(number a, number b, const coeffs r)
[6c084af]294{ assume(r != NULL); assume(r->cfDivBy!=NULL); return r->cfDivBy(a,b,r); }
[1b816a3]295#endif
[b12b7c]296
297/// init with an integer
[8a8c9e]298static inline number n_Init(int i,       const coeffs r)
[6c084af]299{ assume(r != NULL); assume(r->cfInit!=NULL); return r->cfInit(i,r); }
[b12b7c]300
[fba6f18]301/// conversion to int; 0 if not possible
302static inline int n_Int(number n,        const coeffs r)
303{ assume(r != NULL); assume(r->cfInt!=NULL); return r->cfInt(n,r); }
304
[b12b7c]305/// changes argument  inline: a:= -a
[8a8c9e]306static inline number n_Neg(number n,     const coeffs r)
[6c084af]307{ assume(r != NULL); assume(r->cfNeg!=NULL); return r->cfNeg(n,r); }
[b12b7c]308
309/// return 1/a
[8a8c9e]310static inline number n_Invers(number a,  const coeffs r)
[6c084af]311{ assume(r != NULL); assume(r->cfInvers!=NULL); return r->cfInvers(a,r); }
[b12b7c]312
[227efd]313/// use for pivot strategies, (0) => 0, otherwise positive
[8a8c9e]314static inline int    n_Size(number n,    const coeffs r)
[6c084af]315{ assume(r != NULL); assume(r->cfSize!=NULL); return r->cfSize(n,r); }
[b12b7c]316
317/// normalize the number. i.e. go to some canonnical representation (inplace)
[8a8c9e]318static inline void   n_Normalize(number& n, const coeffs r)
[6c084af]319{ assume(r != NULL); assume(r->cfNormalize!=NULL); r->cfNormalize(n,r); }
[b12b7c]320
[227efd]321/// Normalize and Write to the output buffer of reporter
[8a8c9e]322static inline void   n_Write(number& n,  const coeffs r)
[6c084af]323{ assume(r != NULL); assume(r->cfWrite!=NULL); r->cfWrite(n,r); }
[b12b7c]324
325/// Normalize and get denomerator
[8a8c9e]326static inline number n_GetDenom(number& n, const coeffs r)
[6c084af]327{ assume(r != NULL); assume(r->cfGetDenom!=NULL); return r->cfGetDenom(n, r); }
[b12b7c]328
329/// Normalize and get numerator
[8a8c9e]330static inline number n_GetNumerator(number& n, const coeffs r)
[6c084af]331{ assume(r != NULL); assume(r->cfGetNumerator!=NULL); return r->cfGetNumerator(n, r); }
[b12b7c]332
[8a8c9e]333static inline void   n_Power(number a, int b, number *res, const coeffs r)
[6c084af]334{ assume(r != NULL); assume(r->cfPower!=NULL); r->cfPower(a,b,res,r); }
[b12b7c]335
[8a8c9e]336static inline number n_Mult(number a, number b, const coeffs r)
[6c084af]337{ assume(r != NULL); assume(r->cfMult!=NULL); return r->cfMult(a, b, r); }
[227efd]338
[b12b7c]339/// Inplace multiplication: a := a * b
[8a8c9e]340static inline void n_InpMult(number &a, number b, const coeffs r)
[6c084af]341{ assume(r != NULL); assume(r->cfInpMult!=NULL); r->cfInpMult(a,b,r); }
[8a8c9e]342
343static inline number n_Sub(number a, number b, const coeffs r)
[6c084af]344{ assume(r != NULL); assume(r->cfSub!=NULL); return r->cfSub(a, b, r); }
[8a8c9e]345
346static inline number n_Add(number a, number b, const coeffs r)
[6c084af]347{ assume(r != NULL); assume(r->cfAdd!=NULL); return r->cfAdd(a, b, r); }
[b12b7c]348
[8a8c9e]349static inline number n_Div(number a, number b, const coeffs r)
[6c084af]350{ assume(r != NULL); assume(r->cfDiv!=NULL); return r->cfDiv(a,b,r); }
[b12b7c]351
[8a8c9e]352static inline number n_IntDiv(number a, number b, const coeffs r)
[6c084af]353{ assume(r != NULL); assume(r->cfIntDiv!=NULL); return r->cfIntDiv(a,b,r); }
[b12b7c]354
[8a8c9e]355static inline number n_ExactDiv(number a, number b, const coeffs r)
[6c084af]356{ assume(r != NULL); assume(r->cfExactDiv!=NULL); return r->cfExactDiv(a,b,r); }
[8a8c9e]357
358static inline number n_Gcd(number a, number b, const coeffs r)
[6c084af]359{ assume(r != NULL); assume(r->cfGcd!=NULL); return r->cfGcd(a,b,r); }
[b12b7c]360
[5679049]361static inline number n_Lcm(number a, number b, const coeffs r)
[6c084af]362{ assume(r != NULL); assume(r->cfLcm!=NULL); return r->cfLcm(a,b,r); }
[1389a4]363
364static inline nMapFunc n_SetMap(const coeffs src, const coeffs dst)
[6c084af]365{ assume(src != NULL && dst != NULL); assume(dst->cfSetMap!=NULL); return dst->cfSetMap(src,dst); }
[1389a4]366
[4581a96]367static inline number n_Par(int n, const coeffs r)
[6c084af]368{ assume(r != NULL); assume(r->cfPar!=NULL); return r->cfPar(n,r); }
[4581a96]369
[1389a4]370static inline int n_ParDeg(number n, const coeffs r)
[6c084af]371{ assume(r != NULL); assume(r->cfParDeg!=NULL); return r->cfParDeg(n,r); }
[5679049]372
[227efd]373/// Tests whether n is a correct number: only used if LDEBUG is defined
[b12b7c]374static inline BOOLEAN n_DBTest(number n, const char *filename, const int linenumber, const coeffs r)
[2bd9ca]375{
[17e473]376  assume(r != NULL); 
[8a8c9e]377#ifdef LDEBUG
[6c084af]378  assume(r->cfDBTest != NULL); 
379  return r->cfDBTest(n, filename, linenumber, r);
[5e3046]380#else
381  return TRUE;
382#endif
[2bd9ca]383}
[a0ce49]384
[c7e3d7]385/// output the coeff description
386static inline void   n_CoeffWrite(const coeffs r)
[6c084af]387{ assume(r != NULL); assume(r->cfCoeffWrite != NULL); r->cfCoeffWrite(r); }
[c7e3d7]388
[0ef3f51]389// Tests:
390static inline BOOLEAN nCoeff_is_Ring_2toM(const coeffs r)
[17e473]391{ assume(r != NULL); return (r->ringtype == 1); }
[0ef3f51]392
393static inline BOOLEAN nCoeff_is_Ring_ModN(const coeffs r)
[17e473]394{ assume(r != NULL); return (r->ringtype == 2); }
[0ef3f51]395
396static inline BOOLEAN nCoeff_is_Ring_PtoM(const coeffs r)
[17e473]397{ assume(r != NULL); return (r->ringtype == 3); }
[0ef3f51]398
399static inline BOOLEAN nCoeff_is_Ring_Z(const coeffs r)
[17e473]400{ assume(r != NULL); return (r->ringtype == 4); }
[0ef3f51]401
402static inline BOOLEAN nCoeff_is_Ring(const coeffs r)
[17e473]403{ assume(r != NULL); return (r->ringtype != 0); }
[0ef3f51]404
[7dce2d7]405/// returns TRUE, if r is not a field and r has no zero divisors (i.e is a domain)
[0ef3f51]406static inline BOOLEAN nCoeff_is_Domain(const coeffs r)
[17e473]407{
408  assume(r != NULL); 
409#ifdef HAVE_RINGS
410  return (r->ringtype == 4 || r->ringtype == 0);
411#else
412  return TRUE;
413#endif
414}
[0ef3f51]415
[7dce2d7]416/// returns TRUE, if r is not a field and r has non-trivial units
[0ef3f51]417static inline BOOLEAN nCoeff_has_Units(const coeffs r)
[17e473]418{ assume(r != NULL); return ((r->ringtype == 1) || (r->ringtype == 2) || (r->ringtype == 3)); }
[0ef3f51]419
420static inline BOOLEAN nCoeff_is_Zp(const coeffs r)
[17e473]421{ assume(r != NULL); return getCoeffType(r)==n_Zp; }
[0ef3f51]422
423static inline BOOLEAN nCoeff_is_Zp(const coeffs r, int p)
[17e473]424{ assume(r != NULL); return (getCoeffType(r)  && (r->ch == ABS(p))); }
[0ef3f51]425
426static inline BOOLEAN nCoeff_is_Q(const coeffs r)
[17e473]427{ assume(r != NULL); return getCoeffType(r)==n_Q; }
[0ef3f51]428
429static inline BOOLEAN nCoeff_is_numeric(const coeffs r) /* R, long R, long C */
[17e473]430{ assume(r != NULL);  return (getCoeffType(r)==n_R) || (getCoeffType(r)==n_long_R) || (getCoeffType(r)==n_long_C); }
431// (r->ringtype == 0) && (r->ch ==  -1); ??
432
[0ef3f51]433
434static inline BOOLEAN nCoeff_is_R(const coeffs r)
[17e473]435{ assume(r != NULL); return getCoeffType(r)==n_R; }
[0ef3f51]436
437static inline BOOLEAN nCoeff_is_GF(const coeffs r)
[17e473]438{ assume(r != NULL); return getCoeffType(r)==n_GF; }
[0ef3f51]439
440static inline BOOLEAN nCoeff_is_GF(const coeffs r, int q)
[17e473]441{ assume(r != NULL); return (getCoeffType(r)==n_GF) && (r->ch == q); }
[0ef3f51]442
443static inline BOOLEAN nCoeff_is_Zp_a(const coeffs r)
[fba6f18]444{
445  assume(r != NULL);
446  return (r->ringtype == 0) && (getCoeffType(r)==n_Ext) && (r->ch < -1);
447}
[0ef3f51]448
449static inline BOOLEAN nCoeff_is_Zp_a(const coeffs r, int p)
[fba6f18]450{
451  assume(r != NULL);
452  return (r->ringtype == 0) && (getCoeffType(r)==n_Ext) && (r->ch < -1 )
453                            && (-(r->ch) == ABS(p));
454}
[0ef3f51]455
456static inline BOOLEAN nCoeff_is_Q_a(const coeffs r)
[fba6f18]457{
458  assume(r != NULL);
459  return (r->ringtype == 0) && (getCoeffType(r)==n_Ext) && (r->ch == 0);
460}
[0ef3f51]461
462static inline BOOLEAN nCoeff_is_long_R(const coeffs r)
[17e473]463{ assume(r != NULL); return getCoeffType(r)==n_long_R; }
[0ef3f51]464
465static inline BOOLEAN nCoeff_is_long_C(const coeffs r)
[17e473]466{ assume(r != NULL); return getCoeffType(r)==n_long_C; }
[0ef3f51]467
468static inline BOOLEAN nCoeff_is_CF(const coeffs r)
[17e473]469{ assume(r != NULL); return getCoeffType(r)==n_CF; }
[0ef3f51]470
[7dce2d7]471/// TRUE, if the computation of the inverse is fast (i.e. prefer leading coeff. 1 over content)
[0ef3f51]472static inline BOOLEAN nCoeff_has_simple_inverse(const coeffs r)
[17e473]473{ assume(r != NULL); return r->has_simple_Inverse; }
[0ef3f51]474/* Z/2^n, Z/p, GF(p,n), R, long_R, long_C*/
[17e473]475// /* { return (r->ch>1) || (r->ch== -1); } *//* Z/p, GF(p,n), R, long_R, long_C*/
476// #ifdef HAVE_RINGS
477// { return (r->ringtype > 0) || (r->ch>1) || ((r->ch== -1) && (r->float_len < 10)); } /* Z/2^n, Z/p, GF(p,n), R, long_R, long_C*/
478// #else
479// { return (r->ch>1) || ((r->ch== -1) && (r->float_len < 10)); } /* Z/p, GF(p,n), R, long_R, long_C*/
480// #endif
481
482
[0ef3f51]483
[7dce2d7]484/// TRUE if n_Delete/n_New are empty operations
[0ef3f51]485static inline BOOLEAN nCoeff_has_simple_Alloc(const coeffs r)
[17e473]486{ assume(r != NULL); return r->has_simple_Alloc; }
[0ef3f51]487/* Z/p, GF(p,n), R, Ring_2toM: nCopy, nNew, nDelete are dummies*/
[17e473]488// return (rField_is_Zp(r)
489//         || rField_is_GF(r)
490// #ifdef HAVE_RINGS
491//             || rField_is_Ring_2toM(r)
492// #endif
493//             || rField_is_R(r)); }
494
[0ef3f51]495
496static inline BOOLEAN nCoeff_is_Extension(const coeffs r)
[17e473]497{ assume(r != NULL); return (nCoeff_is_Q_a(r)) || (nCoeff_is_Zp_a(r)); } /* Z/p(a) and Q(a)*/
[0ef3f51]498
[2bd9ca]499/// BOOLEAN n_Test(number a, const coeffs r)
500#define n_Test(a,r)  n_DBTest(a, __FILE__, __LINE__, r)
501
[b12b7c]502// Missing wrappers for:
[fba6f18]503// cfIntMod, cfRePart, cfImPart, cfRead, cfName, cfInit_bigint
[5679049]504// HAVE_RINGS: cfDivComp, cfExtGcd... cfDivBy
[b12b7c]505
506
507// Deprecated:
[8a8c9e]508static inline int n_GetChar(const coeffs r)
[17e473]509{ assume(r != NULL); return nInternalChar(r); }
[b12b7c]510
[7d90aa]511#endif
512
Note: See TracBrowser for help on using the repository browser.