source: git/libpolys/coeffs/coeffs.h @ 61e855

fieker-DuValspielwiese
Last change on this file since 61e855 was e09ceb, checked in by Hans Schoenemann <hannes@…>, 7 years ago
add: factorization in ZZ[x,..]
  • Property mode set to 100644
File size: 42.4 KB
Line 
1/*! \file coeffs/coeffs.h Coefficient rings, fields and other domains suitable for Singular polynomials
2
3  The main interface for Singular coefficients: \ref coeffs is the main handler for Singular numbers
4*/
5/****************************************
6*  Computer Algebra System SINGULAR     *
7****************************************/
8
9#ifndef COEFFS_H
10#define COEFFS_H
11
12# include <misc/auxiliary.h>
13#include <omalloc/omalloc.h>
14
15#include <misc/sirandom.h>
16/* for assume: */
17#include <reporter/reporter.h>
18#include <reporter/s_buff.h>
19#include <factory/factory.h>
20
21#include <coeffs/si_gmp.h>
22#include <coeffs/Enumerator.h>
23#include <coeffs/numstats.h> // for STATISTIC(F) counting macro
24
25class CanonicalForm;
26
27enum n_coeffType
28{
29  n_unknown=0,
30  n_Zp, /**< \F{p < 2^31} */
31  n_Q,  /**< rational (GMP) numbers */
32  n_R,  /**< single prescision (6,6) real numbers */
33  n_GF, /**< \GF{p^n < 2^16} */
34  n_long_R, /**< real floating point (GMP) numbers */
35  n_polyExt, /**< used to represent polys as coeffcients */
36  n_algExt,  /**< used for all algebraic extensions, i.e.,
37                the top-most extension in an extension tower
38                is algebraic */
39  n_transExt,  /**< used for all transcendental extensions, i.e.,
40                  the top-most extension in an extension tower
41                  is transcendental */
42  n_long_C, /**< complex floating point (GMP) numbers */
43  n_Z, /**< only used if HAVE_RINGS is defined  */
44  n_Zn, /**< only used if HAVE_RINGS is defined */
45  n_Znm, /**< only used if HAVE_RINGS is defined */
46  n_Z2m, /**< only used if HAVE_RINGS is defined */
47  n_CF /**< ? */
48};
49
50extern const unsigned short fftable[];
51
52struct snumber;
53typedef struct snumber *   number;
54
55/* standard types */
56struct ip_sring;
57typedef struct ip_sring *         ring;
58typedef struct ip_sring const *   const_ring;
59
60/// @class coeffs coeffs.h coeffs/coeffs.h
61///
62/// The main handler for Singular numbers which are suitable for Singular polynomials.
63///
64/// With it one may implement a ring, a field, a domain etc.
65///
66struct n_Procs_s;
67typedef struct  n_Procs_s  *coeffs;
68typedef struct  n_Procs_s  const * const_coeffs;
69
70typedef number (*numberfunc)(number a, number b, const coeffs r);
71
72/// maps "a", which lives in src, into dst
73typedef number (*nMapFunc)(number a, const coeffs src, const coeffs dst);
74
75
76/// Abstract interface for an enumerator of number coefficients for an
77/// object, e.g. a polynomial
78typedef IEnumerator<number> ICoeffsEnumerator;
79
80/// goes over coeffs given by the ICoeffsEnumerator and changes them.
81/// Additionally returns a number;
82typedef void (*nCoeffsEnumeratorFunc)(ICoeffsEnumerator& numberCollectionEnumerator, number& output, const coeffs r);
83
84extern omBin rnumber_bin;
85
86#define FREE_RNUMBER(x) omFreeBin((void *)x, rnumber_bin)
87#define ALLOC_RNUMBER() (number)omAllocBin(rnumber_bin)
88#define ALLOC0_RNUMBER() (number)omAlloc0Bin(rnumber_bin)
89
90
91/// Creation data needed for finite fields
92typedef struct
93{
94  int GFChar;
95  int GFDegree;
96  const char* GFPar_name;
97} GFInfo;
98
99typedef struct
100{
101  short      float_len; /**< additional char-flags, rInit */
102  short      float_len2; /**< additional char-flags, rInit */
103  const char* par_name; /**< parameter name */
104} LongComplexInfo;
105
106
107enum n_coeffRep
108{
109  n_rep_unknown=0,
110  n_rep_int,      /**< (int), see modulop.h */
111  n_rep_gap_rat,  /**< (number), see longrat.h */
112  n_rep_gap_gmp,  /**< (), see rinteger.h, new impl. */
113  n_rep_poly,     /**< (poly), see algext.h */
114  n_rep_rat_fct,  /**< (fraction), see transext.h */
115  n_rep_gmp,      /**< (mpz_ptr), see rmodulon,h */
116  n_rep_float,    /**< (float), see shortfl.h */
117  n_rep_gmp_float,  /**< (gmp_float), see  */
118  n_rep_gmp_complex,/**< (gmp_complex), see gnumpc.h */
119  n_rep_gf        /**< (int), see ffields.h */
120};
121
122struct n_Procs_s
123{
124   // administration of coeffs:
125   coeffs next;
126   int     ref;
127   n_coeffRep rep;
128   n_coeffType type;
129   /// how many variables of factory are already used by this coeff
130   int     factoryVarOffset;
131
132   // general properties:
133   /// TRUE, if nNew/nDelete/nCopy are dummies
134   BOOLEAN has_simple_Alloc;
135   /// TRUE, if std should make polynomials monic (if nInvers is cheap)
136   /// if false, then a gcd routine is used for a content computation
137   BOOLEAN has_simple_Inverse;
138
139   /// TRUE, if cf is a field
140   BOOLEAN is_field;
141   /// TRUE, if cf is a domain
142   BOOLEAN is_domain;
143
144   // tests for numbers.cc:
145   BOOLEAN (*nCoeffIsEqual)(const coeffs r, n_coeffType n, void * parameter);
146
147   /// output of coeff description via Print
148   void (*cfCoeffWrite)(const coeffs r, BOOLEAN details);
149
150   /// string output of coeff description
151   char* (*cfCoeffString)(const coeffs r);
152
153   /// default name of cf, should substitue cfCoeffWrite, cfCoeffString
154   char* (*cfCoeffName)(const coeffs r);
155
156   // ?
157   // initialisation:
158   //void (*cfInitChar)(coeffs r, int parameter); // do one-time initialisations
159   void (*cfKillChar)(coeffs r); //  undo all initialisations
160                                // or NULL
161   void (*cfSetChar)(const coeffs r); // initialisations after each ring change
162                                // or NULL
163   // general stuff
164   //   if the ring has a meaningful Euclidean structure, hopefully
165   //   supported by cfQuotRem, then
166   //     IntMod, Div should give the same result
167   //     Div(a,b) = QuotRem(a,b, &IntMod(a,b))
168   //   if the ring is not Euclidean or a field, then IntMod should return 0
169   //   and Div the exact quotient. It is assumed that the function is
170   //   ONLY called on Euclidean rings or in the case of an exact division.
171   //
172   //   cfDiv does an exact division, but has to handle illegal input
173   //   cfExactDiv does an exact division, but no error checking
174   //   (I'm not sure I understant and even less that this makes sense)
175   numberfunc cfMult, cfSub ,cfAdd ,cfDiv, cfIntMod, cfExactDiv;
176
177   /// init with an integer
178   number  (*cfInit)(long i,const coeffs r);
179
180   /// init with a GMP integer
181   number  (*cfInitMPZ)(mpz_t i, const coeffs r);
182
183   /// how complicated, (0) => 0, or positive
184   int     (*cfSize)(number n, const coeffs r);
185
186   /// convertion to long, 0 if impossible
187   long    (*cfInt)(number &n, const coeffs r);
188
189   /// Converts a non-negative number n into a GMP number, 0 if impossible
190   void     (*cfMPZ)(mpz_t result, number &n, const coeffs r);
191
192   /// changes argument  inline: a:= -a
193   /// return -a! (no copy is returned)
194   /// the result should be assigned to the original argument: e.g. a = n_InpNeg(a,r)
195   number  (*cfInpNeg)(number a, const coeffs r);
196   /// return 1/a
197   number  (*cfInvers)(number a, const coeffs r);
198   /// return a copy of a
199   number  (*cfCopy)(number a, const coeffs r);
200   number  (*cfRePart)(number a, const coeffs r);
201   number  (*cfImPart)(number a, const coeffs r);
202
203   /// print a given number (long format)
204   void    (*cfWriteLong)(number a, const coeffs r);
205
206   /// print a given number in a shorter way, if possible
207   /// e.g. in K(a): a2 instead of a^2
208   void    (*cfWriteShort)(number a, const coeffs r);
209
210   // it is legal, but not always useful to have cfRead(s, a, r)
211   //   just return s again.
212   // Useful application (read constants which are not an projection
213   // from int/bigint:
214   // Let ring r = R,x,dp;
215   // where R is a coeffs having "special" "named" elements (ie.
216   // the primitive element in some algebraic extension).
217   // If there is no interpreter variable of the same name, it is
218   // difficult to create non-trivial elements in R.
219   // Hence one can use the string to allow creation of R-elts using the
220   // unbound name of the special element.
221   const char *  (*cfRead)(const char * s, number * a, const coeffs r);
222
223   void    (*cfNormalize)(number &a, const coeffs r);
224
225   BOOLEAN (*cfGreater)(number a,number b, const coeffs r),
226            /// tests
227           (*cfEqual)(number a,number b, const coeffs r),
228           (*cfIsZero)(number a, const coeffs r),
229           (*cfIsOne)(number a, const coeffs r),
230       // IsMOne is used for printing os polynomials:
231       // -1 is only printed for constant monomials
232           (*cfIsMOne)(number a, const coeffs r),
233       //GreaterZero is used for printing of polynomials:
234       //  a "+" is only printed in front of a coefficient
235       //  if the element is >0. It is assumed that any element
236       //  failing this will start printing with a leading "-"
237           (*cfGreaterZero)(number a, const coeffs r);
238
239   void    (*cfPower)(number a, int i, number * result, const coeffs r);
240   number  (*cfGetDenom)(number &n, const coeffs r);
241   number  (*cfGetNumerator)(number &n, const coeffs r);
242   //CF: a Euclidean ring is a commutative, unitary ring with an Euclidean
243   //  function f s.th. for all a,b in R, b ne 0, we can find q, r s.th.
244   //  a = qb+r and either r=0 or f(r) < f(b)
245   //  Note that neither q nor r nor f(r) are unique.
246   number  (*cfGcd)(number a, number b, const coeffs r);
247   number  (*cfSubringGcd)(number a, number b, const coeffs r);
248   number  (*cfExtGcd)(number a, number b, number *s, number *t,const coeffs r);
249   //given a and b in a Euclidean setting, return s,t,u,v sth.
250   //  sa + tb = gcd
251   //  ua + vb = 0
252   //  sv + tu = 1
253   //  ie. the 2x2 matrix (s t | u v) is unimodular and maps (a,b) to (g, 0)
254   //CF: note, in general, this cannot be derived from ExtGcd due to
255   //    zero divisors
256   number  (*cfXExtGcd)(number a, number b, number *s, number *t, number *u, number *v, const coeffs r);
257   //in a Euclidean ring, return the Euclidean norm as a bigint (of type number)
258   number  (*cfEucNorm)(number a, const coeffs r);
259   //in a principal ideal ring (with zero divisors): the annihilator
260   // NULL otherwise
261   number  (*cfAnn)(number a, const coeffs r);
262   //find a "canonical representative of a modulo the units of r
263   //return NULL if a is already normalized
264   //otherwise, the factor.
265   //(for Z: make positive, for z/nZ make the gcd with n
266   //aparently it is GetUnit!
267   //in a Euclidean ring, return the quotient and compute the remainder
268   //rem can be NULL
269   number  (*cfQuotRem)(number a, number b, number *rem, const coeffs r);
270   number  (*cfLcm)(number a, number b, const coeffs r);
271   number  (*cfNormalizeHelper)(number a, number b, const coeffs r);
272   void    (*cfDelete)(number * a, const coeffs r);
273
274   //CF: tries to find a canonical map from src -> dst
275   nMapFunc (*cfSetMap)(const coeffs src, const coeffs dst);
276
277   void    (*cfWriteFd)(number a, FILE *f, const coeffs r);
278   number  (*cfReadFd)( s_buff f, const coeffs r);
279
280   /// Inplace: a *= b
281   void    (*cfInpMult)(number &a, number b, const coeffs r);
282
283   /// Inplace: a += b
284   void    (*cfInpAdd)(number &a, number b, const coeffs r);
285
286   /// rational reconstruction: "best" rational a/b with a/b = p mod n
287   //  or a = bp mod n
288   //  CF: no idea what this would be in general
289   //     it seems to be extended to operate coefficient wise in extensions.
290   //     I presume then n in coeffs_BIGINT while p in coeffs
291   number  (*cfFarey)(number p, number n, const coeffs);
292
293   /// chinese remainder
294   /// returns X with X mod q[i]=x[i], i=0..rl-1
295   //CF: by the looks of it: q[i] in Z (coeffs_BIGINT)
296   //    strange things happen in naChineseRemainder for example.
297   number  (*cfChineseRemainder)(number *x, number *q,int rl, BOOLEAN sym,CFArray &inv_cache,const coeffs);
298
299   /// degree for coeffcients: -1 for 0, 0 for "constants", ...
300   int (*cfParDeg)(number x,const coeffs r);
301
302   /// create i^th parameter or NULL if not possible
303   number  (*cfParameter)(const int i, const coeffs r);
304
305   /// a function returning random elements
306   number (*cfRandom)(siRandProc p, number p1, number p2, const coeffs cf);
307
308   /// function pointer behind n_ClearContent
309   nCoeffsEnumeratorFunc cfClearContent;
310
311   /// function pointer behind n_ClearDenominators
312   nCoeffsEnumeratorFunc cfClearDenominators;
313
314   /// conversion to CanonicalForm(factory) to number
315   number (*convFactoryNSingN)( const CanonicalForm n, const coeffs r);
316   CanonicalForm (*convSingNFactoryN)( number n, BOOLEAN setChar, const coeffs r );
317
318
319   /// the 0 as constant, NULL by default
320   number nNULL;
321
322   /// Number of Parameters in the coeffs (default 0)
323   int iNumberOfParameters;
324
325   /// array containing the names of Parameters (default NULL)
326   char const **  pParameterNames;
327   // NOTE that it replaces the following:
328// char* complex_parameter; //< the name of sqrt(-1) in n_long_C , i.e. 'i' or 'j' etc...?
329// char * m_nfParameter; //< the name of parameter in n_GF
330
331   /////////////////////////////////////////////
332   // the union stuff
333
334   //-------------------------------------------
335
336  /* for extension fields we need to be able to represent polynomials,
337     so here is the polynomial ring: */
338  ring          extRing;
339
340  //number     minpoly;  //< no longer needed: replaced by
341  //                     //< extRing->qideal->[0]
342
343
344  int        ch;  /* characteristic, set by the local *InitChar methods;
345                     In field extensions or extensions towers, the
346                     characteristic can be accessed from any of the
347                     intermediate extension fields, i.e., in this case
348                     it is redundant along the chain of field extensions;
349                     CONTRARY to SINGULAR as it was, we do NO LONGER use
350                     negative values for ch;
351                     for rings, ch will also be set and is - per def -
352                     the smallest number of 1's that sum up to zero;
353                     however, in this case ch may not fit in an int,
354                     thus ch may contain a faulty value */
355
356  short      float_len; /* additional char-flags, rInit */
357  short      float_len2; /* additional char-flags, rInit */
358
359//  BOOLEAN   CanShortOut; //< if the elements can be printed in short format
360//                       // this is set to FALSE if a parameter name has >2 chars
361//  BOOLEAN   ShortOut; //< if the elements should print in short format
362
363// ---------------------------------------------------
364  // for n_GF
365
366  int m_nfCharQ;  ///< the number of elements: q
367  int m_nfM1;       ///< representation of -1
368  int m_nfCharP;  ///< the characteristic: p
369  int m_nfCharQ1; ///< q-1
370  unsigned short *m_nfPlus1Table;
371  int *m_nfMinPoly;
372
373// ---------------------------------------------------
374// for Zp:
375  unsigned short *npInvTable;
376  unsigned short *npExpTable;
377  unsigned short *npLogTable;
378   //   int npPrimeM; // NOTE: npPrimeM is deprecated, please use ch instead!
379  int npPminus1M; ///< characteristic - 1
380//-------------------------------------------
381   int     (*cfDivComp)(number a,number b,const coeffs r);
382   BOOLEAN (*cfIsUnit)(number a,const coeffs r);
383   number  (*cfGetUnit)(number a,const coeffs r);
384   //CF: test if b divides a
385   BOOLEAN (*cfDivBy)(number a, number b, const coeffs r);
386  /* The following members are for representing the ring Z/n,
387     where n is not a prime. We distinguish four cases:
388     1.) n has at least two distinct prime factors. Then
389         modBase stores n, modExponent stores 1, modNumber
390         stores n, and mod2mMask is not used;
391     2.) n = p^k for some odd prime p and k > 1. Then
392         modBase stores p, modExponent stores k, modNumber
393         stores n, and mod2mMask is not used;
394     3.) n = 2^k for some k > 1; moreover, 2^k - 1 fits in
395         an unsigned long. Then modBase stores 2, modExponent
396         stores k, modNumber is not used, and mod2mMask stores
397         2^k - 1, i.e., the bit mask '111..1' of length k.
398     4.) n = 2^k for some k > 1; but 2^k - 1 does not fit in
399         an unsigned long. Then modBase stores 2, modExponent
400         stores k, modNumber stores n, and mod2mMask is not
401         used;
402     Cases 1.), 2.), and 4.) are covered by the implementation
403     in the files rmodulon.h and rmodulon.cc, whereas case 3.)
404     is implemented in the files rmodulo2m.h and rmodulo2m.cc. */
405  mpz_ptr    modBase;
406  unsigned long modExponent;
407  mpz_ptr    modNumber;
408  unsigned long mod2mMask;
409  //returns coeffs with updated ch, modNumber and modExp
410  coeffs (*cfQuot1)(number c, const coeffs r);
411
412  /*CF: for blackbox rings, contains data needed to define the ring.
413   * contents depends on the actual example.*/
414  void * data;
415#ifdef LDEBUG
416   // must be last entry:
417   /// Test: is "a" a correct number?
418   // DB as in debug, not data base.
419   BOOLEAN (*cfDBTest)(number a, const char *f, const int l, const coeffs r);
420#endif
421};
422
423// test properties and type
424/// Returns the type of coeffs domain
425static FORCE_INLINE n_coeffType getCoeffType(const coeffs r)
426{ assume(r != NULL); return r->type; }
427
428/// one-time initialisations for new coeffs
429/// in case of an error return NULL
430coeffs nInitChar(n_coeffType t, void * parameter);
431
432/// "copy" coeffs, i.e. increment ref
433static FORCE_INLINE coeffs nCopyCoeff(const coeffs r)
434{ assume(r!=NULL); r->ref++; return r;}
435
436/// undo all initialisations
437void nKillChar(coeffs r);
438
439/// initialisations after each ring change
440static FORCE_INLINE void nSetChar(const coeffs r)
441{ STATISTIC(nSetChar);  assume(r!=NULL); assume(r->cfSetChar != NULL); r->cfSetChar(r); }
442
443void           nNew(number * a);
444#define n_New(n, r)           nNew(n)
445
446
447/// Return the characteristic of the coeff. domain.
448static FORCE_INLINE int n_GetChar(const coeffs r)
449{ STATISTIC(n_GetChar); assume(r != NULL); return r->ch; }
450
451
452// the access methods (part 2):
453
454/// return a copy of 'n'
455static FORCE_INLINE number n_Copy(number n,    const coeffs r)
456{ STATISTIC(n_Copy);   assume(r != NULL); assume(r->cfCopy!=NULL); return r->cfCopy(n, r); }
457
458/// delete 'p'
459static FORCE_INLINE void   n_Delete(number* p, const coeffs r)
460{ STATISTIC(n_Delete);   assume(r != NULL); assume(r->cfDelete!= NULL); r->cfDelete(p, r); }
461
462/// TRUE iff 'a' and 'b' represent the same number;
463/// they may have different representations
464static FORCE_INLINE BOOLEAN n_Equal(number a, number b, const coeffs r)
465{ STATISTIC(n_Equal); assume(r != NULL); assume(r->cfEqual!=NULL); return r->cfEqual(a, b, r); }
466
467/// TRUE iff 'n' represents the zero element
468static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
469{ STATISTIC(n_IsZero); assume(r != NULL); assume(r->cfIsZero!=NULL); return r->cfIsZero(n,r); }
470
471/// TRUE iff 'n' represents the one element
472static FORCE_INLINE BOOLEAN n_IsOne(number n,  const coeffs r)
473{ STATISTIC(n_IsOne); assume(r != NULL); assume(r->cfIsOne!=NULL); return r->cfIsOne(n,r); }
474
475/// TRUE iff 'n' represents the additive inverse of the one element, i.e. -1
476static FORCE_INLINE BOOLEAN n_IsMOne(number n, const coeffs r)
477{ STATISTIC(n_IsMOne); assume(r != NULL); assume(r->cfIsMOne!=NULL); return r->cfIsMOne(n,r); }
478
479/// ordered fields: TRUE iff 'n' is positive;
480/// in Z/pZ: TRUE iff 0 < m <= roundedBelow(p/2), where m is the long
481///          representing n
482/// in C:    TRUE iff (Im(n) != 0 and Im(n) >= 0) or
483///                   (Im(n) == 0 and Re(n) >= 0)
484/// in K(a)/<p(a)>: TRUE iff (n != 0 and (LC(n) > 0 or deg(n) > 0))
485/// in K(t_1, ..., t_n): TRUE iff (LC(numerator(n) is a constant and > 0)
486///                            or (LC(numerator(n) is not a constant)
487/// in Z/2^kZ: TRUE iff 0 < n <= 2^(k-1)
488/// in Z/mZ: TRUE iff the internal mpz is greater than zero
489/// in Z: TRUE iff n > 0
490///
491/// !!! Recommendation: remove implementations for unordered fields
492/// !!!                 and raise errors instead, in these cases
493/// !!! Do not follow this recommendation: while writing polys,
494/// !!! between 2 monomials will be an additional + iff !n_GreaterZero(next coeff)
495///     Then change definition to include n_GreaterZero => printing does NOT
496///     start with -
497///
498static FORCE_INLINE BOOLEAN n_GreaterZero(number n, const coeffs r)
499{ STATISTIC(n_GreaterZero); assume(r != NULL); assume(r->cfGreaterZero!=NULL); return r->cfGreaterZero(n,r); }
500
501/// ordered fields: TRUE iff 'a' is larger than 'b';
502/// in Z/pZ: TRUE iff la > lb, where la and lb are the long's representing
503//                             a and b, respectively
504/// in C:    TRUE iff (Im(a) > Im(b))
505/// in K(a)/<p(a)>: TRUE iff (a != 0 and (b == 0 or deg(a) > deg(b))
506/// in K(t_1, ..., t_n): TRUE only if one or both numerator polynomials are
507///                      zero or if their degrees are equal. In this case,
508///                      TRUE if LC(numerator(a)) > LC(numerator(b))
509/// in Z/2^kZ: TRUE if n_DivBy(a, b)
510/// in Z/mZ: TRUE iff the internal mpz's fulfill the relation '>'
511/// in Z: TRUE iff a > b
512///
513/// !!! Recommendation: remove implementations for unordered fields
514/// !!!                 and raise errors instead, in these cases
515static FORCE_INLINE BOOLEAN n_Greater(number a, number b, const coeffs r)
516{ STATISTIC(n_Greater); assume(r != NULL); assume(r->cfGreater!=NULL); return r->cfGreater(a,b,r); }
517
518/// TRUE iff n has a multiplicative inverse in the given coeff field/ring r
519static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
520{ STATISTIC(n_IsUnit); assume(r != NULL); assume(r->cfIsUnit!=NULL); return r->cfIsUnit(n,r); }
521
522static FORCE_INLINE coeffs n_CoeffRingQuot1(number c, const coeffs r)
523{ STATISTIC(n_CoeffRingQuot1); assume(r != NULL); assume(r->cfQuot1 != NULL); return r->cfQuot1(c, r); }
524
525#ifdef HAVE_RINGS
526static FORCE_INLINE int n_DivComp(number a, number b, const coeffs r)
527{ STATISTIC(n_DivComp); assume(r != NULL); assume(r->cfDivComp!=NULL); return r->cfDivComp (a,b,r); }
528
529/// in Z: 1
530/// in Z/kZ (where k is not a prime): largest divisor of n (taken in Z) that
531///                                   is co-prime with k
532/// in Z/2^kZ: largest odd divisor of n (taken in Z)
533/// other cases: not implemented
534// CF: shold imply that n/GetUnit(n) is normalized in Z/kZ
535//   it would make more sense to return the inverse...
536static FORCE_INLINE number n_GetUnit(number n, const coeffs r)
537{ STATISTIC(n_GetUnit); assume(r != NULL); assume(r->cfGetUnit!=NULL); return r->cfGetUnit(n,r); }
538
539#endif
540
541/// a number representing i in the given coeff field/ring r
542static FORCE_INLINE number n_Init(long i,       const coeffs r)
543{ STATISTIC(n_Init); assume(r != NULL); assume(r->cfInit!=NULL); return r->cfInit(i,r); }
544
545/// conversion of a GMP integer to number
546static FORCE_INLINE number n_InitMPZ(mpz_t n,     const coeffs r)
547{ STATISTIC(n_InitMPZ); assume(r != NULL); assume(r->cfInitMPZ != NULL); return r->cfInitMPZ(n,r); }
548
549/// conversion of n to an int; 0 if not possible
550/// in Z/pZ: the representing int lying in (-p/2 .. p/2]
551static FORCE_INLINE long n_Int(number &n,       const coeffs r)
552{ STATISTIC(n_Int); assume(r != NULL); assume(r->cfInt!=NULL); return r->cfInt(n,r); }
553
554/// conversion of n to a GMP integer; 0 if not possible
555static FORCE_INLINE void n_MPZ(mpz_t result, number &n,       const coeffs r)
556{ STATISTIC(n_MPZ); assume(r != NULL); assume(r->cfMPZ!=NULL); r->cfMPZ(result, n, r); }
557
558
559/// in-place negation of n
560/// MUST BE USED: n = n_InpNeg(n) (no copy is returned)
561static FORCE_INLINE number n_InpNeg(number n,     const coeffs r)
562{ STATISTIC(n_InpNeg); assume(r != NULL); assume(r->cfInpNeg!=NULL); return r->cfInpNeg(n,r); }
563
564/// return the multiplicative inverse of 'a';
565/// raise an error if 'a' is not invertible
566///
567/// !!! Recommendation: rename to 'n_Inverse'
568static FORCE_INLINE number n_Invers(number a,  const coeffs r)
569{ STATISTIC(n_Invers); assume(r != NULL); assume(r->cfInvers!=NULL); return r->cfInvers(a,r); }
570
571/// return a non-negative measure for the complexity of n;
572/// return 0 only when n represents zero;
573/// (used for pivot strategies in matrix computations with entries from r)
574static FORCE_INLINE int    n_Size(number n,    const coeffs r)
575{ STATISTIC(n_Size); assume(r != NULL); assume(r->cfSize!=NULL); return r->cfSize(n,r); }
576
577/// inplace-normalization of n;
578/// produces some canonical representation of n;
579///
580/// !!! Recommendation: remove this method from the user-interface, i.e.,
581/// !!!                 this should be hidden
582static FORCE_INLINE void   n_Normalize(number& n, const coeffs r)
583{ STATISTIC(n_Normalize); assume(r != NULL); assume(r->cfNormalize!=NULL); r->cfNormalize(n,r); }
584
585/// write to the output buffer of the currently used reporter
586//CF: the "&" should be removed, as one wants to write constants as well
587static FORCE_INLINE void   n_WriteLong(number n,  const coeffs r)
588{ STATISTIC(n_WriteLong); assume(r != NULL); assume(r->cfWriteLong!=NULL); r->cfWriteLong(n,r); }
589
590/// write to the output buffer of the currently used reporter
591/// in a shortest possible way, e.g. in K(a): a2 instead of a^2
592static FORCE_INLINE void   n_WriteShort(number n,  const coeffs r)
593{ STATISTIC(n_WriteShort); assume(r != NULL); assume(r->cfWriteShort!=NULL); r->cfWriteShort(n,r); }
594
595static FORCE_INLINE void   n_Write(number n,  const coeffs r, const BOOLEAN bShortOut = TRUE)
596{ STATISTIC(n_Write); if (bShortOut) n_WriteShort(n, r); else n_WriteLong(n, r); }
597
598
599/// !!! Recommendation: This method is too cryptic to be part of the user-
600/// !!!                 interface. As defined here, it is merely a helper
601/// !!!                 method for parsing number input strings.
602static FORCE_INLINE const char *n_Read(const char * s, number * a, const coeffs r)
603{ STATISTIC(n_Read); assume(r != NULL); assume(r->cfRead!=NULL); return r->cfRead(s, a, r); }
604
605/// return the denominator of n
606/// (if elements of r are by nature not fractional, result is 1)
607static FORCE_INLINE number n_GetDenom(number& n, const coeffs r)
608{ STATISTIC(n_GetDenom); assume(r != NULL); assume(r->cfGetDenom!=NULL); return r->cfGetDenom(n, r); }
609
610/// return the numerator of n
611/// (if elements of r are by nature not fractional, result is n)
612static FORCE_INLINE number n_GetNumerator(number& n, const coeffs r)
613{ STATISTIC(n_GetNumerator); assume(r != NULL); assume(r->cfGetNumerator!=NULL); return r->cfGetNumerator(n, r); }
614
615/// return the quotient of 'a' and 'b', i.e., a/b;
616/// raises an error if 'b' is not invertible in r
617/// exception in Z: raises an error if 'a' is not divisible by 'b'
618/// always: n_Div(a,b,r)*b+n_IntMod(a,b,r)==a
619static FORCE_INLINE number n_Div(number a, number b, const coeffs r)
620{ STATISTIC(n_Div); assume(r != NULL); assume(r->cfDiv!=NULL); return r->cfDiv(a,b,r); }
621
622/// assume that there is a canonical subring in cf and we know
623/// that division is possible for these a and b in the subring,
624/// n_ExactDiv performs it, may skip additional tests.
625/// Can always be substituted by n_Div at the cost of larger  computing time.
626static FORCE_INLINE number n_ExactDiv(number a, number b, const coeffs r)
627{ STATISTIC(n_ExactDiv); assume(r != NULL); assume(r->cfExactDiv!=NULL); return r->cfExactDiv(a,b,r); }
628
629/// for r a field, return n_Init(0,r)
630/// always: n_Div(a,b,r)*b+n_IntMod(a,b,r)==a
631/// n_IntMod(a,b,r) >=0
632static FORCE_INLINE number n_IntMod(number a, number b, const coeffs r)
633{ STATISTIC(n_IntMod); assume(r != NULL); return r->cfIntMod(a,b,r); }
634
635/// fill res with the power a^b
636static FORCE_INLINE void   n_Power(number a, int b, number *res, const coeffs r)
637{ STATISTIC(n_Power); assume(r != NULL); assume(r->cfPower!=NULL); r->cfPower(a,b,res,r); }
638
639/// return the product of 'a' and 'b', i.e., a*b
640static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
641{ STATISTIC(n_Mult); assume(r != NULL); assume(r->cfMult!=NULL); return r->cfMult(a, b, r); }
642
643/// multiplication of 'a' and 'b';
644/// replacement of 'a' by the product a*b
645static FORCE_INLINE void n_InpMult(number &a, number b, const coeffs r)
646{ STATISTIC(n_InpMult); assume(r != NULL); assume(r->cfInpMult!=NULL); r->cfInpMult(a,b,r); }
647
648/// addition of 'a' and 'b';
649/// replacement of 'a' by the sum a+b
650static FORCE_INLINE void n_InpAdd(number &a, number b, const coeffs r)
651{ STATISTIC(n_InpAdd); assume(r != NULL); assume(r->cfInpAdd!=NULL); r->cfInpAdd(a,b,r);
652
653#ifdef HAVE_NUMSTATS
654  // avoid double counting
655  if( r->cfIsZero(a,r) ) STATISTIC(n_CancelOut);
656#endif
657}
658
659/// return the sum of 'a' and 'b', i.e., a+b
660static FORCE_INLINE number n_Add(number a, number b, const coeffs r)
661{ STATISTIC(n_Add); assume(r != NULL); assume(r->cfAdd!=NULL); const number sum = r->cfAdd(a, b, r);
662
663#ifdef HAVE_NUMSTATS
664  // avoid double counting
665  if( r->cfIsZero(sum,r) ) STATISTIC(n_CancelOut);
666#endif
667
668 return sum;
669}
670
671
672/// return the difference of 'a' and 'b', i.e., a-b
673static FORCE_INLINE number n_Sub(number a, number b, const coeffs r)
674{ STATISTIC(n_Sub); assume(r != NULL); assume(r->cfSub!=NULL); const number d = r->cfSub(a, b, r);
675
676#ifdef HAVE_NUMSTATS
677  // avoid double counting
678  if( r->cfIsZero(d,r) ) STATISTIC(n_CancelOut);
679#endif
680
681  return d;
682}
683
684/// in Z: return the gcd of 'a' and 'b'
685/// in Z/nZ, Z/2^kZ: computed as in the case Z
686/// in Z/pZ, C, R: not implemented
687/// in Q: return the gcd of the numerators of 'a' and 'b'
688/// in K(a)/<p(a)>: not implemented
689/// in K(t_1, ..., t_n): not implemented
690static FORCE_INLINE number n_Gcd(number a, number b, const coeffs r)
691{ STATISTIC(n_Gcd); assume(r != NULL); assume(r->cfGcd!=NULL); return r->cfGcd(a,b,r); }
692static FORCE_INLINE number n_SubringGcd(number a, number b, const coeffs r)
693{ STATISTIC(n_SubringGcd); assume(r != NULL); assume(r->cfSubringGcd!=NULL); return r->cfSubringGcd(a,b,r); }
694
695/// beware that ExtGCD is only relevant for a few chosen coeff. domains
696/// and may perform something unexpected in some cases...
697static FORCE_INLINE number n_ExtGcd(number a, number b, number *s, number *t, const coeffs r)
698{ STATISTIC(n_ExtGcd); assume(r != NULL); assume(r->cfExtGcd!=NULL); return r->cfExtGcd (a,b,s,t,r); }
699static FORCE_INLINE number n_XExtGcd(number a, number b, number *s, number *t, number *u, number *v, const coeffs r)
700{ STATISTIC(n_XExtGcd); assume(r != NULL); assume(r->cfXExtGcd!=NULL); return r->cfXExtGcd (a,b,s,t,u,v,r); }
701static FORCE_INLINE number  n_EucNorm(number a, const coeffs r)
702{ STATISTIC(n_EucNorm); assume(r != NULL); assume(r->cfEucNorm!=NULL); return r->cfEucNorm (a,r); }
703/// if r is a ring with zero divisors, return an annihilator!=0 of b
704/// otherwise return NULL
705static FORCE_INLINE number  n_Ann(number a, const coeffs r)
706{ STATISTIC(n_Ann); assume(r != NULL); return r->cfAnn (a,r); }
707static FORCE_INLINE number  n_QuotRem(number a, number b, number *q, const coeffs r)
708{ STATISTIC(n_QuotRem); assume(r != NULL); assume(r->cfQuotRem!=NULL); return r->cfQuotRem (a,b,q,r); }
709
710
711/// in Z: return the lcm of 'a' and 'b'
712/// in Z/nZ, Z/2^kZ: computed as in the case Z
713/// in Z/pZ, C, R: not implemented
714/// in K(a)/<p(a)>: not implemented
715/// in K(t_1, ..., t_n): not implemented
716static FORCE_INLINE number n_Lcm(number a, number b, const coeffs r)
717{ STATISTIC(n_Lcm); assume(r != NULL); assume(r->cfLcm!=NULL); return r->cfLcm(a,b,r); }
718
719/// assume that r is a quotient field (otherwise, return 1)
720/// for arguments (a1/a2,b1/b2) return (lcm(a1,b2)/1)
721static FORCE_INLINE number n_NormalizeHelper(number a, number b, const coeffs r)
722{ STATISTIC(n_NormalizeHelper); assume(r != NULL); assume(r->cfNormalizeHelper!=NULL); return r->cfNormalizeHelper(a,b,r); }
723
724/// set the mapping function pointers for translating numbers from src to dst
725static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
726{ STATISTIC(n_SetMap); assume(src != NULL && dst != NULL); assume(dst->cfSetMap!=NULL); return dst->cfSetMap(src,dst); }
727
728#ifdef LDEBUG
729/// test whether n is a correct number;
730/// only used if LDEBUG is defined
731static FORCE_INLINE BOOLEAN n_DBTest(number n, const char *filename, const int linenumber, const coeffs r)
732{ STATISTIC(n_Test); assume(r != NULL); assume(r->cfDBTest != NULL); return r->cfDBTest(n, filename, linenumber, r); }
733#else
734// is it really necessary to define this function in any case?
735/// test whether n is a correct number;
736/// only used if LDEBUG is defined
737static FORCE_INLINE BOOLEAN n_DBTest(number, const char*, const int, const coeffs)
738{ STATISTIC(n_Test);  return TRUE; }
739#endif
740
741/// BOOLEAN n_Test(number a, const coeffs r)
742#define n_Test(a,r)  n_DBTest(a, __FILE__, __LINE__, r)
743
744/// output the coeff description
745static FORCE_INLINE void   n_CoeffWrite(const coeffs r, BOOLEAN details = TRUE)
746{ STATISTIC(n_CoeffWrite); assume(r != NULL); assume(r->cfCoeffWrite != NULL); r->cfCoeffWrite(r, details); }
747
748// Tests:
749#ifdef HAVE_RINGS
750static FORCE_INLINE BOOLEAN nCoeff_is_Ring_2toM(const coeffs r)
751{ assume(r != NULL); return (getCoeffType(r)==n_Z2m); }
752
753static FORCE_INLINE BOOLEAN nCoeff_is_Ring_ModN(const coeffs r)
754{ assume(r != NULL); return (getCoeffType(r)==n_Zn); }
755
756static FORCE_INLINE BOOLEAN nCoeff_is_Ring_PtoM(const coeffs r)
757{ assume(r != NULL); return (getCoeffType(r)==n_Znm); }
758
759static FORCE_INLINE BOOLEAN nCoeff_is_Ring_Z(const coeffs r)
760{ assume(r != NULL); return (getCoeffType(r)==n_Z); }
761
762static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
763{ assume(r != NULL); return (r->is_field==0); }
764#else
765#define nCoeff_is_Ring_2toM(A) 0
766#define nCoeff_is_Ring_ModN(A) 0
767#define nCoeff_is_Ring_PtoM(A) 0
768#define nCoeff_is_Ring_Z(A)    0
769#define nCoeff_is_Ring(A)      0
770#endif
771
772/// returns TRUE, if r is a field or r has no zero divisors (i.e is a domain)
773static FORCE_INLINE BOOLEAN nCoeff_is_Domain(const coeffs r)
774{
775  assume(r != NULL);
776  return (r->is_domain);
777}
778
779/// test whether 'a' is divisible 'b';
780/// for r encoding a field: TRUE iff 'b' does not represent zero
781/// in Z: TRUE iff 'b' divides 'a' (with remainder = zero)
782/// in Z/nZ: TRUE iff (a = 0 and b divides n in Z) or
783///                   (a != 0 and b/gcd(a, b) is co-prime with n, i.e.
784///                                              a unit in Z/nZ)
785/// in Z/2^kZ: TRUE iff ((a = 0 mod 2^k) and (b = 0 or b is a power of 2))
786///                  or ((a, b <> 0) and (b/gcd(a, b) is odd))
787static FORCE_INLINE BOOLEAN n_DivBy(number a, number b, const coeffs r)
788{ STATISTIC(n_DivBy); assume(r != NULL);
789#ifdef HAVE_RINGS
790  if( nCoeff_is_Ring(r) )
791  {
792    assume(r->cfDivBy!=NULL); return r->cfDivBy(a,b,r);
793  }
794#endif
795  return !n_IsZero(b, r);
796}
797
798static FORCE_INLINE number n_ChineseRemainderSym(number *a, number *b, int rl, BOOLEAN sym,CFArray &inv_cache,const coeffs r)
799{ STATISTIC(n_ChineseRemainderSym); assume(r != NULL); assume(r->cfChineseRemainder != NULL); return r->cfChineseRemainder(a,b,rl,sym,inv_cache,r); }
800
801static FORCE_INLINE number n_Farey(number a, number b, const coeffs r)
802{ STATISTIC(n_Farey); assume(r != NULL); assume(r->cfFarey != NULL); return r->cfFarey(a,b,r); }
803
804static FORCE_INLINE int n_ParDeg(number n, const coeffs r)
805{ STATISTIC(n_ParDeg); assume(r != NULL); assume(r->cfParDeg != NULL); return r->cfParDeg(n,r); }
806
807/// Returns the number of parameters
808static FORCE_INLINE int n_NumberOfParameters(const coeffs r)
809{ STATISTIC(n_NumberOfParameters); assume(r != NULL); return r->iNumberOfParameters; }
810
811/// Returns a (const!) pointer to (const char*) names of parameters
812static FORCE_INLINE char const * * n_ParameterNames(const coeffs r)
813{ STATISTIC(n_ParameterNames); assume(r != NULL); return r->pParameterNames; }
814
815/// return the (iParameter^th) parameter as a NEW number
816/// NOTE: parameter numbering: 1..n_NumberOfParameters(...)
817static FORCE_INLINE number n_Param(const int iParameter, const coeffs r)
818{ assume(r != NULL);
819  assume((iParameter >= 1) || (iParameter <= n_NumberOfParameters(r)));
820  assume(r->cfParameter != NULL);
821  STATISTIC(n_Param); return r->cfParameter(iParameter, r);
822}
823
824static FORCE_INLINE number  n_RePart(number i, const coeffs cf)
825{ STATISTIC(n_RePart); assume(cf != NULL); assume(cf->cfRePart!=NULL); return cf->cfRePart(i,cf); }
826
827static FORCE_INLINE number  n_ImPart(number i, const coeffs cf)
828{ STATISTIC(n_ImPart); assume(cf != NULL); assume(cf->cfImPart!=NULL); return cf->cfImPart(i,cf); }
829
830/// returns TRUE, if r is not a field and r has non-trivial units
831static FORCE_INLINE BOOLEAN nCoeff_has_Units(const coeffs r)
832{ assume(r != NULL); return ((getCoeffType(r)==n_Zn) || (getCoeffType(r)==n_Z2m) || (getCoeffType(r)==n_Znm)); }
833
834static FORCE_INLINE BOOLEAN nCoeff_is_Zp(const coeffs r)
835{ assume(r != NULL); return getCoeffType(r)==n_Zp; }
836
837static FORCE_INLINE BOOLEAN nCoeff_is_Zp(const coeffs r, int p)
838{ assume(r != NULL); return ((getCoeffType(r)==n_Zp) && (r->ch == p)); }
839
840static FORCE_INLINE BOOLEAN nCoeff_is_Q(const coeffs r)
841{ assume(r != NULL); return getCoeffType(r)==n_Q && (r->is_field); }
842
843static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
844{ assume(r != NULL); return getCoeffType(r)==n_Z || ((getCoeffType(r)==n_Q) && (!r->is_field)); }
845
846static FORCE_INLINE BOOLEAN nCoeff_is_Q_or_BI(const coeffs r)
847{ assume(r != NULL); return getCoeffType(r)==n_Q; }
848
849static FORCE_INLINE BOOLEAN nCoeff_is_numeric(const coeffs r) /* R, long R, long C */
850{ assume(r != NULL);  return (getCoeffType(r)==n_R) || (getCoeffType(r)==n_long_R) || (getCoeffType(r)==n_long_C); }
851// (r->ringtype == 0) && (r->ch ==  -1); ??
852
853static FORCE_INLINE BOOLEAN nCoeff_is_R(const coeffs r)
854{ assume(r != NULL); return getCoeffType(r)==n_R; }
855
856static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
857{ assume(r != NULL); return getCoeffType(r)==n_GF; }
858
859static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r, int q)
860{ assume(r != NULL); return (getCoeffType(r)==n_GF) && (r->ch == q); }
861
862/* TRUE iff r represents an algebraic or transcendental extension field */
863static FORCE_INLINE BOOLEAN nCoeff_is_Extension(const coeffs r)
864{
865  assume(r != NULL);
866  return (getCoeffType(r)==n_algExt) || (getCoeffType(r)==n_transExt);
867}
868
869/* DO NOT USE (only kept for compatibility reasons towards the SINGULAR
870   svn trunk);
871   intension: should be TRUE iff the given r is an extension field above
872   some Z/pZ;
873   actually: TRUE iff the given r is an extension tower of arbitrary
874   height above some field of characteristic p (may be Z/pZ or some
875   Galois field of characteristic p) */
876static FORCE_INLINE BOOLEAN nCoeff_is_Zp_a(const coeffs r)
877{
878  assume(r != NULL);
879  return ((!nCoeff_is_Ring(r)) && (n_GetChar(r) != 0) && nCoeff_is_Extension(r));
880}
881
882/* DO NOT USE (only kept for compatibility reasons towards the SINGULAR
883   svn trunk);
884   intension: should be TRUE iff the given r is an extension field above
885   Z/pZ (with p as provided);
886   actually: TRUE iff the given r is an extension tower of arbitrary
887   height above some field of characteristic p (may be Z/pZ or some
888   Galois field of characteristic p) */
889static FORCE_INLINE BOOLEAN nCoeff_is_Zp_a(const coeffs r, int p)
890{
891  assume(r != NULL);
892  assume(p != 0);
893  return ((!nCoeff_is_Ring(r)) && (n_GetChar(r) == p) && nCoeff_is_Extension(r));
894}
895
896/* DO NOT USE (only kept for compatibility reasons towards the SINGULAR
897   svn trunk);
898   intension: should be TRUE iff the given r is an extension field
899   above Q;
900   actually: TRUE iff the given r is an extension tower of arbitrary
901   height above some field of characteristic 0 (may be Q, R, or C) */
902static FORCE_INLINE BOOLEAN nCoeff_is_Q_a(const coeffs r)
903{
904  assume(r != NULL);
905  return ((n_GetChar(r) == 0) && nCoeff_is_Extension(r));
906}
907
908static FORCE_INLINE BOOLEAN nCoeff_is_long_R(const coeffs r)
909{ assume(r != NULL); return getCoeffType(r)==n_long_R; }
910
911static FORCE_INLINE BOOLEAN nCoeff_is_long_C(const coeffs r)
912{ assume(r != NULL); return getCoeffType(r)==n_long_C; }
913
914static FORCE_INLINE BOOLEAN nCoeff_is_CF(const coeffs r)
915{ assume(r != NULL); return getCoeffType(r)==n_CF; }
916
917/// TRUE, if the computation of the inverse is fast,
918/// i.e. prefer leading coeff. 1 over content
919static FORCE_INLINE BOOLEAN nCoeff_has_simple_inverse(const coeffs r)
920{ assume(r != NULL); return r->has_simple_Inverse; }
921
922/// TRUE if n_Delete/n_New are empty operations
923static FORCE_INLINE BOOLEAN nCoeff_has_simple_Alloc(const coeffs r)
924{ assume(r != NULL); return r->has_simple_Alloc; }
925
926/// TRUE iff r represents an algebraic extension field
927static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
928{ assume(r != NULL); return (getCoeffType(r)==n_algExt); }
929
930/// is it an alg. ext. of Q?
931static FORCE_INLINE BOOLEAN nCoeff_is_Q_algext(const coeffs r)
932{ assume(r != NULL); return ((n_GetChar(r) == 0) && nCoeff_is_algExt(r)); }
933
934/// TRUE iff r represents a transcendental extension field
935static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
936{ assume(r != NULL); return (getCoeffType(r)==n_transExt); }
937
938/// Computes the content and (inplace) divides it out on a collection
939/// of numbers
940/// number @em c is the content (i.e. the GCD of all the coeffs, which
941/// we divide out inplace)
942/// NOTE: it assumes all coefficient numbers to be integer!!!
943/// NOTE/TODO: see also the description by Hans
944/// TODO: rename into n_ClearIntegerContent
945static FORCE_INLINE void n_ClearContent(ICoeffsEnumerator& numberCollectionEnumerator, number& c, const coeffs r)
946{ STATISTIC(n_ClearContent); assume(r != NULL); r->cfClearContent(numberCollectionEnumerator, c, r); }
947
948/// (inplace) Clears denominators on a collection of numbers
949/// number @em d is the LCM of all the coefficient denominators (i.e. the number
950/// with which all the number coeffs. were multiplied)
951/// NOTE/TODO: see also the description by Hans
952static FORCE_INLINE void n_ClearDenominators(ICoeffsEnumerator& numberCollectionEnumerator, number& d, const coeffs r)
953{ STATISTIC(n_ClearDenominators); assume(r != NULL); r->cfClearDenominators(numberCollectionEnumerator, d, r); }
954
955// convenience helpers (no number returned - but the input enumeration
956// is to be changed
957// TODO: do we need separate hooks for these as our existing code does
958// *different things* there: compare p_Cleardenom (which calls
959// *p_Content) and p_Cleardenom_n (which doesn't)!!!
960
961static FORCE_INLINE void n_ClearContent(ICoeffsEnumerator& numberCollectionEnumerator, const coeffs r)
962{ STATISTIC(n_ClearContent); number c; n_ClearContent(numberCollectionEnumerator, c, r); n_Delete(&c, r); }
963
964static FORCE_INLINE void n_ClearDenominators(ICoeffsEnumerator& numberCollectionEnumerator, const coeffs r)
965{ STATISTIC(n_ClearDenominators); assume(r != NULL); number d; n_ClearDenominators(numberCollectionEnumerator, d, r); n_Delete(&d, r); }
966
967
968/// print a number (BEWARE of string buffers!)
969/// mostly for debugging
970void   n_Print(number& a,  const coeffs r);
971
972
973
974/// TODO: make it a virtual method of coeffs, together with:
975/// Decompose & Compose, rParameter & rPar
976static FORCE_INLINE char * nCoeffString(const coeffs cf)
977{ STATISTIC(nCoeffString); assume( cf != NULL ); return cf->cfCoeffString(cf); }
978
979
980static FORCE_INLINE char * nCoeffName (const coeffs cf)
981{ STATISTIC(nCoeffName); assume( cf != NULL ); return cf->cfCoeffName(cf); }
982
983static FORCE_INLINE number n_Random(siRandProc p, number p1, number p2, const coeffs cf)
984{ STATISTIC(n_Random); assume( cf != NULL ); assume( cf->cfRandom != NULL );  return cf->cfRandom(p, p1, p2, cf); }
985
986/// io via ssi:
987static FORCE_INLINE void n_WriteFd(number a, FILE *f, const coeffs r)
988{ STATISTIC(n_WriteFd); assume(r != NULL); assume(r->cfWriteFd != NULL); return r->cfWriteFd(a, f, r); }
989
990/// io via ssi:
991static FORCE_INLINE number n_ReadFd( s_buff f, const coeffs r)
992{ STATISTIC(n_ReadFd); assume(r != NULL); assume(r->cfReadFd != NULL); return r->cfReadFd(f, r); }
993
994
995// the following wrappers went to numbers.cc since they needed factory
996// knowledge!
997number n_convFactoryNSingN( const CanonicalForm n, const coeffs r);
998
999CanonicalForm n_convSingNFactoryN( number n, BOOLEAN setChar, const coeffs r );
1000
1001
1002// TODO: remove the following functions...
1003// the following 2 inline functions are just convenience shortcuts for Frank's code:
1004static FORCE_INLINE void number2mpz(number n, coeffs c, mpz_t m){ n_MPZ(m, n, c); }
1005static FORCE_INLINE number mpz2number(mpz_t m, coeffs c){ return n_InitMPZ(m, c); }
1006
1007#endif
1008
Note: See TracBrowser for help on using the repository browser.