1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* $Id: modulop.cc 14402 2011-09-29 17:16:19Z hannes $ */ |
---|
5 | /* |
---|
6 | * ABSTRACT: numbers modulo p (<=32003) |
---|
7 | */ |
---|
8 | |
---|
9 | #include "config.h" |
---|
10 | #include <misc/auxiliary.h> |
---|
11 | |
---|
12 | #ifdef HAVE_FACTORY |
---|
13 | #include <factory/factory.h> |
---|
14 | #endif |
---|
15 | |
---|
16 | #include <string.h> |
---|
17 | #include <omalloc/omalloc.h> |
---|
18 | #include <coeffs/coeffs.h> |
---|
19 | #include <reporter/reporter.h> |
---|
20 | #include <coeffs/numbers.h> |
---|
21 | #include <coeffs/longrat.h> |
---|
22 | #include <coeffs/mpr_complex.h> |
---|
23 | #include <misc/mylimits.h> |
---|
24 | #include <coeffs/modulop.h> |
---|
25 | |
---|
26 | // int npGen=0; |
---|
27 | |
---|
28 | /// Our Type! |
---|
29 | static const n_coeffType ID = n_Zp; |
---|
30 | |
---|
31 | #ifdef NV_OPS |
---|
32 | #pragma GCC diagnostic ignored "-Wlong-long" |
---|
33 | static inline number nvMultM(number a, number b, const coeffs r) |
---|
34 | { |
---|
35 | assume( getCoeffType(r) == ID ); |
---|
36 | |
---|
37 | #if SIZEOF_LONG == 4 |
---|
38 | #define ULONG64 (unsigned long long)(unsigned long) |
---|
39 | #else |
---|
40 | #define ULONG64 (unsigned long) |
---|
41 | #endif |
---|
42 | return (number) |
---|
43 | (unsigned long)((ULONG64 a)*(ULONG64 b) % (ULONG64 r->ch)); |
---|
44 | } |
---|
45 | number nvMult (number a, number b, const coeffs r); |
---|
46 | number nvDiv (number a, number b, const coeffs r); |
---|
47 | number nvInvers (number c, const coeffs r); |
---|
48 | void nvPower (number a, int i, number * result, const coeffs r); |
---|
49 | #endif |
---|
50 | |
---|
51 | |
---|
52 | |
---|
53 | |
---|
54 | BOOLEAN npGreaterZero (number k, const coeffs r) |
---|
55 | { |
---|
56 | assume( n_Test(k, r) ); |
---|
57 | |
---|
58 | int h = (int)((long) k); |
---|
59 | return ((int)h !=0) && (h <= (r->ch>>1)); |
---|
60 | } |
---|
61 | |
---|
62 | //unsigned long npMultMod(unsigned long a, unsigned long b, int npPrimeM) |
---|
63 | //{ |
---|
64 | // unsigned long c = a*b; |
---|
65 | // c = c % npPrimeM; |
---|
66 | // assume(c == (unsigned long) npMultM((number) a, (number) b, npPrimeM)); |
---|
67 | // return c; |
---|
68 | //} |
---|
69 | |
---|
70 | number npMult (number a,number b, const coeffs r) |
---|
71 | { |
---|
72 | assume( n_Test(a, r) ); |
---|
73 | assume( n_Test(b, r) ); |
---|
74 | |
---|
75 | if (((long)a == 0) || ((long)b == 0)) |
---|
76 | return (number)0; |
---|
77 | number c = npMultM(a,b, r); |
---|
78 | assume( n_Test(c, r) ); |
---|
79 | return c; |
---|
80 | } |
---|
81 | |
---|
82 | /*2 |
---|
83 | * create a number from int |
---|
84 | */ |
---|
85 | number npInit (long i, const coeffs r) |
---|
86 | { |
---|
87 | long ii=i; |
---|
88 | while (ii < 0L) ii += (long)r->ch; |
---|
89 | while ((ii>1L) && (ii >= ((long)r->ch))) ii -= (long)r->ch; |
---|
90 | |
---|
91 | number c = (number)ii; |
---|
92 | assume( n_Test(c, r) ); |
---|
93 | return c; |
---|
94 | |
---|
95 | } |
---|
96 | |
---|
97 | |
---|
98 | /*2 |
---|
99 | * convert a number to an int in (-p/2 .. p/2] |
---|
100 | */ |
---|
101 | int npInt(number &n, const coeffs r) |
---|
102 | { |
---|
103 | assume( n_Test(n, r) ); |
---|
104 | |
---|
105 | if ((long)n > (((long)r->ch) >>1)) return (int)((long)n -((long)r->ch)); |
---|
106 | else return (int)((long)n); |
---|
107 | } |
---|
108 | |
---|
109 | number npAdd (number a, number b, const coeffs r) |
---|
110 | { |
---|
111 | assume( n_Test(a, r) ); |
---|
112 | assume( n_Test(b, r) ); |
---|
113 | |
---|
114 | number c = npAddM(a,b, r); |
---|
115 | |
---|
116 | assume( n_Test(c, r) ); |
---|
117 | |
---|
118 | return c; |
---|
119 | } |
---|
120 | |
---|
121 | number npSub (number a, number b, const coeffs r) |
---|
122 | { |
---|
123 | assume( n_Test(a, r) ); |
---|
124 | assume( n_Test(b, r) ); |
---|
125 | |
---|
126 | number c = npSubM(a,b,r); |
---|
127 | |
---|
128 | assume( n_Test(c, r) ); |
---|
129 | |
---|
130 | return c; |
---|
131 | } |
---|
132 | |
---|
133 | BOOLEAN npIsZero (number a, const coeffs r) |
---|
134 | { |
---|
135 | assume( n_Test(a, r) ); |
---|
136 | |
---|
137 | return 0 == (long)a; |
---|
138 | } |
---|
139 | |
---|
140 | BOOLEAN npIsOne (number a, const coeffs r) |
---|
141 | { |
---|
142 | assume( n_Test(a, r) ); |
---|
143 | |
---|
144 | return 1 == (long)a; |
---|
145 | } |
---|
146 | |
---|
147 | BOOLEAN npIsMOne (number a, const coeffs r) |
---|
148 | { |
---|
149 | assume( n_Test(a, r) ); |
---|
150 | |
---|
151 | return ((r->npPminus1M == (long)a)&&((long)1!=(long)a)); |
---|
152 | } |
---|
153 | |
---|
154 | #ifdef HAVE_DIV_MOD |
---|
155 | |
---|
156 | #ifdef USE_NTL_XGCD |
---|
157 | |
---|
158 | //ifdef HAVE_NTL // in ntl.a |
---|
159 | //extern void XGCD(long& d, long& s, long& t, long a, long b); |
---|
160 | #include <NTL/ZZ.h> |
---|
161 | #ifdef NTL_CLIENT |
---|
162 | NTL_CLIENT |
---|
163 | #endif |
---|
164 | |
---|
165 | #endif |
---|
166 | |
---|
167 | long InvMod(long a, const coeffs R) |
---|
168 | { |
---|
169 | long d, s, t; |
---|
170 | |
---|
171 | #ifdef USE_NTL_XGCD |
---|
172 | XGCD(d, s, t, a, R->ch); |
---|
173 | assume (d == 1); |
---|
174 | #else |
---|
175 | long u, v, u0, v0, u1, v1, u2, v2, q, r; |
---|
176 | |
---|
177 | assume(a>0); |
---|
178 | u1=1; u2=0; |
---|
179 | u = a; v = R->ch; |
---|
180 | |
---|
181 | while (v != 0) |
---|
182 | { |
---|
183 | q = u / v; |
---|
184 | r = u % v; |
---|
185 | u = v; |
---|
186 | v = r; |
---|
187 | u0 = u2; |
---|
188 | u2 = u1 - q*u2; |
---|
189 | u1 = u0; |
---|
190 | } |
---|
191 | |
---|
192 | assume(u==1); |
---|
193 | s = u1; |
---|
194 | #endif |
---|
195 | if (s < 0) |
---|
196 | return s + R->ch; |
---|
197 | else |
---|
198 | return s; |
---|
199 | } |
---|
200 | #endif |
---|
201 | |
---|
202 | inline number npInversM (number c, const coeffs r) |
---|
203 | { |
---|
204 | assume( n_Test(c, r) ); |
---|
205 | #ifndef HAVE_DIV_MOD |
---|
206 | number d = (number)(long)r->npExpTable[r->npPminus1M - r->npLogTable[(long)c]]; |
---|
207 | #else |
---|
208 | long inv=(long)r->npInvTable[(long)c]; |
---|
209 | if (inv==0) |
---|
210 | { |
---|
211 | inv=InvMod((long)c,r); |
---|
212 | r->npInvTable[(long)c]=inv; |
---|
213 | } |
---|
214 | number d = (number)inv; |
---|
215 | #endif |
---|
216 | assume( n_Test(d, r) ); |
---|
217 | return d; |
---|
218 | |
---|
219 | } |
---|
220 | |
---|
221 | number npDiv (number a,number b, const coeffs r) |
---|
222 | { |
---|
223 | assume( n_Test(a, r) ); |
---|
224 | assume( n_Test(b, r) ); |
---|
225 | |
---|
226 | //#ifdef NV_OPS |
---|
227 | // if (r->ch>NV_MAX_PRIME) |
---|
228 | // return nvDiv(a,b); |
---|
229 | //#endif |
---|
230 | if ((long)a==0) |
---|
231 | return (number)0; |
---|
232 | number d; |
---|
233 | |
---|
234 | #ifndef HAVE_DIV_MOD |
---|
235 | if ((long)b==0) |
---|
236 | { |
---|
237 | WerrorS(nDivBy0); |
---|
238 | return (number)0; |
---|
239 | } |
---|
240 | |
---|
241 | int s = r->npLogTable[(long)a] - r->npLogTable[(long)b]; |
---|
242 | if (s < 0) |
---|
243 | s += r->npPminus1M; |
---|
244 | d = (number)(long)r->npExpTable[s]; |
---|
245 | #else |
---|
246 | number inv=npInversM(b,r); |
---|
247 | d = npMultM(a,inv,r); |
---|
248 | #endif |
---|
249 | |
---|
250 | assume( n_Test(d, r) ); |
---|
251 | return d; |
---|
252 | |
---|
253 | } |
---|
254 | number npInvers (number c, const coeffs r) |
---|
255 | { |
---|
256 | assume( n_Test(c, r) ); |
---|
257 | |
---|
258 | if ((long)c==0) |
---|
259 | { |
---|
260 | WerrorS("1/0"); |
---|
261 | return (number)0; |
---|
262 | } |
---|
263 | number d = npInversM(c,r); |
---|
264 | |
---|
265 | assume( n_Test(d, r) ); |
---|
266 | return d; |
---|
267 | |
---|
268 | } |
---|
269 | |
---|
270 | number npNeg (number c, const coeffs r) |
---|
271 | { |
---|
272 | assume( n_Test(c, r) ); |
---|
273 | |
---|
274 | if ((long)c==0) return c; |
---|
275 | |
---|
276 | #if 0 |
---|
277 | number d = npNegM(c,r); |
---|
278 | assume( n_Test(d, r) ); |
---|
279 | return d; |
---|
280 | #else |
---|
281 | c = npNegM(c,r); |
---|
282 | assume( n_Test(c, r) ); |
---|
283 | return c; |
---|
284 | #endif |
---|
285 | } |
---|
286 | |
---|
287 | BOOLEAN npGreater (number a,number b, const coeffs r) |
---|
288 | { |
---|
289 | assume( n_Test(a, r) ); |
---|
290 | assume( n_Test(b, r) ); |
---|
291 | |
---|
292 | //return (long)a != (long)b; |
---|
293 | return (long)a > (long)b; |
---|
294 | } |
---|
295 | |
---|
296 | BOOLEAN npEqual (number a,number b, const coeffs r) |
---|
297 | { |
---|
298 | assume( n_Test(a, r) ); |
---|
299 | assume( n_Test(b, r) ); |
---|
300 | |
---|
301 | // return (long)a == (long)b; |
---|
302 | |
---|
303 | return npEqualM(a,b,r); |
---|
304 | } |
---|
305 | |
---|
306 | void npWrite (number &a, const coeffs r) |
---|
307 | { |
---|
308 | assume( n_Test(a, r) ); |
---|
309 | |
---|
310 | if ((long)a>(((long)r->ch) >>1)) StringAppend("-%d",(int)(((long)r->ch)-((long)a))); |
---|
311 | else StringAppend("%d",(int)((long)a)); |
---|
312 | } |
---|
313 | |
---|
314 | void npPower (number a, int i, number * result, const coeffs r) |
---|
315 | { |
---|
316 | assume( n_Test(a, r) ); |
---|
317 | |
---|
318 | if (i==0) |
---|
319 | { |
---|
320 | //npInit(1,result); |
---|
321 | *(long *)result = 1; |
---|
322 | } |
---|
323 | else if (i==1) |
---|
324 | { |
---|
325 | *result = a; |
---|
326 | } |
---|
327 | else |
---|
328 | { |
---|
329 | npPower(a,i-1,result,r); |
---|
330 | *result = npMultM(a,*result,r); |
---|
331 | } |
---|
332 | } |
---|
333 | |
---|
334 | static const char* npEati(const char *s, int *i, const coeffs r) |
---|
335 | { |
---|
336 | |
---|
337 | if (((*s) >= '0') && ((*s) <= '9')) |
---|
338 | { |
---|
339 | unsigned long ii=0L; |
---|
340 | do |
---|
341 | { |
---|
342 | ii *= 10; |
---|
343 | ii += *s++ - '0'; |
---|
344 | if (ii >= (MAX_INT_VAL / 10)) ii = ii % r->ch; |
---|
345 | } |
---|
346 | while (((*s) >= '0') && ((*s) <= '9')); |
---|
347 | if (ii >= r->ch) ii = ii % r->ch; |
---|
348 | *i=(int)ii; |
---|
349 | } |
---|
350 | else (*i) = 1; |
---|
351 | return s; |
---|
352 | } |
---|
353 | |
---|
354 | const char * npRead (const char *s, number *a, const coeffs r) |
---|
355 | { |
---|
356 | int z; |
---|
357 | int n=1; |
---|
358 | |
---|
359 | s = npEati(s, &z, r); |
---|
360 | if ((*s) == '/') |
---|
361 | { |
---|
362 | s++; |
---|
363 | s = npEati(s, &n, r); |
---|
364 | } |
---|
365 | if (n == 1) |
---|
366 | *a = (number)z; |
---|
367 | else |
---|
368 | { |
---|
369 | if ((z==0)&&(n==0)) WerrorS(nDivBy0); |
---|
370 | else |
---|
371 | { |
---|
372 | #ifdef NV_OPS |
---|
373 | if (r->ch>NV_MAX_PRIME) |
---|
374 | *a = nvDiv((number)z,(number)n,r); |
---|
375 | else |
---|
376 | #endif |
---|
377 | *a = npDiv((number)z,(number)n,r); |
---|
378 | } |
---|
379 | } |
---|
380 | assume( n_Test(*a, r) ); |
---|
381 | return s; |
---|
382 | } |
---|
383 | |
---|
384 | /*2 |
---|
385 | * set the charcteristic (allocate and init tables) |
---|
386 | */ |
---|
387 | |
---|
388 | void npKillChar(coeffs r) |
---|
389 | { |
---|
390 | #ifdef HAVE_DIV_MOD |
---|
391 | if (r->npInvTable!=NULL) |
---|
392 | omFreeSize( (void *)r->npInvTable, r->ch*sizeof(unsigned short) ); |
---|
393 | r->npInvTable=NULL; |
---|
394 | #else |
---|
395 | if (r->npExpTable!=NULL) |
---|
396 | { |
---|
397 | omFreeSize( (void *)r->npExpTable, r->ch*sizeof(unsigned short) ); |
---|
398 | omFreeSize( (void *)r->npLogTable, r->ch*sizeof(unsigned short) ); |
---|
399 | r->npExpTable=NULL; r->npLogTable=NULL; |
---|
400 | } |
---|
401 | #endif |
---|
402 | } |
---|
403 | |
---|
404 | static BOOLEAN npCoeffsEqual(const coeffs r, n_coeffType n, void * parameter) |
---|
405 | { |
---|
406 | /* test, if r is an instance of nInitCoeffs(n,parameter) */ |
---|
407 | return (n==n_Zp) && (r->ch==(int)(long)parameter); |
---|
408 | } |
---|
409 | #ifdef HAVE_FACTORY |
---|
410 | CanonicalForm npConvSingNFactoryN( number n, BOOLEAN setChar, const coeffs r ) |
---|
411 | { |
---|
412 | if (setChar) setCharacteristic( r->ch ); |
---|
413 | CanonicalForm term(npInt( n,r )); |
---|
414 | return term; |
---|
415 | } |
---|
416 | |
---|
417 | number npConvFactoryNSingN( const CanonicalForm n, const coeffs r) |
---|
418 | { |
---|
419 | if (n.isImm()) |
---|
420 | { |
---|
421 | return npInit(n.intval(),r); |
---|
422 | } |
---|
423 | else |
---|
424 | { |
---|
425 | assume(0); |
---|
426 | return NULL; |
---|
427 | } |
---|
428 | } |
---|
429 | #endif |
---|
430 | |
---|
431 | |
---|
432 | BOOLEAN npInitChar(coeffs r, void* p) |
---|
433 | { |
---|
434 | assume( getCoeffType(r) == ID ); |
---|
435 | const int c = (int) (long) p; |
---|
436 | |
---|
437 | assume( c > 0 ); |
---|
438 | |
---|
439 | int i, w; |
---|
440 | |
---|
441 | r->ch = c; |
---|
442 | r->npPminus1M = c /*r->ch*/ - 1; |
---|
443 | |
---|
444 | //r->cfInitChar=npInitChar; |
---|
445 | r->cfKillChar=npKillChar; |
---|
446 | r->nCoeffIsEqual=npCoeffsEqual; |
---|
447 | |
---|
448 | r->cfMult = npMult; |
---|
449 | r->cfSub = npSub; |
---|
450 | r->cfAdd = npAdd; |
---|
451 | r->cfDiv = npDiv; |
---|
452 | r->cfIntDiv= npDiv; |
---|
453 | //r->cfIntMod= ndIntMod; |
---|
454 | r->cfExactDiv= npDiv; |
---|
455 | r->cfInit = npInit; |
---|
456 | //r->cfSize = ndSize; |
---|
457 | r->cfInt = npInt; |
---|
458 | #ifdef HAVE_RINGS |
---|
459 | //r->cfDivComp = NULL; // only for ring stuff |
---|
460 | //r->cfIsUnit = NULL; // only for ring stuff |
---|
461 | //r->cfGetUnit = NULL; // only for ring stuff |
---|
462 | //r->cfExtGcd = NULL; // only for ring stuff |
---|
463 | // r->cfDivBy = NULL; // only for ring stuff |
---|
464 | #endif |
---|
465 | r->cfNeg = npNeg; |
---|
466 | r->cfInvers= npInvers; |
---|
467 | //r->cfCopy = ndCopy; |
---|
468 | //r->cfRePart = ndCopy; |
---|
469 | //r->cfImPart = ndReturn0; |
---|
470 | r->cfWrite = npWrite; |
---|
471 | r->cfRead = npRead; |
---|
472 | //r->cfNormalize=ndNormalize; |
---|
473 | r->cfGreater = npGreater; |
---|
474 | r->cfEqual = npEqual; |
---|
475 | r->cfIsZero = npIsZero; |
---|
476 | r->cfIsOne = npIsOne; |
---|
477 | r->cfIsMOne = npIsMOne; |
---|
478 | r->cfGreaterZero = npGreaterZero; |
---|
479 | r->cfPower = npPower; |
---|
480 | r->cfGetDenom = ndGetDenom; |
---|
481 | r->cfGetNumerator = ndGetNumerator; |
---|
482 | //r->cfGcd = ndGcd; |
---|
483 | //r->cfLcm = ndGcd; |
---|
484 | //r->cfDelete= ndDelete; |
---|
485 | r->cfSetMap = npSetMap; |
---|
486 | //r->cfName = ndName; |
---|
487 | r->cfInpMult=ndInpMult; |
---|
488 | r->cfInit_bigint= nlModP; // npMap0; |
---|
489 | #ifdef NV_OPS |
---|
490 | if (c>NV_MAX_PRIME) |
---|
491 | { |
---|
492 | r->cfMult = nvMult; |
---|
493 | r->cfDiv = nvDiv; |
---|
494 | r->cfExactDiv= nvDiv; |
---|
495 | r->cfInvers= nvInvers; |
---|
496 | r->cfPower= nvPower; |
---|
497 | } |
---|
498 | #endif |
---|
499 | r->cfCoeffWrite=npCoeffWrite; |
---|
500 | #ifdef LDEBUG |
---|
501 | // debug stuff |
---|
502 | r->cfDBTest=npDBTest; |
---|
503 | #endif |
---|
504 | |
---|
505 | #ifdef HAVE_FACTORY |
---|
506 | r->convSingNFactoryN=npConvSingNFactoryN; |
---|
507 | r->convFactoryNSingN=npConvFactoryNSingN; |
---|
508 | #endif |
---|
509 | |
---|
510 | // the variables: |
---|
511 | r->nNULL = (number)0; |
---|
512 | r->type = n_Zp; |
---|
513 | r->ch = c; |
---|
514 | r->has_simple_Alloc=TRUE; |
---|
515 | r->has_simple_Inverse=TRUE; |
---|
516 | |
---|
517 | // the tables |
---|
518 | #ifdef NV_OPS |
---|
519 | if (r->ch <=NV_MAX_PRIME) |
---|
520 | #endif |
---|
521 | { |
---|
522 | #if !defined(HAVE_DIV_MOD) || !defined(HAVE_MULT_MOD) |
---|
523 | r->npExpTable=(unsigned short *)omAlloc( r->ch*sizeof(unsigned short) ); |
---|
524 | r->npLogTable=(unsigned short *)omAlloc( r->ch*sizeof(unsigned short) ); |
---|
525 | r->npExpTable[0] = 1; |
---|
526 | r->npLogTable[0] = 0; |
---|
527 | if (r->ch > 2) |
---|
528 | { |
---|
529 | w = 1; |
---|
530 | loop |
---|
531 | { |
---|
532 | r->npLogTable[1] = 0; |
---|
533 | w++; |
---|
534 | i = 0; |
---|
535 | loop |
---|
536 | { |
---|
537 | i++; |
---|
538 | r->npExpTable[i] =(int)(((long)w * (long)r->npExpTable[i-1]) |
---|
539 | % r->ch); |
---|
540 | r->npLogTable[r->npExpTable[i]] = i; |
---|
541 | if (/*(i == r->ch - 1 ) ||*/ (r->npExpTable[i] == 1)) |
---|
542 | break; |
---|
543 | } |
---|
544 | if (i == r->ch - 1) |
---|
545 | break; |
---|
546 | } |
---|
547 | } |
---|
548 | else |
---|
549 | { |
---|
550 | r->npExpTable[1] = 1; |
---|
551 | r->npLogTable[1] = 0; |
---|
552 | } |
---|
553 | #endif |
---|
554 | #ifdef HAVE_DIV_MOD |
---|
555 | r->npInvTable=(unsigned short*)omAlloc0( r->ch*sizeof(unsigned short) ); |
---|
556 | #endif |
---|
557 | } |
---|
558 | return FALSE; |
---|
559 | } |
---|
560 | |
---|
561 | #ifdef LDEBUG |
---|
562 | BOOLEAN npDBTest (number a, const char *f, const int l, const coeffs r) |
---|
563 | { |
---|
564 | if (((long)a<0) || ((long)a>r->ch)) |
---|
565 | { |
---|
566 | Print("wrong mod p number %ld at %s,%d\n",(long)a,f,l); |
---|
567 | return FALSE; |
---|
568 | } |
---|
569 | return TRUE; |
---|
570 | } |
---|
571 | #endif |
---|
572 | |
---|
573 | number npMapP(number from, const coeffs src, const coeffs dst_r) |
---|
574 | { |
---|
575 | long i = (long)from; |
---|
576 | if (i>src->ch/2) |
---|
577 | { |
---|
578 | i-=src->ch; |
---|
579 | while (i < 0) i+=dst_r->ch; |
---|
580 | } |
---|
581 | i%=dst_r->ch; |
---|
582 | return (number)i; |
---|
583 | } |
---|
584 | |
---|
585 | static number npMapLongR(number from, const coeffs /*src*/, const coeffs dst_r) |
---|
586 | { |
---|
587 | gmp_float *ff=(gmp_float*)from; |
---|
588 | mpf_t *f=ff->_mpfp(); |
---|
589 | number res; |
---|
590 | mpz_ptr dest,ndest; |
---|
591 | int size,i; |
---|
592 | int e,al,bl; |
---|
593 | long iz; |
---|
594 | mp_ptr qp,dd,nn; |
---|
595 | |
---|
596 | size = (*f)[0]._mp_size; |
---|
597 | if (size == 0) |
---|
598 | return npInit(0,dst_r); |
---|
599 | if(size<0) |
---|
600 | size = -size; |
---|
601 | |
---|
602 | qp = (*f)[0]._mp_d; |
---|
603 | while(qp[0]==0) |
---|
604 | { |
---|
605 | qp++; |
---|
606 | size--; |
---|
607 | } |
---|
608 | |
---|
609 | if(dst_r->ch>2) |
---|
610 | e=(*f)[0]._mp_exp-size; |
---|
611 | else |
---|
612 | e=0; |
---|
613 | res = ALLOC_RNUMBER(); |
---|
614 | #if defined(LDEBUG) |
---|
615 | res->debug=123456; |
---|
616 | #endif |
---|
617 | dest = res->z; |
---|
618 | |
---|
619 | int in=0; |
---|
620 | if (e<0) |
---|
621 | { |
---|
622 | al = dest->_mp_size = size; |
---|
623 | if (al<2) al = 2; |
---|
624 | dd = (mp_ptr)omAlloc(sizeof(mp_limb_t)*al); |
---|
625 | for (i=0;i<size;i++) dd[i] = qp[i]; |
---|
626 | bl = 1-e; |
---|
627 | nn = (mp_ptr)omAlloc(sizeof(mp_limb_t)*bl); |
---|
628 | nn[bl-1] = 1; |
---|
629 | for (i=bl-2;i>=0;i--) nn[i] = 0; |
---|
630 | ndest = res->n; |
---|
631 | ndest->_mp_d = nn; |
---|
632 | ndest->_mp_alloc = ndest->_mp_size = bl; |
---|
633 | res->s = 0; |
---|
634 | in=mpz_fdiv_ui(ndest,dst_r->ch); |
---|
635 | mpz_clear(ndest); |
---|
636 | } |
---|
637 | else |
---|
638 | { |
---|
639 | al = dest->_mp_size = size+e; |
---|
640 | if (al<2) al = 2; |
---|
641 | dd = (mp_ptr)omAlloc(sizeof(mp_limb_t)*al); |
---|
642 | for (i=0;i<size;i++) dd[i+e] = qp[i]; |
---|
643 | for (i=0;i<e;i++) dd[i] = 0; |
---|
644 | res->s = 3; |
---|
645 | } |
---|
646 | |
---|
647 | dest->_mp_d = dd; |
---|
648 | dest->_mp_alloc = al; |
---|
649 | iz=mpz_fdiv_ui(dest,dst_r->ch); |
---|
650 | mpz_clear(dest); |
---|
651 | if(res->s==0) |
---|
652 | iz=(long)npDiv((number)iz,(number)in,dst_r); |
---|
653 | FREE_RNUMBER(res); // Q!? |
---|
654 | return (number)iz; |
---|
655 | } |
---|
656 | |
---|
657 | #ifdef HAVE_RINGS |
---|
658 | /*2 |
---|
659 | * convert from a GMP integer |
---|
660 | */ |
---|
661 | number npMapGMP(number from, const coeffs /*src*/, const coeffs dst) |
---|
662 | { |
---|
663 | int_number erg = (int_number) omAlloc(sizeof(mpz_t)); // evtl. spaeter mit bin |
---|
664 | mpz_init(erg); |
---|
665 | |
---|
666 | mpz_mod_ui(erg, (int_number) from, dst->ch); |
---|
667 | number r = (number) mpz_get_si(erg); |
---|
668 | |
---|
669 | mpz_clear(erg); |
---|
670 | omFree((void *) erg); |
---|
671 | return (number) r; |
---|
672 | } |
---|
673 | |
---|
674 | /*2 |
---|
675 | * convert from an machine long |
---|
676 | */ |
---|
677 | number npMapMachineInt(number from, const coeffs /*src*/,const coeffs dst) |
---|
678 | { |
---|
679 | long i = (long) (((unsigned long) from) % dst->ch); |
---|
680 | return (number) i; |
---|
681 | } |
---|
682 | #endif |
---|
683 | |
---|
684 | #ifdef HAVE_FACTORY |
---|
685 | number npMapCanonicalForm (number a, const coeffs /*src*/, const coeffs dst) |
---|
686 | { |
---|
687 | setCharacteristic (dst ->ch); |
---|
688 | CanonicalForm f= CanonicalForm ((InternalCF*)(a)); |
---|
689 | return (number) (f.intval()); |
---|
690 | } |
---|
691 | #endif |
---|
692 | |
---|
693 | nMapFunc npSetMap(const coeffs src, const coeffs dst) |
---|
694 | { |
---|
695 | #ifdef HAVE_RINGS |
---|
696 | if (nCoeff_is_Ring_2toM(src)) |
---|
697 | { |
---|
698 | return npMapMachineInt; |
---|
699 | } |
---|
700 | if (nCoeff_is_Ring_Z(src) || nCoeff_is_Ring_PtoM(src) || nCoeff_is_Ring_ModN(src)) |
---|
701 | { |
---|
702 | return npMapGMP; |
---|
703 | } |
---|
704 | #endif |
---|
705 | if (nCoeff_is_Q(src)) |
---|
706 | { |
---|
707 | return nlModP; // npMap0; |
---|
708 | } |
---|
709 | if ( nCoeff_is_Zp(src) ) |
---|
710 | { |
---|
711 | if (n_GetChar(src) == n_GetChar(dst)) |
---|
712 | { |
---|
713 | return ndCopyMap; |
---|
714 | } |
---|
715 | else |
---|
716 | { |
---|
717 | return npMapP; |
---|
718 | } |
---|
719 | } |
---|
720 | if (nCoeff_is_long_R(src)) |
---|
721 | { |
---|
722 | return npMapLongR; |
---|
723 | } |
---|
724 | #ifdef HAVE_FACTORY |
---|
725 | if (nCoeff_is_CF (src)) |
---|
726 | { |
---|
727 | return npMapCanonicalForm; |
---|
728 | } |
---|
729 | #endif |
---|
730 | return NULL; /* default */ |
---|
731 | } |
---|
732 | |
---|
733 | // ----------------------------------------------------------- |
---|
734 | // operation for very large primes (32003< p < 2^31-1) |
---|
735 | // ---------------------------------------------------------- |
---|
736 | #ifdef NV_OPS |
---|
737 | |
---|
738 | number nvMult (number a,number b, const coeffs r) |
---|
739 | { |
---|
740 | //if (((long)a == 0) || ((long)b == 0)) |
---|
741 | // return (number)0; |
---|
742 | //else |
---|
743 | return nvMultM(a,b,r); |
---|
744 | } |
---|
745 | |
---|
746 | void nvInpMult(number &a, number b, const coeffs r) |
---|
747 | { |
---|
748 | number n=nvMultM(a,b,r); |
---|
749 | a=n; |
---|
750 | } |
---|
751 | |
---|
752 | |
---|
753 | inline long nvInvMod(long a, const coeffs R) |
---|
754 | { |
---|
755 | #ifdef HAVE_DIV_MOD |
---|
756 | return InvMod(a, R); |
---|
757 | #else |
---|
758 | /// TODO: use "long InvMod(long a, const coeffs R)"?! |
---|
759 | |
---|
760 | long s; |
---|
761 | |
---|
762 | long u, u0, u1, u2, q, r; // v0, v1, v2, |
---|
763 | |
---|
764 | u1=1; // v1=0; |
---|
765 | u2=0; // v2=1; |
---|
766 | u = a; |
---|
767 | |
---|
768 | long v = R->ch; |
---|
769 | |
---|
770 | while (v != 0) |
---|
771 | { |
---|
772 | q = u / v; |
---|
773 | r = u % v; |
---|
774 | u = v; |
---|
775 | v = r; |
---|
776 | u0 = u2; |
---|
777 | // v0 = v2; |
---|
778 | u2 = u1 - q*u2; |
---|
779 | // v2 = v1 - q*v2; |
---|
780 | u1 = u0; |
---|
781 | // v1 = v0; |
---|
782 | } |
---|
783 | |
---|
784 | s = u1; |
---|
785 | //t = v1; |
---|
786 | if (s < 0) |
---|
787 | return s + R->ch; |
---|
788 | else |
---|
789 | return s; |
---|
790 | #endif |
---|
791 | } |
---|
792 | |
---|
793 | inline number nvInversM (number c, const coeffs r) |
---|
794 | { |
---|
795 | long inv=nvInvMod((long)c,r); |
---|
796 | return (number)inv; |
---|
797 | } |
---|
798 | |
---|
799 | number nvDiv (number a,number b, const coeffs r) |
---|
800 | { |
---|
801 | if ((long)a==0) |
---|
802 | return (number)0; |
---|
803 | else if ((long)b==0) |
---|
804 | { |
---|
805 | WerrorS(nDivBy0); |
---|
806 | return (number)0; |
---|
807 | } |
---|
808 | else |
---|
809 | { |
---|
810 | number inv=nvInversM(b,r); |
---|
811 | return nvMultM(a,inv,r); |
---|
812 | } |
---|
813 | } |
---|
814 | number nvInvers (number c, const coeffs r) |
---|
815 | { |
---|
816 | if ((long)c==0) |
---|
817 | { |
---|
818 | WerrorS(nDivBy0); |
---|
819 | return (number)0; |
---|
820 | } |
---|
821 | return nvInversM(c,r); |
---|
822 | } |
---|
823 | void nvPower (number a, int i, number * result, const coeffs r) |
---|
824 | { |
---|
825 | if (i==0) |
---|
826 | { |
---|
827 | //npInit(1,result); |
---|
828 | *(long *)result = 1; |
---|
829 | } |
---|
830 | else if (i==1) |
---|
831 | { |
---|
832 | *result = a; |
---|
833 | } |
---|
834 | else |
---|
835 | { |
---|
836 | nvPower(a,i-1,result,r); |
---|
837 | *result = nvMultM(a,*result,r); |
---|
838 | } |
---|
839 | } |
---|
840 | #endif |
---|
841 | |
---|
842 | void npCoeffWrite (const coeffs r, BOOLEAN /*details*/) |
---|
843 | { |
---|
844 | Print("// characteristic : %d\n",r->ch); |
---|
845 | } |
---|
846 | |
---|