1 | #ifndef MODULOP_H |
---|
2 | #define MODULOP_H |
---|
3 | /**************************************** |
---|
4 | * Computer Algebra System SINGULAR * |
---|
5 | ****************************************/ |
---|
6 | /* |
---|
7 | * ABSTRACT: numbers modulo p (<=32749) |
---|
8 | */ |
---|
9 | #include "misc/auxiliary.h" |
---|
10 | |
---|
11 | |
---|
12 | // define if a*b is with mod instead of tables |
---|
13 | //#define HAVE_GENERIC_MULT |
---|
14 | // define if 1/b is from tables |
---|
15 | //#define HAVE_INVTABLE |
---|
16 | // define if an if should be used |
---|
17 | //#define HAVE_GENERIC_ADD |
---|
18 | |
---|
19 | //#undef HAVE_GENERIC_ADD |
---|
20 | //#undef HAVE_GENERIC_MULT |
---|
21 | //#undef HAVE_INVTABLE |
---|
22 | |
---|
23 | //#define HAVE_GENERIC_ADD 1 |
---|
24 | //#define HAVE_GENERIC_MULT 1 |
---|
25 | //#define HAVE_INVTABLE 1 |
---|
26 | |
---|
27 | // enable large primes (32749 < p < 2^31-) |
---|
28 | #define NV_OPS |
---|
29 | #define NV_MAX_PRIME 32749 |
---|
30 | #define FACTORY_MAX_PRIME 536870909 |
---|
31 | |
---|
32 | #ifdef USE_NTL_XGCD |
---|
33 | //ifdef HAVE_NTL // in ntl.a |
---|
34 | //extern void XGCD(long& d, long& s, long& t, long a, long b); |
---|
35 | #include <NTL/ZZ.h> |
---|
36 | #ifdef NTL_CLIENT |
---|
37 | NTL_CLIENT |
---|
38 | #endif |
---|
39 | #endif |
---|
40 | |
---|
41 | struct n_Procs_s; typedef struct n_Procs_s *coeffs; |
---|
42 | struct snumber; typedef struct snumber * number; |
---|
43 | |
---|
44 | BOOLEAN npInitChar(coeffs r, void* p); |
---|
45 | |
---|
46 | // inline number npMultM(number a, number b, int npPrimeM) |
---|
47 | // // return (a*b)%n |
---|
48 | // { |
---|
49 | // double ab; |
---|
50 | // long q, res; |
---|
51 | // |
---|
52 | // ab = ((double) ((int)a)) * ((double) ((int)b)); |
---|
53 | // q = (long) (ab/((double) npPrimeM)); // q could be off by (+/-) 1 |
---|
54 | // res = (long) (ab - ((double) q)*((double) npPrimeM)); |
---|
55 | // res += (res >> 31) & npPrimeM; |
---|
56 | // res -= npPrimeM; |
---|
57 | // res += (res >> 31) & npPrimeM; |
---|
58 | // return (number)res; |
---|
59 | // } |
---|
60 | #ifdef HAVE_GENERIC_MULT |
---|
61 | static inline number npMultM(number a, number b, const coeffs r) |
---|
62 | { |
---|
63 | return (number) |
---|
64 | ((((unsigned long) a)*((unsigned long) b)) % ((unsigned long) r->ch)); |
---|
65 | } |
---|
66 | static inline void npInpMultM(number &a, number b, const coeffs r) |
---|
67 | { |
---|
68 | a=(number) |
---|
69 | ((((unsigned long) a)*((unsigned long) b)) % ((unsigned long) r->ch)); |
---|
70 | } |
---|
71 | #else |
---|
72 | static inline number npMultM(number a, number b, const coeffs r) |
---|
73 | { |
---|
74 | long x = (long)r->npLogTable[(long)a]+ r->npLogTable[(long)b]; |
---|
75 | #ifdef HAVE_GENERIC_ADD |
---|
76 | if (x>=r->npPminus1M) x-=r->npPminus1M; |
---|
77 | #else |
---|
78 | x-=r->npPminus1M; |
---|
79 | #if SIZEOF_LONG == 8 |
---|
80 | x += (x >> 63) & r->npPminus1M; |
---|
81 | #else |
---|
82 | x += (x >> 31) & r->npPminus1M; |
---|
83 | #endif |
---|
84 | #endif |
---|
85 | return (number)(long)r->npExpTable[x]; |
---|
86 | } |
---|
87 | static inline void npInpMultM(number &a, number b, const coeffs r) |
---|
88 | { |
---|
89 | long x = (long)r->npLogTable[(long)a]+ r->npLogTable[(long)b]; |
---|
90 | #ifdef HAVE_GENERIC_ADD |
---|
91 | if (x>=r->npPminus1M) x-=r->npPminus1M; |
---|
92 | #else |
---|
93 | x-=r->npPminus1M; |
---|
94 | #if SIZEOF_LONG == 8 |
---|
95 | x += (x >> 63) & r->npPminus1M; |
---|
96 | #else |
---|
97 | x += (x >> 31) & r->npPminus1M; |
---|
98 | #endif |
---|
99 | #endif |
---|
100 | a=(number)(long)r->npExpTable[x]; |
---|
101 | } |
---|
102 | #endif |
---|
103 | |
---|
104 | #if 0 |
---|
105 | inline number npAddAsm(number a, number b, int m) |
---|
106 | { |
---|
107 | number r; |
---|
108 | asm ("addl %2, %1; cmpl %3, %1; jb 0f; subl %3, %1; 0:" |
---|
109 | : "=&r" (r) |
---|
110 | : "%0" (a), "g" (b), "g" (m) |
---|
111 | : "cc"); |
---|
112 | return r; |
---|
113 | } |
---|
114 | inline number npSubAsm(number a, number b, int m) |
---|
115 | { |
---|
116 | number r; |
---|
117 | asm ("subl %2, %1; jnc 0f; addl %3, %1; 0:" |
---|
118 | : "=&r" (r) |
---|
119 | : "%0" (a), "g" (b), "g" (m) |
---|
120 | : "cc"); |
---|
121 | return r; |
---|
122 | } |
---|
123 | #endif |
---|
124 | #ifdef HAVE_GENERIC_ADD |
---|
125 | static inline number npAddM(number a, number b, const coeffs r) |
---|
126 | { |
---|
127 | unsigned long R = (unsigned long)a + (unsigned long)b; |
---|
128 | return (number)(R >= r->ch ? R - r->ch : R); |
---|
129 | } |
---|
130 | static inline void npInpAddM(number &a, number b, const coeffs r) |
---|
131 | { |
---|
132 | unsigned long R = (unsigned long)a + (unsigned long)b; |
---|
133 | a=(number)(R >= r->ch ? R - r->ch : R); |
---|
134 | } |
---|
135 | static inline number npSubM(number a, number b, const coeffs r) |
---|
136 | { |
---|
137 | return (number)((long)a<(long)b ? |
---|
138 | r->ch-(long)b+(long)a : (long)a-(long)b); |
---|
139 | } |
---|
140 | #else |
---|
141 | static inline number npAddM(number a, number b, const coeffs r) |
---|
142 | { |
---|
143 | unsigned long res = (long)((unsigned long)a + (unsigned long)b); |
---|
144 | res -= r->ch; |
---|
145 | #if SIZEOF_LONG == 8 |
---|
146 | res += ((long)res >> 63) & r->ch; |
---|
147 | #else |
---|
148 | res += ((long)res >> 31) & r->ch; |
---|
149 | #endif |
---|
150 | return (number)res; |
---|
151 | } |
---|
152 | static inline void npInpAddM(number &a, number b, const coeffs r) |
---|
153 | { |
---|
154 | unsigned long res = (long)((unsigned long)a + (unsigned long)b); |
---|
155 | res -= r->ch; |
---|
156 | #if SIZEOF_LONG == 8 |
---|
157 | res += ((long)res >> 63) & r->ch; |
---|
158 | #else |
---|
159 | res += ((long)res >> 31) & r->ch; |
---|
160 | #endif |
---|
161 | a=(number)res; |
---|
162 | } |
---|
163 | static inline number npSubM(number a, number b, const coeffs r) |
---|
164 | { |
---|
165 | long res = ((long)a - (long)b); |
---|
166 | #if SIZEOF_LONG == 8 |
---|
167 | res += (res >> 63) & r->ch; |
---|
168 | #else |
---|
169 | res += (res >> 31) & r->ch; |
---|
170 | #endif |
---|
171 | return (number)res; |
---|
172 | } |
---|
173 | #endif |
---|
174 | |
---|
175 | static inline number npNegM(number a, const coeffs r) |
---|
176 | { |
---|
177 | return (number)((long)(r->ch)-(long)(a)); |
---|
178 | } |
---|
179 | |
---|
180 | static inline BOOLEAN npIsZeroM (number a, const coeffs) |
---|
181 | { |
---|
182 | return 0 == (long)a; |
---|
183 | } |
---|
184 | static inline BOOLEAN npIsOne (number a, const coeffs) |
---|
185 | { |
---|
186 | return 1 == (long)a; |
---|
187 | } |
---|
188 | |
---|
189 | static inline long npInvMod(long a, const coeffs R) |
---|
190 | { |
---|
191 | long s, t; |
---|
192 | |
---|
193 | #ifdef USE_NTL_XGCD |
---|
194 | long d; |
---|
195 | XGCD(d, s, t, a, R->ch); |
---|
196 | assume (d == 1); |
---|
197 | #else |
---|
198 | long u, v, u0, v0, u1, v1, u2, v2, q, r; |
---|
199 | |
---|
200 | assume(a>0); |
---|
201 | u1=1; u2=0; |
---|
202 | u = a; v = R->ch; |
---|
203 | |
---|
204 | while (v != 0) |
---|
205 | { |
---|
206 | q = u / v; |
---|
207 | //r = u % v; |
---|
208 | r = u - q*v; |
---|
209 | u = v; |
---|
210 | v = r; |
---|
211 | u0 = u2; |
---|
212 | u2 = u1 - q*u2; |
---|
213 | u1 = u0; |
---|
214 | } |
---|
215 | |
---|
216 | assume(u==1); |
---|
217 | s = u1; |
---|
218 | #endif |
---|
219 | #ifdef HAVE_GENERIC_ADD |
---|
220 | if (s < 0) |
---|
221 | return s + R->ch; |
---|
222 | else |
---|
223 | return s; |
---|
224 | #else |
---|
225 | #if SIZEOF_LONG == 8 |
---|
226 | s += (s >> 63) & R->ch; |
---|
227 | #else |
---|
228 | s += (s >> 31) & R->ch; |
---|
229 | #endif |
---|
230 | return s; |
---|
231 | #endif |
---|
232 | } |
---|
233 | |
---|
234 | static inline number npInversM (number c, const coeffs r) |
---|
235 | { |
---|
236 | n_Test(c, r); |
---|
237 | #ifndef HAVE_GENERIC_MULT |
---|
238 | #ifndef HAVE_INVTABLE |
---|
239 | number d = (number)(long)r->npExpTable[r->npPminus1M - r->npLogTable[(long)c]]; |
---|
240 | #else |
---|
241 | long inv=(long)r->npInvTable[(long)c]; |
---|
242 | if (inv==0) |
---|
243 | { |
---|
244 | inv = (long)r->npExpTable[r->npPminus1M - r->npLogTable[(long)c]]; |
---|
245 | r->npInvTable[(long)c]=inv; |
---|
246 | } |
---|
247 | number d = (number)inv; |
---|
248 | #endif |
---|
249 | #else |
---|
250 | #ifdef HAVE_INVTABLE |
---|
251 | long inv=(long)r->npInvTable[(long)c]; |
---|
252 | if (inv==0) |
---|
253 | { |
---|
254 | inv=npInvMod((long)c,r); |
---|
255 | r->npInvTable[(long)c]=inv; |
---|
256 | } |
---|
257 | #else |
---|
258 | long inv=npInvMod((long)c,r); |
---|
259 | #endif |
---|
260 | number d = (number)inv; |
---|
261 | #endif |
---|
262 | n_Test(d, r); |
---|
263 | return d; |
---|
264 | } |
---|
265 | |
---|
266 | |
---|
267 | // The folloing is reused inside gnumpc.cc, gnumpfl.cc and longrat.cc |
---|
268 | long npInt (number &n, const coeffs r); |
---|
269 | |
---|
270 | // The folloing is reused inside tgb*.cc |
---|
271 | number npMult (number a, number b, const coeffs r); |
---|
272 | // The following is currently used in OPAE.cc, OPAEQ.cc and OPAEp.cc for setting their SetMap... |
---|
273 | nMapFunc npSetMap(const coeffs src, const coeffs dst); // FIXME! BUG? |
---|
274 | |
---|
275 | #define npEqualM(A,B,r) ((A)==(B)) |
---|
276 | |
---|
277 | |
---|
278 | #endif |
---|