/**************************************** * Computer Algebra System SINGULAR * ****************************************/ /* * ABSTRACT: numbers modulo 2^m */ #ifdef HAVE_CONFIG_H #include "libpolysconfig.h" #endif /* HAVE_CONFIG_H */ #include #ifdef HAVE_RINGS #include #include #include #include #include #include #include #include #include "si_gmp.h" #include /// Our Type! static const n_coeffType ID = n_Z2m; extern omBin gmp_nrz_bin; /* init in rintegers*/ void nr2mCoeffWrite (const coeffs r, BOOLEAN /*details*/) { PrintS("// coeff. ring is : "); Print("Z/2^%lu\n", r->modExponent); } BOOLEAN nr2mCoeffIsEqual(const coeffs r, n_coeffType n, void * p) { if (n==n_Z2m) { int m=(int)(long)(p); unsigned long mm=r->mod2mMask; if ((mm>>m)==1L) return TRUE; } return FALSE; } static char* nr2mCoeffString(const coeffs r) { char* s = (char*) omAlloc(11+11); sprintf(s,"integer,2,%lu",r->modExponent); return s; } /* for initializing function pointers */ BOOLEAN nr2mInitChar (coeffs r, void* p) { assume( getCoeffType(r) == ID ); nr2mInitExp((int)(long)(p), r); r->cfKillChar = ndKillChar; /* dummy*/ r->nCoeffIsEqual = nr2mCoeffIsEqual; r->cfCoeffString = nr2mCoeffString; r->modBase = (int_number) omAllocBin (gmp_nrz_bin); mpz_init_set_si (r->modBase, 2L); r->modNumber= (int_number) omAllocBin (gmp_nrz_bin); mpz_init (r->modNumber); mpz_pow_ui (r->modNumber, r->modBase, r->modExponent); /* next cast may yield an overflow as mod2mMask is an unsigned long */ r->ch = (int)r->mod2mMask + 1; r->cfInit = nr2mInit; r->cfCopy = ndCopy; r->cfInt = nr2mInt; r->cfAdd = nr2mAdd; r->cfSub = nr2mSub; r->cfMult = nr2mMult; r->cfDiv = nr2mDiv; r->cfIntDiv = nr2mIntDiv; r->cfIntMod = nr2mMod; r->cfExactDiv = nr2mDiv; r->cfNeg = nr2mNeg; r->cfInvers = nr2mInvers; r->cfDivBy = nr2mDivBy; r->cfDivComp = nr2mDivComp; r->cfGreater = nr2mGreater; r->cfEqual = nr2mEqual; r->cfIsZero = nr2mIsZero; r->cfIsOne = nr2mIsOne; r->cfIsMOne = nr2mIsMOne; r->cfGreaterZero = nr2mGreaterZero; r->cfWriteLong = nr2mWrite; r->cfRead = nr2mRead; r->cfPower = nr2mPower; r->cfSetMap = nr2mSetMap; r->cfNormalize = ndNormalize; r->cfLcm = nr2mLcm; r->cfGcd = nr2mGcd; r->cfIsUnit = nr2mIsUnit; r->cfGetUnit = nr2mGetUnit; r->cfExtGcd = nr2mExtGcd; r->cfName = ndName; r->cfCoeffWrite = nr2mCoeffWrite; r->cfInit_bigint = nr2mMapQ; #ifdef LDEBUG r->cfDBTest = nr2mDBTest; #endif r->has_simple_Alloc=TRUE; return FALSE; } /* * Multiply two numbers */ number nr2mMult(number a, number b, const coeffs r) { if (((NATNUMBER)a == 0) || ((NATNUMBER)b == 0)) return (number)0; else return nr2mMultM(a, b, r); } /* * Give the smallest k, such that a * x = k = b * y has a solution */ number nr2mLcm(number a, number b, const coeffs) { NATNUMBER res = 0; if ((NATNUMBER)a == 0) a = (number) 1; if ((NATNUMBER)b == 0) b = (number) 1; while ((NATNUMBER)a % 2 == 0) { a = (number)((NATNUMBER)a / 2); if ((NATNUMBER)b % 2 == 0) b = (number)((NATNUMBER)b / 2); res++; } while ((NATNUMBER)b % 2 == 0) { b = (number)((NATNUMBER)b / 2); res++; } return (number)(1L << res); // (2**res) } /* * Give the largest k, such that a = x * k, b = y * k has * a solution. */ number nr2mGcd(number a, number b, const coeffs) { NATNUMBER res = 0; if ((NATNUMBER)a == 0 && (NATNUMBER)b == 0) return (number)1; while ((NATNUMBER)a % 2 == 0 && (NATNUMBER)b % 2 == 0) { a = (number)((NATNUMBER)a / 2); b = (number)((NATNUMBER)b / 2); res++; } // if ((NATNUMBER)b % 2 == 0) // { // return (number)((1L << res)); // * (NATNUMBER) a); // (2**res)*a a is a unit // } // else // { return (number)((1L << res)); // * (NATNUMBER) b); // (2**res)*b b is a unit // } } /* * Give the largest k, such that a = x * k, b = y * k has * a solution. */ number nr2mExtGcd(number a, number b, number *s, number *t, const coeffs r) { NATNUMBER res = 0; if ((NATNUMBER)a == 0 && (NATNUMBER)b == 0) return (number)1; while ((NATNUMBER)a % 2 == 0 && (NATNUMBER)b % 2 == 0) { a = (number)((NATNUMBER)a / 2); b = (number)((NATNUMBER)b / 2); res++; } if ((NATNUMBER)b % 2 == 0) { *t = NULL; *s = nr2mInvers(a,r); return (number)((1L << res)); // * (NATNUMBER) a); // (2**res)*a a is a unit } else { *s = NULL; *t = nr2mInvers(b,r); return (number)((1L << res)); // * (NATNUMBER) b); // (2**res)*b b is a unit } } void nr2mPower(number a, int i, number * result, const coeffs r) { if (i == 0) { *(NATNUMBER *)result = 1; } else if (i == 1) { *result = a; } else { nr2mPower(a, i-1, result, r); *result = nr2mMultM(a, *result, r); } } /* * create a number from int */ number nr2mInit(long i, const coeffs r) { if (i == 0) return (number)(NATNUMBER)i; long ii = i; NATNUMBER j = (NATNUMBER)1; if (ii < 0) { j = r->mod2mMask; ii = -ii; } NATNUMBER k = (NATNUMBER)ii; k = k & r->mod2mMask; /* now we have: i = j * k mod 2^m */ return (number)nr2mMult((number)j, (number)k, r); } /* * convert a number to an int in ]-k/2 .. k/2], * where k = 2^m; i.e., an int in ]-2^(m-1) .. 2^(m-1)]; * note that the code computes a long which will then * automatically casted to int */ static long nr2mLong(number &n, const coeffs r) { NATNUMBER nn = (unsigned long)(NATNUMBER)n & r->mod2mMask; unsigned long l = r->mod2mMask >> 1; l++; /* now: l = 2^(m-1) */ if ((NATNUMBER)nn > l) return (long)((NATNUMBER)nn - r->mod2mMask - 1); else return (long)((NATNUMBER)nn); } int nr2mInt(number &n, const coeffs r) { return (int)nr2mLong(n,r); } number nr2mAdd(number a, number b, const coeffs r) { return nr2mAddM(a, b, r); } number nr2mSub(number a, number b, const coeffs r) { return nr2mSubM(a, b, r); } BOOLEAN nr2mIsUnit(number a, const coeffs) { return ((NATNUMBER)a % 2 == 1); } number nr2mGetUnit(number k, const coeffs) { if (k == NULL) return (number)1; NATNUMBER erg = (NATNUMBER)k; while (erg % 2 == 0) erg = erg / 2; return (number)erg; } BOOLEAN nr2mIsZero(number a, const coeffs) { return 0 == (NATNUMBER)a; } BOOLEAN nr2mIsOne(number a, const coeffs) { return 1 == (NATNUMBER)a; } BOOLEAN nr2mIsMOne(number a, const coeffs r) { return (r->mod2mMask == (NATNUMBER)a); } BOOLEAN nr2mEqual(number a, number b, const coeffs) { return (a == b); } BOOLEAN nr2mGreater(number a, number b, const coeffs r) { return nr2mDivBy(a, b,r); } /* Is 'a' divisible by 'b'? There are two cases: 1) a = 0 mod 2^m; then TRUE iff b = 0 or b is a power of 2 2) a, b <> 0; then TRUE iff b/gcd(a, b) is a unit mod 2^m */ BOOLEAN nr2mDivBy (number a, number b, const coeffs r) { if (a == NULL) { NATNUMBER c = r->mod2mMask + 1; if (c != 0) /* i.e., if no overflow */ return (c % (NATNUMBER)b) == 0; else { /* overflow: we need to check whether b is zero or a power of 2: */ c = (NATNUMBER)b; while (c != 0) { if ((c % 2) != 0) return FALSE; c = c >> 1; } return TRUE; } } else { number n = nr2mGcd(a, b, r); n = nr2mDiv(b, n, r); return nr2mIsUnit(n, r); } } int nr2mDivComp(number as, number bs, const coeffs) { NATNUMBER a = (NATNUMBER)as; NATNUMBER b = (NATNUMBER)bs; assume(a != 0 && b != 0); while (a % 2 == 0 && b % 2 == 0) { a = a / 2; b = b / 2; } if (a % 2 == 0) { return -1; } else { if (b % 2 == 1) { return 2; } else { return 1; } } } /* TRUE iff 0 < k <= 2^m / 2 */ BOOLEAN nr2mGreaterZero(number k, const coeffs r) { if ((NATNUMBER)k == 0) return FALSE; if ((NATNUMBER)k > ((r->mod2mMask >> 1) + 1)) return FALSE; return TRUE; } /* assumes that 'a' is odd, i.e., a unit in Z/2^m, and computes the extended gcd of 'a' and 2^m, in order to find some 's' and 't' such that a * s + 2^m * t = gcd(a, 2^m) = 1; this code will always find a positive 's' */ void specialXGCD(unsigned long& s, unsigned long a, const coeffs r) { int_number u = (int_number)omAlloc(sizeof(mpz_t)); mpz_init_set_ui(u, a); int_number u0 = (int_number)omAlloc(sizeof(mpz_t)); mpz_init(u0); int_number u1 = (int_number)omAlloc(sizeof(mpz_t)); mpz_init_set_ui(u1, 1); int_number u2 = (int_number)omAlloc(sizeof(mpz_t)); mpz_init(u2); int_number v = (int_number)omAlloc(sizeof(mpz_t)); mpz_init_set_ui(v, r->mod2mMask); mpz_add_ui(v, v, 1); /* now: v = 2^m */ int_number v0 = (int_number)omAlloc(sizeof(mpz_t)); mpz_init(v0); int_number v1 = (int_number)omAlloc(sizeof(mpz_t)); mpz_init(v1); int_number v2 = (int_number)omAlloc(sizeof(mpz_t)); mpz_init_set_ui(v2, 1); int_number q = (int_number)omAlloc(sizeof(mpz_t)); mpz_init(q); int_number rr = (int_number)omAlloc(sizeof(mpz_t)); mpz_init(rr); while (mpz_cmp_ui(v, 0) != 0) /* i.e., while v != 0 */ { mpz_div(q, u, v); mpz_mod(rr, u, v); mpz_set(u, v); mpz_set(v, rr); mpz_set(u0, u2); mpz_set(v0, v2); mpz_mul(u2, u2, q); mpz_sub(u2, u1, u2); /* u2 = u1 - q * u2 */ mpz_mul(v2, v2, q); mpz_sub(v2, v1, v2); /* v2 = v1 - q * v2 */ mpz_set(u1, u0); mpz_set(v1, v0); } while (mpz_cmp_ui(u1, 0) < 0) /* i.e., while u1 < 0 */ { /* we add 2^m = (2^m - 1) + 1 to u1: */ mpz_add_ui(u1, u1, r->mod2mMask); mpz_add_ui(u1, u1, 1); } s = mpz_get_ui(u1); /* now: 0 <= s <= 2^m - 1 */ mpz_clear(u); omFree((ADDRESS)u); mpz_clear(u0); omFree((ADDRESS)u0); mpz_clear(u1); omFree((ADDRESS)u1); mpz_clear(u2); omFree((ADDRESS)u2); mpz_clear(v); omFree((ADDRESS)v); mpz_clear(v0); omFree((ADDRESS)v0); mpz_clear(v1); omFree((ADDRESS)v1); mpz_clear(v2); omFree((ADDRESS)v2); mpz_clear(q); omFree((ADDRESS)q); mpz_clear(rr); omFree((ADDRESS)rr); } NATNUMBER InvMod(NATNUMBER a, const coeffs r) { assume((NATNUMBER)a % 2 != 0); unsigned long s; specialXGCD(s, a, r); return s; } //#endif inline number nr2mInversM(number c, const coeffs r) { assume((NATNUMBER)c % 2 != 0); // Table !!! NATNUMBER inv; inv = InvMod((NATNUMBER)c,r); return (number)inv; } number nr2mDiv(number a, number b, const coeffs r) { if ((NATNUMBER)a == 0) return (number)0; else if ((NATNUMBER)b % 2 == 0) { if ((NATNUMBER)b != 0) { while (((NATNUMBER)b % 2 == 0) && ((NATNUMBER)a % 2 == 0)) { a = (number)((NATNUMBER)a / 2); b = (number)((NATNUMBER)b / 2); } } if ((NATNUMBER)b % 2 == 0) { WerrorS("Division not possible, even by cancelling zero divisors."); WerrorS("Result is integer division without remainder."); return (number) ((NATNUMBER) a / (NATNUMBER) b); } } return (number)nr2mMult(a, nr2mInversM(b,r),r); } number nr2mMod(number a, number b, const coeffs r) { /* We need to return the number rr which is uniquely determined by the following two properties: (1) 0 <= rr < |b| (with respect to '<' and '<=' performed in Z x Z) (2) There exists some k in the integers Z such that a = k * b + rr. Consider g := gcd(2^m, |b|). Note that then |b|/g is a unit in Z/2^m. Now, there are three cases: (a) g = 1 Then |b| is a unit in Z/2^m, i.e. |b| (and also b) divides a. Thus rr = 0. (b) g <> 1 and g divides a Then a = (a/g) * (|b|/g)^(-1) * b (up to sign), i.e. again rr = 0. (c) g <> 1 and g does not divide a Let's denote the division with remainder of a by g as follows: a = s * g + t. Then t = a - s * g = a - s * (|b|/g)^(-1) * |b| fulfills (1) and (2), i.e. rr := t is the correct result. Hence in this third case, rr is the remainder of division of a by g in Z. This algorithm is the same as for the case Z/n, except that we may compute the gcd of |b| and 2^m "by hand": We just extract the highest power of 2 (<= 2^m) that is contained in b. */ assume((NATNUMBER) b != 0); NATNUMBER g = 1; NATNUMBER b_div = (NATNUMBER) b; /* * b_div is unsigned, so that (b_div < 0) evaluates false at compile-time * if (b_div < 0) b_div = -b_div; // b_div now represents |b|, BUT b_div is unsigned! */ NATNUMBER rr = 0; while ((g < r->mod2mMask ) && (b_div > 0) && (b_div % 2 == 0)) { b_div = b_div >> 1; g = g << 1; } // g is now the gcd of 2^m and |b| if (g != 1) rr = (NATNUMBER)a % g; return (number)rr; } number nr2mIntDiv(number a, number b, const coeffs r) { if ((NATNUMBER)a == 0) { if ((NATNUMBER)b == 0) return (number)1; if ((NATNUMBER)b == 1) return (number)0; NATNUMBER c = r->mod2mMask + 1; if (c != 0) /* i.e., if no overflow */ return (number)(c / (NATNUMBER)b); else { /* overflow: c = 2^32 resp. 2^64, depending on platform */ int_number cc = (int_number)omAlloc(sizeof(mpz_t)); mpz_init_set_ui(cc, r->mod2mMask); mpz_add_ui(cc, cc, 1); mpz_div_ui(cc, cc, (unsigned long)(NATNUMBER)b); unsigned long s = mpz_get_ui(cc); mpz_clear(cc); omFree((ADDRESS)cc); return (number)(NATNUMBER)s; } } else { if ((NATNUMBER)b == 0) return (number)0; return (number)((NATNUMBER) a / (NATNUMBER) b); } } number nr2mInvers(number c, const coeffs r) { if ((NATNUMBER)c % 2 == 0) { WerrorS("division by zero divisor"); return (number)0; } return nr2mInversM(c, r); } number nr2mNeg(number c, const coeffs r) { if ((NATNUMBER)c == 0) return c; return nr2mNegM(c, r); } number nr2mMapMachineInt(number from, const coeffs /*src*/, const coeffs dst) { NATNUMBER i = ((NATNUMBER)from) % dst->mod2mMask ; return (number)i; } number nr2mMapZp(number from, const coeffs /*src*/, const coeffs dst) { NATNUMBER j = (NATNUMBER)1; long ii = (long)from; if (ii < 0) { j = dst->mod2mMask; ii = -ii; } NATNUMBER i = (NATNUMBER)ii; i = i & dst->mod2mMask; /* now we have: from = j * i mod 2^m */ return (number)nr2mMult((number)i, (number)j, dst); } number nr2mMapQ(number from, const coeffs src, const coeffs dst) { int_number erg = (int_number)omAllocBin(gmp_nrz_bin); mpz_init(erg); int_number k = (int_number)omAlloc(sizeof(mpz_t)); mpz_init_set_ui(k, dst->mod2mMask); nlGMP(from, (number)erg, src); mpz_and(erg, erg, k); number res = (number)mpz_get_ui(erg); mpz_clear(erg); omFree((ADDRESS)erg); mpz_clear(k); omFree((ADDRESS)k); return (number)res; } number nr2mMapGMP(number from, const coeffs /*src*/, const coeffs dst) { int_number erg = (int_number)omAllocBin(gmp_nrz_bin); mpz_init(erg); int_number k = (int_number)omAlloc(sizeof(mpz_t)); mpz_init_set_ui(k, dst->mod2mMask); mpz_and(erg, (int_number)from, k); number res = (number) mpz_get_ui(erg); mpz_clear(erg); omFree((ADDRESS)erg); mpz_clear(k); omFree((ADDRESS)k); return (number)res; } nMapFunc nr2mSetMap(const coeffs src, const coeffs dst) { if (nCoeff_is_Ring_2toM(src) && (src->mod2mMask == dst->mod2mMask)) { return ndCopyMap; } if (nCoeff_is_Ring_2toM(src) && (src->mod2mMask < dst->mod2mMask)) { /* i.e. map an integer mod 2^s into Z mod 2^t, where t < s */ return nr2mMapMachineInt; } if (nCoeff_is_Ring_2toM(src) && (src->mod2mMask > dst->mod2mMask)) { /* i.e. map an integer mod 2^s into Z mod 2^t, where t > s */ // to be done } if (nCoeff_is_Ring_Z(src)) { return nr2mMapGMP; } if (nCoeff_is_Q(src)) { return nr2mMapQ; } if (nCoeff_is_Zp(src) && (src->ch == 2)) { return nr2mMapZp; } if (nCoeff_is_Ring_PtoM(src) || nCoeff_is_Ring_ModN(src)) { if (mpz_divisible_2exp_p(src->modNumber,dst->modExponent)) return nr2mMapGMP; } return NULL; // default } /* * set the exponent */ void nr2mSetExp(int m, coeffs r) { if (m > 1) { /* we want mod2mMask to be the bit pattern '111..1' consisting of m one's: */ r->modExponent= m; r->mod2mMask = 1; for (int i = 1; i < m; i++) r->mod2mMask = (r->mod2mMask << 1) + 1; } else { r->modExponent= 2; /* code unexpectedly called with m = 1; we continue with m = 2: */ r->mod2mMask = 3; /* i.e., '11' in binary representation */ } } void nr2mInitExp(int m, coeffs r) { nr2mSetExp(m, r); if (m < 2) WarnS("nr2mInitExp unexpectedly called with m = 1 (we continue with Z/2^2"); } #ifdef LDEBUG BOOLEAN nr2mDBTest (number a, const char *, const int, const coeffs r) { //if ((NATNUMBER)a < 0) return FALSE; // is unsigned! if (((NATNUMBER)a & r->mod2mMask) != (NATNUMBER)a) return FALSE; return TRUE; } #endif void nr2mWrite (number &a, const coeffs r) { long i = nr2mLong(a, r); StringAppend("%ld", i); } static const char* nr2mEati(const char *s, int *i, const coeffs r) { if (((*s) >= '0') && ((*s) <= '9')) { (*i) = 0; do { (*i) *= 10; (*i) += *s++ - '0'; if ((*i) >= (MAX_INT_VAL / 10)) (*i) = (*i) & r->mod2mMask; } while (((*s) >= '0') && ((*s) <= '9')); (*i) = (*i) & r->mod2mMask; } else (*i) = 1; return s; } const char * nr2mRead (const char *s, number *a, const coeffs r) { int z; int n=1; s = nr2mEati(s, &z,r); if ((*s) == '/') { s++; s = nr2mEati(s, &n,r); } if (n == 1) *a = (number)(long)z; else *a = nr2mDiv((number)(long)z,(number)(long)n,r); return s; } #endif /* #ifdef HAVE_RINGS */