source: git/libpolys/coeffs/rmodulo2m.cc @ ef1632

spielwiese
Last change on this file since ef1632 was ef1632, checked in by Hans Schoenemann <hannes@…>, 6 years ago
fix: arith in Z/2^m
  • Property mode set to 100644
File size: 21.0 KB
Line 
1/****************************************
2*  Computer Algebra System SINGULAR     *
3****************************************/
4/*
5* ABSTRACT: numbers modulo 2^m
6*/
7#include "misc/auxiliary.h"
8
9#include "omalloc/omalloc.h"
10
11#include "misc/mylimits.h"
12#include "reporter/reporter.h"
13
14#include "coeffs/si_gmp.h"
15#include "coeffs/coeffs.h"
16#include "coeffs/numbers.h"
17#include "coeffs/longrat.h"
18#include "coeffs/mpr_complex.h"
19
20#include "coeffs/rmodulo2m.h"
21#include "coeffs/rmodulon.h"
22
23#include <string.h>
24
25#ifdef HAVE_RINGS
26
27#ifdef LDEBUG
28BOOLEAN nr2mDBTest(number a, const char *f, const int l, const coeffs r)
29{
30  if (((long)a<0L) || ((long)a>(long)r->mod2mMask))
31  {
32    Print("wrong mod 2^n number %ld at %s,%d\n",(long)a,f,l);
33    return FALSE;
34  }
35  return TRUE;
36}
37#endif
38
39
40static inline number nr2mMultM(number a, number b, const coeffs r)
41{
42  return (number)
43    ((((unsigned long) a) * ((unsigned long) b)) & r->mod2mMask);
44}
45
46static inline number nr2mAddM(number a, number b, const coeffs r)
47{
48  return (number)
49    ((((unsigned long) a) + ((unsigned long) b)) & r->mod2mMask);
50}
51
52static inline number nr2mSubM(number a, number b, const coeffs r)
53{
54  return (number)((unsigned long)a < (unsigned long)b ?
55                       r->mod2mMask+1 - (unsigned long)b + (unsigned long)a:
56                       (unsigned long)a - (unsigned long)b);
57}
58
59#define nr2mNegM(A,r) (number)((r->mod2mMask+1 - (unsigned long)(A)) & r->mod2mMask)
60#define nr2mEqualM(A,B)  ((A)==(B))
61
62extern omBin gmp_nrz_bin; /* init in rintegers*/
63
64static char* nr2mCoeffName(const coeffs cf)
65{
66  static char n2mCoeffName_buf[22];
67  snprintf(n2mCoeffName_buf,21,"ZZ/(2^%lu)",cf->modExponent);
68  return n2mCoeffName_buf;
69}
70
71static void    nr2mCoeffWrite  (const coeffs r, BOOLEAN /*details*/)
72{
73  Print("ZZ/(2^%lu)", r->modExponent);
74}
75
76static BOOLEAN nr2mCoeffIsEqual(const coeffs r, n_coeffType n, void * p)
77{
78  if (n==n_Z2m)
79  {
80    int m=(int)(long)(p);
81    unsigned long mm=r->mod2mMask;
82    if (((mm+1)>>m)==1L) return TRUE;
83  }
84  return FALSE;
85}
86
87static char* nr2mCoeffString(const coeffs r)
88{
89  // r->modExponent <=bitsize(long)
90  char* s = (char*) omAlloc(11+11);
91  sprintf(s,"ZZ/(2^%lu)",r->modExponent);
92  return s;
93}
94
95static coeffs nr2mQuot1(number c, const coeffs r)
96{
97  coeffs rr;
98  long ch = r->cfInt(c, r);
99  mpz_t a,b;
100  mpz_init_set(a, r->modNumber);
101  mpz_init_set_ui(b, ch);
102  mpz_ptr gcd;
103  gcd = (mpz_ptr) omAlloc(sizeof(mpz_t));
104  mpz_init(gcd);
105  mpz_gcd(gcd, a,b);
106  if(mpz_cmp_ui(gcd, 1) == 0)
107  {
108    WerrorS("constant in q-ideal is coprime to modulus in ground ring");
109    WerrorS("Unable to create qring!");
110    return NULL;
111  }
112  if(mpz_cmp_ui(gcd, 2) == 0)
113  {
114    rr = nInitChar(n_Zp, (void*)2);
115  }
116  else
117  {
118    int kNew = 1;
119    mpz_t baseTokNew;
120    mpz_init(baseTokNew);
121    mpz_set(baseTokNew, r->modBase);
122    while(mpz_cmp(gcd, baseTokNew) > 0)
123    {
124      kNew++;
125      mpz_mul(baseTokNew, baseTokNew, r->modBase);
126    }
127    mpz_clear(baseTokNew);
128    rr = nInitChar(n_Z2m, (void*)(long)kNew);
129  }
130  return(rr);
131}
132
133/* TRUE iff 0 < k <= 2^m / 2 */
134static BOOLEAN nr2mGreaterZero(number k, const coeffs r)
135{
136  if ((unsigned long)k == 0) return FALSE;
137  if ((unsigned long)k > ((r->mod2mMask >> 1) + 1)) return FALSE;
138  return TRUE;
139}
140
141/*
142 * Multiply two numbers
143 */
144static number nr2mMult(number a, number b, const coeffs r)
145{
146  number n;
147  if (((unsigned long)a == 0) || ((unsigned long)b == 0))
148    return (number)0;
149  else
150    n=nr2mMultM(a, b, r);
151  n_Test(n,r);
152  return n;
153}
154
155static number nr2mAnn(number b, const coeffs r);
156/*
157 * Give the smallest k, such that a * x = k = b * y has a solution
158 */
159static number nr2mLcm(number a, number b, const coeffs)
160{
161  unsigned long res = 0;
162  if ((unsigned long)a == 0) a = (number) 1;
163  if ((unsigned long)b == 0) b = (number) 1;
164  while ((unsigned long)a % 2 == 0)
165  {
166    a = (number)((unsigned long)a / 2);
167    if ((unsigned long)b % 2 == 0) b = (number)((unsigned long)b / 2);
168    res++;
169  }
170  while ((unsigned long)b % 2 == 0)
171  {
172    b = (number)((unsigned long)b / 2);
173    res++;
174  }
175  return (number)(1L << res);  // (2**res)
176}
177
178/*
179 * Give the largest k, such that a = x * k, b = y * k has
180 * a solution.
181 */
182static number nr2mGcd(number a, number b, const coeffs)
183{
184  unsigned long res = 0;
185  if ((unsigned long)a == 0 && (unsigned long)b == 0) return (number)1;
186  while ((unsigned long)a % 2 == 0 && (unsigned long)b % 2 == 0)
187  {
188    a = (number)((unsigned long)a / 2);
189    b = (number)((unsigned long)b / 2);
190    res++;
191  }
192//  if ((unsigned long)b % 2 == 0)
193//  {
194//    return (number)((1L << res)); // * (unsigned long) a);  // (2**res)*a    a is a unit
195//  }
196//  else
197//  {
198    return (number)((1L << res)); // * (unsigned long) b);  // (2**res)*b    b is a unit
199//  }
200}
201
202/* assumes that 'a' is odd, i.e., a unit in Z/2^m, and computes
203   the extended gcd of 'a' and 2^m, in order to find some 's'
204   and 't' such that a * s + 2^m * t = gcd(a, 2^m) = 1;
205   this code will always find a positive 's' */
206static void specialXGCD(unsigned long& s, unsigned long a, const coeffs r)
207{
208  mpz_ptr u = (mpz_ptr)omAlloc(sizeof(mpz_t));
209  mpz_init_set_ui(u, a);
210  mpz_ptr u0 = (mpz_ptr)omAlloc(sizeof(mpz_t));
211  mpz_init(u0);
212  mpz_ptr u1 = (mpz_ptr)omAlloc(sizeof(mpz_t));
213  mpz_init_set_ui(u1, 1);
214  mpz_ptr u2 = (mpz_ptr)omAlloc(sizeof(mpz_t));
215  mpz_init(u2);
216  mpz_ptr v = (mpz_ptr)omAlloc(sizeof(mpz_t));
217  mpz_init_set_ui(v, r->mod2mMask);
218  mpz_add_ui(v, v, 1); /* now: v = 2^m */
219  mpz_ptr v0 = (mpz_ptr)omAlloc(sizeof(mpz_t));
220  mpz_init(v0);
221  mpz_ptr v1 = (mpz_ptr)omAlloc(sizeof(mpz_t));
222  mpz_init(v1);
223  mpz_ptr v2 = (mpz_ptr)omAlloc(sizeof(mpz_t));
224  mpz_init_set_ui(v2, 1);
225  mpz_ptr q = (mpz_ptr)omAlloc(sizeof(mpz_t));
226  mpz_init(q);
227  mpz_ptr rr = (mpz_ptr)omAlloc(sizeof(mpz_t));
228  mpz_init(rr);
229
230  while (mpz_sgn1(v) != 0) /* i.e., while v != 0 */
231  {
232    mpz_div(q, u, v);
233    mpz_mod(rr, u, v);
234    mpz_set(u, v);
235    mpz_set(v, rr);
236    mpz_set(u0, u2);
237    mpz_set(v0, v2);
238    mpz_mul(u2, u2, q); mpz_sub(u2, u1, u2); /* u2 = u1 - q * u2 */
239    mpz_mul(v2, v2, q); mpz_sub(v2, v1, v2); /* v2 = v1 - q * v2 */
240    mpz_set(u1, u0);
241    mpz_set(v1, v0);
242  }
243
244  while (mpz_sgn1(u1) < 0) /* i.e., while u1 < 0 */
245  {
246    /* we add 2^m = (2^m - 1) + 1 to u1: */
247    mpz_add_ui(u1, u1, r->mod2mMask);
248    mpz_add_ui(u1, u1, 1);
249  }
250  s = mpz_get_ui(u1); /* now: 0 <= s <= 2^m - 1 */
251
252  mpz_clear(u);  omFree((ADDRESS)u);
253  mpz_clear(u0); omFree((ADDRESS)u0);
254  mpz_clear(u1); omFree((ADDRESS)u1);
255  mpz_clear(u2); omFree((ADDRESS)u2);
256  mpz_clear(v);  omFree((ADDRESS)v);
257  mpz_clear(v0); omFree((ADDRESS)v0);
258  mpz_clear(v1); omFree((ADDRESS)v1);
259  mpz_clear(v2); omFree((ADDRESS)v2);
260  mpz_clear(q); omFree((ADDRESS)q);
261  mpz_clear(rr); omFree((ADDRESS)rr);
262}
263
264static unsigned long InvMod(unsigned long a, const coeffs r)
265{
266  assume((unsigned long)a % 2 != 0);
267  unsigned long s;
268  specialXGCD(s, a, r);
269  return s;
270}
271
272static inline number nr2mInversM(number c, const coeffs r)
273{
274  assume((unsigned long)c % 2 != 0);
275  // Table !!!
276  unsigned long inv;
277  inv = InvMod((unsigned long)c,r);
278  return (number)inv;
279}
280
281static number nr2mInvers(number c, const coeffs r)
282{
283  if ((unsigned long)c % 2 == 0)
284  {
285    WerrorS("division by zero divisor");
286    return (number)0;
287  }
288  return nr2mInversM(c, r);
289}
290
291/*
292 * Give the largest k, such that a = x * k, b = y * k has
293 * a solution.
294 */
295static number nr2mExtGcd(number a, number b, number *s, number *t, const coeffs r)
296{
297  unsigned long res = 0;
298  if ((unsigned long)a == 0 && (unsigned long)b == 0) return (number)1;
299  while ((unsigned long)a % 2 == 0 && (unsigned long)b % 2 == 0)
300  {
301    a = (number)((unsigned long)a / 2);
302    b = (number)((unsigned long)b / 2);
303    res++;
304  }
305  if ((unsigned long)b % 2 == 0)
306  {
307    *t = NULL;
308    *s = nr2mInvers(a,r);
309    return (number)((1L << res)); // * (unsigned long) a);  // (2**res)*a    a is a unit
310  }
311  else
312  {
313    *s = NULL;
314    *t = nr2mInvers(b,r);
315    return (number)((1L << res)); // * (unsigned long) b);  // (2**res)*b    b is a unit
316  }
317}
318
319static void nr2mPower(number a, int i, number * result, const coeffs r)
320{
321  if (i == 0)
322  {
323    *(unsigned long *)result = 1;
324  }
325  else if (i == 1)
326  {
327    *result = a;
328  }
329  else
330  {
331    nr2mPower(a, i-1, result, r);
332    *result = nr2mMultM(a, *result, r);
333  }
334}
335
336/*
337 * create a number from int
338 */
339static number nr2mInit(long i, const coeffs r)
340{
341  if (i == 0) return (number)(unsigned long)i;
342
343  long ii = i;
344  unsigned long j = (unsigned long)1;
345  if (ii < 0) { j = r->mod2mMask; ii = -ii; }
346  unsigned long k = (unsigned long)ii;
347  k = k & r->mod2mMask;
348  /* now we have: i = j * k mod 2^m */
349  return (number)nr2mMult((number)j, (number)k, r);
350}
351
352/*
353 * convert a number to an int in ]-k/2 .. k/2],
354 * where k = 2^m; i.e., an int in ]-2^(m-1) .. 2^(m-1)];
355 */
356static long nr2mInt(number &n, const coeffs r)
357{
358  unsigned long nn = (unsigned long)n;
359  unsigned long l = r->mod2mMask >> 1; l++; /* now: l = 2^(m-1) */
360  if ((unsigned long)nn > l)
361    return (long)((unsigned long)nn - r->mod2mMask - 1);
362  else
363    return (long)((unsigned long)nn);
364}
365
366static number nr2mAdd(number a, number b, const coeffs r)
367{
368  number n=nr2mAddM(a, b, r);
369  n_Test(n,r);
370  return n;
371}
372
373static number nr2mSub(number a, number b, const coeffs r)
374{
375  number n=nr2mSubM(a, b, r);
376  n_Test(n,r);
377  return n;
378}
379
380static BOOLEAN nr2mIsUnit(number a, const coeffs)
381{
382  return ((unsigned long)a % 2 == 1);
383}
384
385static number nr2mGetUnit(number k, const coeffs)
386{
387  if (k == NULL) return (number)1;
388  unsigned long erg = (unsigned long)k;
389  while (erg % 2 == 0) erg = erg / 2;
390  return (number)erg;
391}
392
393static BOOLEAN nr2mIsZero(number a, const coeffs)
394{
395  return 0 == (unsigned long)a;
396}
397
398static BOOLEAN nr2mIsOne(number a, const coeffs)
399{
400  return 1 == (unsigned long)a;
401}
402
403static BOOLEAN nr2mIsMOne(number a, const coeffs r)
404{
405  return ((r->mod2mMask  == (unsigned long)a) &&(1L!=(long)a))/*for char 2^1*/;
406}
407
408static BOOLEAN nr2mEqual(number a, number b, const coeffs)
409{
410  return (a == b);
411}
412
413static number nr2mDiv(number a, number b, const coeffs r)
414{
415  if ((unsigned long)a == 0) return (number)0;
416  else if ((unsigned long)b % 2 == 0)
417  {
418    if ((unsigned long)b != 0)
419    {
420      while (((unsigned long)b % 2 == 0) && ((unsigned long)a % 2 == 0))
421      {
422        a = (number)((unsigned long)a / 2);
423        b = (number)((unsigned long)b / 2);
424      }
425    }
426    if ((unsigned long)b % 2 == 0)
427    {
428      WerrorS("Division not possible, even by cancelling zero divisors.");
429      WerrorS("Result is integer division without remainder.");
430      return (number) ((unsigned long) a / (unsigned long) b);
431    }
432  }
433  number n=(number)nr2mMult(a, nr2mInversM(b,r),r);
434  n_Test(n,r);
435  return n;
436}
437
438/* Is 'a' divisible by 'b'? There are two cases:
439   1) a = 0 mod 2^m; then TRUE iff b = 0 or b is a power of 2
440   2) a, b <> 0; then TRUE iff b/gcd(a, b) is a unit mod 2^m */
441static BOOLEAN nr2mDivBy (number a, number b, const coeffs r)
442{
443  if (a == NULL)
444  {
445    unsigned long c = r->mod2mMask + 1;
446    if (c != 0) /* i.e., if no overflow */
447      return (c % (unsigned long)b) == 0;
448    else
449    {
450      /* overflow: we need to check whether b
451         is zero or a power of 2: */
452      c = (unsigned long)b;
453      while (c != 0)
454      {
455        if ((c % 2) != 0) return FALSE;
456        c = c >> 1;
457      }
458      return TRUE;
459    }
460  }
461  else
462  {
463    number n = nr2mGcd(a, b, r);
464    n = nr2mDiv(b, n, r);
465    return nr2mIsUnit(n, r);
466  }
467}
468
469static BOOLEAN nr2mGreater(number a, number b, const coeffs r)
470{
471  return nr2mDivBy(a, b,r);
472}
473
474static int nr2mDivComp(number as, number bs, const coeffs)
475{
476  unsigned long a = (unsigned long)as;
477  unsigned long b = (unsigned long)bs;
478  assume(a != 0 && b != 0);
479  while (a % 2 == 0 && b % 2 == 0)
480  {
481    a = a / 2;
482    b = b / 2;
483  }
484  if (a % 2 == 0)
485  {
486    return -1;
487  }
488  else
489  {
490    if (b % 2 == 1)
491    {
492      return 2;
493    }
494    else
495    {
496      return 1;
497    }
498  }
499}
500
501static number nr2mMod(number a, number b, const coeffs r)
502{
503  /*
504    We need to return the number rr which is uniquely determined by the
505    following two properties:
506      (1) 0 <= rr < |b| (with respect to '<' and '<=' performed in Z x Z)
507      (2) There exists some k in the integers Z such that a = k * b + rr.
508    Consider g := gcd(2^m, |b|). Note that then |b|/g is a unit in Z/2^m.
509    Now, there are three cases:
510      (a) g = 1
511          Then |b| is a unit in Z/2^m, i.e. |b| (and also b) divides a.
512          Thus rr = 0.
513      (b) g <> 1 and g divides a
514          Then a = (a/g) * (|b|/g)^(-1) * b (up to sign), i.e. again rr = 0.
515      (c) g <> 1 and g does not divide a
516          Let's denote the division with remainder of a by g as follows:
517          a = s * g + t. Then t = a - s * g = a - s * (|b|/g)^(-1) * |b|
518          fulfills (1) and (2), i.e. rr := t is the correct result. Hence
519          in this third case, rr is the remainder of division of a by g in Z.
520    This algorithm is the same as for the case Z/n, except that we may
521    compute the gcd of |b| and 2^m "by hand": We just extract the highest
522    power of 2 (<= 2^m) that is contained in b.
523  */
524  assume((unsigned long) b != 0);
525  unsigned long g = 1;
526  unsigned long b_div = (unsigned long) b;
527
528  /*
529   * b_div is unsigned, so that (b_div < 0) evaluates false at compile-time
530   *
531  if (b_div < 0) b_div = -b_div; // b_div now represents |b|, BUT b_div is unsigned!
532  */
533
534  unsigned long rr = 0;
535  while ((g < r->mod2mMask ) && (b_div > 0) && (b_div % 2 == 0))
536  {
537    b_div = b_div >> 1;
538    g = g << 1;
539  } // g is now the gcd of 2^m and |b|
540
541  if (g != 1) rr = (unsigned long)a % g;
542  return (number)rr;
543}
544
545#if 0
546// unused
547static number nr2mIntDiv(number a, number b, const coeffs r)
548{
549  if ((unsigned long)a == 0)
550  {
551    if ((unsigned long)b == 0)
552      return (number)1;
553    if ((unsigned long)b == 1)
554      return (number)0;
555    unsigned long c = r->mod2mMask + 1;
556    if (c != 0) /* i.e., if no overflow */
557      return (number)(c / (unsigned long)b);
558    else
559    {
560      /* overflow: c = 2^32 resp. 2^64, depending on platform */
561      mpz_ptr cc = (mpz_ptr)omAlloc(sizeof(mpz_t));
562      mpz_init_set_ui(cc, r->mod2mMask); mpz_add_ui(cc, cc, 1);
563      mpz_div_ui(cc, cc, (unsigned long)(unsigned long)b);
564      unsigned long s = mpz_get_ui(cc);
565      mpz_clear(cc); omFree((ADDRESS)cc);
566      return (number)(unsigned long)s;
567    }
568  }
569  else
570  {
571    if ((unsigned long)b == 0)
572      return (number)0;
573    return (number)((unsigned long) a / (unsigned long) b);
574  }
575}
576#endif
577
578static number nr2mAnn(number b, const coeffs r)
579{
580  if ((unsigned long)b == 0)
581    return NULL;
582  if ((unsigned long)b == 1)
583    return NULL;
584  unsigned long c = r->mod2mMask + 1;
585  if (c != 0) /* i.e., if no overflow */
586    return (number)(c / (unsigned long)b);
587  else
588  {
589    /* overflow: c = 2^32 resp. 2^64, depending on platform */
590    mpz_ptr cc = (mpz_ptr)omAlloc(sizeof(mpz_t));
591    mpz_init_set_ui(cc, r->mod2mMask); mpz_add_ui(cc, cc, 1);
592    mpz_div_ui(cc, cc, (unsigned long)(unsigned long)b);
593    unsigned long s = mpz_get_ui(cc);
594    mpz_clear(cc); omFree((ADDRESS)cc);
595    return (number)(unsigned long)s;
596  }
597}
598
599static number nr2mNeg(number c, const coeffs r)
600{
601  if ((unsigned long)c == 0) return c;
602  number n=nr2mNegM(c, r);
603  n_Test(n,r);
604  return n;
605}
606
607static number nr2mMapMachineInt(number from, const coeffs /*src*/, const coeffs dst)
608{
609  unsigned long i = ((unsigned long)from) % (dst->mod2mMask + 1) ;
610  return (number)i;
611}
612
613static number nr2mMapProject(number from, const coeffs /*src*/, const coeffs dst)
614{
615  unsigned long i = ((unsigned long)from) % (dst->mod2mMask + 1);
616  return (number)i;
617}
618
619number nr2mMapZp(number from, const coeffs /*src*/, const coeffs dst)
620{
621  unsigned long j = (unsigned long)1;
622  long ii = (long)from;
623  if (ii < 0) { j = dst->mod2mMask; ii = -ii; }
624  unsigned long i = (unsigned long)ii;
625  i = i & dst->mod2mMask;
626  /* now we have: from = j * i mod 2^m */
627  return (number)nr2mMult((number)i, (number)j, dst);
628}
629
630static number nr2mMapGMP(number from, const coeffs /*src*/, const coeffs dst)
631{
632  mpz_ptr erg = (mpz_ptr)omAllocBin(gmp_nrz_bin);
633  mpz_init(erg);
634  mpz_ptr k = (mpz_ptr)omAlloc(sizeof(mpz_t));
635  mpz_init_set_ui(k, dst->mod2mMask);
636
637  mpz_and(erg, (mpz_ptr)from, k);
638  number res = (number) mpz_get_ui(erg);
639
640  mpz_clear(erg); omFree((ADDRESS)erg);
641  mpz_clear(k);   omFree((ADDRESS)k);
642
643  return (number)res;
644}
645
646static number nr2mMapQ(number from, const coeffs src, const coeffs dst)
647{
648  mpz_ptr gmp = (mpz_ptr)omAllocBin(gmp_nrz_bin);
649  mpz_init(gmp);
650  nlGMP(from, gmp, src); // FIXME? TODO? // extern void   nlGMP(number &i, number n, const coeffs r); // to be replaced with n_MPZ(erg, from, src); // ?
651  number res=nr2mMapGMP((number)gmp,src,dst);
652  mpz_clear(gmp); omFree((ADDRESS)gmp);
653  return res;
654}
655
656static number nr2mMapZ(number from, const coeffs src, const coeffs dst)
657{
658  if (SR_HDL(from) & SR_INT)
659  {
660    long f_i=SR_TO_INT(from);
661    return nr2mInit(f_i,dst);
662  }
663  return nr2mMapGMP(from,src,dst);
664}
665
666static nMapFunc nr2mSetMap(const coeffs src, const coeffs dst)
667{
668  if ((src->rep==n_rep_int) && nCoeff_is_Ring_2toM(src)
669     && (src->mod2mMask == dst->mod2mMask))
670  {
671    return ndCopyMap;
672  }
673  if ((src->rep==n_rep_int) && nCoeff_is_Ring_2toM(src)
674     && (src->mod2mMask < dst->mod2mMask))
675  { /* i.e. map an integer mod 2^s into Z mod 2^t, where t < s */
676    return nr2mMapMachineInt;
677  }
678  if ((src->rep==n_rep_int) && nCoeff_is_Ring_2toM(src)
679     && (src->mod2mMask > dst->mod2mMask))
680  { /* i.e. map an integer mod 2^s into Z mod 2^t, where t > s */
681    // to be done
682    return nr2mMapProject;
683  }
684  if ((src->rep==n_rep_gmp) && nCoeff_is_Ring_Z(src))
685  {
686    return nr2mMapGMP;
687  }
688  if ((src->rep==n_rep_gap_gmp) /*&& nCoeff_is_Ring_Z(src)*/)
689  {
690    return nr2mMapZ;
691  }
692  if ((src->rep==n_rep_gap_rat) && (nCoeff_is_Q(src)||nCoeff_is_Ring_Z(src)))
693  {
694    return nr2mMapQ;
695  }
696  if ((src->rep==n_rep_int) && nCoeff_is_Zp(src) && (src->ch == 2))
697  {
698    return nr2mMapZp;
699  }
700  if ((src->rep==n_rep_gmp) &&
701  (nCoeff_is_Ring_PtoM(src) || nCoeff_is_Ring_ModN(src)))
702  {
703    if (mpz_divisible_2exp_p(src->modNumber,dst->modExponent))
704      return nr2mMapGMP;
705  }
706  return NULL;      // default
707}
708
709/*
710 * set the exponent
711 */
712
713static void nr2mSetExp(int m, coeffs r)
714{
715  if (m > 1)
716  {
717    /* we want mod2mMask to be the bit pattern
718       '111..1' consisting of m one's: */
719    r->modExponent= m;
720    r->mod2mMask = 1;
721    for (int i = 1; i < m; i++) r->mod2mMask = (r->mod2mMask << 1) + 1;
722  }
723  else
724  {
725    r->modExponent= 2;
726    /* code unexpectedly called with m = 1; we continue with m = 2: */
727    r->mod2mMask = 3; /* i.e., '11' in binary representation */
728  }
729}
730
731static void nr2mInitExp(int m, coeffs r)
732{
733  nr2mSetExp(m, r);
734  if (m < 2)
735    WarnS("nr2mInitExp unexpectedly called with m = 1 (we continue with Z/2^2");
736}
737
738static void nr2mWrite (number a, const coeffs r)
739{
740  long i = nr2mInt(a, r);
741  StringAppend("%ld", i);
742}
743
744static const char* nr2mEati(const char *s, int *i, const coeffs r)
745{
746
747  if (((*s) >= '0') && ((*s) <= '9'))
748  {
749    (*i) = 0;
750    do
751    {
752      (*i) *= 10;
753      (*i) += *s++ - '0';
754      if ((*i) >= (MAX_INT_VAL / 10)) (*i) = (*i) & r->mod2mMask;
755    }
756    while (((*s) >= '0') && ((*s) <= '9'));
757    (*i) = (*i) & r->mod2mMask;
758  }
759  else (*i) = 1;
760  return s;
761}
762
763static const char * nr2mRead (const char *s, number *a, const coeffs r)
764{
765  int z;
766  int n=1;
767
768  s = nr2mEati(s, &z,r);
769  if ((*s) == '/')
770  {
771    s++;
772    s = nr2mEati(s, &n,r);
773  }
774  if (n == 1)
775    *a = (number)(long)z;
776  else
777      *a = nr2mDiv((number)(long)z,(number)(long)n,r);
778  return s;
779}
780
781/* for initializing function pointers */
782BOOLEAN nr2mInitChar (coeffs r, void* p)
783{
784  assume( getCoeffType(r) == n_Z2m );
785  nr2mInitExp((int)(long)(p), r);
786
787  r->is_field=FALSE;
788  r->is_domain=FALSE;
789  r->rep=n_rep_int;
790
791  //r->cfKillChar    = ndKillChar; /* dummy*/
792  r->nCoeffIsEqual = nr2mCoeffIsEqual;
793  r->cfCoeffString = nr2mCoeffString;
794
795  r->modBase = (mpz_ptr) omAllocBin (gmp_nrz_bin);
796  mpz_init_set_si (r->modBase, 2L);
797  r->modNumber= (mpz_ptr) omAllocBin (gmp_nrz_bin);
798  mpz_init (r->modNumber);
799  mpz_pow_ui (r->modNumber, r->modBase, r->modExponent);
800
801  /* next cast may yield an overflow as mod2mMask is an unsigned long */
802  r->ch = (int)r->mod2mMask + 1;
803
804  r->cfInit        = nr2mInit;
805  //r->cfCopy        = ndCopy;
806  r->cfInt         = nr2mInt;
807  r->cfAdd         = nr2mAdd;
808  r->cfSub         = nr2mSub;
809  r->cfMult        = nr2mMult;
810  r->cfDiv         = nr2mDiv;
811  r->cfAnn         = nr2mAnn;
812  r->cfIntMod      = nr2mMod;
813  r->cfExactDiv    = nr2mDiv;
814  r->cfInpNeg         = nr2mNeg;
815  r->cfInvers      = nr2mInvers;
816  r->cfDivBy       = nr2mDivBy;
817  r->cfDivComp     = nr2mDivComp;
818  r->cfGreater     = nr2mGreater;
819  r->cfEqual       = nr2mEqual;
820  r->cfIsZero      = nr2mIsZero;
821  r->cfIsOne       = nr2mIsOne;
822  r->cfIsMOne      = nr2mIsMOne;
823  r->cfGreaterZero = nr2mGreaterZero;
824  r->cfWriteLong       = nr2mWrite;
825  r->cfRead        = nr2mRead;
826  r->cfPower       = nr2mPower;
827  r->cfSetMap      = nr2mSetMap;
828//  r->cfNormalize   = ndNormalize; // default
829  r->cfLcm         = nr2mLcm;
830  r->cfGcd         = nr2mGcd;
831  r->cfIsUnit      = nr2mIsUnit;
832  r->cfGetUnit     = nr2mGetUnit;
833  r->cfExtGcd      = nr2mExtGcd;
834  r->cfCoeffWrite  = nr2mCoeffWrite;
835  r->cfCoeffName   = nr2mCoeffName;
836  r->cfQuot1       = nr2mQuot1;
837#ifdef LDEBUG
838  r->cfDBTest      = nr2mDBTest;
839#endif
840  r->has_simple_Alloc=TRUE;
841  return FALSE;
842}
843
844#endif
845/* #ifdef HAVE_RINGS */
Note: See TracBrowser for help on using the repository browser.