[275ecc] | 1 | /**************************************** |
---|
| 2 | * Computer Algebra System SINGULAR * |
---|
| 3 | ****************************************/ |
---|
| 4 | /* |
---|
| 5 | * ABSTRACT: numbers modulo n |
---|
| 6 | */ |
---|
| 7 | |
---|
[16f511] | 8 | #ifdef HAVE_CONFIG_H |
---|
[ba5e9e] | 9 | #include "libpolysconfig.h" |
---|
[16f511] | 10 | #endif /* HAVE_CONFIG_H */ |
---|
[18cb65] | 11 | #include <misc/auxiliary.h> |
---|
[275ecc] | 12 | |
---|
[c90b43] | 13 | #ifdef HAVE_RINGS |
---|
[f1c465f] | 14 | |
---|
[18cb65] | 15 | #include <misc/mylimits.h> |
---|
[2d805a] | 16 | #include <coeffs/coeffs.h> |
---|
[31213a4] | 17 | #include <reporter/reporter.h> |
---|
| 18 | #include <omalloc/omalloc.h> |
---|
[2d805a] | 19 | #include <coeffs/numbers.h> |
---|
| 20 | #include <coeffs/longrat.h> |
---|
| 21 | #include <coeffs/mpr_complex.h> |
---|
| 22 | #include <coeffs/rmodulon.h> |
---|
[e3b233] | 23 | #include "si_gmp.h" |
---|
[8d0331d] | 24 | |
---|
[f1c465f] | 25 | #include <string.h> |
---|
| 26 | |
---|
[73a9ffb] | 27 | /// Our Type! |
---|
| 28 | static const n_coeffType ID = n_Zn; |
---|
[0486a3] | 29 | static const n_coeffType ID2 = n_Znm; |
---|
[73a9ffb] | 30 | |
---|
[8d0331d] | 31 | extern omBin gmp_nrz_bin; |
---|
[275ecc] | 32 | |
---|
[03f7b5] | 33 | void nrnCoeffWrite (const coeffs r, BOOLEAN /*details*/) |
---|
[7a8011] | 34 | { |
---|
| 35 | long l = (long)mpz_sizeinbase(r->modBase, 10) + 2; |
---|
| 36 | char* s = (char*) omAlloc(l); |
---|
[0486a3] | 37 | s= mpz_get_str (s, 10, r->modBase); |
---|
| 38 | if (nCoeff_is_Ring_ModN(r)) Print("// coeff. ring is : Z/%s\n", s); |
---|
| 39 | else if (nCoeff_is_Ring_PtoM(r)) Print("// coeff. ring is : Z/%s^%lu\n", s, r->modExponent); |
---|
[7a8011] | 40 | omFreeSize((ADDRESS)s, l); |
---|
| 41 | } |
---|
| 42 | |
---|
[b19ab84] | 43 | static BOOLEAN nrnCoeffsEqual(const coeffs r, n_coeffType n, void * parameter) |
---|
| 44 | { |
---|
| 45 | /* test, if r is an instance of nInitCoeffs(n,parameter) */ |
---|
[a2da9e] | 46 | return (n==n_Zn) && (mpz_cmp_ui(r->modNumber,(long)parameter)==0); |
---|
[b19ab84] | 47 | } |
---|
| 48 | |
---|
[45cc512] | 49 | static char* nrnCoeffString(const coeffs r) |
---|
| 50 | { |
---|
[0acf3e] | 51 | long l = (long)mpz_sizeinbase(r->modBase, 10) + 2; |
---|
| 52 | char* b = (char*) omAlloc(l); |
---|
| 53 | b= mpz_get_str (b, 10, r->modBase); |
---|
| 54 | char* s = (char*) omAlloc(7+2+l); |
---|
| 55 | sprintf(s,"integer,%s",b); |
---|
| 56 | omFreeSize(b,l); |
---|
[45cc512] | 57 | return s; |
---|
| 58 | } |
---|
[b19ab84] | 59 | |
---|
[14b11bb] | 60 | /* for initializing function pointers */ |
---|
[1cce47] | 61 | BOOLEAN nrnInitChar (coeffs r, void* p) |
---|
[14b11bb] | 62 | { |
---|
[0486a3] | 63 | assume( (getCoeffType(r) == ID) || (getCoeffType (r) == ID2) ); |
---|
| 64 | ZnmInfo * info= (ZnmInfo *) p; |
---|
[dc07cbe] | 65 | r->modBase= info->base; |
---|
[9bb5457] | 66 | |
---|
[0486a3] | 67 | nrnInitExp (info->exp, r); |
---|
| 68 | |
---|
[73a9ffb] | 69 | /* next computation may yield wrong characteristic as r->modNumber |
---|
| 70 | is a GMP number */ |
---|
| 71 | r->ch = mpz_get_ui(r->modNumber); |
---|
[e90dfd6] | 72 | |
---|
[45cc512] | 73 | r->cfCoeffString = nrnCoeffString; |
---|
| 74 | |
---|
[e90dfd6] | 75 | r->cfInit = nrnInit; |
---|
| 76 | r->cfDelete = nrnDelete; |
---|
| 77 | r->cfCopy = nrnCopy; |
---|
| 78 | r->cfSize = nrnSize; |
---|
| 79 | r->cfInt = nrnInt; |
---|
| 80 | r->cfAdd = nrnAdd; |
---|
| 81 | r->cfSub = nrnSub; |
---|
| 82 | r->cfMult = nrnMult; |
---|
| 83 | r->cfDiv = nrnDiv; |
---|
| 84 | r->cfIntDiv = nrnIntDiv; |
---|
| 85 | r->cfIntMod = nrnMod; |
---|
| 86 | r->cfExactDiv = nrnDiv; |
---|
| 87 | r->cfNeg = nrnNeg; |
---|
| 88 | r->cfInvers = nrnInvers; |
---|
| 89 | r->cfDivBy = nrnDivBy; |
---|
| 90 | r->cfDivComp = nrnDivComp; |
---|
| 91 | r->cfGreater = nrnGreater; |
---|
| 92 | r->cfEqual = nrnEqual; |
---|
| 93 | r->cfIsZero = nrnIsZero; |
---|
| 94 | r->cfIsOne = nrnIsOne; |
---|
| 95 | r->cfIsMOne = nrnIsMOne; |
---|
| 96 | r->cfGreaterZero = nrnGreaterZero; |
---|
[0bfec5] | 97 | r->cfWriteLong = nrnWrite; |
---|
[e90dfd6] | 98 | r->cfRead = nrnRead; |
---|
| 99 | r->cfPower = nrnPower; |
---|
| 100 | r->cfSetMap = nrnSetMap; |
---|
| 101 | r->cfNormalize = ndNormalize; |
---|
| 102 | r->cfLcm = nrnLcm; |
---|
| 103 | r->cfGcd = nrnGcd; |
---|
| 104 | r->cfIsUnit = nrnIsUnit; |
---|
| 105 | r->cfGetUnit = nrnGetUnit; |
---|
| 106 | r->cfExtGcd = nrnExtGcd; |
---|
| 107 | r->cfName = ndName; |
---|
[7a8011] | 108 | r->cfCoeffWrite = nrnCoeffWrite; |
---|
[b19ab84] | 109 | r->nCoeffIsEqual = nrnCoeffsEqual; |
---|
[8c6bd4d] | 110 | r->cfInit_bigint = nrnMapQ; |
---|
[0bfec5] | 111 | r->cfKillChar = ndKillChar; |
---|
[14b11bb] | 112 | #ifdef LDEBUG |
---|
[e90dfd6] | 113 | r->cfDBTest = nrnDBTest; |
---|
[14b11bb] | 114 | #endif |
---|
[5d594a9] | 115 | return FALSE; |
---|
[14b11bb] | 116 | } |
---|
| 117 | |
---|
[8e1c4e] | 118 | /* |
---|
| 119 | * create a number from int |
---|
| 120 | */ |
---|
[2f3764] | 121 | number nrnInit(long i, const coeffs r) |
---|
[8e1c4e] | 122 | { |
---|
[3c3880b] | 123 | int_number erg = (int_number) omAllocBin(gmp_nrz_bin); |
---|
[8e1c4e] | 124 | mpz_init_set_si(erg, i); |
---|
[e90dfd6] | 125 | mpz_mod(erg, erg, r->modNumber); |
---|
[8e1c4e] | 126 | return (number) erg; |
---|
| 127 | } |
---|
| 128 | |
---|
[9bb5457] | 129 | void nrnDelete(number *a, const coeffs) |
---|
[8e1c4e] | 130 | { |
---|
[befecbc] | 131 | if (*a == NULL) return; |
---|
[8e1c4e] | 132 | mpz_clear((int_number) *a); |
---|
[7d90aa] | 133 | omFreeBin((void *) *a, gmp_nrz_bin); |
---|
[bac8611] | 134 | *a = NULL; |
---|
| 135 | } |
---|
| 136 | |
---|
[9bb5457] | 137 | number nrnCopy(number a, const coeffs) |
---|
[bac8611] | 138 | { |
---|
[3c3880b] | 139 | int_number erg = (int_number) omAllocBin(gmp_nrz_bin); |
---|
[bac8611] | 140 | mpz_init_set(erg, (int_number) a); |
---|
| 141 | return (number) erg; |
---|
| 142 | } |
---|
| 143 | |
---|
[9bb5457] | 144 | int nrnSize(number a, const coeffs) |
---|
[bac8611] | 145 | { |
---|
| 146 | if (a == NULL) return 0; |
---|
[a604c3] | 147 | return sizeof(mpz_t); |
---|
[8e1c4e] | 148 | } |
---|
| 149 | |
---|
| 150 | /* |
---|
[25d15e] | 151 | * convert a number to int |
---|
[8e1c4e] | 152 | */ |
---|
[9bb5457] | 153 | int nrnInt(number &n, const coeffs) |
---|
[8e1c4e] | 154 | { |
---|
[e90dfd6] | 155 | return (int)mpz_get_si((int_number) n); |
---|
[8e1c4e] | 156 | } |
---|
| 157 | |
---|
[275ecc] | 158 | /* |
---|
| 159 | * Multiply two numbers |
---|
| 160 | */ |
---|
[e90dfd6] | 161 | number nrnMult(number a, number b, const coeffs r) |
---|
[275ecc] | 162 | { |
---|
[e90dfd6] | 163 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
[8e56ad] | 164 | mpz_init(erg); |
---|
[e90dfd6] | 165 | mpz_mul(erg, (int_number)a, (int_number) b); |
---|
| 166 | mpz_mod(erg, erg, r->modNumber); |
---|
[8e56ad] | 167 | return (number) erg; |
---|
[275ecc] | 168 | } |
---|
| 169 | |
---|
[e90dfd6] | 170 | void nrnPower(number a, int i, number * result, const coeffs r) |
---|
[8e1c4e] | 171 | { |
---|
[e90dfd6] | 172 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
[8e1c4e] | 173 | mpz_init(erg); |
---|
[e90dfd6] | 174 | mpz_powm_ui(erg, (int_number)a, i, r->modNumber); |
---|
[8e1c4e] | 175 | *result = (number) erg; |
---|
| 176 | } |
---|
| 177 | |
---|
[e90dfd6] | 178 | number nrnAdd(number a, number b, const coeffs r) |
---|
[8e1c4e] | 179 | { |
---|
[e90dfd6] | 180 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
[8e1c4e] | 181 | mpz_init(erg); |
---|
[e90dfd6] | 182 | mpz_add(erg, (int_number)a, (int_number) b); |
---|
| 183 | mpz_mod(erg, erg, r->modNumber); |
---|
[8e1c4e] | 184 | return (number) erg; |
---|
| 185 | } |
---|
| 186 | |
---|
[e90dfd6] | 187 | number nrnSub(number a, number b, const coeffs r) |
---|
[8e1c4e] | 188 | { |
---|
[e90dfd6] | 189 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
[8e1c4e] | 190 | mpz_init(erg); |
---|
[e90dfd6] | 191 | mpz_sub(erg, (int_number)a, (int_number) b); |
---|
| 192 | mpz_mod(erg, erg, r->modNumber); |
---|
[8e1c4e] | 193 | return (number) erg; |
---|
| 194 | } |
---|
| 195 | |
---|
[e90dfd6] | 196 | number nrnNeg(number c, const coeffs r) |
---|
[8e1c4e] | 197 | { |
---|
[0b7bf7] | 198 | if( !nrnIsZero(c, r) ) |
---|
| 199 | // Attention: This method operates in-place. |
---|
[9bb5457] | 200 | mpz_sub((int_number)c, r->modNumber, (int_number)c); |
---|
[a539ad] | 201 | return c; |
---|
[8e1c4e] | 202 | } |
---|
| 203 | |
---|
[e90dfd6] | 204 | number nrnInvers(number c, const coeffs r) |
---|
[8e1c4e] | 205 | { |
---|
[e90dfd6] | 206 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
[8e1c4e] | 207 | mpz_init(erg); |
---|
[e90dfd6] | 208 | mpz_invert(erg, (int_number)c, r->modNumber); |
---|
[8e1c4e] | 209 | return (number) erg; |
---|
| 210 | } |
---|
| 211 | |
---|
[275ecc] | 212 | /* |
---|
[e90dfd6] | 213 | * Give the smallest k, such that a * x = k = b * y has a solution |
---|
| 214 | * TODO: lcm(gcd,gcd) better than gcd(lcm) ? |
---|
[275ecc] | 215 | */ |
---|
[e90dfd6] | 216 | number nrnLcm(number a, number b, const coeffs r) |
---|
[275ecc] | 217 | { |
---|
[196b4b] | 218 | number erg = nrnGcd(NULL, a, r); |
---|
| 219 | number tmp = nrnGcd(NULL, b, r); |
---|
[e90dfd6] | 220 | mpz_lcm((int_number)erg, (int_number)erg, (int_number)tmp); |
---|
[8e1c4e] | 221 | nrnDelete(&tmp, NULL); |
---|
[e90dfd6] | 222 | return (number)erg; |
---|
[275ecc] | 223 | } |
---|
| 224 | |
---|
| 225 | /* |
---|
[e90dfd6] | 226 | * Give the largest k, such that a = x * k, b = y * k has |
---|
[275ecc] | 227 | * a solution. |
---|
| 228 | */ |
---|
[e90dfd6] | 229 | number nrnGcd(number a, number b, const coeffs r) |
---|
[275ecc] | 230 | { |
---|
[8391d8] | 231 | if ((a == NULL) && (b == NULL)) return nrnInit(0,r); |
---|
[e90dfd6] | 232 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
| 233 | mpz_init_set(erg, r->modNumber); |
---|
| 234 | if (a != NULL) mpz_gcd(erg, erg, (int_number)a); |
---|
| 235 | if (b != NULL) mpz_gcd(erg, erg, (int_number)b); |
---|
| 236 | return (number)erg; |
---|
[8e56ad] | 237 | } |
---|
| 238 | |
---|
[8e1c4e] | 239 | /* Not needed any more, but may have room for improvement |
---|
[e90dfd6] | 240 | number nrnGcd3(number a,number b, number c,ring r) |
---|
[af378f7] | 241 | { |
---|
[3c3880b] | 242 | int_number erg = (int_number) omAllocBin(gmp_nrz_bin); |
---|
[af378f7] | 243 | mpz_init(erg); |
---|
[e90dfd6] | 244 | if (a == NULL) a = (number)r->modNumber; |
---|
| 245 | if (b == NULL) b = (number)r->modNumber; |
---|
| 246 | if (c == NULL) c = (number)r->modNumber; |
---|
| 247 | mpz_gcd(erg, (int_number)a, (int_number)b); |
---|
| 248 | mpz_gcd(erg, erg, (int_number)c); |
---|
| 249 | mpz_gcd(erg, erg, r->modNumber); |
---|
| 250 | return (number)erg; |
---|
[af378f7] | 251 | } |
---|
[8e1c4e] | 252 | */ |
---|
[af378f7] | 253 | |
---|
[8e56ad] | 254 | /* |
---|
[e90dfd6] | 255 | * Give the largest k, such that a = x * k, b = y * k has |
---|
[8e56ad] | 256 | * a solution and r, s, s.t. k = s*a + t*b |
---|
| 257 | */ |
---|
[e90dfd6] | 258 | number nrnExtGcd(number a, number b, number *s, number *t, const coeffs r) |
---|
[8e56ad] | 259 | { |
---|
[e90dfd6] | 260 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
| 261 | int_number bs = (int_number)omAllocBin(gmp_nrz_bin); |
---|
| 262 | int_number bt = (int_number)omAllocBin(gmp_nrz_bin); |
---|
[8e56ad] | 263 | mpz_init(erg); |
---|
| 264 | mpz_init(bs); |
---|
| 265 | mpz_init(bt); |
---|
[e90dfd6] | 266 | mpz_gcdext(erg, bs, bt, (int_number)a, (int_number)b); |
---|
| 267 | mpz_mod(bs, bs, r->modNumber); |
---|
| 268 | mpz_mod(bt, bt, r->modNumber); |
---|
| 269 | *s = (number)bs; |
---|
| 270 | *t = (number)bt; |
---|
| 271 | return (number)erg; |
---|
[275ecc] | 272 | } |
---|
| 273 | |
---|
[9bb5457] | 274 | BOOLEAN nrnIsZero(number a, const coeffs) |
---|
[275ecc] | 275 | { |
---|
[01d4d3] | 276 | #ifdef LDEBUG |
---|
[191795] | 277 | if (a == NULL) return FALSE; |
---|
[01d4d3] | 278 | #endif |
---|
[e90dfd6] | 279 | return 0 == mpz_cmpabs_ui((int_number)a, 0); |
---|
[275ecc] | 280 | } |
---|
| 281 | |
---|
[9bb5457] | 282 | BOOLEAN nrnIsOne(number a, const coeffs) |
---|
[275ecc] | 283 | { |
---|
[191795] | 284 | #ifdef LDEBUG |
---|
| 285 | if (a == NULL) return FALSE; |
---|
| 286 | #endif |
---|
[e90dfd6] | 287 | return 0 == mpz_cmp_si((int_number)a, 1); |
---|
[8e56ad] | 288 | } |
---|
| 289 | |
---|
[e90dfd6] | 290 | BOOLEAN nrnIsMOne(number a, const coeffs r) |
---|
[8e56ad] | 291 | { |
---|
[191795] | 292 | #ifdef LDEBUG |
---|
| 293 | if (a == NULL) return FALSE; |
---|
| 294 | #endif |
---|
[e90dfd6] | 295 | mpz_t t; mpz_init_set(t, (int_number)a); |
---|
| 296 | mpz_add_ui(t, t, 1); |
---|
| 297 | bool erg = (0 == mpz_cmp(t, r->modNumber)); |
---|
| 298 | mpz_clear(t); |
---|
| 299 | return erg; |
---|
[275ecc] | 300 | } |
---|
| 301 | |
---|
[9bb5457] | 302 | BOOLEAN nrnEqual(number a, number b, const coeffs) |
---|
[275ecc] | 303 | { |
---|
[e90dfd6] | 304 | return 0 == mpz_cmp((int_number)a, (int_number)b); |
---|
[275ecc] | 305 | } |
---|
| 306 | |
---|
[9bb5457] | 307 | BOOLEAN nrnGreater(number a, number b, const coeffs) |
---|
[275ecc] | 308 | { |
---|
[e90dfd6] | 309 | return 0 < mpz_cmp((int_number)a, (int_number)b); |
---|
[275ecc] | 310 | } |
---|
| 311 | |
---|
[9bb5457] | 312 | BOOLEAN nrnGreaterZero(number k, const coeffs) |
---|
[275ecc] | 313 | { |
---|
[e90dfd6] | 314 | return 0 < mpz_cmp_si((int_number)k, 0); |
---|
[8e1c4e] | 315 | } |
---|
| 316 | |
---|
[e90dfd6] | 317 | BOOLEAN nrnIsUnit(number a, const coeffs r) |
---|
[8e1c4e] | 318 | { |
---|
[e90dfd6] | 319 | number tmp = nrnGcd(a, (number)r->modNumber, r); |
---|
| 320 | bool res = nrnIsOne(tmp, r); |
---|
[8e1c4e] | 321 | nrnDelete(&tmp, NULL); |
---|
| 322 | return res; |
---|
[275ecc] | 323 | } |
---|
| 324 | |
---|
[e90dfd6] | 325 | number nrnGetUnit(number k, const coeffs r) |
---|
[1e579c6] | 326 | { |
---|
[e90dfd6] | 327 | if (mpz_divisible_p(r->modNumber, (int_number)k)) return nrnInit(1,r); |
---|
[97c4ad] | 328 | |
---|
[e90dfd6] | 329 | int_number unit = (int_number)nrnGcd(k, 0, r); |
---|
| 330 | mpz_tdiv_q(unit, (int_number)k, unit); |
---|
| 331 | int_number gcd = (int_number)nrnGcd((number)unit, 0, r); |
---|
| 332 | if (!nrnIsOne((number)gcd,r)) |
---|
[af378f7] | 333 | { |
---|
[31e857] | 334 | int_number ctmp; |
---|
| 335 | // tmp := unit^2 |
---|
[4d1ae5] | 336 | int_number tmp = (int_number) nrnMult((number) unit,(number) unit,r); |
---|
[31e857] | 337 | // gcd_new := gcd(tmp, 0) |
---|
[14b11bb] | 338 | int_number gcd_new = (int_number) nrnGcd((number) tmp, 0, r); |
---|
[4d1ae5] | 339 | while (!nrnEqual((number) gcd_new,(number) gcd,r)) |
---|
[af378f7] | 340 | { |
---|
[31e857] | 341 | // gcd := gcd_new |
---|
| 342 | ctmp = gcd; |
---|
[af378f7] | 343 | gcd = gcd_new; |
---|
[31e857] | 344 | gcd_new = ctmp; |
---|
| 345 | // tmp := tmp * unit |
---|
| 346 | mpz_mul(tmp, tmp, unit); |
---|
[e90dfd6] | 347 | mpz_mod(tmp, tmp, r->modNumber); |
---|
[31e857] | 348 | // gcd_new := gcd(tmp, 0) |
---|
[e90dfd6] | 349 | mpz_gcd(gcd_new, tmp, r->modNumber); |
---|
[af378f7] | 350 | } |
---|
[e90dfd6] | 351 | // unit := unit + modNumber / gcd_new |
---|
| 352 | mpz_tdiv_q(tmp, r->modNumber, gcd_new); |
---|
[31e857] | 353 | mpz_add(unit, unit, tmp); |
---|
[e90dfd6] | 354 | mpz_mod(unit, unit, r->modNumber); |
---|
[31e857] | 355 | nrnDelete((number*) &gcd_new, NULL); |
---|
| 356 | nrnDelete((number*) &tmp, NULL); |
---|
[af378f7] | 357 | } |
---|
[31e857] | 358 | nrnDelete((number*) &gcd, NULL); |
---|
[e90dfd6] | 359 | return (number)unit; |
---|
[1e579c6] | 360 | } |
---|
| 361 | |
---|
[e90dfd6] | 362 | BOOLEAN nrnDivBy(number a, number b, const coeffs r) |
---|
[275ecc] | 363 | { |
---|
[97c4ad] | 364 | if (a == NULL) |
---|
[e90dfd6] | 365 | return mpz_divisible_p(r->modNumber, (int_number)b); |
---|
[97c4ad] | 366 | else |
---|
[a8b44d] | 367 | { /* b divides a iff b/gcd(a, b) is a unit in the given ring: */ |
---|
[14b11bb] | 368 | number n = nrnGcd(a, b, r); |
---|
[a8b44d] | 369 | mpz_tdiv_q((int_number)n, (int_number)b, (int_number)n); |
---|
[14b11bb] | 370 | bool result = nrnIsUnit(n, r); |
---|
[a8b44d] | 371 | nrnDelete(&n, NULL); |
---|
| 372 | return result; |
---|
| 373 | } |
---|
[275ecc] | 374 | } |
---|
| 375 | |
---|
[14b11bb] | 376 | int nrnDivComp(number a, number b, const coeffs r) |
---|
[275ecc] | 377 | { |
---|
[4d1ae5] | 378 | if (nrnEqual(a, b,r)) return 2; |
---|
[31e857] | 379 | if (mpz_divisible_p((int_number) a, (int_number) b)) return -1; |
---|
| 380 | if (mpz_divisible_p((int_number) b, (int_number) a)) return 1; |
---|
[e90dfd6] | 381 | return 0; |
---|
[275ecc] | 382 | } |
---|
| 383 | |
---|
[e90dfd6] | 384 | number nrnDiv(number a, number b, const coeffs r) |
---|
[275ecc] | 385 | { |
---|
[e90dfd6] | 386 | if (a == NULL) a = (number)r->modNumber; |
---|
| 387 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
[8e56ad] | 388 | mpz_init(erg); |
---|
[e90dfd6] | 389 | if (mpz_divisible_p((int_number)a, (int_number)b)) |
---|
[275ecc] | 390 | { |
---|
[e90dfd6] | 391 | mpz_divexact(erg, (int_number)a, (int_number)b); |
---|
| 392 | return (number)erg; |
---|
[275ecc] | 393 | } |
---|
| 394 | else |
---|
| 395 | { |
---|
[e90dfd6] | 396 | int_number gcd = (int_number)nrnGcd(a, b, r); |
---|
| 397 | mpz_divexact(erg, (int_number)b, gcd); |
---|
| 398 | if (!nrnIsUnit((number)erg, r)) |
---|
[8e56ad] | 399 | { |
---|
[bca575c] | 400 | WerrorS("Division not possible, even by cancelling zero divisors."); |
---|
| 401 | WerrorS("Result is integer division without remainder."); |
---|
[67dbdb] | 402 | mpz_tdiv_q(erg, (int_number) a, (int_number) b); |
---|
[31e857] | 403 | nrnDelete((number*) &gcd, NULL); |
---|
[e90dfd6] | 404 | return (number)erg; |
---|
[8e56ad] | 405 | } |
---|
[31e857] | 406 | // a / gcd(a,b) * [b / gcd (a,b)]^(-1) |
---|
[e90dfd6] | 407 | int_number tmp = (int_number)nrnInvers((number) erg,r); |
---|
| 408 | mpz_divexact(erg, (int_number)a, gcd); |
---|
[12ea9d] | 409 | mpz_mul(erg, erg, tmp); |
---|
[31e857] | 410 | nrnDelete((number*) &gcd, NULL); |
---|
| 411 | nrnDelete((number*) &tmp, NULL); |
---|
[e90dfd6] | 412 | mpz_mod(erg, erg, r->modNumber); |
---|
| 413 | return (number)erg; |
---|
[275ecc] | 414 | } |
---|
| 415 | } |
---|
| 416 | |
---|
[e90dfd6] | 417 | number nrnMod(number a, number b, const coeffs r) |
---|
[6ea941] | 418 | { |
---|
| 419 | /* |
---|
[e90dfd6] | 420 | We need to return the number rr which is uniquely determined by the |
---|
[6ea941] | 421 | following two properties: |
---|
[e90dfd6] | 422 | (1) 0 <= rr < |b| (with respect to '<' and '<=' performed in Z x Z) |
---|
| 423 | (2) There exists some k in the integers Z such that a = k * b + rr. |
---|
[6ea941] | 424 | Consider g := gcd(n, |b|). Note that then |b|/g is a unit in Z/n. |
---|
| 425 | Now, there are three cases: |
---|
| 426 | (a) g = 1 |
---|
| 427 | Then |b| is a unit in Z/n, i.e. |b| (and also b) divides a. |
---|
[e90dfd6] | 428 | Thus rr = 0. |
---|
[6ea941] | 429 | (b) g <> 1 and g divides a |
---|
[e90dfd6] | 430 | Then a = (a/g) * (|b|/g)^(-1) * b (up to sign), i.e. again rr = 0. |
---|
[6ea941] | 431 | (c) g <> 1 and g does not divide a |
---|
| 432 | Then denote the division with remainder of a by g as this: |
---|
| 433 | a = s * g + t. Then t = a - s * g = a - s * (|b|/g)^(-1) * |b| |
---|
[e90dfd6] | 434 | fulfills (1) and (2), i.e. rr := t is the correct result. Hence |
---|
| 435 | in this third case, rr is the remainder of division of a by g in Z. |
---|
[e1634d] | 436 | Remark: according to mpz_mod: a,b are always non-negative |
---|
[6ea941] | 437 | */ |
---|
[e90dfd6] | 438 | int_number g = (int_number)omAllocBin(gmp_nrz_bin); |
---|
| 439 | int_number rr = (int_number)omAllocBin(gmp_nrz_bin); |
---|
[6ea941] | 440 | mpz_init(g); |
---|
[e90dfd6] | 441 | mpz_init_set_si(rr, 0); |
---|
| 442 | mpz_gcd(g, (int_number)r->modNumber, (int_number)b); // g is now as above |
---|
| 443 | if (mpz_cmp_si(g, (long)1) != 0) mpz_mod(rr, (int_number)a, g); // the case g <> 1 |
---|
[6ea941] | 444 | mpz_clear(g); |
---|
[3c3880b] | 445 | omFreeBin(g, gmp_nrz_bin); |
---|
[e90dfd6] | 446 | return (number)rr; |
---|
[6ea941] | 447 | } |
---|
| 448 | |
---|
[e90dfd6] | 449 | number nrnIntDiv(number a, number b, const coeffs r) |
---|
[275ecc] | 450 | { |
---|
[e90dfd6] | 451 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
[8e56ad] | 452 | mpz_init(erg); |
---|
[e90dfd6] | 453 | if (a == NULL) a = (number)r->modNumber; |
---|
| 454 | mpz_tdiv_q(erg, (int_number)a, (int_number)b); |
---|
| 455 | return (number)erg; |
---|
[275ecc] | 456 | } |
---|
| 457 | |
---|
[d351d8] | 458 | /* |
---|
[d9301a] | 459 | * Helper function for computing the module |
---|
| 460 | */ |
---|
| 461 | |
---|
| 462 | int_number nrnMapCoef = NULL; |
---|
| 463 | |
---|
[9bb5457] | 464 | number nrnMapModN(number from, const coeffs /*src*/, const coeffs dst) |
---|
[d351d8] | 465 | { |
---|
[4d1ae5] | 466 | return nrnMult(from, (number) nrnMapCoef, dst); |
---|
[d351d8] | 467 | } |
---|
[d9301a] | 468 | |
---|
[9bb5457] | 469 | number nrnMap2toM(number from, const coeffs /*src*/, const coeffs dst) |
---|
[d9301a] | 470 | { |
---|
[e90dfd6] | 471 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
[d9301a] | 472 | mpz_init(erg); |
---|
[e90dfd6] | 473 | mpz_mul_ui(erg, nrnMapCoef, (NATNUMBER)from); |
---|
| 474 | mpz_mod(erg, erg, dst->modNumber); |
---|
| 475 | return (number)erg; |
---|
[d9301a] | 476 | } |
---|
| 477 | |
---|
[9bb5457] | 478 | number nrnMapZp(number from, const coeffs /*src*/, const coeffs dst) |
---|
[894f5b1] | 479 | { |
---|
[e90dfd6] | 480 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
[894f5b1] | 481 | mpz_init(erg); |
---|
[4d1ae5] | 482 | // TODO: use npInt(...) |
---|
[e90dfd6] | 483 | mpz_mul_si(erg, nrnMapCoef, (NATNUMBER)from); |
---|
| 484 | mpz_mod(erg, erg, dst->modNumber); |
---|
| 485 | return (number)erg; |
---|
[894f5b1] | 486 | } |
---|
| 487 | |
---|
[9bb5457] | 488 | number nrnMapGMP(number from, const coeffs /*src*/, const coeffs dst) |
---|
[d9301a] | 489 | { |
---|
[e90dfd6] | 490 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
[d9301a] | 491 | mpz_init(erg); |
---|
[e90dfd6] | 492 | mpz_mod(erg, (int_number)from, dst->modNumber); |
---|
| 493 | return (number)erg; |
---|
[d9301a] | 494 | } |
---|
| 495 | |
---|
[8c6bd4d] | 496 | number nrnMapQ(number from, const coeffs src, const coeffs dst) |
---|
[894f5b1] | 497 | { |
---|
[e90dfd6] | 498 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
[894f5b1] | 499 | mpz_init(erg); |
---|
[e90dfd6] | 500 | nlGMP(from, (number)erg, src); |
---|
[8c6bd4d] | 501 | mpz_mod(erg, erg, dst->modNumber); |
---|
[e90dfd6] | 502 | return (number)erg; |
---|
[894f5b1] | 503 | } |
---|
| 504 | |
---|
[4d1ae5] | 505 | nMapFunc nrnSetMap(const coeffs src, const coeffs dst) |
---|
[275ecc] | 506 | { |
---|
[14b11bb] | 507 | /* dst = currRing->cf */ |
---|
[1cce47] | 508 | if (nCoeff_is_Ring_Z(src)) |
---|
[d351d8] | 509 | { |
---|
[894f5b1] | 510 | return nrnMapGMP; |
---|
| 511 | } |
---|
[1cce47] | 512 | if (nCoeff_is_Q(src)) |
---|
[894f5b1] | 513 | { |
---|
| 514 | return nrnMapQ; |
---|
[d9301a] | 515 | } |
---|
[894f5b1] | 516 | // Some type of Z/n ring / field |
---|
[f0797c] | 517 | if (nCoeff_is_Ring_ModN(src) || nCoeff_is_Ring_PtoM(src) || |
---|
| 518 | nCoeff_is_Ring_2toM(src) || nCoeff_is_Zp(src)) |
---|
[d9301a] | 519 | { |
---|
[66ce6d] | 520 | if ( (!nCoeff_is_Zp(src)) |
---|
[e90dfd6] | 521 | && (mpz_cmp(src->modBase, dst->modBase) == 0) |
---|
| 522 | && (src->modExponent == dst->modExponent)) return nrnMapGMP; |
---|
[d351d8] | 523 | else |
---|
| 524 | { |
---|
[3c3880b] | 525 | int_number nrnMapModul = (int_number) omAllocBin(gmp_nrz_bin); |
---|
[894f5b1] | 526 | // Computing the n of Z/n |
---|
[1cce47] | 527 | if (nCoeff_is_Zp(src)) |
---|
[894f5b1] | 528 | { |
---|
| 529 | mpz_init_set_si(nrnMapModul, src->ch); |
---|
| 530 | } |
---|
| 531 | else |
---|
| 532 | { |
---|
| 533 | mpz_init(nrnMapModul); |
---|
[e90dfd6] | 534 | mpz_set(nrnMapModul, src->modNumber); |
---|
[894f5b1] | 535 | } |
---|
| 536 | // nrnMapCoef = 1 in dst if dst is a subring of src |
---|
| 537 | // nrnMapCoef = 0 in dst / src if src is a subring of dst |
---|
[d9301a] | 538 | if (nrnMapCoef == NULL) |
---|
[d351d8] | 539 | { |
---|
[3c3880b] | 540 | nrnMapCoef = (int_number) omAllocBin(gmp_nrz_bin); |
---|
[d9301a] | 541 | mpz_init(nrnMapCoef); |
---|
| 542 | } |
---|
[e90dfd6] | 543 | if (mpz_divisible_p(nrnMapModul, dst->modNumber)) |
---|
[894f5b1] | 544 | { |
---|
| 545 | mpz_set_si(nrnMapCoef, 1); |
---|
| 546 | } |
---|
| 547 | else |
---|
[4d1ae5] | 548 | if (nrnDivBy(NULL, (number) nrnMapModul,dst)) |
---|
[d9301a] | 549 | { |
---|
[e90dfd6] | 550 | mpz_divexact(nrnMapCoef, dst->modNumber, nrnMapModul); |
---|
| 551 | int_number tmp = dst->modNumber; |
---|
| 552 | dst->modNumber = nrnMapModul; |
---|
[4d1ae5] | 553 | if (!nrnIsUnit((number) nrnMapCoef,dst)) |
---|
[0959dc] | 554 | { |
---|
[e90dfd6] | 555 | dst->modNumber = tmp; |
---|
[4d1ae5] | 556 | nrnDelete((number*) &nrnMapModul, dst); |
---|
[0959dc] | 557 | return NULL; |
---|
| 558 | } |
---|
[4d1ae5] | 559 | int_number inv = (int_number) nrnInvers((number) nrnMapCoef,dst); |
---|
[e90dfd6] | 560 | dst->modNumber = tmp; |
---|
[d9301a] | 561 | mpz_mul(nrnMapCoef, nrnMapCoef, inv); |
---|
[e90dfd6] | 562 | mpz_mod(nrnMapCoef, nrnMapCoef, dst->modNumber); |
---|
[4d1ae5] | 563 | nrnDelete((number*) &inv, dst); |
---|
[d9301a] | 564 | } |
---|
| 565 | else |
---|
| 566 | { |
---|
[4d1ae5] | 567 | nrnDelete((number*) &nrnMapModul, dst); |
---|
[d9301a] | 568 | return NULL; |
---|
[d351d8] | 569 | } |
---|
[4d1ae5] | 570 | nrnDelete((number*) &nrnMapModul, dst); |
---|
[1cce47] | 571 | if (nCoeff_is_Ring_2toM(src)) |
---|
[d9301a] | 572 | return nrnMap2toM; |
---|
[1cce47] | 573 | else if (nCoeff_is_Zp(src)) |
---|
[894f5b1] | 574 | return nrnMapZp; |
---|
[d351d8] | 575 | else |
---|
[d9301a] | 576 | return nrnMapModN; |
---|
[d351d8] | 577 | } |
---|
| 578 | } |
---|
| 579 | return NULL; // default |
---|
[275ecc] | 580 | } |
---|
| 581 | |
---|
| 582 | /* |
---|
| 583 | * set the exponent (allocate and init tables) (TODO) |
---|
| 584 | */ |
---|
| 585 | |
---|
[0486a3] | 586 | void nrnSetExp(unsigned long m, coeffs r) |
---|
[275ecc] | 587 | { |
---|
[e90dfd6] | 588 | /* clean up former stuff */ |
---|
| 589 | if (r->modNumber != NULL) mpz_clear(r->modNumber); |
---|
[20704f] | 590 | |
---|
[0486a3] | 591 | r->modExponent= m; |
---|
[e90dfd6] | 592 | r->modNumber = (int_number)omAllocBin(gmp_nrz_bin); |
---|
[0486a3] | 593 | mpz_init_set (r->modNumber, r->modBase); |
---|
| 594 | mpz_pow_ui (r->modNumber, r->modNumber, m); |
---|
[275ecc] | 595 | } |
---|
| 596 | |
---|
[0486a3] | 597 | /* We expect this ring to be Z/n^m for some m > 0 and for some n > 2 which is not a prime. */ |
---|
| 598 | void nrnInitExp(unsigned long m, coeffs r) |
---|
[275ecc] | 599 | { |
---|
[12ea9d] | 600 | nrnSetExp(m, r); |
---|
[0486a3] | 601 | assume (r->modNumber != NULL); |
---|
| 602 | if (mpz_cmp_ui(r->modNumber,2) <= 0) |
---|
| 603 | WarnS("nrnInitExp failed (m in Z/m too small)"); |
---|
[275ecc] | 604 | } |
---|
| 605 | |
---|
| 606 | #ifdef LDEBUG |
---|
[9bb5457] | 607 | BOOLEAN nrnDBTest (number a, const char *, const int, const coeffs r) |
---|
[275ecc] | 608 | { |
---|
[01d4d3] | 609 | if (a==NULL) return TRUE; |
---|
[e90dfd6] | 610 | if ( (mpz_cmp_si((int_number) a, 0) < 0) || (mpz_cmp((int_number) a, r->modNumber) > 0) ) |
---|
[275ecc] | 611 | { |
---|
| 612 | return FALSE; |
---|
| 613 | } |
---|
| 614 | return TRUE; |
---|
| 615 | } |
---|
| 616 | #endif |
---|
| 617 | |
---|
[8e56ad] | 618 | /*2 |
---|
| 619 | * extracts a long integer from s, returns the rest (COPY FROM longrat0.cc) |
---|
| 620 | */ |
---|
[a604c3] | 621 | static const char * nlCPEatLongC(char *s, mpz_ptr i) |
---|
[275ecc] | 622 | { |
---|
[85e68dd] | 623 | const char * start=s; |
---|
[af378f7] | 624 | if (!(*s >= '0' && *s <= '9')) |
---|
| 625 | { |
---|
| 626 | mpz_init_set_si(i, 1); |
---|
| 627 | return s; |
---|
| 628 | } |
---|
| 629 | mpz_init(i); |
---|
[8e56ad] | 630 | while (*s >= '0' && *s <= '9') s++; |
---|
| 631 | if (*s=='\0') |
---|
[275ecc] | 632 | { |
---|
[8e56ad] | 633 | mpz_set_str(i,start,10); |
---|
| 634 | } |
---|
| 635 | else |
---|
| 636 | { |
---|
| 637 | char c=*s; |
---|
| 638 | *s='\0'; |
---|
| 639 | mpz_set_str(i,start,10); |
---|
| 640 | *s=c; |
---|
[275ecc] | 641 | } |
---|
| 642 | return s; |
---|
| 643 | } |
---|
| 644 | |
---|
[14b11bb] | 645 | const char * nrnRead (const char *s, number *a, const coeffs r) |
---|
[275ecc] | 646 | { |
---|
[3c3880b] | 647 | int_number z = (int_number) omAllocBin(gmp_nrz_bin); |
---|
[275ecc] | 648 | { |
---|
[85e68dd] | 649 | s = nlCPEatLongC((char *)s, z); |
---|
[275ecc] | 650 | } |
---|
[e90dfd6] | 651 | mpz_mod(z, z, r->modNumber); |
---|
[8e56ad] | 652 | *a = (number) z; |
---|
[275ecc] | 653 | return s; |
---|
| 654 | } |
---|
| 655 | #endif |
---|
[8d0331d] | 656 | /* #ifdef HAVE_RINGS */ |
---|