1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* $Id$ */ |
---|
5 | /* |
---|
6 | * ABSTRACT: numbers modulo n |
---|
7 | */ |
---|
8 | |
---|
9 | #include "config.h" |
---|
10 | #include <misc/auxiliary.h> |
---|
11 | |
---|
12 | #ifdef HAVE_RINGS |
---|
13 | |
---|
14 | #include <misc/mylimits.h> |
---|
15 | #include <coeffs/coeffs.h> |
---|
16 | #include <reporter/reporter.h> |
---|
17 | #include <omalloc/omalloc.h> |
---|
18 | #include <coeffs/numbers.h> |
---|
19 | #include <coeffs/longrat.h> |
---|
20 | #include <coeffs/mpr_complex.h> |
---|
21 | #include <coeffs/rmodulon.h> |
---|
22 | #include <coeffs/si_gmp.h> |
---|
23 | |
---|
24 | #include <string.h> |
---|
25 | |
---|
26 | extern omBin gmp_nrz_bin; |
---|
27 | |
---|
28 | /* for initializing function pointers */ |
---|
29 | BOOLEAN nrnInitChar (coeffs r, void* p) |
---|
30 | { |
---|
31 | |
---|
32 | nrnInitExp((int)(long)(p), r); |
---|
33 | |
---|
34 | r->cfInit = nrnInit; |
---|
35 | r->cfDelete = nrnDelete; |
---|
36 | r->cfCopy = nrnCopy; |
---|
37 | r->cfSize = nrnSize; |
---|
38 | r->cfInt = nrnInt; |
---|
39 | r->cfAdd = nrnAdd; |
---|
40 | r->cfSub = nrnSub; |
---|
41 | r->cfMult = nrnMult; |
---|
42 | r->cfDiv = nrnDiv; |
---|
43 | r->cfIntDiv = nrnIntDiv; |
---|
44 | r->cfIntMod = nrnMod; |
---|
45 | r->cfExactDiv = nrnDiv; |
---|
46 | r->cfNeg = nrnNeg; |
---|
47 | r->cfInvers = nrnInvers; |
---|
48 | r->cfDivBy = nrnDivBy; |
---|
49 | r->cfDivComp = nrnDivComp; |
---|
50 | r->cfGreater = nrnGreater; |
---|
51 | r->cfEqual = nrnEqual; |
---|
52 | r->cfIsZero = nrnIsZero; |
---|
53 | r->cfIsOne = nrnIsOne; |
---|
54 | r->cfIsMOne = nrnIsMOne; |
---|
55 | r->cfGreaterZero = nrnGreaterZero; |
---|
56 | r->cfWrite = nrnWrite; |
---|
57 | r->cfRead = nrnRead; |
---|
58 | r->cfPower = nrnPower; |
---|
59 | r->cfSetMap = nrnSetMap; |
---|
60 | r->cfNormalize = ndNormalize; |
---|
61 | r->cfLcm = nrnLcm; |
---|
62 | r->cfGcd = nrnGcd; |
---|
63 | r->cfIsUnit = nrnIsUnit; |
---|
64 | r->cfGetUnit = nrnGetUnit; |
---|
65 | r->cfExtGcd = nrnExtGcd; |
---|
66 | r->cfName = ndName; |
---|
67 | #ifdef LDEBUG |
---|
68 | r->cfDBTest = nrnDBTest; |
---|
69 | #endif |
---|
70 | return FALSE; |
---|
71 | } |
---|
72 | |
---|
73 | /* |
---|
74 | * create a number from int |
---|
75 | */ |
---|
76 | number nrnInit(int i, const coeffs r) |
---|
77 | { |
---|
78 | int_number erg = (int_number) omAllocBin(gmp_nrz_bin); |
---|
79 | mpz_init_set_si(erg, i); |
---|
80 | mpz_mod(erg, erg, r->modNumber); |
---|
81 | return (number) erg; |
---|
82 | } |
---|
83 | |
---|
84 | void nrnDelete(number *a, const coeffs r) |
---|
85 | { |
---|
86 | if (*a == NULL) return; |
---|
87 | mpz_clear((int_number) *a); |
---|
88 | omFreeBin((void *) *a, gmp_nrz_bin); |
---|
89 | *a = NULL; |
---|
90 | } |
---|
91 | |
---|
92 | number nrnCopy(number a, const coeffs r) |
---|
93 | { |
---|
94 | int_number erg = (int_number) omAllocBin(gmp_nrz_bin); |
---|
95 | mpz_init_set(erg, (int_number) a); |
---|
96 | return (number) erg; |
---|
97 | } |
---|
98 | |
---|
99 | int nrnSize(number a, const coeffs r) |
---|
100 | { |
---|
101 | if (a == NULL) return 0; |
---|
102 | return sizeof(mpz_t); |
---|
103 | } |
---|
104 | |
---|
105 | /* |
---|
106 | * convert a number to int |
---|
107 | */ |
---|
108 | int nrnInt(number &n, const coeffs r) |
---|
109 | { |
---|
110 | return (int)mpz_get_si((int_number) n); |
---|
111 | } |
---|
112 | |
---|
113 | /* |
---|
114 | * Multiply two numbers |
---|
115 | */ |
---|
116 | number nrnMult(number a, number b, const coeffs r) |
---|
117 | { |
---|
118 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
119 | mpz_init(erg); |
---|
120 | mpz_mul(erg, (int_number)a, (int_number) b); |
---|
121 | mpz_mod(erg, erg, r->modNumber); |
---|
122 | return (number) erg; |
---|
123 | } |
---|
124 | |
---|
125 | void nrnPower(number a, int i, number * result, const coeffs r) |
---|
126 | { |
---|
127 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
128 | mpz_init(erg); |
---|
129 | mpz_powm_ui(erg, (int_number)a, i, r->modNumber); |
---|
130 | *result = (number) erg; |
---|
131 | } |
---|
132 | |
---|
133 | number nrnAdd(number a, number b, const coeffs r) |
---|
134 | { |
---|
135 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
136 | mpz_init(erg); |
---|
137 | mpz_add(erg, (int_number)a, (int_number) b); |
---|
138 | mpz_mod(erg, erg, r->modNumber); |
---|
139 | return (number) erg; |
---|
140 | } |
---|
141 | |
---|
142 | number nrnSub(number a, number b, const coeffs r) |
---|
143 | { |
---|
144 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
145 | mpz_init(erg); |
---|
146 | mpz_sub(erg, (int_number)a, (int_number) b); |
---|
147 | mpz_mod(erg, erg, r->modNumber); |
---|
148 | return (number) erg; |
---|
149 | } |
---|
150 | |
---|
151 | number nrnNeg(number c, const coeffs r) |
---|
152 | { |
---|
153 | // Attention: This method operates in-place. |
---|
154 | mpz_sub((int_number)c, r->modNumber, (int_number)c); |
---|
155 | return c; |
---|
156 | } |
---|
157 | |
---|
158 | number nrnInvers(number c, const coeffs r) |
---|
159 | { |
---|
160 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
161 | mpz_init(erg); |
---|
162 | mpz_invert(erg, (int_number)c, r->modNumber); |
---|
163 | return (number) erg; |
---|
164 | } |
---|
165 | |
---|
166 | /* |
---|
167 | * Give the smallest k, such that a * x = k = b * y has a solution |
---|
168 | * TODO: lcm(gcd,gcd) better than gcd(lcm) ? |
---|
169 | */ |
---|
170 | number nrnLcm(number a, number b, const coeffs r) |
---|
171 | { |
---|
172 | number erg = nrnGcd(NULL, a, r); |
---|
173 | number tmp = nrnGcd(NULL, b, r); |
---|
174 | mpz_lcm((int_number)erg, (int_number)erg, (int_number)tmp); |
---|
175 | nrnDelete(&tmp, NULL); |
---|
176 | return (number)erg; |
---|
177 | } |
---|
178 | |
---|
179 | /* |
---|
180 | * Give the largest k, such that a = x * k, b = y * k has |
---|
181 | * a solution. |
---|
182 | */ |
---|
183 | number nrnGcd(number a, number b, const coeffs r) |
---|
184 | { |
---|
185 | if ((a == NULL) && (b == NULL)) return nrnInit(0,r); |
---|
186 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
187 | mpz_init_set(erg, r->modNumber); |
---|
188 | if (a != NULL) mpz_gcd(erg, erg, (int_number)a); |
---|
189 | if (b != NULL) mpz_gcd(erg, erg, (int_number)b); |
---|
190 | return (number)erg; |
---|
191 | } |
---|
192 | |
---|
193 | /* Not needed any more, but may have room for improvement |
---|
194 | number nrnGcd3(number a,number b, number c,ring r) |
---|
195 | { |
---|
196 | int_number erg = (int_number) omAllocBin(gmp_nrz_bin); |
---|
197 | mpz_init(erg); |
---|
198 | if (a == NULL) a = (number)r->modNumber; |
---|
199 | if (b == NULL) b = (number)r->modNumber; |
---|
200 | if (c == NULL) c = (number)r->modNumber; |
---|
201 | mpz_gcd(erg, (int_number)a, (int_number)b); |
---|
202 | mpz_gcd(erg, erg, (int_number)c); |
---|
203 | mpz_gcd(erg, erg, r->modNumber); |
---|
204 | return (number)erg; |
---|
205 | } |
---|
206 | */ |
---|
207 | |
---|
208 | /* |
---|
209 | * Give the largest k, such that a = x * k, b = y * k has |
---|
210 | * a solution and r, s, s.t. k = s*a + t*b |
---|
211 | */ |
---|
212 | number nrnExtGcd(number a, number b, number *s, number *t, const coeffs r) |
---|
213 | { |
---|
214 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
215 | int_number bs = (int_number)omAllocBin(gmp_nrz_bin); |
---|
216 | int_number bt = (int_number)omAllocBin(gmp_nrz_bin); |
---|
217 | mpz_init(erg); |
---|
218 | mpz_init(bs); |
---|
219 | mpz_init(bt); |
---|
220 | mpz_gcdext(erg, bs, bt, (int_number)a, (int_number)b); |
---|
221 | mpz_mod(bs, bs, r->modNumber); |
---|
222 | mpz_mod(bt, bt, r->modNumber); |
---|
223 | *s = (number)bs; |
---|
224 | *t = (number)bt; |
---|
225 | return (number)erg; |
---|
226 | } |
---|
227 | |
---|
228 | BOOLEAN nrnIsZero(number a, const coeffs r) |
---|
229 | { |
---|
230 | #ifdef LDEBUG |
---|
231 | if (a == NULL) return FALSE; |
---|
232 | #endif |
---|
233 | return 0 == mpz_cmpabs_ui((int_number)a, 0); |
---|
234 | } |
---|
235 | |
---|
236 | BOOLEAN nrnIsOne(number a, const coeffs r) |
---|
237 | { |
---|
238 | #ifdef LDEBUG |
---|
239 | if (a == NULL) return FALSE; |
---|
240 | #endif |
---|
241 | return 0 == mpz_cmp_si((int_number)a, 1); |
---|
242 | } |
---|
243 | |
---|
244 | BOOLEAN nrnIsMOne(number a, const coeffs r) |
---|
245 | { |
---|
246 | #ifdef LDEBUG |
---|
247 | if (a == NULL) return FALSE; |
---|
248 | #endif |
---|
249 | mpz_t t; mpz_init_set(t, (int_number)a); |
---|
250 | mpz_add_ui(t, t, 1); |
---|
251 | bool erg = (0 == mpz_cmp(t, r->modNumber)); |
---|
252 | mpz_clear(t); |
---|
253 | return erg; |
---|
254 | } |
---|
255 | |
---|
256 | BOOLEAN nrnEqual(number a, number b, const coeffs r) |
---|
257 | { |
---|
258 | return 0 == mpz_cmp((int_number)a, (int_number)b); |
---|
259 | } |
---|
260 | |
---|
261 | BOOLEAN nrnGreater(number a, number b, const coeffs r) |
---|
262 | { |
---|
263 | return 0 < mpz_cmp((int_number)a, (int_number)b); |
---|
264 | } |
---|
265 | |
---|
266 | BOOLEAN nrnGreaterZero(number k, const coeffs r) |
---|
267 | { |
---|
268 | return 0 < mpz_cmp_si((int_number)k, 0); |
---|
269 | } |
---|
270 | |
---|
271 | BOOLEAN nrnIsUnit(number a, const coeffs r) |
---|
272 | { |
---|
273 | number tmp = nrnGcd(a, (number)r->modNumber, r); |
---|
274 | bool res = nrnIsOne(tmp, r); |
---|
275 | nrnDelete(&tmp, NULL); |
---|
276 | return res; |
---|
277 | } |
---|
278 | |
---|
279 | number nrnGetUnit(number k, const coeffs r) |
---|
280 | { |
---|
281 | if (mpz_divisible_p(r->modNumber, (int_number)k)) return nrnInit(1,r); |
---|
282 | |
---|
283 | int_number unit = (int_number)nrnGcd(k, 0, r); |
---|
284 | mpz_tdiv_q(unit, (int_number)k, unit); |
---|
285 | int_number gcd = (int_number)nrnGcd((number)unit, 0, r); |
---|
286 | if (!nrnIsOne((number)gcd,r)) |
---|
287 | { |
---|
288 | int_number ctmp; |
---|
289 | // tmp := unit^2 |
---|
290 | int_number tmp = (int_number) nrnMult((number) unit,(number) unit,r); |
---|
291 | // gcd_new := gcd(tmp, 0) |
---|
292 | int_number gcd_new = (int_number) nrnGcd((number) tmp, 0, r); |
---|
293 | while (!nrnEqual((number) gcd_new,(number) gcd,r)) |
---|
294 | { |
---|
295 | // gcd := gcd_new |
---|
296 | ctmp = gcd; |
---|
297 | gcd = gcd_new; |
---|
298 | gcd_new = ctmp; |
---|
299 | // tmp := tmp * unit |
---|
300 | mpz_mul(tmp, tmp, unit); |
---|
301 | mpz_mod(tmp, tmp, r->modNumber); |
---|
302 | // gcd_new := gcd(tmp, 0) |
---|
303 | mpz_gcd(gcd_new, tmp, r->modNumber); |
---|
304 | } |
---|
305 | // unit := unit + modNumber / gcd_new |
---|
306 | mpz_tdiv_q(tmp, r->modNumber, gcd_new); |
---|
307 | mpz_add(unit, unit, tmp); |
---|
308 | mpz_mod(unit, unit, r->modNumber); |
---|
309 | nrnDelete((number*) &gcd_new, NULL); |
---|
310 | nrnDelete((number*) &tmp, NULL); |
---|
311 | } |
---|
312 | nrnDelete((number*) &gcd, NULL); |
---|
313 | return (number)unit; |
---|
314 | } |
---|
315 | |
---|
316 | BOOLEAN nrnDivBy(number a, number b, const coeffs r) |
---|
317 | { |
---|
318 | if (a == NULL) |
---|
319 | return mpz_divisible_p(r->modNumber, (int_number)b); |
---|
320 | else |
---|
321 | { /* b divides a iff b/gcd(a, b) is a unit in the given ring: */ |
---|
322 | number n = nrnGcd(a, b, r); |
---|
323 | mpz_tdiv_q((int_number)n, (int_number)b, (int_number)n); |
---|
324 | bool result = nrnIsUnit(n, r); |
---|
325 | nrnDelete(&n, NULL); |
---|
326 | return result; |
---|
327 | } |
---|
328 | } |
---|
329 | |
---|
330 | int nrnDivComp(number a, number b, const coeffs r) |
---|
331 | { |
---|
332 | if (nrnEqual(a, b,r)) return 2; |
---|
333 | if (mpz_divisible_p((int_number) a, (int_number) b)) return -1; |
---|
334 | if (mpz_divisible_p((int_number) b, (int_number) a)) return 1; |
---|
335 | return 0; |
---|
336 | } |
---|
337 | |
---|
338 | number nrnDiv(number a, number b, const coeffs r) |
---|
339 | { |
---|
340 | if (a == NULL) a = (number)r->modNumber; |
---|
341 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
342 | mpz_init(erg); |
---|
343 | if (mpz_divisible_p((int_number)a, (int_number)b)) |
---|
344 | { |
---|
345 | mpz_divexact(erg, (int_number)a, (int_number)b); |
---|
346 | return (number)erg; |
---|
347 | } |
---|
348 | else |
---|
349 | { |
---|
350 | int_number gcd = (int_number)nrnGcd(a, b, r); |
---|
351 | mpz_divexact(erg, (int_number)b, gcd); |
---|
352 | if (!nrnIsUnit((number)erg, r)) |
---|
353 | { |
---|
354 | WerrorS("Division not possible, even by cancelling zero divisors."); |
---|
355 | WerrorS("Result is integer division without remainder."); |
---|
356 | mpz_tdiv_q(erg, (int_number) a, (int_number) b); |
---|
357 | nrnDelete((number*) &gcd, NULL); |
---|
358 | return (number)erg; |
---|
359 | } |
---|
360 | // a / gcd(a,b) * [b / gcd (a,b)]^(-1) |
---|
361 | int_number tmp = (int_number)nrnInvers((number) erg,r); |
---|
362 | mpz_divexact(erg, (int_number)a, gcd); |
---|
363 | mpz_mul(erg, erg, tmp); |
---|
364 | nrnDelete((number*) &gcd, NULL); |
---|
365 | nrnDelete((number*) &tmp, NULL); |
---|
366 | mpz_mod(erg, erg, r->modNumber); |
---|
367 | return (number)erg; |
---|
368 | } |
---|
369 | } |
---|
370 | |
---|
371 | number nrnMod(number a, number b, const coeffs r) |
---|
372 | { |
---|
373 | /* |
---|
374 | We need to return the number rr which is uniquely determined by the |
---|
375 | following two properties: |
---|
376 | (1) 0 <= rr < |b| (with respect to '<' and '<=' performed in Z x Z) |
---|
377 | (2) There exists some k in the integers Z such that a = k * b + rr. |
---|
378 | Consider g := gcd(n, |b|). Note that then |b|/g is a unit in Z/n. |
---|
379 | Now, there are three cases: |
---|
380 | (a) g = 1 |
---|
381 | Then |b| is a unit in Z/n, i.e. |b| (and also b) divides a. |
---|
382 | Thus rr = 0. |
---|
383 | (b) g <> 1 and g divides a |
---|
384 | Then a = (a/g) * (|b|/g)^(-1) * b (up to sign), i.e. again rr = 0. |
---|
385 | (c) g <> 1 and g does not divide a |
---|
386 | Then denote the division with remainder of a by g as this: |
---|
387 | a = s * g + t. Then t = a - s * g = a - s * (|b|/g)^(-1) * |b| |
---|
388 | fulfills (1) and (2), i.e. rr := t is the correct result. Hence |
---|
389 | in this third case, rr is the remainder of division of a by g in Z. |
---|
390 | Remark: according to mpz_mod: a,b are always non-negative |
---|
391 | */ |
---|
392 | int_number g = (int_number)omAllocBin(gmp_nrz_bin); |
---|
393 | int_number rr = (int_number)omAllocBin(gmp_nrz_bin); |
---|
394 | mpz_init(g); |
---|
395 | mpz_init_set_si(rr, 0); |
---|
396 | mpz_gcd(g, (int_number)r->modNumber, (int_number)b); // g is now as above |
---|
397 | if (mpz_cmp_si(g, (long)1) != 0) mpz_mod(rr, (int_number)a, g); // the case g <> 1 |
---|
398 | mpz_clear(g); |
---|
399 | omFreeBin(g, gmp_nrz_bin); |
---|
400 | return (number)rr; |
---|
401 | } |
---|
402 | |
---|
403 | number nrnIntDiv(number a, number b, const coeffs r) |
---|
404 | { |
---|
405 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
406 | mpz_init(erg); |
---|
407 | if (a == NULL) a = (number)r->modNumber; |
---|
408 | mpz_tdiv_q(erg, (int_number)a, (int_number)b); |
---|
409 | return (number)erg; |
---|
410 | } |
---|
411 | |
---|
412 | /* |
---|
413 | * Helper function for computing the module |
---|
414 | */ |
---|
415 | |
---|
416 | int_number nrnMapCoef = NULL; |
---|
417 | |
---|
418 | number nrnMapModN(number from, const coeffs src, const coeffs dst) |
---|
419 | { |
---|
420 | return nrnMult(from, (number) nrnMapCoef, dst); |
---|
421 | } |
---|
422 | |
---|
423 | number nrnMap2toM(number from, const coeffs src, const coeffs dst) |
---|
424 | { |
---|
425 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
426 | mpz_init(erg); |
---|
427 | mpz_mul_ui(erg, nrnMapCoef, (NATNUMBER)from); |
---|
428 | mpz_mod(erg, erg, dst->modNumber); |
---|
429 | return (number)erg; |
---|
430 | } |
---|
431 | |
---|
432 | number nrnMapZp(number from, const coeffs src, const coeffs dst) |
---|
433 | { |
---|
434 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
435 | mpz_init(erg); |
---|
436 | // TODO: use npInt(...) |
---|
437 | mpz_mul_si(erg, nrnMapCoef, (NATNUMBER)from); |
---|
438 | mpz_mod(erg, erg, dst->modNumber); |
---|
439 | return (number)erg; |
---|
440 | } |
---|
441 | |
---|
442 | number nrnMapGMP(number from, const coeffs src, const coeffs dst) |
---|
443 | { |
---|
444 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
445 | mpz_init(erg); |
---|
446 | mpz_mod(erg, (int_number)from, dst->modNumber); |
---|
447 | return (number)erg; |
---|
448 | } |
---|
449 | |
---|
450 | number nrnMapQ(number from, const coeffs src, const coeffs dst) |
---|
451 | { |
---|
452 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
453 | mpz_init(erg); |
---|
454 | nlGMP(from, (number)erg, src); |
---|
455 | mpz_mod(erg, erg, src->modNumber); |
---|
456 | return (number)erg; |
---|
457 | } |
---|
458 | |
---|
459 | nMapFunc nrnSetMap(const coeffs src, const coeffs dst) |
---|
460 | { |
---|
461 | /* dst = currRing->cf */ |
---|
462 | if (nCoeff_is_Ring_Z(src)) |
---|
463 | { |
---|
464 | return nrnMapGMP; |
---|
465 | } |
---|
466 | if (nCoeff_is_Q(src)) |
---|
467 | { |
---|
468 | return nrnMapQ; |
---|
469 | } |
---|
470 | // Some type of Z/n ring / field |
---|
471 | if (nCoeff_is_Ring_ModN(src) || nCoeff_is_Ring_PtoM(src) || nCoeff_is_Ring_2toM(src) || nCoeff_is_Zp(src)) |
---|
472 | { |
---|
473 | if ( (src->ringtype > 0) |
---|
474 | && (mpz_cmp(src->modBase, dst->modBase) == 0) |
---|
475 | && (src->modExponent == dst->modExponent)) return nrnMapGMP; |
---|
476 | else |
---|
477 | { |
---|
478 | int_number nrnMapModul = (int_number) omAllocBin(gmp_nrz_bin); |
---|
479 | // Computing the n of Z/n |
---|
480 | if (nCoeff_is_Zp(src)) |
---|
481 | { |
---|
482 | mpz_init_set_si(nrnMapModul, src->ch); |
---|
483 | } |
---|
484 | else |
---|
485 | { |
---|
486 | mpz_init(nrnMapModul); |
---|
487 | mpz_set(nrnMapModul, src->modNumber); |
---|
488 | } |
---|
489 | // nrnMapCoef = 1 in dst if dst is a subring of src |
---|
490 | // nrnMapCoef = 0 in dst / src if src is a subring of dst |
---|
491 | if (nrnMapCoef == NULL) |
---|
492 | { |
---|
493 | nrnMapCoef = (int_number) omAllocBin(gmp_nrz_bin); |
---|
494 | mpz_init(nrnMapCoef); |
---|
495 | } |
---|
496 | if (mpz_divisible_p(nrnMapModul, dst->modNumber)) |
---|
497 | { |
---|
498 | mpz_set_si(nrnMapCoef, 1); |
---|
499 | } |
---|
500 | else |
---|
501 | if (nrnDivBy(NULL, (number) nrnMapModul,dst)) |
---|
502 | { |
---|
503 | mpz_divexact(nrnMapCoef, dst->modNumber, nrnMapModul); |
---|
504 | int_number tmp = dst->modNumber; |
---|
505 | dst->modNumber = nrnMapModul; |
---|
506 | if (!nrnIsUnit((number) nrnMapCoef,dst)) |
---|
507 | { |
---|
508 | dst->modNumber = tmp; |
---|
509 | nrnDelete((number*) &nrnMapModul, dst); |
---|
510 | return NULL; |
---|
511 | } |
---|
512 | int_number inv = (int_number) nrnInvers((number) nrnMapCoef,dst); |
---|
513 | dst->modNumber = tmp; |
---|
514 | mpz_mul(nrnMapCoef, nrnMapCoef, inv); |
---|
515 | mpz_mod(nrnMapCoef, nrnMapCoef, dst->modNumber); |
---|
516 | nrnDelete((number*) &inv, dst); |
---|
517 | } |
---|
518 | else |
---|
519 | { |
---|
520 | nrnDelete((number*) &nrnMapModul, dst); |
---|
521 | return NULL; |
---|
522 | } |
---|
523 | nrnDelete((number*) &nrnMapModul, dst); |
---|
524 | if (nCoeff_is_Ring_2toM(src)) |
---|
525 | return nrnMap2toM; |
---|
526 | else if (nCoeff_is_Zp(src)) |
---|
527 | return nrnMapZp; |
---|
528 | else |
---|
529 | return nrnMapModN; |
---|
530 | } |
---|
531 | } |
---|
532 | return NULL; // default |
---|
533 | } |
---|
534 | |
---|
535 | /* |
---|
536 | * set the exponent (allocate and init tables) (TODO) |
---|
537 | */ |
---|
538 | |
---|
539 | void nrnSetExp(int m, coeffs r) |
---|
540 | { |
---|
541 | /* clean up former stuff */ |
---|
542 | if (r->modBase != NULL) mpz_clear(r->modBase); |
---|
543 | if (r->modNumber != NULL) mpz_clear(r->modNumber); |
---|
544 | |
---|
545 | /* this is Z/m = Z/(m^1), hence set modBase = m, modExponent = 1: */ |
---|
546 | r->modBase = (int_number)omAllocBin(gmp_nrz_bin); |
---|
547 | mpz_init(r->modBase); |
---|
548 | mpz_set_ui(r->modBase, (unsigned long)m); |
---|
549 | r->modExponent = 1; |
---|
550 | r->modNumber = (int_number)omAllocBin(gmp_nrz_bin); |
---|
551 | mpz_init(r->modNumber); |
---|
552 | mpz_set(r->modNumber, r->modBase); |
---|
553 | /* mpz_pow_ui(r->modNumber, r->modNumber, r->modExponent); */ |
---|
554 | } |
---|
555 | |
---|
556 | /* We expect this ring to be Z/m for some m > 2 which is not a prime. */ |
---|
557 | void nrnInitExp(int m, coeffs r) |
---|
558 | { |
---|
559 | if (m <= 2) WarnS("nrnInitExp failed (m in Z/m too small)"); |
---|
560 | nrnSetExp(m, r); |
---|
561 | } |
---|
562 | |
---|
563 | #ifdef LDEBUG |
---|
564 | BOOLEAN nrnDBTest (number a, const char *f, const int l, const coeffs r) |
---|
565 | { |
---|
566 | if (a==NULL) return TRUE; |
---|
567 | if ( (mpz_cmp_si((int_number) a, 0) < 0) || (mpz_cmp((int_number) a, r->modNumber) > 0) ) |
---|
568 | { |
---|
569 | return FALSE; |
---|
570 | } |
---|
571 | return TRUE; |
---|
572 | } |
---|
573 | #endif |
---|
574 | |
---|
575 | /*2 |
---|
576 | * extracts a long integer from s, returns the rest (COPY FROM longrat0.cc) |
---|
577 | */ |
---|
578 | static const char * nlCPEatLongC(char *s, mpz_ptr i) |
---|
579 | { |
---|
580 | const char * start=s; |
---|
581 | if (!(*s >= '0' && *s <= '9')) |
---|
582 | { |
---|
583 | mpz_init_set_si(i, 1); |
---|
584 | return s; |
---|
585 | } |
---|
586 | mpz_init(i); |
---|
587 | while (*s >= '0' && *s <= '9') s++; |
---|
588 | if (*s=='\0') |
---|
589 | { |
---|
590 | mpz_set_str(i,start,10); |
---|
591 | } |
---|
592 | else |
---|
593 | { |
---|
594 | char c=*s; |
---|
595 | *s='\0'; |
---|
596 | mpz_set_str(i,start,10); |
---|
597 | *s=c; |
---|
598 | } |
---|
599 | return s; |
---|
600 | } |
---|
601 | |
---|
602 | const char * nrnRead (const char *s, number *a, const coeffs r) |
---|
603 | { |
---|
604 | int_number z = (int_number) omAllocBin(gmp_nrz_bin); |
---|
605 | { |
---|
606 | s = nlCPEatLongC((char *)s, z); |
---|
607 | } |
---|
608 | mpz_mod(z, z, r->modNumber); |
---|
609 | *a = (number) z; |
---|
610 | return s; |
---|
611 | } |
---|
612 | #endif |
---|
613 | /* #ifdef HAVE_RINGS */ |
---|