1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* |
---|
5 | * ABSTRACT: numbers modulo n |
---|
6 | */ |
---|
7 | |
---|
8 | |
---|
9 | |
---|
10 | |
---|
11 | #include <misc/auxiliary.h> |
---|
12 | |
---|
13 | #ifdef HAVE_RINGS |
---|
14 | |
---|
15 | #include <misc/mylimits.h> |
---|
16 | #include <coeffs/coeffs.h> |
---|
17 | #include <reporter/reporter.h> |
---|
18 | #include <omalloc/omalloc.h> |
---|
19 | #include <coeffs/numbers.h> |
---|
20 | #include <coeffs/longrat.h> |
---|
21 | #include <coeffs/mpr_complex.h> |
---|
22 | #include <coeffs/rmodulon.h> |
---|
23 | #include "si_gmp.h" |
---|
24 | |
---|
25 | #include <string.h> |
---|
26 | |
---|
27 | /// Our Type! |
---|
28 | static const n_coeffType ID = n_Zn; |
---|
29 | static const n_coeffType ID2 = n_Znm; |
---|
30 | |
---|
31 | extern omBin gmp_nrz_bin; |
---|
32 | |
---|
33 | void nrnCoeffWrite (const coeffs r, BOOLEAN /*details*/) |
---|
34 | { |
---|
35 | long l = (long)mpz_sizeinbase(r->modBase, 10) + 2; |
---|
36 | char* s = (char*) omAlloc(l); |
---|
37 | s= mpz_get_str (s, 10, r->modBase); |
---|
38 | if (nCoeff_is_Ring_ModN(r)) Print("// coeff. ring is : Z/%s\n", s); |
---|
39 | else if (nCoeff_is_Ring_PtoM(r)) Print("// coeff. ring is : Z/%s^%lu\n", s, r->modExponent); |
---|
40 | omFreeSize((ADDRESS)s, l); |
---|
41 | } |
---|
42 | |
---|
43 | static BOOLEAN nrnCoeffsEqual(const coeffs r, n_coeffType n, void * parameter) |
---|
44 | { |
---|
45 | /* test, if r is an instance of nInitCoeffs(n,parameter) */ |
---|
46 | return (n==n_Zn) && (mpz_cmp_ui(r->modNumber,(long)parameter)==0); |
---|
47 | } |
---|
48 | |
---|
49 | static char* nrnCoeffString(const coeffs r) |
---|
50 | { |
---|
51 | long l = (long)mpz_sizeinbase(r->modBase, 10) +2; |
---|
52 | char* b = (char*) omAlloc(l); |
---|
53 | b= mpz_get_str (b, 10, r->modBase); |
---|
54 | char* s = (char*) omAlloc(7+2+10+l); |
---|
55 | if (nCoeff_is_Ring_ModN(r)) sprintf(s,"integer,%s",b); |
---|
56 | else /*if (nCoeff_is_Ring_PtoM(r))*/ sprintf(s,"integer,%s^%lu",b,r->modExponent); |
---|
57 | omFreeSize(b,l); |
---|
58 | return s; |
---|
59 | } |
---|
60 | |
---|
61 | coeffs nrnQuot1(number c, const coeffs r) |
---|
62 | { |
---|
63 | coeffs rr; |
---|
64 | int ch = r->cfInt(c, r); |
---|
65 | mpz_t a,b; |
---|
66 | mpz_init_set(a, r->modNumber); |
---|
67 | mpz_init_set_ui(b, ch); |
---|
68 | int_number gcd; |
---|
69 | gcd = (int_number) omAlloc(sizeof(mpz_t)); |
---|
70 | mpz_init(gcd); |
---|
71 | mpz_gcd(gcd, a,b); |
---|
72 | if(mpz_cmp_ui(gcd, 1) == 0) |
---|
73 | { |
---|
74 | WerrorS("constant in q-ideal is coprime to modulus in ground ring"); |
---|
75 | WerrorS("Unable to create qring!"); |
---|
76 | return NULL; |
---|
77 | } |
---|
78 | if(r->modExponent == 1) |
---|
79 | { |
---|
80 | ZnmInfo info; |
---|
81 | info.base = gcd; |
---|
82 | info.exp = (unsigned long) 1; |
---|
83 | rr = nInitChar(n_Zn, (void*)&info); |
---|
84 | } |
---|
85 | else |
---|
86 | { |
---|
87 | ZnmInfo info; |
---|
88 | info.base = r->modBase; |
---|
89 | int kNew = 1; |
---|
90 | mpz_t baseTokNew; |
---|
91 | mpz_init(baseTokNew); |
---|
92 | mpz_set(baseTokNew, r->modBase); |
---|
93 | while(mpz_cmp(gcd, baseTokNew) > 0) |
---|
94 | { |
---|
95 | kNew++; |
---|
96 | mpz_mul(baseTokNew, baseTokNew, r->modBase); |
---|
97 | } |
---|
98 | //printf("\nkNew = %i\n",kNew); |
---|
99 | info.exp = kNew; |
---|
100 | mpz_clear(baseTokNew); |
---|
101 | rr = nInitChar(n_Znm, (void*)&info); |
---|
102 | } |
---|
103 | return(rr); |
---|
104 | } |
---|
105 | |
---|
106 | static number nrnAnn(number b, const coeffs r); |
---|
107 | /* for initializing function pointers */ |
---|
108 | BOOLEAN nrnInitChar (coeffs r, void* p) |
---|
109 | { |
---|
110 | assume( (getCoeffType(r) == ID) || (getCoeffType (r) == ID2) ); |
---|
111 | ZnmInfo * info= (ZnmInfo *) p; |
---|
112 | r->modBase= info->base; |
---|
113 | |
---|
114 | nrnInitExp (info->exp, r); |
---|
115 | |
---|
116 | /* next computation may yield wrong characteristic as r->modNumber |
---|
117 | is a GMP number */ |
---|
118 | r->ch = mpz_get_ui(r->modNumber); |
---|
119 | |
---|
120 | r->is_field=FALSE; |
---|
121 | r->is_domain=FALSE; |
---|
122 | r->rep=n_rep_gmp; |
---|
123 | |
---|
124 | |
---|
125 | r->cfCoeffString = nrnCoeffString; |
---|
126 | |
---|
127 | r->cfInit = nrnInit; |
---|
128 | r->cfDelete = nrnDelete; |
---|
129 | r->cfCopy = nrnCopy; |
---|
130 | r->cfSize = nrnSize; |
---|
131 | r->cfInt = nrnInt; |
---|
132 | r->cfAdd = nrnAdd; |
---|
133 | r->cfSub = nrnSub; |
---|
134 | r->cfMult = nrnMult; |
---|
135 | r->cfDiv = nrnDiv; |
---|
136 | r->cfAnn = nrnAnn; |
---|
137 | r->cfIntMod = nrnMod; |
---|
138 | r->cfExactDiv = nrnDiv; |
---|
139 | r->cfInpNeg = nrnNeg; |
---|
140 | r->cfInvers = nrnInvers; |
---|
141 | r->cfDivBy = nrnDivBy; |
---|
142 | r->cfDivComp = nrnDivComp; |
---|
143 | r->cfGreater = nrnGreater; |
---|
144 | r->cfEqual = nrnEqual; |
---|
145 | r->cfIsZero = nrnIsZero; |
---|
146 | r->cfIsOne = nrnIsOne; |
---|
147 | r->cfIsMOne = nrnIsMOne; |
---|
148 | r->cfGreaterZero = nrnGreaterZero; |
---|
149 | r->cfWriteLong = nrnWrite; |
---|
150 | r->cfRead = nrnRead; |
---|
151 | r->cfPower = nrnPower; |
---|
152 | r->cfSetMap = nrnSetMap; |
---|
153 | r->cfNormalize = ndNormalize; |
---|
154 | r->cfLcm = nrnLcm; |
---|
155 | r->cfGcd = nrnGcd; |
---|
156 | r->cfIsUnit = nrnIsUnit; |
---|
157 | r->cfGetUnit = nrnGetUnit; |
---|
158 | r->cfExtGcd = nrnExtGcd; |
---|
159 | r->cfName = ndName; |
---|
160 | r->cfCoeffWrite = nrnCoeffWrite; |
---|
161 | r->nCoeffIsEqual = nrnCoeffsEqual; |
---|
162 | r->cfKillChar = ndKillChar; |
---|
163 | r->cfQuot1 = nrnQuot1; |
---|
164 | #ifdef LDEBUG |
---|
165 | r->cfDBTest = nrnDBTest; |
---|
166 | #endif |
---|
167 | return FALSE; |
---|
168 | } |
---|
169 | |
---|
170 | /* |
---|
171 | * create a number from int |
---|
172 | */ |
---|
173 | number nrnInit(long i, const coeffs r) |
---|
174 | { |
---|
175 | int_number erg = (int_number) omAllocBin(gmp_nrz_bin); |
---|
176 | mpz_init_set_si(erg, i); |
---|
177 | mpz_mod(erg, erg, r->modNumber); |
---|
178 | return (number) erg; |
---|
179 | } |
---|
180 | |
---|
181 | void nrnDelete(number *a, const coeffs) |
---|
182 | { |
---|
183 | if (*a == NULL) return; |
---|
184 | mpz_clear((int_number) *a); |
---|
185 | omFreeBin((void *) *a, gmp_nrz_bin); |
---|
186 | *a = NULL; |
---|
187 | } |
---|
188 | |
---|
189 | number nrnCopy(number a, const coeffs) |
---|
190 | { |
---|
191 | int_number erg = (int_number) omAllocBin(gmp_nrz_bin); |
---|
192 | mpz_init_set(erg, (int_number) a); |
---|
193 | return (number) erg; |
---|
194 | } |
---|
195 | |
---|
196 | int nrnSize(number a, const coeffs) |
---|
197 | { |
---|
198 | if (a == NULL) return 0; |
---|
199 | return sizeof(mpz_t); |
---|
200 | } |
---|
201 | |
---|
202 | /* |
---|
203 | * convert a number to int |
---|
204 | */ |
---|
205 | int nrnInt(number &n, const coeffs) |
---|
206 | { |
---|
207 | return (int)mpz_get_si((int_number) n); |
---|
208 | } |
---|
209 | |
---|
210 | /* |
---|
211 | * Multiply two numbers |
---|
212 | */ |
---|
213 | number nrnMult(number a, number b, const coeffs r) |
---|
214 | { |
---|
215 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
216 | mpz_init(erg); |
---|
217 | mpz_mul(erg, (int_number)a, (int_number) b); |
---|
218 | mpz_mod(erg, erg, r->modNumber); |
---|
219 | return (number) erg; |
---|
220 | } |
---|
221 | |
---|
222 | void nrnPower(number a, int i, number * result, const coeffs r) |
---|
223 | { |
---|
224 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
225 | mpz_init(erg); |
---|
226 | mpz_powm_ui(erg, (int_number)a, i, r->modNumber); |
---|
227 | *result = (number) erg; |
---|
228 | } |
---|
229 | |
---|
230 | number nrnAdd(number a, number b, const coeffs r) |
---|
231 | { |
---|
232 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
233 | mpz_init(erg); |
---|
234 | mpz_add(erg, (int_number)a, (int_number) b); |
---|
235 | mpz_mod(erg, erg, r->modNumber); |
---|
236 | return (number) erg; |
---|
237 | } |
---|
238 | |
---|
239 | number nrnSub(number a, number b, const coeffs r) |
---|
240 | { |
---|
241 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
242 | mpz_init(erg); |
---|
243 | mpz_sub(erg, (int_number)a, (int_number) b); |
---|
244 | mpz_mod(erg, erg, r->modNumber); |
---|
245 | return (number) erg; |
---|
246 | } |
---|
247 | |
---|
248 | number nrnNeg(number c, const coeffs r) |
---|
249 | { |
---|
250 | if( !nrnIsZero(c, r) ) |
---|
251 | // Attention: This method operates in-place. |
---|
252 | mpz_sub((int_number)c, r->modNumber, (int_number)c); |
---|
253 | return c; |
---|
254 | } |
---|
255 | |
---|
256 | number nrnInvers(number c, const coeffs r) |
---|
257 | { |
---|
258 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
259 | mpz_init(erg); |
---|
260 | mpz_invert(erg, (int_number)c, r->modNumber); |
---|
261 | return (number) erg; |
---|
262 | } |
---|
263 | |
---|
264 | /* |
---|
265 | * Give the smallest k, such that a * x = k = b * y has a solution |
---|
266 | * TODO: lcm(gcd,gcd) better than gcd(lcm) ? |
---|
267 | */ |
---|
268 | number nrnLcm(number a, number b, const coeffs r) |
---|
269 | { |
---|
270 | number erg = nrnGcd(NULL, a, r); |
---|
271 | number tmp = nrnGcd(NULL, b, r); |
---|
272 | mpz_lcm((int_number)erg, (int_number)erg, (int_number)tmp); |
---|
273 | nrnDelete(&tmp, NULL); |
---|
274 | return (number)erg; |
---|
275 | } |
---|
276 | |
---|
277 | /* |
---|
278 | * Give the largest k, such that a = x * k, b = y * k has |
---|
279 | * a solution. |
---|
280 | */ |
---|
281 | number nrnGcd(number a, number b, const coeffs r) |
---|
282 | { |
---|
283 | if ((a == NULL) && (b == NULL)) return nrnInit(0,r); |
---|
284 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
285 | mpz_init_set(erg, r->modNumber); |
---|
286 | if (a != NULL) mpz_gcd(erg, erg, (int_number)a); |
---|
287 | if (b != NULL) mpz_gcd(erg, erg, (int_number)b); |
---|
288 | return (number)erg; |
---|
289 | } |
---|
290 | |
---|
291 | /* Not needed any more, but may have room for improvement |
---|
292 | number nrnGcd3(number a,number b, number c,ring r) |
---|
293 | { |
---|
294 | int_number erg = (int_number) omAllocBin(gmp_nrz_bin); |
---|
295 | mpz_init(erg); |
---|
296 | if (a == NULL) a = (number)r->modNumber; |
---|
297 | if (b == NULL) b = (number)r->modNumber; |
---|
298 | if (c == NULL) c = (number)r->modNumber; |
---|
299 | mpz_gcd(erg, (int_number)a, (int_number)b); |
---|
300 | mpz_gcd(erg, erg, (int_number)c); |
---|
301 | mpz_gcd(erg, erg, r->modNumber); |
---|
302 | return (number)erg; |
---|
303 | } |
---|
304 | */ |
---|
305 | |
---|
306 | /* |
---|
307 | * Give the largest k, such that a = x * k, b = y * k has |
---|
308 | * a solution and r, s, s.t. k = s*a + t*b |
---|
309 | */ |
---|
310 | number nrnExtGcd(number a, number b, number *s, number *t, const coeffs r) |
---|
311 | { |
---|
312 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
313 | int_number bs = (int_number)omAllocBin(gmp_nrz_bin); |
---|
314 | int_number bt = (int_number)omAllocBin(gmp_nrz_bin); |
---|
315 | mpz_init(erg); |
---|
316 | mpz_init(bs); |
---|
317 | mpz_init(bt); |
---|
318 | mpz_gcdext(erg, bs, bt, (int_number)a, (int_number)b); |
---|
319 | mpz_mod(bs, bs, r->modNumber); |
---|
320 | mpz_mod(bt, bt, r->modNumber); |
---|
321 | *s = (number)bs; |
---|
322 | *t = (number)bt; |
---|
323 | return (number)erg; |
---|
324 | } |
---|
325 | |
---|
326 | BOOLEAN nrnIsZero(number a, const coeffs) |
---|
327 | { |
---|
328 | #ifdef LDEBUG |
---|
329 | if (a == NULL) return FALSE; |
---|
330 | #endif |
---|
331 | return 0 == mpz_cmpabs_ui((int_number)a, 0); |
---|
332 | } |
---|
333 | |
---|
334 | BOOLEAN nrnIsOne(number a, const coeffs) |
---|
335 | { |
---|
336 | #ifdef LDEBUG |
---|
337 | if (a == NULL) return FALSE; |
---|
338 | #endif |
---|
339 | return 0 == mpz_cmp_si((int_number)a, 1); |
---|
340 | } |
---|
341 | |
---|
342 | BOOLEAN nrnIsMOne(number a, const coeffs r) |
---|
343 | { |
---|
344 | #ifdef LDEBUG |
---|
345 | if (a == NULL) return FALSE; |
---|
346 | #endif |
---|
347 | mpz_t t; mpz_init_set(t, (int_number)a); |
---|
348 | mpz_add_ui(t, t, 1); |
---|
349 | bool erg = (0 == mpz_cmp(t, r->modNumber)); |
---|
350 | mpz_clear(t); |
---|
351 | return erg; |
---|
352 | } |
---|
353 | |
---|
354 | BOOLEAN nrnEqual(number a, number b, const coeffs) |
---|
355 | { |
---|
356 | return 0 == mpz_cmp((int_number)a, (int_number)b); |
---|
357 | } |
---|
358 | |
---|
359 | BOOLEAN nrnGreater(number a, number b, const coeffs) |
---|
360 | { |
---|
361 | return 0 < mpz_cmp((int_number)a, (int_number)b); |
---|
362 | } |
---|
363 | |
---|
364 | BOOLEAN nrnGreaterZero(number k, const coeffs) |
---|
365 | { |
---|
366 | return 0 < mpz_cmp_si((int_number)k, 0); |
---|
367 | } |
---|
368 | |
---|
369 | BOOLEAN nrnIsUnit(number a, const coeffs r) |
---|
370 | { |
---|
371 | number tmp = nrnGcd(a, (number)r->modNumber, r); |
---|
372 | bool res = nrnIsOne(tmp, r); |
---|
373 | nrnDelete(&tmp, NULL); |
---|
374 | return res; |
---|
375 | } |
---|
376 | |
---|
377 | number nrnGetUnit(number k, const coeffs r) |
---|
378 | { |
---|
379 | if (mpz_divisible_p(r->modNumber, (int_number)k)) return nrnInit(1,r); |
---|
380 | |
---|
381 | int_number unit = (int_number)nrnGcd(k, 0, r); |
---|
382 | mpz_tdiv_q(unit, (int_number)k, unit); |
---|
383 | int_number gcd = (int_number)nrnGcd((number)unit, 0, r); |
---|
384 | if (!nrnIsOne((number)gcd,r)) |
---|
385 | { |
---|
386 | int_number ctmp; |
---|
387 | // tmp := unit^2 |
---|
388 | int_number tmp = (int_number) nrnMult((number) unit,(number) unit,r); |
---|
389 | // gcd_new := gcd(tmp, 0) |
---|
390 | int_number gcd_new = (int_number) nrnGcd((number) tmp, 0, r); |
---|
391 | while (!nrnEqual((number) gcd_new,(number) gcd,r)) |
---|
392 | { |
---|
393 | // gcd := gcd_new |
---|
394 | ctmp = gcd; |
---|
395 | gcd = gcd_new; |
---|
396 | gcd_new = ctmp; |
---|
397 | // tmp := tmp * unit |
---|
398 | mpz_mul(tmp, tmp, unit); |
---|
399 | mpz_mod(tmp, tmp, r->modNumber); |
---|
400 | // gcd_new := gcd(tmp, 0) |
---|
401 | mpz_gcd(gcd_new, tmp, r->modNumber); |
---|
402 | } |
---|
403 | // unit := unit + modNumber / gcd_new |
---|
404 | mpz_tdiv_q(tmp, r->modNumber, gcd_new); |
---|
405 | mpz_add(unit, unit, tmp); |
---|
406 | mpz_mod(unit, unit, r->modNumber); |
---|
407 | nrnDelete((number*) &gcd_new, NULL); |
---|
408 | nrnDelete((number*) &tmp, NULL); |
---|
409 | } |
---|
410 | nrnDelete((number*) &gcd, NULL); |
---|
411 | return (number)unit; |
---|
412 | } |
---|
413 | |
---|
414 | BOOLEAN nrnDivBy(number a, number b, const coeffs r) |
---|
415 | { |
---|
416 | if (a == NULL) |
---|
417 | return mpz_divisible_p(r->modNumber, (int_number)b); |
---|
418 | else |
---|
419 | { /* b divides a iff b/gcd(a, b) is a unit in the given ring: */ |
---|
420 | number n = nrnGcd(a, b, r); |
---|
421 | mpz_tdiv_q((int_number)n, (int_number)b, (int_number)n); |
---|
422 | bool result = nrnIsUnit(n, r); |
---|
423 | nrnDelete(&n, NULL); |
---|
424 | return result; |
---|
425 | } |
---|
426 | } |
---|
427 | |
---|
428 | int nrnDivComp(number a, number b, const coeffs r) |
---|
429 | { |
---|
430 | if (nrnEqual(a, b,r)) return 2; |
---|
431 | if (mpz_divisible_p((int_number) a, (int_number) b)) return -1; |
---|
432 | if (mpz_divisible_p((int_number) b, (int_number) a)) return 1; |
---|
433 | return 0; |
---|
434 | } |
---|
435 | |
---|
436 | number nrnDiv(number a, number b, const coeffs r) |
---|
437 | { |
---|
438 | if (a == NULL) a = (number)r->modNumber; |
---|
439 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
440 | mpz_init(erg); |
---|
441 | if (mpz_divisible_p((int_number)a, (int_number)b)) |
---|
442 | { |
---|
443 | mpz_divexact(erg, (int_number)a, (int_number)b); |
---|
444 | return (number)erg; |
---|
445 | } |
---|
446 | else |
---|
447 | { |
---|
448 | int_number gcd = (int_number)nrnGcd(a, b, r); |
---|
449 | mpz_divexact(erg, (int_number)b, gcd); |
---|
450 | if (!nrnIsUnit((number)erg, r)) |
---|
451 | { |
---|
452 | WerrorS("Division not possible, even by cancelling zero divisors."); |
---|
453 | WerrorS("Result is integer division without remainder."); |
---|
454 | mpz_tdiv_q(erg, (int_number) a, (int_number) b); |
---|
455 | nrnDelete((number*) &gcd, NULL); |
---|
456 | return (number)erg; |
---|
457 | } |
---|
458 | // a / gcd(a,b) * [b / gcd (a,b)]^(-1) |
---|
459 | int_number tmp = (int_number)nrnInvers((number) erg,r); |
---|
460 | mpz_divexact(erg, (int_number)a, gcd); |
---|
461 | mpz_mul(erg, erg, tmp); |
---|
462 | nrnDelete((number*) &gcd, NULL); |
---|
463 | nrnDelete((number*) &tmp, NULL); |
---|
464 | mpz_mod(erg, erg, r->modNumber); |
---|
465 | return (number)erg; |
---|
466 | } |
---|
467 | } |
---|
468 | |
---|
469 | number nrnMod(number a, number b, const coeffs r) |
---|
470 | { |
---|
471 | /* |
---|
472 | We need to return the number rr which is uniquely determined by the |
---|
473 | following two properties: |
---|
474 | (1) 0 <= rr < |b| (with respect to '<' and '<=' performed in Z x Z) |
---|
475 | (2) There exists some k in the integers Z such that a = k * b + rr. |
---|
476 | Consider g := gcd(n, |b|). Note that then |b|/g is a unit in Z/n. |
---|
477 | Now, there are three cases: |
---|
478 | (a) g = 1 |
---|
479 | Then |b| is a unit in Z/n, i.e. |b| (and also b) divides a. |
---|
480 | Thus rr = 0. |
---|
481 | (b) g <> 1 and g divides a |
---|
482 | Then a = (a/g) * (|b|/g)^(-1) * b (up to sign), i.e. again rr = 0. |
---|
483 | (c) g <> 1 and g does not divide a |
---|
484 | Then denote the division with remainder of a by g as this: |
---|
485 | a = s * g + t. Then t = a - s * g = a - s * (|b|/g)^(-1) * |b| |
---|
486 | fulfills (1) and (2), i.e. rr := t is the correct result. Hence |
---|
487 | in this third case, rr is the remainder of division of a by g in Z. |
---|
488 | Remark: according to mpz_mod: a,b are always non-negative |
---|
489 | */ |
---|
490 | int_number g = (int_number)omAllocBin(gmp_nrz_bin); |
---|
491 | int_number rr = (int_number)omAllocBin(gmp_nrz_bin); |
---|
492 | mpz_init(g); |
---|
493 | mpz_init_set_si(rr, 0); |
---|
494 | mpz_gcd(g, (int_number)r->modNumber, (int_number)b); // g is now as above |
---|
495 | if (mpz_cmp_si(g, (long)1) != 0) mpz_mod(rr, (int_number)a, g); // the case g <> 1 |
---|
496 | mpz_clear(g); |
---|
497 | omFreeBin(g, gmp_nrz_bin); |
---|
498 | return (number)rr; |
---|
499 | } |
---|
500 | |
---|
501 | number nrnIntDiv(number a, number b, const coeffs r) |
---|
502 | { |
---|
503 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
504 | mpz_init(erg); |
---|
505 | if (a == NULL) a = (number)r->modNumber; |
---|
506 | mpz_tdiv_q(erg, (int_number)a, (int_number)b); |
---|
507 | return (number)erg; |
---|
508 | } |
---|
509 | |
---|
510 | static number nrnAnn(number b, const coeffs r) |
---|
511 | { |
---|
512 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
513 | mpz_init(erg); |
---|
514 | mpz_tdiv_q(erg, (int_number)r->modNumber, (int_number)b); |
---|
515 | return (number)erg; |
---|
516 | } |
---|
517 | |
---|
518 | /* |
---|
519 | * Helper function for computing the module |
---|
520 | */ |
---|
521 | |
---|
522 | int_number nrnMapCoef = NULL; |
---|
523 | |
---|
524 | number nrnMapModN(number from, const coeffs /*src*/, const coeffs dst) |
---|
525 | { |
---|
526 | return nrnMult(from, (number) nrnMapCoef, dst); |
---|
527 | } |
---|
528 | |
---|
529 | number nrnMap2toM(number from, const coeffs /*src*/, const coeffs dst) |
---|
530 | { |
---|
531 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
532 | mpz_init(erg); |
---|
533 | mpz_mul_ui(erg, nrnMapCoef, (NATNUMBER)from); |
---|
534 | mpz_mod(erg, erg, dst->modNumber); |
---|
535 | return (number)erg; |
---|
536 | } |
---|
537 | |
---|
538 | number nrnMapZp(number from, const coeffs /*src*/, const coeffs dst) |
---|
539 | { |
---|
540 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
541 | mpz_init(erg); |
---|
542 | // TODO: use npInt(...) |
---|
543 | mpz_mul_si(erg, nrnMapCoef, (NATNUMBER)from); |
---|
544 | mpz_mod(erg, erg, dst->modNumber); |
---|
545 | return (number)erg; |
---|
546 | } |
---|
547 | |
---|
548 | number nrnMapGMP(number from, const coeffs /*src*/, const coeffs dst) |
---|
549 | { |
---|
550 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
551 | mpz_init(erg); |
---|
552 | mpz_mod(erg, (int_number)from, dst->modNumber); |
---|
553 | return (number)erg; |
---|
554 | } |
---|
555 | |
---|
556 | number nrnMapZ(number from, const coeffs src, const coeffs dst) |
---|
557 | { |
---|
558 | if (SR_HDL(from) & SR_INT) |
---|
559 | { |
---|
560 | long f_i=SR_TO_INT(from); |
---|
561 | return nrnInit(f_i,dst); |
---|
562 | } |
---|
563 | return nrnMapGMP(from,src,dst); |
---|
564 | } |
---|
565 | |
---|
566 | number nrnMapQ(number from, const coeffs src, const coeffs dst) |
---|
567 | { |
---|
568 | int_number erg = (int_number)omAllocBin(gmp_nrz_bin); |
---|
569 | mpz_init(erg); |
---|
570 | nlGMP(from, (number)erg, src); |
---|
571 | mpz_mod(erg, erg, dst->modNumber); |
---|
572 | return (number)erg; |
---|
573 | } |
---|
574 | |
---|
575 | nMapFunc nrnSetMap(const coeffs src, const coeffs dst) |
---|
576 | { |
---|
577 | /* dst = nrn */ |
---|
578 | if ((src->rep==n_rep_gmp) && nCoeff_is_Ring_Z(src)) |
---|
579 | { |
---|
580 | return nrnMapGMP; |
---|
581 | } |
---|
582 | if ((src->rep==n_rep_gap_gmp) /*&& nCoeff_is_Ring_Z(src)*/) |
---|
583 | { |
---|
584 | return nrnMapZ; |
---|
585 | } |
---|
586 | if ((src->rep==n_rep_gap_rat) && nCoeff_is_Q(src)) |
---|
587 | { |
---|
588 | return nrnMapQ; |
---|
589 | } |
---|
590 | // Some type of Z/n ring / field |
---|
591 | if (nCoeff_is_Ring_ModN(src) || nCoeff_is_Ring_PtoM(src) || |
---|
592 | nCoeff_is_Ring_2toM(src) || nCoeff_is_Zp(src)) |
---|
593 | { |
---|
594 | if ( (!nCoeff_is_Zp(src)) |
---|
595 | && (mpz_cmp(src->modBase, dst->modBase) == 0) |
---|
596 | && (src->modExponent == dst->modExponent)) return nrnMapGMP; |
---|
597 | else |
---|
598 | { |
---|
599 | int_number nrnMapModul = (int_number) omAllocBin(gmp_nrz_bin); |
---|
600 | // Computing the n of Z/n |
---|
601 | if (nCoeff_is_Zp(src)) |
---|
602 | { |
---|
603 | mpz_init_set_si(nrnMapModul, src->ch); |
---|
604 | } |
---|
605 | else |
---|
606 | { |
---|
607 | mpz_init(nrnMapModul); |
---|
608 | mpz_set(nrnMapModul, src->modNumber); |
---|
609 | } |
---|
610 | // nrnMapCoef = 1 in dst if dst is a subring of src |
---|
611 | // nrnMapCoef = 0 in dst / src if src is a subring of dst |
---|
612 | if (nrnMapCoef == NULL) |
---|
613 | { |
---|
614 | nrnMapCoef = (int_number) omAllocBin(gmp_nrz_bin); |
---|
615 | mpz_init(nrnMapCoef); |
---|
616 | } |
---|
617 | if (mpz_divisible_p(nrnMapModul, dst->modNumber)) |
---|
618 | { |
---|
619 | mpz_set_si(nrnMapCoef, 1); |
---|
620 | } |
---|
621 | else |
---|
622 | if (nrnDivBy(NULL, (number) nrnMapModul,dst)) |
---|
623 | { |
---|
624 | mpz_divexact(nrnMapCoef, dst->modNumber, nrnMapModul); |
---|
625 | int_number tmp = dst->modNumber; |
---|
626 | dst->modNumber = nrnMapModul; |
---|
627 | if (!nrnIsUnit((number) nrnMapCoef,dst)) |
---|
628 | { |
---|
629 | dst->modNumber = tmp; |
---|
630 | nrnDelete((number*) &nrnMapModul, dst); |
---|
631 | return NULL; |
---|
632 | } |
---|
633 | int_number inv = (int_number) nrnInvers((number) nrnMapCoef,dst); |
---|
634 | dst->modNumber = tmp; |
---|
635 | mpz_mul(nrnMapCoef, nrnMapCoef, inv); |
---|
636 | mpz_mod(nrnMapCoef, nrnMapCoef, dst->modNumber); |
---|
637 | nrnDelete((number*) &inv, dst); |
---|
638 | } |
---|
639 | else |
---|
640 | { |
---|
641 | nrnDelete((number*) &nrnMapModul, dst); |
---|
642 | return NULL; |
---|
643 | } |
---|
644 | nrnDelete((number*) &nrnMapModul, dst); |
---|
645 | if (nCoeff_is_Ring_2toM(src)) |
---|
646 | return nrnMap2toM; |
---|
647 | else if (nCoeff_is_Zp(src)) |
---|
648 | return nrnMapZp; |
---|
649 | else |
---|
650 | return nrnMapModN; |
---|
651 | } |
---|
652 | } |
---|
653 | return NULL; // default |
---|
654 | } |
---|
655 | |
---|
656 | /* |
---|
657 | * set the exponent (allocate and init tables) (TODO) |
---|
658 | */ |
---|
659 | |
---|
660 | void nrnSetExp(unsigned long m, coeffs r) |
---|
661 | { |
---|
662 | /* clean up former stuff */ |
---|
663 | if (r->modNumber != NULL) mpz_clear(r->modNumber); |
---|
664 | |
---|
665 | r->modExponent= m; |
---|
666 | r->modNumber = (int_number)omAllocBin(gmp_nrz_bin); |
---|
667 | mpz_init_set (r->modNumber, r->modBase); |
---|
668 | mpz_pow_ui (r->modNumber, r->modNumber, m); |
---|
669 | } |
---|
670 | |
---|
671 | /* We expect this ring to be Z/n^m for some m > 0 and for some n > 2 which is not a prime. */ |
---|
672 | void nrnInitExp(unsigned long m, coeffs r) |
---|
673 | { |
---|
674 | nrnSetExp(m, r); |
---|
675 | assume (r->modNumber != NULL); |
---|
676 | if (mpz_cmp_ui(r->modNumber,2) <= 0) |
---|
677 | WarnS("nrnInitExp failed (m in Z/m too small)"); |
---|
678 | } |
---|
679 | |
---|
680 | #ifdef LDEBUG |
---|
681 | BOOLEAN nrnDBTest (number a, const char *, const int, const coeffs r) |
---|
682 | { |
---|
683 | if (a==NULL) return TRUE; |
---|
684 | if ( (mpz_cmp_si((int_number) a, 0) < 0) || (mpz_cmp((int_number) a, r->modNumber) > 0) ) |
---|
685 | { |
---|
686 | return FALSE; |
---|
687 | } |
---|
688 | return TRUE; |
---|
689 | } |
---|
690 | #endif |
---|
691 | |
---|
692 | /*2 |
---|
693 | * extracts a long integer from s, returns the rest (COPY FROM longrat0.cc) |
---|
694 | */ |
---|
695 | static const char * nlCPEatLongC(char *s, mpz_ptr i) |
---|
696 | { |
---|
697 | const char * start=s; |
---|
698 | if (!(*s >= '0' && *s <= '9')) |
---|
699 | { |
---|
700 | mpz_init_set_si(i, 1); |
---|
701 | return s; |
---|
702 | } |
---|
703 | mpz_init(i); |
---|
704 | while (*s >= '0' && *s <= '9') s++; |
---|
705 | if (*s=='\0') |
---|
706 | { |
---|
707 | mpz_set_str(i,start,10); |
---|
708 | } |
---|
709 | else |
---|
710 | { |
---|
711 | char c=*s; |
---|
712 | *s='\0'; |
---|
713 | mpz_set_str(i,start,10); |
---|
714 | *s=c; |
---|
715 | } |
---|
716 | return s; |
---|
717 | } |
---|
718 | |
---|
719 | const char * nrnRead (const char *s, number *a, const coeffs r) |
---|
720 | { |
---|
721 | int_number z = (int_number) omAllocBin(gmp_nrz_bin); |
---|
722 | { |
---|
723 | s = nlCPEatLongC((char *)s, z); |
---|
724 | } |
---|
725 | mpz_mod(z, z, r->modNumber); |
---|
726 | *a = (number) z; |
---|
727 | return s; |
---|
728 | } |
---|
729 | #endif |
---|
730 | /* #ifdef HAVE_RINGS */ |
---|